WO2019176447A1 - 炭化珪素単結晶の製造方法及び製造装置 - Google Patents

炭化珪素単結晶の製造方法及び製造装置 Download PDF

Info

Publication number
WO2019176447A1
WO2019176447A1 PCT/JP2019/005732 JP2019005732W WO2019176447A1 WO 2019176447 A1 WO2019176447 A1 WO 2019176447A1 JP 2019005732 W JP2019005732 W JP 2019005732W WO 2019176447 A1 WO2019176447 A1 WO 2019176447A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon carbide
carbide single
growth
temperature measurement
Prior art date
Application number
PCT/JP2019/005732
Other languages
English (en)
French (fr)
Inventor
池田 均
高橋 亨
徹郎 青山
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP19768072.1A priority Critical patent/EP3767015A4/en
Priority to KR1020207025675A priority patent/KR102670425B1/ko
Priority to CN201980019491.5A priority patent/CN111918988A/zh
Priority to US16/981,343 priority patent/US20210115593A1/en
Publication of WO2019176447A1 publication Critical patent/WO2019176447A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • the present invention relates to a silicon carbide single crystal manufacturing method and a manufacturing apparatus that perform single crystal growth of silicon carbide by a sublimation method.
  • SiC silicon carbide
  • a sublimation method is a typical and practical growth method for crystals having a high melting point, such as SiC, and crystals that are difficult to grow in a liquid phase.
  • This is a method in which a solid raw material is sublimated at a high temperature of about 2000 ° C. or higher in a container and crystal is grown on an opposing seed crystal (Patent Document 1).
  • SiC crystal growth requires a high temperature for sublimation, and the growth apparatus requires temperature control at a high temperature.
  • stable control of the pressure in the container is required.
  • the crystal growth of SiC is based on the sublimation rate, and the growth rate is relatively slow as compared with the Si Czochralski method and the LPE method such as GaAs. Therefore, it grows over a long time. Fortunately, with the recent development of control equipment, development of computers, personal computers, etc., it is possible to stably adjust the pressure and temperature for a long period of time.
  • the SiC single crystal manufacturing apparatus 101 includes a carbon graphite growth vessel 104, which includes a vessel main body for containing an SiC raw material 102 and a lid body on which an SiC seed substrate (also referred to as a seed substrate wafer) 103 is arranged.
  • the SiC single crystal manufacturing apparatus 101 includes a heat insulating container 105 made of a heat insulating material on the outside of the growth container 104, and an outer container 106 such as a quartz tube or a vacuum chamber for decompressing the growth container 104, SiC on the outer side.
  • a heater 107 such as a high-frequency heating coil for heating the raw material 102 is provided.
  • a temperature measuring device 108 such as a temperature measuring sensor for measuring the temperature in the growth vessel 104 is provided, and a temperature measuring hole (also referred to as an upper temperature measuring hole) 109 is provided on the heat insulating vessel 105.
  • a supply port (not shown) for supplying an inert gas such as Ar and an exhaust port for exhausting are provided.
  • the raw material 102 and the seed substrate 103 are placed in the growth vessel 104.
  • the growth vessel 104 is placed in the heat insulation vessel 105.
  • the heat insulating container 105 is placed in the outer container 106.
  • the inside of the outer container 106 is evacuated, and the temperature is raised while maintaining a predetermined pressure.
  • a SiC single crystal is grown by a sublimation method. At this time, as shown in FIG. 10, heat escapes from the temperature measurement hole 109 due to radiation, so that the temperature immediately below the hole 109 is the lowest. Therefore, the growth starts from this point as the center of the seed, and the SiC single crystal grows in a convex shape following the temperature distribution.
  • the SiC single crystal includes a cubic crystal and a hexagonal crystal, and among the hexagonal crystals, 4H, 6H and the like are known as typical polytypes.
  • Patent Document 2 the same type of single crystal grows such that 4H grows on the 4H seed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a silicon carbide single crystal manufacturing method and a manufacturing apparatus capable of reducing cracks and cracks in a silicon carbide single crystal ingot and a wafer.
  • the present invention provides a seed crystal by sublimating a silicon carbide raw material in a silicon carbide single crystal growth apparatus comprising at least a growth vessel and a heat insulation vessel having a temperature measurement hole around the growth vessel.
  • a method for producing a silicon carbide single crystal in which a silicon carbide single crystal is grown on a substrate During the growth of the silicon carbide single crystal, the temperature of the growth vessel is measured through the temperature measurement hole, When the growth of the silicon carbide single crystal is completed and the silicon carbide single crystal is cooled, the temperature measurement hole is closed with a shielding member.
  • the hole for temperature measurement is closed with a shielding member, so that the heat radiation from the hole can be prevented and the silicon carbide single crystal being cooled is cooled. Therefore, a SiC single crystal ingot with little residual strain can be obtained, and cracks and cracks can be suppressed.
  • the present invention is also a silicon carbide single crystal production apparatus for growing a silicon carbide single crystal by a sublimation method, comprising at least a growth vessel, a heat insulation vessel having a temperature measurement hole around the growth vessel, and a heater. And A silicon carbide single crystal manufacturing apparatus is provided, comprising a shielding member that closes the hole for temperature measurement.
  • the temperature measurement hole can be closed with a shielding member when the silicon carbide single crystal is cooled, and heat radiation from the hole can be prevented when the silicon carbide single crystal is cooled. Since the temperature inside the silicon carbide single crystal can be made uniform, the residual strain of the silicon carbide single crystal can be reduced, and cracks and cracks can be suppressed.
  • the said shielding member comprises the material in any one of carbon, titanium, and a tantalum. These materials can withstand high temperatures of 2000 ° C. or higher, and can shield radiant light under high temperature vacuum.
  • the shielding member preferably further comprises a porous heat insulating material such as carbon fiber, alumina fiber or foamed carbon. If it is a shielding member provided with such a heat insulating material, the heat insulation effect will become higher and the temperature in the crystal
  • the silicon carbide single crystal manufacturing apparatus of this invention can have a moving mechanism which raises / lowers, rotates or slides the shielding member which plugs up the hole for temperature measurement.
  • the temperature of the growth vessel is measured through the hole for temperature measurement, and when the silicon carbide single crystal is finished and the silicon carbide single crystal is cooled, the hole for temperature measurement is shielded. It can be easily closed with a member.
  • the temperature measurement hole is closed with the shielding member. Therefore, heat dissipation from the hole can be prevented and the temperature of the silicon carbide single crystal during cooling can be made uniform, so that an SiC single crystal ingot with little residual strain can be obtained, and cracks and cracks can be suppressed. .
  • the inventors of the present invention closed the temperature measurement hole during cooling of the SiC single crystal ingot to prevent heat dissipation from the hole and make the temperature in the ingot being cooled uniform.
  • the present invention has been completed by finding that it is possible to reduce cracks and cracks in SiC single crystal ingots and wafers.
  • FIG. 1 is a flowchart showing an example of a method for producing a silicon carbide single crystal of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an example of the silicon carbide single crystal production apparatus of the present invention.
  • the silicon carbide single crystal manufacturing apparatus 1 of the present invention includes a carbon graphite growth vessel 4 composed of a vessel main body for storing SiC raw material 2 and a lid for arranging SiC seed substrate 3. It is. Moreover, the silicon carbide single crystal manufacturing apparatus 1 includes a heat insulating container 5 made of a heat insulating material on the outside of the growth container 4, and an outer container 6 such as a quartz tube or a vacuum chamber for decompressing the growth container 4 on the outer side, A heater 7 for heating the SiC raw material 2 is provided. Further, a temperature measuring device 8 such as a temperature measuring sensor for measuring the temperature in the growth vessel 4 is provided, and a temperature measuring hole 9 is provided in the upper portion of the heat insulating vessel 5.
  • a supply port (not shown) for supplying an inert gas such as Ar and an exhaust port for exhausting are provided.
  • the configuration so far is substantially the same as that of the conventional apparatus, but in the present invention, a shielding member 10 that closes the temperature measurement hole 9 of the heat insulating container 5 is provided.
  • the shielding member 10 has a hole 9 opened so that the temperature of the growth vessel 4 can be measured from the temperature measurement hole 9 during the growth of the SiC single crystal. It is configured to be movable so that it can be closed.
  • the moving mechanism of the shielding member 10 is not particularly limited, but can be a mechanism that is moved up, down, rotated, or slid by a motor, a hydraulic cylinder, an air cylinder, or the like.
  • FIG. 3 shows a case where the shielding member 10 is slid
  • FIG. 4 shows a case where the shielding member 10 is fitted into the hole by raising and lowering.
  • the shielding member 10 can be made of carbon, titanium, tantalum or the like. These materials can withstand high temperatures of 2000 ° C. or higher, and can shield radiant light under high temperature vacuum.
  • the shielding member 10 preferably further includes a heat insulating material made of carbon fiber, a heat insulating material made of alumina fiber, or a porous heat insulating material such as foamed carbon. If it is a shielding member provided with such a heat insulating material, the heat insulation effect becomes higher and the temperature in the crystal at the time of cooling can be made more uniform.
  • the temperature measuring hole 9 can be easily closed with the shielding member 10 when the silicon carbide single crystal ingot 11 is cooled, and the silicon carbide single crystal is cooled.
  • heat dissipation from the hole 9 can be prevented and the temperature inside the silicon carbide single crystal during cooling can be made uniform, so that the residual strain of the silicon carbide single crystal can be reduced and cracks and cracks can be suppressed.
  • the raw material 2 and the seed substrate 3 are placed in the growth vessel 4.
  • the growth container 4 is placed in the heat insulating container 5.
  • FIG.1 (c) it arrange
  • the inside of the outer container 6 is evacuated and heated while maintaining a predetermined pressure.
  • the temperature is preferably 2000 ° C. or more and the pressure is preferably 100 Torr (1.3 ⁇ 10 2 hPa) or less.
  • the SiC single crystal 11 is grown by a sublimation method. During the growth of the SiC single crystal, the temperature of the growth vessel 4 is measured through a temperature measurement hole 9 provided in the heat insulation vessel 5. That is, the temperature measurement hole 9 is opened during the growth of the SiC single crystal.
  • the vacuum back pressure is increased, the partial pressure of the sublimation gas is decreased, and the growth is stopped in the same manner as in the general sublimation method.
  • the conventional conventional sublimation method and the temperature rise and pressure control are the same.
  • the hole 9 for temperature measurement is closed with a shielding member 10 as shown in FIG.
  • the temperature measuring hole 9 is closed when the grown SiC single crystal ingot 11 is cooled, so that heat dissipation from the hole 9 can be prevented, and the temperature inside the SiC single crystal ingot 11 during cooling is reduced. It becomes uniform. By returning to room temperature in this way, an SiC single crystal ingot with little residual strain can be obtained.
  • the manufacturing method of this invention the residual distortion of a SiC single crystal ingot can be decreased, and a crack and a crack can be suppressed.
  • SiC single crystal having a diameter of 4 inches (100 mm) was grown under the following growth conditions using the silicon carbide single crystal manufacturing apparatus 1 shown in FIG. ⁇ Conditions>
  • Seed crystal substrate SiC single crystal substrate growth temperature of 4 inches (100 mm) in diameter with the main surface inclined 4 ° in the ⁇ 11-20> direction from the ⁇ 0001 ⁇ plane ... 2200 ° C.
  • Pressure 10 Torr (1.3 x 10 hPa)
  • Atmosphere argon gas, nitrogen gas
  • FIGS. 6A and 6B show photographs of the wafer. Further, FIG. 7 shows the result of examining the stress distribution of the wafer.
  • the stress is not increased at the position away from the center of the wafer as in the comparative example, and the silicon carbide single crystal manufacturing method and manufacturing apparatus according to the present invention are used. According to this, it can be seen that an SiC single crystal ingot with little residual strain can be obtained. Further, as described above, according to the present invention, it was found that cracks and cracks of the manufactured silicon carbide single crystal ingot can be reduced as compared with the comparative example. Furthermore, from FIGS. 5 and 6, it was found that according to the present invention, cracking and cracking of the wafer can be suppressed.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、少なくとも成長容器と該成長容器の周りに温度測定用の穴を有する断熱容器を具備する炭化珪素単結晶成長装置で炭化珪素原材料を昇華させて種結晶基板上に炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法において、前記炭化珪素単結晶の成長時は前記温度測定用の穴を通して前記成長容器の温度を測定し、前記炭化珪素単結晶の成長が終了して該炭化珪素単結晶を冷却する際は前記温度測定用の穴を遮蔽部材で塞ぐことを特徴とする炭化珪素単結晶の製造方法である。これにより、炭化珪素単結晶インゴットやウェーハの割れやクラックを低減させる炭化珪素単結晶の製造方法及び製造装置を提供する。

Description

炭化珪素単結晶の製造方法及び製造装置
 本発明は、昇華法によって炭化珪素の単結晶成長を行う炭化珪素単結晶の製造方法及び製造装置に関する。
 近年、電気自動車や電気冷暖房器具にインバーター回路が多用されるにいたり、電力ロスが少なく、半導体Si結晶を用いた素子より耐圧を高くとれるという特性から、炭化珪素(以後、SiCと言う場合もある)の半導体結晶が求められている。
 SiCなどの融点が高い結晶、液相成長がしにくい結晶の代表的かつ現実的な成長方法として昇華法がある。容器内で2000℃前後ないしそれ以上の高温で固体原材料を昇華させて、対向する種結晶上に結晶成長させる方法である(特許文献1)。
 しかしながら、SiCの結晶成長は、昇華させるために高温が必要で、成長装置は高温での温度制御が必要とされる。また、昇華した物質の圧力を安定させるために、容器内の圧力の安定した制御が必要とされる。またSiCの結晶成長は、昇華速度によるものであり、Siのチョクラルスキー法やGaAsなどのLPE製法などと比較して、相対的にかなり成長速度が遅い。したがって、長い時間をかけて成長する。幸いに、昨今の制御機器の発達、コンピュータ、パソコン等の発達で、圧力、温度の調節を長期間安定して行うことが可能である。
 ここで、従来のSiC単結晶の製造方法及び装置について図8、9を用いて説明する。
 SiC単結晶製造装置101は図8に示すように、SiC原材料102を収納する容器本体とSiC種基板(種基板ウェーハともいう)103を配置する蓋体からなる、カーボングラファイト製の成長容器104を備える。また、SiC単結晶製造装置101は、成長容器104の外側に断熱材からなる断熱容器105を備え、更に外側には成長容器104を減圧するための石英管や真空チャンバーなどの外部容器106、SiC原材料102を加熱する高周波加熱コイル等のヒーター107を具備している。更に成長容器104内の温度を測定するための温度測定センサー等の温度測定器108を備えており、断熱容器105上部には温度測定用の穴(上部温度測定孔ともいう)109を有する。また、SiC結晶成長の際に、Ar等の不活性ガスを供給する図示しない供給口及び排気するための排気口を備えている。
 次に図9のフローチャートを用いてSiCの製造方法を説明する。最初に図9(a)に示すように原材料102と種基板103を成長容器104内に配置する。次に図9(b)に示すように成長容器104を断熱容器105内に配置する。次に図9(c)に示すように断熱容器105ごと外部容器106に配置する。次に図9(d)に示すように外部容器106内を真空引き、所定の圧力に保ちつつ、昇温する。次に図9(e)に示すように昇華法によりSiC単結晶の成長を行う。この時、図10に示すように温度測定用の穴109から輻射により熱が逃げるため、穴109の直下が最も温度が低くなる。したがって、種の中心としてこの箇所から成長が始まり、温度分布に倣ってSiC単結晶は凸状に成長する。
 最後に図9(f)に示すように減圧圧力を上げて昇華を止め、成長を停止し、温度を徐々に下げて冷却する。この時も、図11に示すように成長したSiC単結晶インゴットの中心部が最も冷却される。
 なお、SiC単結晶というのは、立方晶、六方晶などがあり、更に六方晶の中でも、4H、6Hなどが、代表的なポリタイプとして知られている。
 多くの場合は、4H種上には4Hが成長するというように同じタイプの単結晶が成長する(特許文献2)。
 このような製造装置で製造されたSiC単結晶インゴットにクラックが発生したり、スライス加工時にウェーハが割れたりクラックが発生するという問題がある。
特開2000-191399号公報 特開2005-239465号公報
 本発明は、上記問題点に鑑みてなされたものであって、炭化珪素単結晶インゴットやウェーハの割れやクラックを低減させる炭化珪素単結晶の製造方法及び製造装置を提供することを目的とする。
 上記目的を達成するために、本発明は、少なくとも成長容器と該成長容器の周りに温度測定用の穴を有する断熱容器を具備する炭化珪素単結晶成長装置で炭化珪素原材料を昇華させて種結晶基板上に炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法において、
 前記炭化珪素単結晶の成長時は前記温度測定用の穴を通して前記成長容器の温度を測定し、
 前記炭化珪素単結晶の成長が終了して該炭化珪素単結晶を冷却する際は前記温度測定用の穴を遮蔽部材で塞ぐことを特徴とする炭化珪素単結晶の製造方法を提供する。
 このように炭化珪素単結晶成長が終了して炭化珪素単結晶を冷却する際に温度測定用の穴を遮蔽部材で塞ぐことで、穴からの放熱を防ぐことができ冷却中の炭化珪素単結晶の温度を均一にできるため、残留歪の少ないSiC単結晶インゴットを得ることができ、割れやクラックを抑制することができる。
 また、本発明は、少なくとも成長容器と該成長容器の周りに温度測定用の穴を有する断熱容器及び加熱ヒーターを具備した、昇華法により炭化珪素単結晶を成長させる炭化珪素単結晶製造装置であって、
 前記温度測定用の穴を塞ぐ遮蔽部材を有するものであることを特徴とする炭化珪素単結晶製造装置を提供する。
 このような炭化珪素単結晶製造装置であれば、炭化珪素単結晶の冷却時に温度測定用の穴を遮蔽部材で塞ぐことができ炭化珪素単結晶の冷却時に穴からの放熱が防止でき、冷却中の炭化珪素単結晶内部の温度が均一にできるため、炭化珪素単結晶の残留歪を少なくすることができ、割れやクラックを抑制することができる。
 また、前記遮蔽部材は、カーボン、チタン、タンタルのいずれかの材質を具備するものであることが好ましい。
 これらの材料であれば2000℃以上の高温に耐えられ高温の真空下で輻射光を遮蔽することができる。
 また、前記遮蔽部材は、更にカーボン繊維、アルミナ繊維または発泡カーボン等のポーラス構造の断熱材を具備したものであることが好ましい。
 このような断熱材を備えている遮蔽部材であれば、より断熱効果が高くなり冷却中の結晶内の温度をより均一なものにすることができる。
 また、本発明の炭化珪素単結晶製造装置は、前記温度測定用の穴を塞ぐ遮蔽部材を、昇降、回転またはスライドさせる移動機構を有するものとすることができる。
 こうして、炭化珪素単結晶成長時は前記温度測定用の穴を通して成長容器の温度を測定し、炭化珪素単結晶成長が終了して炭化珪素単結晶を冷却する際は前記温度測定用の穴を遮蔽部材で簡単に塞ぐことができる。
 以上のように、本発明の炭化珪素単結晶の製造方法及び製造装置であれば、炭化珪素単結晶成長が終了して炭化珪素単結晶を冷却する際に温度測定用の穴を遮蔽部材で塞ぐことで、穴からの放熱を防ぐことができ冷却中の炭化珪素単結晶の温度を均一にできるため、残留歪の少ないSiC単結晶インゴットを得ることができ、割れやクラックを抑制することができる。
本発明の炭化珪素単結晶の製造方法の一例を示すフローチャートである。 本発明の炭化珪素単結晶製造装置の一例を示す概略断面図である。 本発明の遮蔽部材をスライドさせて温度測定用の穴を塞ぐ場合を示す概略図である。 本発明の遮蔽部材を昇降させて温度測定用の穴を塞ぐ場合を示す概略図である。 実施例において製造されたウェーハの例を示す写真である。 比較例において製造されたウェーハの例を示す写真である。 実施例及び比較例のウェーハ内の応力分布を示すグラフである。 従来の炭化珪素単結晶製造装置の一例を示す概略断面図である。 従来の炭化珪素単結晶の製造方法の一例を示すフローチャートである。 従来の炭化珪素単結晶の製造方法及び装置における温度測定用の穴周辺の伝熱及び温度分布を示す概略断面図である。 従来の炭化珪素単結晶の製造方法及び装置によって成長したSiC単結晶インゴット内の温度分布を示す概略断面図である。
 上記したように、従来のSiC単結晶製造装置を用いてSiC単結晶を製造した場合、SiC単結晶インゴットにクラックが発生したり、スライス加工時にウェーハが割れたりクラックが発生するという問題があった。
 本発明者らは、この問題を解決すべく検討を重ねた結果、SiC単結晶インゴットの冷却時に温度測定用の穴を塞ぐことで穴からの放熱を防ぎ冷却中のインゴット内の温度を均一にすることができ、SiC単結晶インゴットやウェーハの割れやクラックを低減できることを見出し本発明を完成させた。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 図1は、本発明の炭化珪素単結晶の製造方法の一例を示すフローチャートである。
 図2は、本発明の炭化珪素単結晶製造装置の一例の概略断面図である。
 まず、本発明の炭化珪素単結晶製造装置について説明する。
 図2に示すように、本発明の炭化珪素単結晶製造装置1は、SiC原材料2を収納する容器本体とSiC種基板3を配置する蓋体からなる、カーボングラファイト製の成長容器4を備えるものである。また、炭化珪素単結晶製造装置1は、成長容器4の外側に断熱材からなる断熱容器5を備え、更に外側には成長容器4を減圧するための石英管や真空チャンバーなどの外部容器6、SiC原材料2を加熱するヒーター7を具備している。更に成長容器4内の温度を測定するための温度測定センサー等の温度測定器8を備えており、断熱容器5上部には温度測定用の穴9を有する。また、SiC結晶成長の際に、Ar等の不活性ガスを供給する図示しない供給口及び排気するための排気口を備えている。ここまでの構成は、従来の装置と略同じであるが、本発明では、断熱容器5の温度測定用の穴9を塞ぐ遮蔽部材10が設置されている。
 この遮蔽部材10は、SiC単結晶成長中は温度測定用の穴9から成長容器4の温度を測定できるように穴9を開放しており、単結晶の成長が終了して冷却中に穴9を塞ぐことができるよう移動可能に構成されている。
 また、遮蔽部材10の移動機構としては、特に限定されないが、モーターや油圧シリンダー、エアシリンダー等によって昇降、回転またはスライドさせる機構とすることができる。例えば図3には遮蔽部材10をスライドさせる場合、図4に昇降によって遮蔽部材10を穴に嵌める場合を示す。
 該遮蔽部材10は、カーボン、チタン、タンタル等を材料とすることができる。これらの材料であれば2000℃以上の高温に耐えられ高温の真空下で輻射光を遮蔽することができる。
 また、遮蔽部材10は、更にカーボン繊維からなる断熱材、アルミナ繊維からなる断熱材または発泡カーボン等のポーラス構造の断熱材を具備したものであることが好ましい。このような断熱材を備えている遮蔽部材であれば、より断熱効果が高くなり冷却時の結晶内の温度をより均一なものにすることができる。
 以上のように、本発明の炭化珪素単結晶製造装置であれば、炭化珪素単結晶インゴット11の冷却時に温度測定用の穴9を遮蔽部材10で簡単に塞ぐことができ炭化珪素単結晶の冷却時に穴9からの放熱が防止でき、冷却中の炭化珪素単結晶内部の温度が均一にできるため、炭化珪素単結晶の残留歪を少なくすることができ、割れやクラックを抑制することができる。
 次に、上記のような本発明の炭化珪素単結晶製造装置を用いる、本発明の炭化珪素単結晶の製造方法について説明する。
 図1(a)に示すように原材料2と種基板3を成長容器4内に配置する。次に図1(b)に示すように成長容器4を断熱容器5内に配置する。次に図1(c)に示すように断熱容器5ごと外部容器6に配置する。次に図1(d)に示すように外部容器6内を真空引き、所定の圧力に保ちつつ、昇温する。このとき温度は2000℃以上、圧力は100Torr(1.3×10hPa)以下とすることが好ましい。次に図1(e)に示すように昇華法によりSiC単結晶11の成長を行う。なお、SiC単結晶成長時には、断熱容器5に設けられた温度測定用の穴9を通して成長容器4の温度を測定する。すなわち、温度測定用の穴9は、SiC単結晶成長時には開放しておく。
 最後に図1(f)に示すように、一般的な昇華法の停止方法同様に真空背圧を昇圧し、昇華ガスの分圧を落として、成長を停止する。ここまでの昇華法は、一般的な従来の昇華法と昇温と圧力コントロールは変わらない。結晶成長を停止させた後に、図2に示すように温度測定用の穴9を遮蔽部材10で塞ぐ。
 このような製造方法であれば、成長後のSiC単結晶インゴット11の冷却時に温度測定用の穴9を塞ぐので穴9からの放熱が防止でき、冷却中のSiC単結晶インゴット11内部の温度が均一になる。こうして常温まで戻すことで、残留歪の少ないSiC単結晶インゴットを得ることができる。このように本発明の製造方法によればSiC単結晶インゴットの残留歪を少なくすることができ、割れやクラックを抑制することができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 本発明の炭化珪素単結晶の製造方法により、図2に示す炭化珪素単結晶製造装置1を用いて、以下の成長条件で直径4インチ(100mm)のSiC単結晶を成長させた。
<条件>
種結晶基板…主面が{0001}面から<11-20>方向に4°傾いた直径4インチ(100mm)のSiC単結晶基板
成長温度…2200℃
圧力…10Torr(1.3×10hPa)
雰囲気…アルゴンガス、窒素ガス
 図1に示すような手順で、成長後のSiC単結晶冷却時は遮蔽部材10で温度測定用の穴9を塞いで、SiC単結晶インゴットを5本製造した。5本のSiC単結晶インゴットのクラック発生状況を調べた結果、5本ともクラックの発生はなかった。そのうち4本について4枚ずつウェーハにスライスしてクラック発生状況を調べたところ、全16枚にクラックの発生はなかった。図5にウェーハの写真を示す。また、ウェーハの応力分布を調べた結果を図7に示す。応力分布はラマン法で測定し、ストレスのないSiCの小片を基準とした相対的応力で示した。
(比較例)
 図9に示す手順でSiC単結晶インゴットを5本製造した。冷却時に温度測定用の穴を塞がないことを除いては実施例と同じ条件である。
 5本のSiC単結晶インゴットのクラック発生状況を調べた結果、5本中1本にクラックの発生が認められた。クラックのない4本について4枚ずつウェーハにスライスしてクラック発生状況を調べたところ全16枚にクラックが発生した。図6(a)(b)にウェーハの写真を示す。また、ウェーハの応力分布を調べた結果を図7に示す。
 図7に示す結果から明らかなように、実施例ではウェーハの中心から離れた箇所において、比較例のように応力は増加しておらず、本発明の炭化珪素単結晶の製造方法及び製造装置によれば、残留歪の少ないSiC単結晶インゴットを得ることができることが分かる。
 また、上記のように、本発明によれば、比較例と比べて、製造した炭化珪素単結晶インゴットの割れやクラックを低減できることが分かった。
 さらに、図5及び6から、本発明によれば、ウェーハの割れやクラックを抑制することができることが分かった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  少なくとも成長容器と該成長容器の周りに温度測定用の穴を有する断熱容器を具備する炭化珪素単結晶成長装置で炭化珪素原材料を昇華させて種結晶基板上に炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法において、
     前記炭化珪素単結晶の成長時は前記温度測定用の穴を通して前記成長容器の温度を測定し、
     前記炭化珪素単結晶の成長が終了して該炭化珪素単結晶を冷却する際は前記温度測定用の穴を遮蔽部材で塞ぐことを特徴とする炭化珪素単結晶の製造方法。
  2.  少なくとも成長容器と該成長容器の周りに温度測定用の穴を有する断熱容器及び加熱ヒーターを具備した、昇華法により炭化珪素単結晶を成長させる炭化珪素単結晶製造装置であって、
     前記温度測定用の穴を塞ぐ遮蔽部材を有するものであることを特徴とする炭化珪素単結晶製造装置。
  3.  前記遮蔽部材は、カーボン、チタン、タンタルのいずれかの材質を具備するものであることを特徴とする請求項2に記載の炭化珪素単結晶製造装置。
  4.  前記遮蔽部材は、更にカーボン繊維、アルミナ繊維またはポーラス構造の断熱材を具備したものであることを特徴とする請求項3に記載の炭化珪素単結晶製造装置。
  5.  前記温度測定用の穴を塞ぐ遮蔽部材を、昇降、回転またはスライドさせる移動機構を有するものであることを特徴とする請求項2乃至請求項4のいずれか一項に記載の炭化珪素単結晶製造装置。
     
PCT/JP2019/005732 2018-03-16 2019-02-18 炭化珪素単結晶の製造方法及び製造装置 WO2019176447A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19768072.1A EP3767015A4 (en) 2018-03-16 2019-02-18 PRODUCTION PROCESS AND DEVICE FOR THE PRODUCTION OF SINGLE SILICON CARBIDE CRYSTAL
KR1020207025675A KR102670425B1 (ko) 2018-03-16 2019-02-18 탄화규소 단결정의 제조방법 및 제조장치
CN201980019491.5A CN111918988A (zh) 2018-03-16 2019-02-18 碳化硅单晶的制造方法及制造装置
US16/981,343 US20210115593A1 (en) 2018-03-16 2019-02-18 Method and apparatus for manufacturing silicon carbide single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-049991 2018-03-16
JP2018049991A JP6881365B2 (ja) 2018-03-16 2018-03-16 炭化珪素単結晶の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
WO2019176447A1 true WO2019176447A1 (ja) 2019-09-19

Family

ID=67907576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005732 WO2019176447A1 (ja) 2018-03-16 2019-02-18 炭化珪素単結晶の製造方法及び製造装置

Country Status (6)

Country Link
US (1) US20210115593A1 (ja)
EP (1) EP3767015A4 (ja)
JP (1) JP6881365B2 (ja)
CN (1) CN111918988A (ja)
TW (1) TW201938854A (ja)
WO (1) WO2019176447A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102195325B1 (ko) 2020-06-16 2020-12-24 에스케이씨 주식회사 탄화규소 잉곳, 웨이퍼 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219386A (ja) * 1990-04-18 1992-08-10 Nkk Corp シリコン単結晶の製造装置
JP2000191399A (ja) 1998-12-25 2000-07-11 Showa Denko Kk 炭化珪素単結晶およびその製造方法
JP2005231969A (ja) * 2004-02-23 2005-09-02 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の育成装置
JP2005239465A (ja) 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd 炭化珪素単結晶製造装置
JP2012206875A (ja) * 2011-03-29 2012-10-25 Shin Etsu Handotai Co Ltd SiC成長装置
JP2014040357A (ja) * 2012-08-23 2014-03-06 Toyota Central R&D Labs Inc SiC単結晶の製造方法及びSiC単結晶

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003829A1 (de) * 2004-01-26 2005-08-18 Schott Ag Verfahren zum Reinigen von Kristallmaterial und zum Herstellen von Kristallen, eine Vorrichtung hierzu sowie die Verwendung der so erhaltenen Kristalle
US9099377B2 (en) * 2006-09-14 2015-08-04 Cree, Inc. Micropipe-free silicon carbide and related method of manufacture
JP5432573B2 (ja) * 2009-04-16 2014-03-05 株式会社ブリヂストン 炭化珪素単結晶の製造装置および炭化珪素単結晶の製造方法
CN102534805B (zh) * 2010-12-14 2014-08-06 北京天科合达蓝光半导体有限公司 一种碳化硅晶体退火工艺
JP2016037441A (ja) * 2014-08-08 2016-03-22 住友電気工業株式会社 単結晶の製造方法
US20160138185A1 (en) * 2014-11-18 2016-05-19 Sumitomo Electric Industries, Ltd. Method of manufacturing silicon carbide single crystal
CN107002281B (zh) * 2014-12-05 2019-06-04 昭和电工株式会社 碳化硅单晶的制造方法及碳化硅单晶基板
US20170321345A1 (en) * 2016-05-06 2017-11-09 Ii-Vi Incorporated Large Diameter Silicon Carbide Single Crystals and Apparatus and Method of Manufacture Thereof
CN107557872A (zh) * 2017-10-30 2018-01-09 中国电子科技集团公司第四十六研究所 一种大尺寸碳化硅晶体原位热处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219386A (ja) * 1990-04-18 1992-08-10 Nkk Corp シリコン単結晶の製造装置
JP2000191399A (ja) 1998-12-25 2000-07-11 Showa Denko Kk 炭化珪素単結晶およびその製造方法
JP2005231969A (ja) * 2004-02-23 2005-09-02 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の育成装置
JP2005239465A (ja) 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd 炭化珪素単結晶製造装置
JP2012206875A (ja) * 2011-03-29 2012-10-25 Shin Etsu Handotai Co Ltd SiC成長装置
JP2014040357A (ja) * 2012-08-23 2014-03-06 Toyota Central R&D Labs Inc SiC単結晶の製造方法及びSiC単結晶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767015A4

Also Published As

Publication number Publication date
JP2019156708A (ja) 2019-09-19
TW201938854A (zh) 2019-10-01
US20210115593A1 (en) 2021-04-22
EP3767015A4 (en) 2021-12-08
EP3767015A1 (en) 2021-01-20
CN111918988A (zh) 2020-11-10
JP6881365B2 (ja) 2021-06-02
KR20200130284A (ko) 2020-11-18

Similar Documents

Publication Publication Date Title
EP1866464B1 (en) Seeded growth process for preparing aluminum nitride single crystals
KR101893278B1 (ko) SiC 종결정의 가공 변질층의 제거 방법, SiC 종결정, 및 SiC 기판의 제조 방법
KR101760030B1 (ko) 대구경 탄화규소 단결정 성장 장치로부터 소구경 탄화규소 단결정을 성장시키는 방법 및 장치
JP5560862B2 (ja) 炭化珪素単結晶インゴットの製造装置
JP2008037684A (ja) 単結晶炭化ケイ素種結晶の液相生成方法及び単結晶炭化ケイ素種結晶、単結晶炭化ケイ素種結晶板の液相エピタキシャル生成方法及び単結晶炭化ケイ素種結晶板、単結晶炭化ケイ素種結晶基板の生成方法及び単結晶炭化ケイ素種結晶基板
TWI774929B (zh) 碳化矽單晶的製造方法
JP2005097040A (ja) 単結晶炭化ケイ素基板の表面改良方法及びその改良された単結晶炭化ケイ素基板、並びに、単結晶炭化ケイ素成長方法
KR101724291B1 (ko) 역 승화법을 이용한 탄화규소 단결정 성장장치
JP2006298722A (ja) 単結晶炭化ケイ素基板の製造方法
TWI729926B (zh) 碳化矽晶錠的製造方法以及製造碳化矽晶錠的系統
WO2019176447A1 (ja) 炭化珪素単結晶の製造方法及び製造装置
JP4661039B2 (ja) 炭化珪素基板の製造方法
US11795572B2 (en) Method of manufacturing a silicon carbide ingot comprising moving a heater surrounding a reactor to induce silicon carbide raw materials to sublimate and growing the silicon carbide ingot on a seed crystal
KR102670425B1 (ko) 탄화규소 단결정의 제조방법 및 제조장치
KR101692142B1 (ko) 탄화규소 잉곳의 열처리 방법
JP2005126249A (ja) 単結晶炭化ケイ素成長方法
KR101819140B1 (ko) 고품질의 탄화규소 단결정 잉곳의 성장 방법
KR20200018037A (ko) 탄화규소 단결정 잉곳 성장 장치
JP5376477B2 (ja) 単結晶炭化ケイ素基板
KR20220088554A (ko) AlN 단결정 및 이의 성장방법
KR102102543B1 (ko) 보호막을 포함하는 종자정의 제조방법, 이를 적용한 잉곳의 제조방법 및 보호막을 포함하는 종자정
WO2019176446A1 (ja) 炭化珪素単結晶の製造方法
KR102163488B1 (ko) SiC 단결정 성장 장치
KR20240080952A (ko) 대구경 단결정 및 대구경 단결정 성장 방법
KR20200066491A (ko) 대구경 단결정 성장장치 및 대구경 단결정 성장방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019768072

Country of ref document: EP