JP6813779B2 - 単結晶製造装置及び単結晶製造方法 - Google Patents

単結晶製造装置及び単結晶製造方法 Download PDF

Info

Publication number
JP6813779B2
JP6813779B2 JP2017034207A JP2017034207A JP6813779B2 JP 6813779 B2 JP6813779 B2 JP 6813779B2 JP 2017034207 A JP2017034207 A JP 2017034207A JP 2017034207 A JP2017034207 A JP 2017034207A JP 6813779 B2 JP6813779 B2 JP 6813779B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
carbon
upper lid
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017034207A
Other languages
English (en)
Other versions
JP2018140884A (ja
Inventor
利男 東海林
利男 東海林
竜太郎 東海林
竜太郎 東海林
潤也 池田
潤也 池田
幸弘 浅野
幸弘 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO MECHATROTECH CO., LTD.
Original Assignee
SHINKO MECHATROTECH CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO MECHATROTECH CO., LTD. filed Critical SHINKO MECHATROTECH CO., LTD.
Priority to JP2017034207A priority Critical patent/JP6813779B2/ja
Publication of JP2018140884A publication Critical patent/JP2018140884A/ja
Application granted granted Critical
Publication of JP6813779B2 publication Critical patent/JP6813779B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、昇華法により炭化珪素等の単結晶を製造する単結晶製造装置及び単結晶製造方法に関に関する。
炭化珪素(SiC)は熱的及び化学的に安定した優れた特性を有し、禁制帯幅が珪素(Si)に比べて大きいため電気的にも優れた特性を有する半導体材料として知られている。特に4H型の炭化珪素は、電子移動度や飽和電子速度が大きいことから、パワーデバイス向けの半導体材料基板として一部で既に実用化が始まっている。
現在、半導体基板用途の炭化珪素単結晶を製造する方法として改良レイリー法(昇華法)が用いられており、直径6インチまでの基板が市販されている。昇華法とは、坩堝内にて高温下で原料を昇華させて拡散し、原料より低温に温度制御された場所に置かれた種結晶上に再析出させ、再結晶化することによって単結晶を成長させる方法である。
特許文献1には、グラファイト製のカーボン坩堝中でSiCが昇華するとSi、SiC、SiCといった活性種が発生し、Siの分圧がCの分圧より高い状態で昇華すること、及び昇華した原料ガスの成分とその流れを制御する構造を備えることにより、良質な単結晶を製造する方法が記載されている。また、特許文献2には、誘導加熱方式の単結晶製造装置において、坩堝の下方に設けた成形断熱材と、坩堝と成形断熱材との間に設けたグラファイト製円筒断熱材とを備えることにより、結晶成長条件を安定化する方法が記載されている。
特許第4692394号公報 特開2013−35705号公報
現在の炭化珪素単結晶基板は、結晶欠陥密度が大きいことや価格が高いことが課題であり、炭化珪素単結晶基板を更に広範な用途に向けて実用化するためには、結晶欠陥密度を低くすることや量産性を向上して製造コストを下げることが求められている。炭化珪素単結晶基板を低コストで製造するためには、結晶品質を保ったまま製造に要する時間を短くすることが求められる。昇華法による炭化珪素単結晶の製造において、結晶成長速度を大きくするためには、原料と種結晶の温度差を大きくしなければならない。しかし、温度差を大きくしすぎると、原料近傍でのSiの蒸気圧が種結晶近傍でのSiの飽和蒸気圧より大きくなりやすく、結晶品質が大きく劣化するという問題がある。
上記の従来の単結晶製造装置では、結晶成長炉のチェンバーは冷却可能な2重の石英チ管で構成され、石英管内の所定の場所への原料を収納した坩堝の設置や結晶成長後の坩堝の取出しはその石英管の下部に設けられた坩堝昇降装置を用いて行われている。この場合、坩堝昇降装置の上端の台上に断熱材に覆われた坩堝が設置され、坩堝の出し入れを行う場合、その周囲の断熱材も一緒に移動する。
図6は、従来の炭化珪素単結晶を製造するための単結晶製造装置の一例の構成を模式的に示す断面図であり、図6(a)はチェンバー内へ坩堝を設置したとき、図6(b)はチェンバー内から坩堝を取り出したときの様子をそれぞれ示す図である。図6において、この単結晶製造装置20は、結晶成長炉のチェンバーとして水冷二重石英管21を用い、高周波誘導加熱方式による加熱のため、水冷二重石英管21の外側に誘導加熱発振機(図示せず)に接続した誘導加熱コイル27が巻かれている。水冷二重石英管21の上部にトップフランジ22、下部にベースフランジ23設けて水冷二重石英管21を密閉し、その内部に、カーボン坩堝24と、それを囲むように断熱材として保温材蓋25と円筒保温材26が設置されている。トップフランジ22は、水冷され、同時に水冷二重石英管21の水漏れ防止のためのシールの役目をしているため、容易に取り外すことは出来ない構造となっている。トップフランジ22とベースフランジ23には水冷用の水の給入口28と出水口29が設けられ、さらに、水冷二重石英管21内へ雰囲気ガスを導入するためのガス導入口31とガス排出口32が設けられている。水冷二重石英管21とベースフランジ部23との間にはベースシール33が挿入されており、ベースフランジ23は取り外し可能となっている。
図6(b)に示すように、結晶成長後および結晶成長前の材料投入時には、カーボン坩堝24は保温材蓋25、円筒保温材26およびベースフランジ23と一緒に坩堝昇降装置を用いて引き下げる機構となっており、カーボン坩堝24が取り出し可能な位置まで下げて、保温材蓋25を開けてカーボン坩堝24を取り出す。
このように従来の単結晶成長装置では、坩堝を出し入れする際に断熱材も一緒に引き出すため、結晶育成毎に炉内における位置ずれが生じやすく、温度制御の再現性を得るために調整に多くの時間を要するという問題があった。または、温度制御の再現性が不十分となり結晶品質のばらつきを生じやすいという問題があった。そこで、従来の単結晶製造装置では結晶品質を保ったまま製造に要する時間を短くすることが困難であった。また、チェンバーの下方に坩堝の取出しに必要な移動長を確保して坩堝昇降装置を設置する必要があるため装置の価格も高価となっていた。
そこで、本発明は、係る問題を解決するためになされたものであり、従来よりも低コストで高品質な炭化珪素等の単結晶を製造することが可能な単結晶製造装置及び単結晶製造方法を提供することを目的とする。
第1の観点では、本発明の単結晶製造装置は、底面を有する円筒状の坩堝本体と円板状の上蓋とからなる坩堝と、該坩堝を収納するチェンバーと、前記坩堝を加熱する手段と、前記坩堝の下方および上方および前記坩堝と前記チェンバーとの間に配置された断熱材とを有し、前記坩堝を前記加熱手段により加熱することにより前記坩堝内に収納された原料を昇華させ、これにより前記坩堝の上蓋の下側に配置された種結晶を成長させて単結晶を製造する単結晶製造装置において、前記坩堝を前記チェンバーの上方に引き出すための取り出し棒と、該取り出し棒と前記坩堝との間を結合する結合部とを有し、該結合部は前記取り出し棒の前記坩堝への取り付けおよび取り外しが可能に構成されていることを特徴とする。
本発明の単結晶製造装置においては、従来と同様に、坩堝の周囲に断熱材を配置し加熱手段で坩堝を加熱することにより、昇華法の結晶成長において必要な坩堝内の温度勾配等の制御を行う。但し、本発明では従来のような坩堝昇降装置を必要としないで、上記のように、坩堝は取り出し棒によりチェンバーの上方に取り出される。この場合、取り出し棒は結合部によって坩堝への取り付けおよび取り外しが可能に構成されているので、坩堝を所定の位置に設置後は取り出し棒を取り外して結晶育成を行い、結晶成長後に再び取り出し棒を結合部に結合して坩堝を上方に取り出す。このとき、取り出し棒により坩堝の上側の断熱材は坩堝と一緒に引き出されるが、坩堝の円筒面の周囲に配置された断熱材及び坩堝の下側に配置された断熱材は移動の必要がなくそのまま炉内に配置されている。また、坩堝はいつも固定された下側の断熱材の上に載せられるため、結晶育成毎に炉内における位置ずれが生じる可能性は減少し、温度制御の再現性を得るための調整も不要となる。これにより、温度制御の再現性の不十分による結晶品質のばらつきの問題が改善される。また、坩堝昇降装置は最初の炉内での坩堝と断熱材の設置位置の調整を行う機能のみがあればよいので、安価な装置で構成できる。
以上のように、本発明では、従来よりも低コストで高品質な炭化珪素等の単結晶を製造することが可能な単結晶製造装置が得られる。
なお、本発明において、取り出し棒と坩堝とを結合する結合部としては、様々な形態が考えられる。例えば、取り出し棒の先端にフック状の構造を設け、それに引っ掛かる構造を坩堝自体に設けるかまたは坩堝に取り付ける構成、取り出し棒の先端をT字状とし、坩堝の上蓋の上面に取り出し棒の先端を挿入し回転させることにより結合するような切込みと溝を設ける構成、取り出し棒の下端にねじ構造を設け、坩堝の上蓋の上面にそのねじ構造に勘合するねじ穴を設ける構成等である。
本発明における単結晶製造装置の上記以外の部分は従来と同様に構成でき、例えば、坩堝としてカーボン坩堝を用いること、加熱装置として誘導加熱コイルを用いること、チェンバーの上端に開閉可能な蓋構造を設けること、減圧アルゴン雰囲気で育成できるようにチェンバーの真空排気手段及びガス導入手段及び排気手段を設けること等が可能である。また、坩堝の周囲に配置される断熱材としてはカーボンフェルトで作成した保温筒を用い、その保温筒の上部の蓋部のみ取り出し棒と一緒に引き出されるように取り外し可能に構成してもよい。なお、本発明の単結晶製造装置及び単結晶製造方法は炭化珪素単結晶のみでなく、昇華法による窒化アルミニウム、酸化ガリウムなどの単結晶の製造にも適用可能である。
第2の観点では、本発明は、前記第1の観点の単結晶製造装置において、前記結合部は、前記坩堝の上蓋の上面に形成されたねじ穴と、前記取り出し棒の下端に形成された前記ねじ穴に勘合可能なねじ構造を有することを特徴とする。これにより簡単な構成で、かつ十分な強度で結合部を構成できる。
第3の観点では、本発明は、前記第1または第2の観点の単結晶製造装置において、前記坩堝は前記坩堝本体および前記上蓋がグラファイトから構成されたカーボン坩堝であって、前記上蓋の下面に、該上蓋と前記種結晶との間に挿入される厚さ0.1〜2mmのカーボンシートを設けたことを特徴とする。一般的に使用されるカーボン坩堝は上蓋を含めて通常グラファイトの成形材から構成されている。一方、カーボンシートは天然黒鉛を特殊処理し、バインダーを使用せず成形した可撓性黒鉛シート等から構成され、カーボン坩堝の熱伝導率が100W/mKであるのに対し、カーボンシートの熱伝導率は厚み方向が10W/mKと小さい。このためカーボンシートの枚数で種結晶の温度制御が可能となり種結晶を最適な温度に制御することができる。また、カーボンシートはグラファイトに比べて柔らかいため剥離が容易となる。これにより、本観点の発明によれば、種結晶の上蓋への設置や取り外し、および種結晶の温度制御が容易となる。なお、上蓋へのカーボンシートの取り付けは接着により行うことができる。
第4の観点では、本発明は、前記第3の観点の単結晶製造装置において、前記坩堝内の前記原料の収納部分の上端から前記種結晶の設置部分との間に前記単結晶の外形を制御するための円錐状のガイド部を有し、該ガイド部は厚さ0.1〜10mmのカーボン材料で構成されていることを特徴とする。このガイド部を設置することにより昇華した材料ガスの流れを制御し、育成される単結晶の形状を制御することができる。
第5の観点では、本発明は、前記第1乃至第4の観点の単結晶製造装置を用いて単結晶を製造することを特徴とする単結晶製造方法を提供する。本発明の単結晶製造方法では、上記のような特徴を有する本発明の単結晶製造装置を用いることにより、従来よりも低コストで高品質な炭化珪素等の単結晶を製造することが可能な単結晶製造方法が得られる。
第6の観点では、本発明は、前記第3または4の観点に記載の単結晶製造装置を用いて単結晶を製造する単結晶製造方法であって、前記上蓋と前記坩堝本体との間にカーボンシートを設け、前記原料を前記坩堝に収納後、前記上蓋と前記カーボンシートとの間および前記カーボンシートと前記坩堝本体との間をカーボン接着剤で固定することにより、前記坩堝を封止することを特徴とする。カーボンシートは坩堝材料であるグラファイトに比べて柔らかく、剥離し易いので、育成後の結晶の取出しが容易となる。
第7の観点では、本発明は、前記第3または4の観点に記載の単結晶製造装置を用いて単結晶を製造する単結晶製造方法であって、前記種結晶として厚さ0.1〜1.0mmの種結晶を用い、径方向への成長を行うことを特徴とする。グラファイトから構成された上蓋に直接種結晶を貼り付けた場合、種結晶の成長と同時にグラファイト上に結晶核がランダムに発生し、多結晶成長が生ずる。一方、カーボンシートは断熱効果があり種結晶との温度差が生じ難く、グラファイトに比べて表面に結晶が成長しにくい。従って、本観点の単結晶製造方法では、種結晶上への成長が優先的に行われて径方向への結晶成長が進み、多結晶成長が生じにくいという効果が得られる。
第8の観点では、本発明は、前記第5乃至第7の観点の単結晶製造方法において、連続して単結晶を製造する際に、その前の製造工程において前記坩堝内に残存した原料の上部の半分以上を取出し、該残存原料を未使用の原料の上に載せて再生原料として使用することを特徴とする。これにより、原料を効率的に使用でき、製造コストの更なる低減が可能となる。残存原料の下側は珪素が抜けて炭素が多い状態となるため再利用できないが、上側は再利用が可能である。
以上のように、本発明により、従来よりも低コストで高品質な炭化珪素等の単結晶を製造することが可能な単結晶製造装置及び単結晶製造方法が得られる。
実施例1に係る単結晶製造装置の構成を模式的に示す断面図であり、図1(a)はチェンバー内へ坩堝を設置したとき、図1(b)はチェンバーから坩堝を取り出すときの様子をそれぞれ示す図。 実施例1に使用する坩堝とその周囲に配置される保温材および取り出し棒の構成を模式的に示す断面図。 実施例1で得られた炭化珪素単結晶インゴットの外観写真。 実施例2で得られた炭化珪素単結晶インゴットの外観写真。 実験結果を示す図であり、成長温度/圧力の数値とマイクロパイプ欠陥面積の関係を示す図。 従来の炭化珪素単結晶の製造装置の一例の構成を模式的に示す断面図であり、図5(a)はチェンバー内へ坩堝を設置したとき、図5(b)はチェンバーから坩堝を取り出したときの様子をそれぞれ示す図。
以下、図面を参照して本発明の単結晶製造装置および単結晶製造方法を実施例により詳細に説明する。なお、図面の説明において同一の要素には同一符号を付し、その重複した説明を省略する。
(単結晶製造装置の実施例)
図1は、実施例1に係る単結晶製造装置の構成を模式的に示す断面図であり、図1(a)はチェンバー内へ坩堝を設置したとき、図1(b)はチェンバー内から坩堝を取り出すときの様子をそれぞれ示す図である。図2は本実施例に使用する坩堝とその周囲に配置される保温材および取り出し棒の構成を模式的に示す断面図である。図1において、本実施例の単結晶製造装置10では、結晶成長炉のチェンバーとして石英管1を用い、高周波誘導加熱方式による加熱のため、石英管1の外側に誘導加熱発振機(図示せず)に接続した誘導加熱コイル7が巻かれている。石英管1の高さは1.2〜1.8mであり、石英管1を密閉するため、石英管1の上部にトップフランジ2、下部にベースフランジ3が設置されている。石英管1の内部には、カーボン坩堝4とそれを囲むように配置された保温材蓋5と円筒保温材6とが設置されている。さらに、カーボン坩堝4を石英管1の上方に引き出すための取り出し棒15と、取り出し棒15とカーボン坩堝4との間を結合する結合部16とを有し、この結合部16は取り出し棒15のカーボン坩堝4への取り付けおよび取り外しが可能に構成されている。
本実施例においては、トップフランジ2は加熱部であるカーボン坩堝4より上方に50cm以上離れているため、図6に示した従来の装置のトップフランジ22のような水冷が不要である。そのため、トップフランジ2は重量が軽く、容易に取り外すことが出来る。ベースフランジ3も加熱部であるカーボン坩堝4から下方に50cm以上離れているため水冷を必要としない。石英管1内へ雰囲気ガスを導入するため、トップフランジ2にガス導入口11が設けられ、ベースフランジ3にガス排出口12が設けられている。また、図示されていないが石英管1を真空排気するための真空ポンプが接続されている。結晶成長時には石英管1内の雰囲気は1気圧以上で使用することはないため、石英管1の上下の端部にシール用シリコンゴムシート13を設けるだけで、トップフランジ2および石英管1の重量により石英管1の密閉が保たれる。なお、本実施例に使用するトップフランジ2の重量は7kg程度である。
カーボン坩堝4は、高周波による誘導加熱を用いて加熱するため導電性を有し、かつ高温での優れた耐熱性を有することが必要であるため、等方性グラファイトを用いる。等方性グラファイトの密度は約1.9g/cmである。保温材蓋5および円筒保温材6はフェルト断熱材に樹脂を含浸して成形することにより製造したものであって、その密度は0.1g/cmである。
図2に示すように、カーボン坩堝4は、底面を有する円筒状の坩堝本体8と円板状の上蓋9とから構成されている。さらに、本実施例においては、結合部16として、上蓋9の上面にはねじ穴9aが形成され、取り出し棒15の下端にはねじ穴9aに勘合可能なねじ部15aが形成されている。カーボン坩堝4を円筒保温材6内の所定の位置に設置後は、取り出し棒15を左に回転させてねじ穴9aより取り外し、保温材蓋5の挿入穴5aを通して上方に引き出す。結晶成長完了後に再び取り出し棒15を挿入穴5aに差し入れ、右に回転させてねじ穴9aに結合してカーボン坩堝4を上方に取り出す。ここで、カーボン坩堝4の円筒保温材6内への設置および引出しのとき、保温材蓋5はカーボン坩堝4と一緒に出し入れされる。しかし、円筒保温材6は移動の必要がなくそのまま炉内に配置されており、カーボン坩堝4はいつも固定された円筒保温材6内に収納されるため、結晶育成毎に炉内における位置ずれが生じる可能性は減少し、温度制御の再現性を得るための調整も不要となる。これにより、温度制御の再現性の不十分による結晶品質のばらつきの問題が改善される。また、坩堝昇降装置は最初の炉内での坩堝と断熱材の設置位置の調整を行う機能のみがあればよいので、安価な装置で構成できる。
また、本実施例においては、図2に示すように、カーボン坩堝4の上蓋9の下面に、上蓋9と種結晶18との間に挿入される厚さ0.1〜2mmのカーボンシート14をカーボン接着剤による接着により貼り付けており、さらに、原料19の収納部分の上端から種結晶18の設置部分との間に厚さ0.1〜10mmのカーボン材料で構成された円錐状のガイド部17を設置している。このガイド部17により昇華した材料ガスの流れを制御し、育成される単結晶の形状を制御することができる。
ここで、各構成部分の具体的形状の一例としては、カーボン坩堝4は外径115mm、内径100mm、深さ130mm、上蓋9は外径115mm、厚さ10mm、カーボンシート14は厚さ0.2mm、種結晶18は外径76mm、厚さ0.3mm、原料19と種結晶18の間隔は45mmとすることができる。
(単結晶製造方法の実施例)
次に、上記実施例の単結晶製造装置10を用いた本発明による単結晶製造方法の一実施例について説明する。
炭化珪素単結晶を育成するため、高純度の炭化珪素粉末からなる3NのGC研磨剤を原料として用いた。上記の原料1500gをカーボン坩堝4の坩堝本体8に充填し、高温真空炉を用いて2000℃以上、10Torr程度の減圧アルゴン雰囲気で1時間以上熱処理を行った。上蓋9には予めカーボンシート14を介して6Hタイプの外径76mm、厚さ0.3mmの炭化珪素種結晶を貼り付けておいた。この上蓋9を上記の熱処理後の坩堝本体8にカーボン接着材で固定し、密閉した。なお、本実施例では、上蓋9に予め貼り付ける上記のカーボンシート14の外径を坩堝本体8の外径と同程度の大きさとして上蓋9の下側の全面に貼り付け、そのカーボンシートを坩堝本体8の上端に接着して密閉した。カーボンシートは剥離し易いので、育成後の結晶の取出しが容易となる。
次に、以下のような手順で結晶育成を行った。カーボン坩堝4に保温材蓋5を載せた状態で取り出し棒15のねじ部15aを上蓋9のねじ穴9aにねじ止めして図5(b)のように全体を保持し、円筒保温材6内に装填後、取り出し棒15を左方向に回転してねじを外して上方に引き出す。その後、トップフランジ2を取り付け、石英管1を真空引きし、石英管1内の圧力を1Torr以下に減圧する。石英管1内に不活性ガスを充填し、600Torrに保つ。本実施例では、充填する不活性ガスはアルゴンガスを用いたが、他の不活性ガスも用いることができる。石英管1内の圧力を600Torrに保持したまま、誘導加熱によりカーボン坩堝4の底部の温度を炭化珪素の結晶成長温度である2500℃になるまで4時間以上かけて加熱する。誘導加熱の周波数は9kHzとした。
その後、1時間保持した後、カーボン坩堝4の温度を保ったまま、石英管1内の圧力を炭化珪素の結晶成長圧力である50Torrまで減圧する。カーボン坩堝4内の圧力がこの結晶成長圧力に達すると種結晶上に炭化珪素単結晶の成長が開始する。単結晶の成長時間は50時間とした。結晶成長中、カーボン坩堝4の底部の温度は2500℃で一定に保たれ、カーボン坩堝4の上部の温度は2350℃でほぼ一定であった。また、誘導加熱発振機の出力は15kWでほぼ一定に保たれていた。
結晶成長終了後、石英管1内にアルゴンガスを充填して、石英管1内の圧力を600Torrに上昇させ、カーボン坩堝4を約8時間かけて室温まで徐冷した。その後、トップフランジ2を取り外し、取り出し棒15をカーボン坩堝4に取り付けてカーボン坩堝4を取り出し、上蓋9を開けて作成した炭化珪素単結晶をカーボン坩堝4から取り出した。結晶成長工程後の円筒保温材6の重量は変化しておらず、円筒保温材6の劣化がないこと、すなわち、温度と圧力が最適な条件であったことが確認できた。
図3は本実施例で得られた炭化珪素単結晶インゴットの外観写真を示す。インゴットの形状は高さ25mm、口径80mmであり、表面が平坦であった。このインゴットをスライスした後、溶融KOHエッチング処理を行い、マイクロパイプ欠陥の密度を求めると、10/cmという小さい値が得られ、また、X線回折法によるロッキングカーブの半値幅は平均で約16秒という非常に高品質を示す値が得られた。
本実施例では、実施例1で使用した単結晶製造装置10のカーボン坩堝4内の円錐状のガイド部17とカーボンシート14を除去し、他の部分はすべて単結晶製造装置10と同様の単結晶製造装置を用いて結晶育成を行った。
単結晶製造方法についても実施例1と同じ結晶成長条件で単結晶を作成した。結晶成長中の誘導加熱コイル7に供給された誘導加熱発振機の出力も15kWであり、実施例1の結晶成長工程での誘導加熱発振機の出力とほぼ同じであった。また、カーボン坩堝4の上部の温度も実施例1での結晶成長工程とほとんど同じであった。
図4は本実施例で得られた炭化珪素単結晶インゴットの外観写真を示す。図4に示すように得られた炭化珪素単結晶は中央部が凸で表面が荒れており、マイクロパイプ欠陥の密度は200/cm以上であった。X線回折法によるロッキングカーブの半値幅の平均は約20秒であった。実施例1に比較した品質の低下の理由は、ガイド部14がないために、結晶表面での昇華原料の供給密度が減少したことによるものと思われる。更に、グラファイト製の上蓋9に種結晶14を直接貼り付けたために、成長面内の温度分布が生じ、周辺部の成長速度が他の部分よりも0.3mm/h程度速くなり、マイクロパイプ欠陥密度が高くなったと思われる。このため、外周部に多結晶部分が発生して品質の低下を招いている。
以上のように、実施例1と実施例2との比較により、単結晶製造装置10のカーボン坩堝4内の円錐状のガイド部17とカーボンシート14の効果が確認された。
(追加実験結果)
さらに、実施例1の単結晶製造装置10を用い、成長温度と圧力を変えて成長速度を変化させて結晶を育成し、その結晶品質を確認する実験を行った。図5は得られた実験結果を示す図であり、成長温度/圧力の数値とマイクロパイプ欠陥面積の関係を示す図である。ここで、結晶の成長速度は、ほぼ温度に比例し圧力に反比例する関係にあることから、図5の横軸は成長速度に対応する値である。また、マイクロパイプ欠陥面積は欠陥数に欠陥のサイズを掛けた数値である。図5に示す通り、成長速度が速くなるにつれてマイクロパイプ欠陥のサイズが大きく、数量も増加することが分かった。本実験では、0.5mm/h以下の成長速度で品質の良い結晶が得られることを確認した。
なお、本発明は上記の実施例に限定されるものではないことは言うまでもなく、目的とする単結晶の特性や形状などに応じて変更可能である。単結晶製造装置の各部の構造、形状、材質なども目的とする炭化珪素結晶等の特性、形状に合わせて変更可能である。また、使用する単結晶製造装置の各部の構造や形状などによって、各部の温度などの結晶育成条件も最適化することが望ましい。炭化珪素単結晶には使用目的に合わせて、バナジウム(V)、窒素(N)などの添加物が添加されてもよい。
本発明は、高品質な結晶が要求されるパワーデバイスや窒化アルミニウムに匹敵する熱伝導率を必要とする放熱板などに使用される炭化珪素単結晶の製造にも適用することができる。
1 石英管
2、22 トップフランジ
3、23 ベースフランジ
4、24 カーボン坩堝
5、25 保温材蓋
5a 挿入穴
6、26 円筒保温材
7、27 誘導加熱コイル
8 坩堝本体
9 上蓋
9a ねじ穴
10、20 単結晶製造装置
11、31 ガス導入口
12、32 ガス排出口
13 シール用シリコンゴムシート
14 カーボンシート
15 取り出し棒
15a ねじ部
16 結合部
17 ガイド部
18 種結晶
19 原料
21 水冷二重石英管
28 給水口
29 出水口
33 ベースシール

Claims (8)

  1. 底面を有する円筒状の坩堝本体と円板状の上蓋とからなる坩堝と、該坩堝を収納するチェンバーと、前記坩堝を加熱する手段と、前記坩堝の下方および上方および前記坩堝と前記チェンバーとの間に配置された断熱材とを有し、前記坩堝を前記加熱手段により加熱することにより前記坩堝内に収納された原料を昇華させ、これにより前記坩堝の上蓋の下側に配置された種結晶を成長させて単結晶を製造する単結晶製造装置において、
    前記坩堝を前記チェンバーの上方に引き出すための取り出し棒と、該取り出し棒と前記坩堝との間を結合する結合部とを有し、該結合部は前記取り出し棒の前記坩堝への取り付けおよび取り外しが可能に構成されていることを特徴とする単結晶製造装置。
  2. 前記結合部は、前記坩堝の上蓋の上面に形成されたねじ穴と、前記取り出し棒の下端に形成された前記ねじ穴に勘合可能なねじ構造を有することを特徴とする請求項1に記載の単結晶製造装置。
  3. 前記坩堝は前記坩堝本体および前記上蓋がグラファイトから構成されたカーボン坩堝であって、前記上蓋の下面に、該上蓋と前記種結晶との間に挿入される厚さ0.1〜2mmのカーボンシートを設けたことを特徴とする請求項1または2に記載の単結晶製造装置。
  4. 前記坩堝内の前記原料の収納部分の上端から前記種結晶の設置部分との間に前記単結晶の外形を制御するための円錐状のガイド部を有し、該ガイド部は厚さ0.1〜10mmのカーボン材料で構成されていることを特徴とする請求項3に記載の単結晶製造装置。
  5. 請求項1乃至4のいずれか1項に記載の単結晶製造装置を用いて単結晶を製造することを特徴とする単結晶製造方法。
  6. 請求項3または4に記載の単結晶製造装置を用いて単結晶を製造する単結晶製造方法であって、前記上蓋と前記坩堝本体との間にカーボンシートを設け、前記原料を前記坩堝に収納後、前記上蓋と前記カーボンシートとの間および前記カーボンシートと前記坩堝本体との間をカーボン接着剤で固定することにより、前記坩堝を封止することを特徴とする単結晶製造方法。
  7. 請求項3または4に記載の単結晶製造装置を用いて単結晶を製造する単結晶製造方法であって、前記種結晶として厚さ0.1〜1.0mmの種結晶を用い、径方向への成長を行うことを特徴とする単結晶製造方法。
  8. 連続して単結晶を製造する際に、その前の製造工程において前記坩堝内に残存した原料の上部の半分以上を取出し、該残存原料を未使用の原料の上に載せて再生原料として使用することを特徴とする請求項5乃至7のいずれか1項に記載の単結晶製造方法。
JP2017034207A 2017-02-25 2017-02-25 単結晶製造装置及び単結晶製造方法 Active JP6813779B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017034207A JP6813779B2 (ja) 2017-02-25 2017-02-25 単結晶製造装置及び単結晶製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034207A JP6813779B2 (ja) 2017-02-25 2017-02-25 単結晶製造装置及び単結晶製造方法

Publications (2)

Publication Number Publication Date
JP2018140884A JP2018140884A (ja) 2018-09-13
JP6813779B2 true JP6813779B2 (ja) 2021-01-13

Family

ID=63526354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034207A Active JP6813779B2 (ja) 2017-02-25 2017-02-25 単結晶製造装置及び単結晶製造方法

Country Status (1)

Country Link
JP (1) JP6813779B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720436B1 (ja) * 2019-05-20 2020-07-08 株式会社Cusic 炭化珪素の製造方法
KR102276450B1 (ko) * 2019-10-29 2021-07-12 에스케이씨 주식회사 탄화규소 잉곳의 제조방법, 탄화규소 웨이퍼의 제조방법 및 이의 성장 시스템
KR102229588B1 (ko) 2020-05-29 2021-03-17 에스케이씨 주식회사 웨이퍼의 제조방법, 에피택셜 웨이퍼의 제조방법, 이에 따라 제조된 웨이퍼 및 에피택셜 웨이퍼
KR102236396B1 (ko) * 2020-05-29 2021-04-02 에스케이씨 주식회사 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조용 시스템
CN113512758A (zh) * 2020-04-09 2021-10-19 Skc株式会社 碳化硅晶锭及其制造方法和用于制造碳化硅晶锭的系统
KR102235858B1 (ko) * 2020-04-09 2021-04-02 에스케이씨 주식회사 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조용 시스템
CN115584552B (zh) * 2022-11-03 2023-06-20 安徽微芯长江半导体材料有限公司 一种碳化硅晶体生长装置

Also Published As

Publication number Publication date
JP2018140884A (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6813779B2 (ja) 単結晶製造装置及び単結晶製造方法
US20150361580A1 (en) Device and method for producing multi silicon carbide crystals
EP1866464B1 (en) Seeded growth process for preparing aluminum nitride single crystals
JP5304792B2 (ja) SiC単結晶膜の製造方法および装置
TWI774929B (zh) 碳化矽單晶的製造方法
CN110592673B (zh) 一种高品质的大尺寸碳化硅晶体生长方法
US6780243B1 (en) Method of silicon carbide monocrystalline boule growth
JP4830073B2 (ja) 炭化珪素単結晶の成長方法
CN110904509A (zh) 碳化硅晶体及其生长方法和装置、半导体器件以及显示装置
JPS5948792B2 (ja) 炭化けい素結晶成長法
KR101299037B1 (ko) 마이크로 웨이브를 이용한 단결정 성장장치 및 그 성장방법
JP4238450B2 (ja) 炭化珪素単結晶の製造方法及び製造装置
JP5761264B2 (ja) SiC基板の製造方法
CN110306238A (zh) 一种晶体生长装置及晶体生长方法
JP4070353B2 (ja) シリコンカーバイドのエピタキシャル成長方法
JP2012254892A (ja) 単結晶の製造方法および製造装置
JP2008280206A (ja) 単結晶成長装置
JP2005126249A (ja) 単結晶炭化ケイ素成長方法
JP2006096578A (ja) 炭化珪素単結晶の製造方法及び炭化珪素単結晶インゴット
WO2019176447A1 (ja) 炭化珪素単結晶の製造方法及び製造装置
KR101365483B1 (ko) 단결정 성장 장치 및 방법
KR102060188B1 (ko) 실리콘카바이드 단결정의 제조 장치 및 실리콘카바이드 단결정의 제조 방법
KR20090006047A (ko) 결함이 작은 실리콘카바이드 단결정 성장방법
JP2002274995A (ja) 炭化珪素単結晶インゴットの製造方法
JP2004043211A (ja) SiC単結晶の製造方法及び製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200201

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6813779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250