JP2002167300A - 酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置 - Google Patents

酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置

Info

Publication number
JP2002167300A
JP2002167300A JP2001275156A JP2001275156A JP2002167300A JP 2002167300 A JP2002167300 A JP 2002167300A JP 2001275156 A JP2001275156 A JP 2001275156A JP 2001275156 A JP2001275156 A JP 2001275156A JP 2002167300 A JP2002167300 A JP 2002167300A
Authority
JP
Japan
Prior art keywords
crystal
needle
oxide
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001275156A
Other languages
English (en)
Other versions
JP3715911B2 (ja
Inventor
Toru Den
透 田
Hiroshi Okura
央 大倉
Kaoru Konakahara
馨 小中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001275156A priority Critical patent/JP3715911B2/ja
Priority to US09/956,021 priority patent/US6596078B2/en
Publication of JP2002167300A publication Critical patent/JP2002167300A/ja
Application granted granted Critical
Publication of JP3715911B2 publication Critical patent/JP3715911B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/007Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】 【課題】 基板上に酸化物針状結晶を成長させる。 【解決手段】 金属あるいは無機化合物を含み構成され
る原料104を第1の温度で加熱することにより気化さ
せ、原料から気化した結晶構成材料を、第1の温度より
も低い第2の温度に加熱された基体101に付着させ
る。基体表面に、結晶核発生となる凹凸が形成されてい
る。基体表面には、導電層が形成されている。導電層が
透明電極である。酸化物針状結晶の軸が基体に対して6
0度以上立っている割合が、70%以上である。酸化物
針状結晶表面に酸化物超微粒子が分散されている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、酸化物針状結晶、
及びその製造方法に関する。また、本発明は、酸化物針
状結晶を用いた装置(例えば、光電変換装置)に関す
る。
【0002】
【従来の技術】酸化物針状結晶は、先端の先鋭性や単結
晶性、大表面積を有することから種々の分野への適用が
期待されている。針状結晶とは、一般に、直径が100
μm以下であって、且つ直径に対する長さの比(アスペ
クト比)が10以上の針状の単結晶体を意味する。
【0003】特開平5−139900号公報(米国特許
第5279809号)には、酸化亜鉛の針状結晶の製造
方法が記載されている。
【0004】具体的には、表面に酸化膜を有する亜鉛粉
末に、錫亜鉛合金粉を加えて原料を作製する。当該原料
をるつぼに入れて、加熱、酸化させる。その後、当該原
料を室温まで冷却する。こうして、るつぼ内に針状結晶
が作製される。
【0005】
【発明が解決しようとする課題】上記公報に記載の技術
では、るつぼ内に針状結晶は作製されるが、るつぼの外
にある基板表面に、針状結晶を成長させることはできな
かった。
【0006】本発明の目的は、基板上に酸化物針状結晶
を成長させる方法、及び当該方法により作製された針状
結晶を用いた光電変換装置を提供することである。
【0007】
【課題を解決するための手段】本発明に係る酸化物針状
結晶の製造方法は、金属あるいは無機化合物を含み構成
される原料を第1の温度で加熱することにより気化さ
せ、該原料から気化した結晶構成材料を、該第1の温度
よりも低い第2の温度に加熱された基体に付着させるこ
とを特徴とする。
【0008】また、本発明に係る酸化物針状結晶の製造
方法は、Znを主成分とする原料を前記第1の温度で蒸
発させ、酸素を含む雰囲気中に設置した前記基体上に輸
送し、平均径300nm以下で且つアスペクト比50以
上のc軸方向に伸びたZnO針状結晶を該基体上に形成
することを特徴とする。特に前記基体付近における酸素
分圧もしくは水蒸気分圧が100〜10000Paであ
り、且つ基体付近の雰囲気温度が400〜900℃であ
るのがよい。
【0009】また、該基体付近の圧力が1000Pa以
上100000Pa以下であるのもよい。
【0010】該原料蒸発部付近の酸素分圧が、前記基体
付近の酸素分圧より低くすることもできる。また、該原
料の平均組成がZnOx で表され、且つ0≦x≦0.5
である原料を用いることができる。ここで、無機化合物
が酸化物であることも有効であるが、窒化物、塩化物等
(例えば、TiCl4 、FeCl2 )を用いてもよい。
【0011】また、本発明における酸化物針状結晶は円
柱及び円錐、円錐で先端が平坦なもの、円柱で先端が尖
っているものや先端が平坦なものなどすべて含む。さら
に、三角錐、四角錐、六角錐、それ以外の多角錐状やそ
れらの先端が平坦なもの、また三角柱、四角柱、六角
柱、それ以外の多角柱状、あるいは先端が尖った三角
柱、四角柱、六角柱、それ以外の多角柱状やその先端が
平坦なものなども含まれ、さらに、これらの折れ線状構
造も含まれる。
【0012】また、基板表面に導電層があることが好ま
しい。また、該導電層が透明電極であることが有効であ
る場合がある。また、70%以上の針状結晶の軸が基板
に対して60度以上立っている酸化物針状結晶が好まし
い。
【0013】また上記酸化物針状結晶は特に光電変換装
置として有効である。
【0014】なお、色素増感光電変換デバイスについて
説明しておく。図10はGraetzel型の色素増感半導体電
極を用いた光化学電池の概略構成を示す断面図である。
図10中44はガラス基板であり、45はその表面に形
成した透明電極であり、41はアナターゼ型多孔質酸化
チタン層であり酸化チタン微粒子同士が接合したポーラ
ス状の接合体から出来ている。また、42はその酸化チ
タン微粒子表面に接合させた色素であり光吸収層として
作用する。
【0015】また、43は電子供与型として機能する電
解液であり、ヨウ素を含んだ電解質などが用いられ、セ
ルには図中左側から光を入射する。この太陽電池セルの
作用は以下の通りである。即ち入射光により色素中の電
子が励起され、励起された電子は効率良く酸化チタン半
導体層へ注入される。電子を渡して酸化状態にある色素
は迅速に電解質から電子を受け取り還元され元の状態に
もどる。電子を受け取った酸化チタン内部では微粒子の
間をホッピング伝導などの機構により伝導しアノードに
到達する。また色素に電子を供給して酸化された電解液
中のヨウ素イオンは、カソードで還元されて元にもど
る。
【0016】また、色素としては例えばペリレン色素、
ローズベンガル、Santalin色素、Cyanin色素などの有機
色素や天然色素、亜鉛ポルフィリン、ルテニウムビピリ
ジル{Ru(dcbpy)2 (SCN)2 、(N3:dcbpy=2,2-bipyridine
-4,4'-dicarboxylic acid)}などの金属錯体が利用でき
るが、酸化・還元体が安定であることが重要である。ま
た、光吸収層の励起された電子の電位、即ち光励起した
色素の励起準位が、n型層の伝導帯準位より高いことが
必要である。
【0017】
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
【0018】まず、酸化物針状結晶の原料を含む金属あ
るいは無機化合物を第1の温度で加熱する。
【0019】ここで第1の温度とは、上記金属あるいは
無機化合物が気化し得る温度である。
【0020】酸化物針状結晶が成長する基板は、上記第
1の温度より低い第2の温度に加熱しておく。
【0021】第1の温度で気化した原料によって上記基
板上には酸化物針状結晶が成長する。
【0022】このように原料を気化させることで、所望
の基板上に針状結晶を形成できる。
【0023】基板温度(第2の温度)を第1の温度より
低くしておくことで、気化した原料が付着し、酸化反応
を経て針状結晶へと成長できる。
【0024】酸化物針状結晶の原料を含む金属あるいは
無機化合物としては、表面に酸化膜を有するZn粉やT
i粉、あるいはWやMoなどを用いることができる。
【0025】第1の温度(T1 )としては、原料が気化
する温度以上であればよく、例えば500℃から100
0℃の範囲である。第2の温度(T2 )としては、T1
>T 2 を満たしていればよく、例えば400℃以上10
00℃未満あるいは、400℃から700℃の範囲であ
る。
【0026】なお、T1 とT2 の温度差が、50℃以
上、好ましくは100℃以上、更に好ましくは150℃
以上あるとよい。
【0027】また、基板としては、ガラス板、Si等の
半導体基板、MgO,Al2 3等の酸化物基板、これ
らの表面に導電膜を形成したもの、SUS等の金属板な
どを用いることができる。導電膜としては、金属や特に
透明導電膜(ITO,ZnO,SnO2 )などを用いる
ことができる。
【0028】以下、より具体的に説明する。
【0029】図1に示す装置において、反応容器107
内に配置した電極106に抵抗加熱体である、るつぼ1
05を接続する。電流印加により、るつぼ105を第1
の温度で加熱させると、るつぼ105内の原料104が
蒸発し、対向した基本ホルダー102に取り付けた基板
101に付着する。また、ガスは反応容器107の下部
のガス導入ライン108から入れられ、反応容器107
の中を上昇して反応容器107の上部のガス排気ライン
109から排気される。基板101は適度な温度(第2
の温度)に保持できるように基板ホルダー102の裏に
は基板ヒーター103が設けられている。該第2の温度
は、該第1の温度よりも、低く設定しておく。
【0030】基板101上に針状結晶を成長させるに
は、まず、ガス導入ライン108からキャリアガス及び
酸化性ガスを導入して反応容器107を適度な圧力に保
持する。このときキャリアガスは不活性ガスであるH
e、Arや窒素などが好ましい。酸化性ガスには、酸素
が好ましい。酸化性ガスとしては空気も使用可能であ
る。反応容器107の圧力は普通100〜100,00
0Pa程度が用いられる。次に基板ヒーター103によ
り基板温度を針状結晶に都合の良い温度に設定する。な
お、図示はしていないが、基板101近傍に熱電対を設
置させておくことが好ましい。基板温度は、成長させる
酸化物や圧力にも依存するが、数100℃から1000
℃の範囲である。そして、電極106から電流を流し、
原料104が入っているるつぼ105を加熱する。
【0031】このるつぼ105には、普通タングステン
線にアルミナるつぼを接合したものが使用される。この
るつぼ105の温度も制御可能なようにるつぼ105近
傍にも熱電対を設置させておくことが好ましい。るつぼ
105が加熱され、原料104が蒸発を始めると、蒸気
は上昇気流に乗って基板101へと向かい、基板101
へ付着する。一般的にはこの蒸発から付着までの過程で
原料の酸化が進行する。酸化の進行は、原料種類、圧
力、酸素濃度、温度などに依存する。
【0032】圧力が高かったり原料の蒸発量が特に多い
場合には、基板に到達するまでの間に酸化物微粒子や酸
化物針状結晶が成長する場合もある。
【0033】基板上に針状結晶を成長させると図5
(a)に示すように基板101に立った状態で、針状結
晶21が成長する。また、前記した様に基板101に到
達する前に気相中で酸化凝集が起こる場合には、図5
(b)に示す様に針状結晶21とともに分散された酸化
物微粒子22が得られる。表面積を大きくしたい応用の
場合にはこの酸化物微粒子22を生成させておくことが
有利な場合がある。この場合、酸化物微粒子の粒径が1
nm以上100nm以下となるように、原料の蒸発量、
反応容器内圧力などを制御するのがよい。
【0034】また、針状結晶の成長位置、密度、方向を
制御するには基板表面に凹凸や種結晶を形成させておく
ことが有効である。
【0035】図6(a)に示すように、基板101の表
面に針状結晶21の直径程度の高低差を有する凹凸31
を作製しておくと、平坦な基板と比較して高密度に針状
結晶を成長することができる。
【0036】前記凹凸は、基板表面のエッチングにより
形成したり、基板101上に所望の凹凸を有する薄膜を
形成することで得られる。
【0037】凹凸のサイズとしては、高さ方向として5
〜500nm、水平方向として10〜500nmが好ま
しい。
【0038】上記薄膜としては、例えばテクスチャー処
理されたFドープSnO2 透明導電膜を用いることがで
きる。
【0039】また、図6(b)に示す様に種結晶32を
形成させておくと、種結晶32から針状結晶が成長しや
すい。この際、種結晶32としては、成長させる針状結
晶と同じ結晶構造の材料が好ましい。勿論、針状結晶と
同じ材料で種結晶を形成させておくことが好ましい。こ
こで、種結晶の方位は針状結晶が伸びやすい方位に合わ
せておくことが好ましい。例えば、ZnOではc軸方向
である。
【0040】種結晶32は一般的なフォトリソグラフィ
ー法により作製しても良いし、また微粒子などを基板表
面に分散させておく方法や、電着により種結晶を作製し
ておく手法も有効である。
【0041】本発明において、針状結晶を光電変換装置
や電子源などのデバイスとして利用する場合には、針状
結晶は導電性材料の上に成長させておくことが好まし
い。例えば、GaやAlドープしたZnO、FやSbド
ープされたSnO2 及びITOである。また、上記デバ
イスに用いる針状結晶としては、直径が5nm以上10
μm以下であり、アスペクト比が10以上であることが
好ましい。当該条件を満たす針状結晶の割合が全体の7
0%以上であるのがよい。また、70%以上の針状結晶
の軸が、基板に対して60度以上立っていることが好ま
しい。
【0042】特に、光電変換装置の様に針状結晶膜の裏
側から光を透過させて用いる場合などは、導電層は透明
電極であることが好ましい。
【0043】なお、原料を気化させるための加熱装置と
しては、以下の装置を用いることができる。
【0044】加熱するために、図2に示すようにフィラ
メント110を用いることもできる。この場合、フィラ
メント110自身が原料となる構成も可能である。特に
原料が高融点金属であるタングステン(W)やモリブデ
ン(Mo)では、るつぼ105で蒸発させることが困難
な場合もあるので都合が良い。
【0045】また、図3に示すように、原料を気化させ
るために、レーザー蒸発法も使用可能である。レーザー
としては例えばCO2 レーザー、YAGレーザー、エキ
シマレーザー等が使用可能である。原料をターゲット1
13としてレーザー光111をレーザー窓112を通し
て照射させると原料を蒸発させることが可能である。当
該方法は、蒸発量の制御性に優れている。
【0046】また、図4に示すように、高周波誘導加熱
機構を用いることもできる。誘導加熱機構はレーザー蒸
発法と同様に加熱部分に金属電極が無いので電極が酸化
され易い条件での使用に有利である。反応管114の外
側から誘導加熱用にコイル状の電極115に高周波電流
を流すとるつぼ105内の金属原料が加熱され蒸発す
る。電極115の近傍には冷却用に水冷管116が設置
されている。ガスは図中下部から上部へと流し、蒸発さ
れた原料は基板へ付着される。
【0047】とくに、ZnO針状結晶を作製する場合の
好ましい形態について説明する。
【0048】ここで図8は本発明に用いる針状結晶成長
装置の一例である。図8中、2101は原料、2102
は原料を入れる容器、2103はZnO針状結晶を成長
させる基板、2104は基板ホルダー、2105は内部
反応管、2106は外部反応管、2107は電気炉、2
108は還元性ガスなどを導入するガス導入ラインA、
2109は酸化性ガスなどを導入するガス導入ライン
B、そして2110はガス排気ラインである。図示はし
ていないが、この他に基板ホルダーを加熱する加熱機
構、排気を行なう真空排気系や温度コントロールする制
御装置、温度モニターする熱電対などを備えている。
【0049】まず、原料となるZnを主成分粉末などを
適量反応装置の容器2105に入れ、基板2103を設
置した後、ガス排気ライン2110から反応容器全体を
真空排気する。次に窒素ガスなどのガスをガス導入ライ
ン2108より導入し容器を1気圧程度にする。その後
ガス導入ラインA2108から窒素ガスなどのキャリア
ガスを数ml/min〜数l/min、ガス導入ライン
B2109より酸素などの酸化性ガスを含んだ窒素など
のキャリアガスを数ml/min〜数l/min流す。
そして反応容器全体を1気圧程度に保ちながらガス排気
ライン2110より、ガスを排気する。このとき内部反
応管2105が存在することにより、ガス導入ラインA
とBから導入されたガスが混合するのは基板2103の
手前となり、原料付近の雰囲気はガス導入ラインAから
導入されるガスの雰囲気に近い。
【0050】ガス導入ラインBから流すガスをガス導入
ラインAから流すガスより酸素濃度を多くすることによ
り、基板部分での酸素雰囲気を原料加熱部の酸素雰囲気
より高くできる。すなわち、原料蒸発に最適な酸素濃度
と基板上ZnO成長に最適な酸素濃度を制御できること
になる。この場合の酸素濃度としては、5000Pa以
下であることが好ましい。
【0051】基板温度は550℃に設定し、電気炉を加
熱することにより原料の温度を700℃程度に保持し原
料を蒸発させる。
【0052】反応を数分〜数時間させた後、温度を下げ
て基板2103を取り出す。
【0053】ここで原料としてはZnを主成分にするも
のであれば各種利用可能であるが、特に好ましい原料と
しては、ZnOx (0≦x≦0.5)、特に表面酸化し
たZn微粒子が好ましい。この原料を600℃以上80
0℃以下で加熱することにより、適切な蒸発量で原料を
基板へ輸送可能となる。
【0054】また、基板としては加熱に耐えられるもの
ならば特に制限はなく目的に応じて選択可能である。例
えば、ガラスやSiなどの半導体基板、MgOやサファ
イアなどの酸化物単結晶、もしくは焼結基板などが使用
可能であり、勿論その上に導電層を設けた基板でも良
い。もちろん、基板形状は板状に限るものではなく、円
筒状のものやカプトンの様なテープ状のものでも構わな
い。
【0055】また、基板近傍の雰囲気としては酸素分圧
もしくは水蒸気分圧が100〜10000Paであるこ
とが好ましい。これは、酸素雰囲気が高すぎると原料蒸
発が蒸発前に酸化してしまう等の影響があること、及び
低すぎるとZnOの結晶成長の際に酸素が不足する場合
がある為である。また、基板上のガス雰囲気の温度は、
400〜900℃程度で基板温度より若干高い方が良
い。また、総圧力は1000Pa以上100000Pa
以下であることが好ましい。
【0056】また、本発明のZnO針状結晶を基板上に
制御性良く成長させるには、あらかじめ基板上に結晶成
長の開始点を設けておくことが好ましい。この様な開始
点の作用があるものとしては、特に図6(b)に示した
様なZnOの種結晶を基板上に設けておく方法が好まし
い。これには例えばZnOを電解めっきや無電解めっき
法にて基板上に種結晶を成長させておく方法が好まし
い。このめっき法ではZnOのc軸方向が基板表面に垂
直に立ちやすく、c軸に長いZnOウィスカーを基板か
ら垂直方向に成長させるのに都合が良い。
【0057】また、種結晶以外にも、図6(a)に示し
た様な基板表面の凹凸がZnO成長核になる場合があ
る。この場合には凹凸のサイズはその高低差が数10〜
数100nmであることが好ましい。この凹凸の作製に
は基板表面を研磨やエッチングにより荒らす工程でも良
いし、またCVD法などの成膜により得られる膜の凹凸
でも構わない。
【0058】また、数10〜数100nm径のZnOウ
ィスカーを高密度に成長させるには、上記結晶成長の開
始部位の表面密度が108 /cm2 以上、且つ1012
cm 2 以下であることが好ましい。
【0059】この様にして得られるZnO針状結晶とし
ては直線的な針状結晶のみならず、図9で示した様な枝
分かれを有していたり、曲がっているものも条件によっ
ては成長可能である。
【0060】上述した方法により形成された、ZnO針
状結晶は、Graetzel型の色素増感半導体電極として特に
有効である。なぜなら、一般的なGraetzelセルでは、色
素1層の光吸収率が十分ではないために、微粒子を焼結
したポーラスな膜を用いることにより表面積を大きくし
て実質的な光吸収量を大きくしている。この方法が簡単
ではあるが、n型層やp型層内での電子の移動が十分効
率的ではない問題がある。例えば上記Graetzelセルにお
いてTiO2 微粒子膜が付いた透明電極側から光入射を
行った場合と、対極側から光入射を行った場合を比較す
ると、前者の方が光電変換効率が良い場合が多い。これ
は単なる色素による光吸収量の差だけではなく、光吸収
により励起された電子がTiO2 微粒子間を移動して透
明電極に到達する確率が、透明電極から光励起位置が離
れるに従って低下していくことを示唆している。また、
p型層内においても電解質を用いる場合ではヨウ素など
のイオンの拡散が律速になり電流が大きくなると電荷を
十分輸送できなくなる問題がある。またp型層を固体化
する場合においても微粒子間のスペースに十分にp型層
を充填するのは困難である。
【0061】本発明の針状結晶では、ZnOウィスカー
が細くてアスペクト比が大きい為に単結晶状態において
も表面積が大きくなる。
【0062】更に表面積を大きくするにはウィスカー表
面に微粒子層を付着させることも有効である。
【0063】また、空隙が比較的直線的であるので、p
型層として機能する電解質やp型半導体を充填する場合
にも都合が良い。
【0064】すなわち、電解質の場合にはヨウ素イオン
などの拡散が速く、また作製の際にも染み込みが早い。
またp型層がCuIの様な固体の場合にも、作製の際に
ポーラスなn型層の深くまで素早く充填することが出来
好都合である。
【0065】本発明のZnOウィスカーを光電変換素子
に用いる場合には特に針状結晶の最小径が50nm以下
であり、且つアスペクト比が100以上であるZnO針
状結晶が好ましい。この細くて長い針状結晶を作製する
には基板温度を若干高めにすることが有効であり、55
0℃前後が好ましい。また、この針状結晶の70%以上
が該基板に対して60度以上立っていることが好まし
い。これは針状結晶を高密度に出来ること、p型層を浸
透させ易いことによる。
【0066】また、本発明をZnO針状結晶に電気を流
す素子に用いる場合には基板表面には導電層があった方
が良い。特に光電変換素子に用いる場合には基板及び基
板表面の導電層は透明であった方が好ましい。この場合
の導電層としてはITOやn型にドープされた酸化錫や
酸化亜鉛などが有効に利用できる。
【0067】本発明において、原料の加熱方法は一般的
な電気炉以外にも抵抗過熱法やレーザーアブレーション
法、誘導加熱法など利用可能である。
【0068】
【実施例】以下に実施例を挙げて、本発明をより詳細に
説明する。
【0069】(実施例1)図1の針状結晶製造装置を用
いて、ZnO針状結晶膜を製造した実施例について説明
する。
【0070】まず、タングステン(W)ワイヤーに取り
付けられたアルミナるつぼ105内に表面酸化されたZ
n粉を原料104として入れ、電極106に接続した。
基板101として、厚み0.5mmのアルミナ基板を用
い、600℃に設定した。次に反応容器107内に10
%の酸素が混合されたアルゴンガスを50mL/min
(sccm)流し、60000Paに保持した。そして
るつぼ105の温度を、950℃に加熱してZnを徐々
に約60分間蒸発させた。
【0071】作製した膜をFE−SEM(電界走査型電
子顕微鏡)で観察した結果、基板上には配向性を有する
多数のZnO針状結晶膜が図5(a)に示すように形成
された。また、結晶軸が基板に対して60度以上の角度
で成長していた。針状結晶径は、結晶の根元付近が数1
00nmであり、先端になるに従い細くなっていた。ま
た針状結晶の長さは数〜数10μmであった。るつぼの
温度の上昇とともに若干太く、長く成長する傾向が見ら
れた。
【0072】次に、るつぼ温度を950℃に固定した状
態でガス圧を変化させた。反応時間は上記と同様に60
分間である。その結果、ガス圧100Paの下で作製し
た針状結晶径は数10nmであり、ガス圧の増加と共に
太くなる傾向が見られた。
【0073】上記したように、本発明の製法により基板
上に配向成長した針状結晶を作製することができた。ま
た、蒸発温度や反応圧力の調整により針状結晶径を制御
することができた。
【0074】(実施例2)図2の針状結晶製造装置を用
いてWO3 、MoO3 針状結晶を製造した実施例につい
て詳述する。
【0075】まずW、Moから成るφ1mmのワイヤー
を直径15mmの渦巻き状フィラメントに形成し、抵抗
加熱機構内の電極106に接続した。基板101には板
厚0.2mmのPt基板を用い、800℃に設定した。
次に反応容器107内に0.01%酸素が混合されたア
ルゴンガスを50mL/min(sccm)流し100
00Paに保持した。そしてフィラメント付近温度を6
00〜1000℃に加熱してフィラメントを徐々に約1
0分間蒸発させた。
【0076】作製した膜をFE−SEMで観察した結
果、基板101上には配向性を有する多数のWO3 、M
oO3 針状結晶が図5(a)に示すように形成され、結
晶軸が基板に対して60度以上の角度で成長していた
が、横たわっていた針状結晶も若干観察された。針状結
晶径は数10nmであり長さは数μmであり、フィラメ
ント付近の温度の上昇とともに若干太く、長く成長する
傾向が見られた。フィラメント付近の温度が低い場合に
はフィラメントから蒸発されて気相中で凝縮してできた
微粒子が図5(b)に示すように針状結晶中や表面に分
散された状態で堆積されていた。この微粒子の粒径は数
10nm程度であった。
【0077】次にフィラメント付近温度を1000℃に
固定した状態でガス圧を変化させた。反応時間は上記と
同様に10分間である。その結果、ガス圧100Paの
下で作製した針状結晶径は数nmであり、ガス圧600
00Paでは数100nmであった。
【0078】上記したように、本発明の製法により基板
上に配向成長した針状結晶を作製することができた。ま
た、蒸発温度や反応圧力の調整により針状結晶径を制御
することができた。また、針状結晶に微粒子を分散させ
た針状結晶が作製できた。
【0079】(実施例3)次にレーザー蒸発法を用いた
酸化物針状結晶の製造法について説明する。
【0080】図3に示した装置を用いてTiO2 針状結
晶を作製した。ここで、111はレーザー光であり、1
12はレーザー光111を反応容器107に入れるレー
ザー窓であり、113は表面酸化させたTi粉を固めた
ターゲットである。本発明においては、レーザー光はY
AGの第二高調波でありパルス幅が10ns、エネルギ
ーが1パルス当たり0.7J(ジュール)、くり返し周
波数が10Hzである。
【0081】反応容器107中をAr分圧=10000
Pa、酸素分圧=10Paに保持し、Ti基板101を
700℃に加熱してTiターゲット113に30分間レ
ーザーを照射させ、前記のターゲット113と対向した
Ti基板101上にTiO2針状結晶を成長させた。な
お、レーザー照射により、Tiターゲットは、およそ2
000℃に加熱されている。
【0082】作製した試料をFE−SEMで観察した結
果、基板上ではルチル型のTiO2針状結晶が図5
(a)に示すように形成され、主として結晶軸が基板に
対して60度以上の角度で成長していた。
【0083】(実施例4)次に基板表面に凹凸を形成さ
せた実施例について図6を用いて説明する。
【0084】ガラス基板上にCVD法によりFドープの
酸化錫膜を約500nm成膜した。得られた膜はシート
抵抗約10Ωの透明導電膜として機能し、その表面には
図6(a)に示した様な高低差100nm程度の表面凹
凸31が形成されていた。これを基板として実施例1と
同様な方法によりSnO2 針状結晶を形成した。ただし
実施例1とは異なり、原料にはZnではなくSnを用い
た。なお、凹凸の周期は高低差の2〜3倍程度である。
【0085】比較の為に表面酸化した平坦なSi基板上
を用いて、同様な手法でSnO2 結晶を成長させた。
【0086】得られた試料をFE−SEMで観察したと
ころ、表面酸化Si基板上より凹凸が形成された酸化錫
膜上の方が約10倍の密度で針状結晶が成長していた。
このことから、表面凹凸により針状結晶密度を制御でき
ることがわかる。なお、凹凸は数百nm程度の領域が好
ましく、成長させるウィスカー径程度がより好ましい。
【0087】(実施例5)次に基板表面に凹凸を形成さ
せた針状結晶を光電変換装置に応用した実施例について
図6を用いて説明する。
【0088】ガラス基板上にCVD法によりFドープの
酸化錫膜を約500nm成膜した。得られた膜はシート
抵抗約10Ωの透明導電膜として機能し、その表面には
図6(a)に示した様な高低差100nm程度の表面凹
凸31が形成されていた。これを基板として実施例1と
同様な方法によりZnO針状結晶21を形成した。
【0089】比較の為に表面酸化した平坦なSi基板上
を用いて、同様な手法でZnO結晶を成長させた。
【0090】得られた試料をFE−SEMで観察したと
ころ、表面酸化Si基板上より凹凸が形成された酸化錫
膜上の方が約10倍の密度で針状結晶が成長していた。
このことから、ZnO針状結晶の場合でも、表面凹凸に
より針状結晶密度を制御できることがわかった。
【0091】次に、このZnO針状結晶を用いて色素増
感型の光電変換装置を以下の様に作製した。色素である
エオシン−Yをエタノールに溶解し、この中にZnO針
状結晶を入れて30分浸して色素(色素は光吸収層とし
て作用する)を電極に吸着させ、80℃で乾燥させた。
導電性ガラス(FドープSnO2 、10Ω/□)上に白
金を1nmスパッタ成膜した対極を用い、レドックス対
はI- /I3 -を用いた。溶質はテトラプロピルアンモニ
ウムヨウ化物(tetrapropylammonium iodide)(0.4
6mol/L)とヨウ素(0.06mol/L)、溶媒
はエチレンカルボナート(ethylene carbonate)(80
vol%)とアセトニトリル(acetonitrile)(20v
ol%)の混合液を用いた。この混合液をZnO針状結
晶に滴下し、対極で挟んでセルとした。
【0092】図7は本発明の光電変換装置の構成例を示
す図である。図7において、64aは表面に透明電極層
(カソード)66が設けられたガラス基板、61は表面
上に光吸収層62が形成された針状結晶、63は電荷輸
送層となる電解液、64bは表面に透明電極層(アノー
ド)65が設けられたガラス基板である。針状結晶61
は一方の電荷輸送層となり、この電荷輸送層と電荷輸送
層63との間に光吸収層62が設けられることになる。
【0093】また、比較例としてZnO針状結晶粉末を
用いて同様なセルを作製した。
【0094】そして紫外線カットフィルターを取り付け
た100Wのキセノンランプ光を作製したセルに照射し
た。この時生じた光電変換反応による光電流の値を測定
した結果、本発明のセルの方がショートサーキット電
流、フィルファクターともに10%以上大きかった。よ
って、本発明の手法により作製した針状結晶は光電変換
装置として有効であることが分かる。なお、本実施例で
は、針状結晶を光電変換装置に用いる例を示したが、S
TM(Scaning Tumel Microscope)やAFM探針(Atom
ic Force Microscope)、電子放出材料、発光材料、帯
電防止用材料、光触媒、湿度センサーなどに利用でき
る。
【0095】(実施例6)次に基板表面に種結晶を形成
させた実施例について図6を用いて説明する。
【0096】ガラス基板上にスパッタ法によりPt膜と
ZnO膜を各々約100nm成膜した。ここで、Pt膜
はZnOの下地膜として作用する。そして、フォトリソ
グラフィー法によりZnO膜のみ約200nmの大きさ
に加工し、図6(b)の様に種結晶32とした。これを
基板として実施例1と同様な方法によりZnO針状結晶
を形成した。
【0097】得られた試料をFE−SEMで観察したと
ころ、種結晶と同様な密度で、種結晶の方位と一致した
方向に針状結晶が成長していた。このことから、種結晶
により針状結晶密度と成長方向を制御できることがわか
る。
【0098】また、このZnO針状結晶を用いて色素増
感型の光電変換装置を実施例5と同様に作製した。
【0099】また、比較例としてZnO針状結晶粉末を
用いて同様なセルを作製した。
【0100】そして紫外線カットフィルターを取り付け
た100Wのキセノンランプ光を作製したセルに照射し
た。この時生じた光電変換反応による光電流の値を測定
した結果、本発明のセルの方がショートサーキット電
流、フィルファクターともに15%以上大きかった。よ
って、本発明の手法により作製した針状結晶は光電変換
装置として有効であることが分かる。
【0101】なお、本発明による酸化物針状結晶、およ
びその製造方法は、上記デバイス以外にもエレクトロク
ロミック素子や電子源など多方面に応用可能である。
【0102】(実施例7)本実施例は、ZnO針状結晶
を各種条件で作製した例について図8を用いて説明す
る。図8は、ZnO針状結晶を成長させる為の装置であ
り、図中2101は原料、2102は原料を入れる容
器、2103はZnO針状結晶を成長させる基板、21
04は基板ホルダー、2105は内部反応管、2106
は外部反応管、2107は電気炉、2108は還元性ガ
スなどを導入するガス導入ラインA、2109は酸化性
ガスなどを導入するガス導入ラインB、そして2110
はガス排気ラインである。
【0103】まず、表面酸化したZnOx 微粒子を以下
の要領で準備した。200メッシュのZn粉5gに蒸留
水1mlを加え、十分乳鉢で混合した後自然乾燥させZ
nO x を得た。この時のxは0.1程度であった。そし
てこのZnOx 粉を電気炉中で100〜500℃でアニ
ールすることによりxを0.1〜1.0まで調整した。
まずx=0.2程度の原料粉0.5gを図8に示した反
応装置の容器2105に入れ、基板2103として焼結
アルミナ基板を設置した後、ガス排気ライン2110か
ら反応容器全体を1Pa以下まで真空排気した。
【0104】そしてまず窒素ガスをガス導入ライン21
08より導入し容器を1気圧にした。そして、ガス導入
ラインA2108から窒素を100ml/min、ガス
導入ラインB2109より酸素を1%含んだ窒素ガスを
100ml/min流し、反応容器全体を1気圧に保ち
ながらガス排気ライン2110よりガスを排気した。そ
して基板温度を550℃に設定したのち、電気炉を加熱
することにより原料温度を700℃に保持し原料を蒸発
させた。反応を1時間させた後、温度を下げて基板を取
り出した。
【0105】取り出した基板をFE−SEM(Field Em
ission-Scanning Electron Microscope:電界放出走査
型電子顕微鏡)で観察した結果、基板表面には図5
(a)に示した様なZnO針状結晶が一面に成長してい
た。このときの針状結晶の太さは20〜200nmであ
り、根元付近の方が先端付近より針状結晶の太さは若干
太かった。また、針状結晶の長さは5〜20μmであっ
た。このため針状結晶のアスペクト比は25〜1000
の範囲であった。
【0106】また、この条件を元にして基板温度、原料
温度、酸素濃度、反応容器圧力を変化させた結果、基板
近傍ガス温度が400〜900℃、基板温度は400℃
以上650℃以下、原料温度は600℃以上800℃以
下、基板近傍での酸素分圧は100〜10000Pa、
反応容器の圧力は1000Pa以上100000Pa以
下で直径200nm以下でアスペクト比が100以上の
良好なZnO針状結晶が得られていた。またこのときZ
nO針状結晶の70%以上が基板から60度以上垂直方
向に成長していた。
【0107】また、用いたZnOx 原料においてxを変
化させた結果ではxが大きくなるほど蒸発に必要な温度
が高くなったが、xが0付近で小さい場合には蒸発が不
安定になる場合もあった。結果としてxが0.5以下な
らば良好なZnO針状結晶が成長可能なことが分かっ
た。
【0108】(実施例8)本実施例は、酸化性ガスとし
て水蒸気を用いた例について説明する。実施例7と同様
に、ZnOx 原料0.5gを図8に示した反応装置の容
器2105に入れ、基板2103として焼結アルミナ基
板を設置した後、ガス排気ライン2110から反応容器
全体を1Pa以下まで真空排気した。そしてまず窒素ガ
スをガス導入ライン2108より導入し容器を1気圧に
した。そして、ガス導入ラインA2108から窒素を1
00ml/min、ガス導入ラインB2109より水蒸
気を500Pa含んだ窒素ガスを100ml/min流
し、反応容器全体を1気圧に保ちながらガス排気ライン
2110よりガスを排気した。そして基板温度を550
℃に設定したのち、電気炉を加熱することにより原料温
度を700℃に保持し原料を蒸発させた。反応を1時間
させた後温度を下げて基板を取り出した。
【0109】取り出した基板をFE−SEMで観察した
結果、実施例7と同様に直径20〜200nmで長さが
1〜10μmのZnO針状結晶が基板表面から多数成長
していることが確認できた。
【0110】(実施例9)本実施例は、表面凹凸がある
基板を用いてZnOを成長させた例について説明する。
基板としてはガラス基板上にSnO2 膜を約0.5μm
蒸着させたものを用いた。このSnO2 膜は成膜時に表
面に凹凸が形成され、その凹凸の高さや幅は約0.1〜
0.5μmであり図6(a)に示されている様に形状を
有していた。
【0111】実施例7と同様にZnOx 原料0.5gを
図8に示した反応装置の容器2105に入れ、基板21
03として上記SnO2 膜付きガラス基板を設置した
後、実施例7と同様にZnO針状結晶を成長させた。
【0112】取り出した基板をFE−SEMで観察した
結果、実施例7と同様に直径20〜200nmで長さが
1〜10μmのZnO針状結晶が基板表面から多数成長
していたが、成長密度は実施例7より50%以上多く、
また針状結晶の50%以上は図6(a)に示した様に基
板表面にあったSnO2 膜の凸部から成長していた。
【0113】(実施例10)本実施例は、ZnO種結晶
がある基板を用いてZnOを成長させた例について説明
する。まず、基板上に種結晶を作製する方法について説
明する。基板としてはガラス基板上にフッ素ドープされ
たSnO2 膜を約0.1μm蒸着させたものを用いた。
この基板を85℃まで加熱した2mmol/L硝酸亜鉛
水溶液に浸して、Zn対極と参照電極のもと、−1.2
Vの電位を2000秒間印加した。その結果基板上に直
径0.1μm、高さ0.2〜0.5μmサイズのZnO
微粒子がc軸配向して成長していた。この微粒子の密度
は109 個/cm2 程度であった。
【0114】次に実施例7と同様にZnOx 原料0.5
gを図7に示した反応装置の容器2105に入れ基板2
103として上記ZnO種結晶付きガラス基板を設置し
た後、実施例7と同様にZnO針状結晶を成長させた。
【0115】取り出した基板をFE−SEMで観察した
結果、種結晶を反映させた状態で直径約100nmで長
さが5〜15μmのZnO針状結晶が基板表面から多数
成長していた。成長方向は基板にほぼ垂直方向であり、
針状結晶密度は種結晶の表面密度とほぼ同じ109 個/
cm2 程度であった。
【0116】種結晶の密度を変えて実験した結果、種結
晶の表面密度が108 〜1012/cm2 の範囲で種結晶
を反映したZnO針状結晶の成長が見られた。
【0117】(実施例11)本実施例は、本発明を色素
増感型の光電変換素子として利用した例について説明す
る。
【0118】まず、実施例10と同様にZnO針状結晶
をガラス基板上にフッ素ドープされたSnO2 膜上に成
長させた。ただし、SnO2 膜は約0.5μmと厚めに
してSnO2 膜のシート抵抗を10Ω/cm程度に下げ
たものを用いた。
【0119】次にこの基板を酸素ガスを100sccm
流しながら450℃、1時間アニールを行い80℃まで
降温した。この基板を取り出し温度があまり下がらない
内にRu錯体であるRu((bipy)(COOH)2 )2 (SCN)2 を溶
解させた蒸留エタノール中に浸して30分間保持した。
その結果ZnO針状結晶表面には色素が吸着された。そ
して対極として、導電性ガラス(FドープSnO2 、1
0Ω/□)上に白金を1nmスパッタ成膜したものを用
い、レドックス対はI- /I3 -を用いてセル作製を行な
った。レドックスの溶質はtetrapropylammonium iodide
(0.46M)とヨウ素(0.06M)、溶媒はethyle
ne carbonate(80vol%)とacetonitrile(20v
ol%)の混合液を用いた。この混合液をZnO針状結
晶が成長した基板と対極で挟んでセルとした。
【0120】また、比較例として粒径約20nmのアナ
ターゼ型を主成分としたTiO2 粉末を塗布、焼結させ
たものを用いて同様にセルを組み立てた。
【0121】そして紫外線カットフィルターを取り付け
た500Wのキセノンランプ光を照射して光電変換反応
による光電流の値を測定した。その測定結果本発明のセ
ルの方が単位色素量当たりの光電変換量が15%程度増
加していた。
【図面の簡単な説明】
【図1】るつぼ型の抵抗加熱機構を備えた酸化物針状結
晶の製造装置の概略図である。
【図2】フィラメント型の抵抗加熱機構を備えた酸化物
針状結晶の製造装置の概略図である。
【図3】レーザー蒸発機構を備えた酸化物針状結晶の製
造装置の概略図である。
【図4】誘導加熱機構を備えた酸化物針状結晶の製造装
置の概略図である。
【図5】基板上に配向成長させた酸化物針状結晶の概略
図(a)及び基板上に配向成長した超微粒子が分散され
た酸化物針状結晶の概略図(b)である。
【図6】凸凹部分を有した基板から成長した酸化物針状
結晶の概略図(a)及び種結晶を有した基板から成長し
た酸化物針状結晶の概略図(b)である。
【図7】本発明の光電変換装置の構成例を示す図であ
る。
【図8】針状結晶の成長に用いられる装置を示す模式図
である。
【図9】ZnO針状結晶の断面模式図である。
【図10】Graetzelセルを示す断面図である。
【符号の説明】
21 針状結晶 22 微粒子 31 表面凹凸 32 種結晶 61 半導体針状結晶 62 光吸収層 63 電荷輸送層 64 ガラス 65 透明電極層(アノード) 66 透明電極層(カソード) 101 基板 102 基板ホルダー 103 基板ヒーター 104 原料 105 るつぼ 106 電極 107 反応容器 108 ガス導入ライン 109 ガス排気ライン 110 フィラメント 111 レーザー光 112 レーザー導入窓 113 ターゲット 114 反応管 115 電極
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小中原 馨 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 4G077 AA04 BB04 BB07 BB09 BB10 DA02 DA17 EA01 EE05 HA20

Claims (29)

    【特許請求の範囲】
  1. 【請求項1】 金属あるいは無機化合物を含み構成され
    る原料を第1の温度で加熱することにより気化させ、該
    原料から気化した結晶構成材料を、該第1の温度よりも
    低い第2の温度に加熱された基体に付着させることを特
    徴とする酸化物針状結晶の製造方法。
  2. 【請求項2】 前記基体表面に、結晶核発生となる凹凸
    が形成されている請求項1記載の酸化物針状結晶の製造
    方法。
  3. 【請求項3】 前記基体表面には、導電層が形成されて
    いることを特徴とする請求項1記載の酸化物針状結晶の
    製造方法。
  4. 【請求項4】 前記導電層が透明電極である請求項3記
    載の酸化物針状結晶の製造方法。
  5. 【請求項5】 前記第1の温度が、500℃以上100
    0℃以下であって、且つ前記第2の温度が400℃以上
    1000℃未満である請求項1記載の酸化物針状結晶の
    製造方法。
  6. 【請求項6】 前記基体上に前記結晶構成材料を付着さ
    せるに先だって、該基体表面に種結晶を形成しておく請
    求項1記載の酸化物針状結晶の製造方法。
  7. 【請求項7】 前記金属あるいは無機化合物が、表面に
    酸化膜を有する亜鉛粉、表面に酸化膜を有するTi粉、
    タングステンあるいはモリブデンである請求項1記載の
    酸化物針状結晶の製造方法。
  8. 【請求項8】 請求項1から7のいずれか1項に記載の
    酸化物針状結晶の製造方法により製造された酸化物針状
    結晶であって、前記酸化物針状結晶の軸が前記基体に対
    して60度以上立っている割合が、70%以上である酸
    化物針状結晶。
  9. 【請求項9】 請求項1から7のいずれか1項に記載の
    酸化物針状結晶の製造方法により製造された酸化物針状
    結晶であって、結晶表面に酸化物超微粒子が分散されて
    いる酸化物針状結晶。
  10. 【請求項10】 請求項8に記載の酸化物針状結晶の直
    径が5nm以上10μm以下であり、該直径に対する長
    さの比が10以上である酸化物針状結晶。
  11. 【請求項11】 請求項9に記載の酸化物針状結晶の直
    径が5nm以上10μm以下であり、該直径に対する長
    さの比が10以上である酸化物針状結晶。
  12. 【請求項12】 請求項9に記載の酸化物針状結晶にお
    ける前記酸化物超微粒子の粒径が1nm以上100nm
    以下である酸化物針状結晶。
  13. 【請求項13】 請求項1に記載の製造方法により製造
    された酸化物針状結晶を用いて作製された光電変換装
    置。
  14. 【請求項14】 Znを主成分とする原料を前記第1の
    温度で蒸発させ、酸素を含む雰囲気中に設置した前記基
    体上に輸送し、平均径300nm以下で且つアスペクト
    比50以上のc軸方向に伸びたZnO針状結晶を該基体
    上に形成することを特徴とする請求項1記載の酸化物針
    状結晶の製造方法。
  15. 【請求項15】 前記基体付近における酸素分圧もしく
    は水蒸気分圧が100〜10000Paであり、且つ基
    体付近の雰囲気温度が400〜900℃である請求項1
    4記載の酸化物針状結晶の製造方法。
  16. 【請求項16】 前記基体上の圧力が1000Pa以上
    100000Pa以下である請求項14記載の酸化物針
    状結晶の製造方法。
  17. 【請求項17】 前記原料の蒸発部付近の酸素分圧が、
    前記基体付近の酸素分圧より低い請求項14記載の酸化
    物針状結晶の製造方法。
  18. 【請求項18】 前記原料の平均組成がZnOx で表さ
    れ、且つ0≦x≦0.5である請求項1から14のいず
    れか1項に記載の酸化物針状結晶の製造方法。
  19. 【請求項19】 前記第1の温度が600℃以上800
    ℃以下である請求項14記載の酸化物針状結晶の製造方
    法。
  20. 【請求項20】 前記第2の温度が400℃以上650
    ℃以下である請求項14記載の酸化物針状結晶の製造方
    法。
  21. 【請求項21】 前記酸化物針状結晶の最小径が50n
    m以下であり、且つアスペクト比が100以上である請
    求項14記載の酸化物針状結晶の製造方法。
  22. 【請求項22】 70%以上の前記酸化物針状結晶の軸
    が前記基板に対して60度以上立っている請求項14記
    載の酸化物針状結晶の製造方法。
  23. 【請求項23】 前記基体表面上に結晶成長が開始され
    る部位を形成させておく請求項14記載の酸化物針状結
    晶の製造方法。
  24. 【請求項24】 前記部位がZnOの種結晶である請求
    項23記載の酸化物針状結晶の製造方法。
  25. 【請求項25】 前記種結晶がめっき法により形成され
    た請求項24記載の酸化物針状結晶の製造方法。
  26. 【請求項26】 前記部位がZnO以外の凸部である請
    求項23記載の酸化物針状結晶の製造方法。
  27. 【請求項27】 前記部位の表面密度が108 /cm2
    以上、且つ1012/cm2 以下である請求項23から2
    6のいずれか1項に記載の酸化物針状結晶の製造方法。
  28. 【請求項28】 請求項14に記載の製造方法により作
    製されたZnO針状結晶をn型半導体として用いた光電
    変換装置。
  29. 【請求項29】 光吸収層として色素を用いた色素増感
    型の請求項28記載の光電変換装置。
JP2001275156A 2000-09-21 2001-09-11 酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置 Expired - Fee Related JP3715911B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001275156A JP3715911B2 (ja) 2000-09-21 2001-09-11 酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置
US09/956,021 US6596078B2 (en) 2000-09-21 2001-09-20 Method of producing oxide whiskers, oxide whiskers, and photoelectric conversion apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000287203 2000-09-21
JP2000-287203 2000-09-21
JP2001275156A JP3715911B2 (ja) 2000-09-21 2001-09-11 酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置

Publications (2)

Publication Number Publication Date
JP2002167300A true JP2002167300A (ja) 2002-06-11
JP3715911B2 JP3715911B2 (ja) 2005-11-16

Family

ID=26600438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275156A Expired - Fee Related JP3715911B2 (ja) 2000-09-21 2001-09-11 酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置

Country Status (2)

Country Link
US (1) US6596078B2 (ja)
JP (1) JP3715911B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350283A (ja) * 2004-06-08 2005-12-22 Masasuke Takada 酸化亜鉛単結晶およびその製造方法
JP2006306688A (ja) * 2005-05-02 2006-11-09 Samsung Sdi Co Ltd ナノワイヤーの製造方法
JP2010034027A (ja) * 2008-06-23 2010-02-12 Hitachi Ltd 透明導電膜付き基板,その製造方法,透明導電膜付き基板を用いた表示素子及び透明導電膜付き基板を用いた太陽電池
WO2010084758A1 (ja) * 2009-01-23 2010-07-29 株式会社アルバック 太陽電池の製造方法及び太陽電池
US7826042B2 (en) 2004-03-05 2010-11-02 Canon Kabushiki Kaisha Recognition chip for target substance, and detection method and device for the same
JP5627785B2 (ja) * 2011-06-30 2014-11-19 株式会社フジクラ 色素増感太陽電池及びその製造方法
WO2017017886A1 (ja) * 2015-07-24 2017-02-02 パナソニックIpマネジメント株式会社 光電極及びその製造方法、並びに光電気化学セル
WO2020053714A1 (en) * 2018-09-12 2020-03-19 Fondazione Bruno Kessler Sensor for detection of biomolecules in a biological fluid via chemiluminescence reaction

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649824B1 (en) * 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
JP2002356400A (ja) * 2001-03-22 2002-12-13 Canon Inc 酸化亜鉛の針状構造体の製造方法及びそれを用いた電池、光電変換装置
AU2003304246A1 (en) * 2002-10-04 2005-01-13 The Ohio State University Research Foundation Method of forming nanostructures on ceramics and the ceramics formed
US7067843B2 (en) * 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
US7655860B2 (en) * 2005-04-01 2010-02-02 North Carolina State University Nano-structured photovoltaic solar cell and related methods
CN101189367B (zh) * 2005-05-31 2012-01-04 京瓷株式会社 含有针状结晶的排列体的复合体及其制造方法、以及光电转换元件、发光元件及电容器
US20070228986A1 (en) * 2006-03-31 2007-10-04 General Electric Company Light source incorporating a high temperature ceramic composite for selective emission
JP2008297168A (ja) * 2007-05-31 2008-12-11 National Institute Of Advanced Industrial & Technology ZnOウィスカー膜及びその作製方法
KR101549620B1 (ko) * 2009-01-30 2015-09-02 삼성전자주식회사 pn 구조를 지닌 Zn 산화물 나노 와이어 및 그 제조 방법
TWI450403B (zh) * 2009-12-07 2014-08-21 Ind Tech Res Inst 染料敏化太陽電池及其製造方法
RU2631822C1 (ru) * 2015-12-29 2017-09-26 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Северо-Осетинский государственный университет имени Коста Левановича Хетагурова" (СОГУ) Способ получения игольчатых монокристаллов оксида молибдена VI МоО3
RU2657094C1 (ru) * 2017-07-19 2018-06-08 Акционерное общество "Концерн "Созвездие" Способ получения твердотельных регулярно расположенных нитевидных кристаллов

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506597A (ja) 1973-05-22 1975-01-23
JPS56120218A (en) 1980-02-27 1981-09-21 Fujitsu Ltd Peak detection circuit
JPS605529B2 (ja) 1980-02-27 1985-02-12 住友金属鉱山株式会社 針状酸化亜煙の製造方法
JPS605529A (ja) 1983-06-23 1985-01-12 Nec Corp 洗浄装置
JP2600762B2 (ja) 1987-12-29 1997-04-16 松下電器産業株式会社 酸化亜鉛ウィスカーの製造方法
KR920009567B1 (ko) 1987-12-29 1992-10-19 마쯔시다덴기산교 가부시기가이샤 산화아연위스커 및 그 제조방법
JP2584034B2 (ja) 1988-12-22 1997-02-19 松下電器産業株式会社 酸化亜鉛ウイスカの製造法
JP2584037B2 (ja) 1988-12-27 1997-02-19 松下電器産業株式会社 酸化亜鉛ウィスカの製造方法
JP2697431B2 (ja) 1991-11-14 1998-01-14 松下電器産業株式会社 酸化亜鉛結晶及びその製造方法
JP3208440B2 (ja) 1995-02-28 2001-09-10 新明和工業株式会社 酸化亜鉛ウイスカの製造方法および製造装置ならびに酸化亜鉛ウイスカ
JP3240272B2 (ja) 1997-05-14 2001-12-17 大塚化学株式会社 微細ウィスカー及びその製造法
KR100291482B1 (ko) 1997-06-24 2001-06-01 시부키 유키오 이산화티탄 결정배향막을 갖는 재료 및 그 제조방법
JP4109809B2 (ja) 1998-11-10 2008-07-02 キヤノン株式会社 酸化チタンを含む細線の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826042B2 (en) 2004-03-05 2010-11-02 Canon Kabushiki Kaisha Recognition chip for target substance, and detection method and device for the same
US8023109B2 (en) 2004-03-05 2011-09-20 Canon Kabushiki Kaisha Recognition chip for target substance, and detection method and device for the same
JP2005350283A (ja) * 2004-06-08 2005-12-22 Masasuke Takada 酸化亜鉛単結晶およびその製造方法
JP2006306688A (ja) * 2005-05-02 2006-11-09 Samsung Sdi Co Ltd ナノワイヤーの製造方法
JP2010034027A (ja) * 2008-06-23 2010-02-12 Hitachi Ltd 透明導電膜付き基板,その製造方法,透明導電膜付き基板を用いた表示素子及び透明導電膜付き基板を用いた太陽電池
WO2010084758A1 (ja) * 2009-01-23 2010-07-29 株式会社アルバック 太陽電池の製造方法及び太陽電池
JPWO2010084758A1 (ja) * 2009-01-23 2012-07-19 株式会社アルバック 太陽電池の製造方法及び太陽電池
JP5627785B2 (ja) * 2011-06-30 2014-11-19 株式会社フジクラ 色素増感太陽電池及びその製造方法
WO2017017886A1 (ja) * 2015-07-24 2017-02-02 パナソニックIpマネジメント株式会社 光電極及びその製造方法、並びに光電気化学セル
CN107849711A (zh) * 2015-07-24 2018-03-27 松下知识产权经营株式会社 光电极及其制造方法、以及光电化学元件
CN107849711B (zh) * 2015-07-24 2019-10-15 松下知识产权经营株式会社 光电极及其制造方法、以及光电化学元件
WO2020053714A1 (en) * 2018-09-12 2020-03-19 Fondazione Bruno Kessler Sensor for detection of biomolecules in a biological fluid via chemiluminescence reaction

Also Published As

Publication number Publication date
JP3715911B2 (ja) 2005-11-16
US6596078B2 (en) 2003-07-22
US20020037249A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
JP3715911B2 (ja) 酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置
US8415556B2 (en) Copper delafossite transparent P-type semiconductor thin film devices
Umar Growth of comb-like ZnO nanostructures for dye-sensitized solar cells applications
JP4720426B2 (ja) カーボンナノチューブを用いた太陽電池
Peng et al. Perovskite solar cells based on bottom-fused TiO 2 nanocones
JP3506080B2 (ja) 半導体電極およびその製造方法
Shet et al. Effects of substrate temperature and RF power on the formation of aligned nanorods in ZnO thin films
Wang et al. A plasma sputtering decoration route to producing thickness-tunable ZnO/TiO2 core/shell nanorod arrays
Khorasani et al. Application of combinative TiO2nanorods and nanoparticles layer as the electron transport film in highly efficient mixed halides perovskite solar cells
Islavath et al. Spray coated seed layer for scalable synthesis of aligned ZnO nanowire arrays on FTO substrate and their photovoltaic properties
Mazumdar et al. Designing electron transporting layer for efficient perovskite solar cell by deliberating over nano-electrical conductivity
JP5122121B2 (ja) 半導体電極および色素増感型太陽電池
JP6559911B2 (ja) 酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール
Yoo et al. Anodic TiO2 nanotube arrays directly grown on quartz glass used in front‐and back‐side irradiation configuration for photocatalytic H2 generation
Feng et al. Enhanced photovoltaic property and stability of perovskite solar cells using the interfacial modified layer of anatase TiO2 nanocuboids
JP2003321299A (ja) 酸化亜鉛針状結晶及びその製造方法、並びにそれを用いた光電変換装置
CN108022694B (zh) 一种透明导电氧化物薄膜-纳米线网络的制备方法
JP2003289151A (ja) 光電変換装置の製造方法
JP2003282164A (ja) 光電変換装置及びその製造方法
KR20120000422A (ko) 펄스 레이저 증착을 이용한 나노 구조체의 형성 방법 및 나노 구조체를 포함하는 전극
US8329251B2 (en) Method for preparing metal oxide crystalline nanoparticle films for dye sensitized solar cell photoanodes
JP2004210605A (ja) 酸化亜鉛針状結晶
JP2004277197A (ja) 酸化亜鉛針状結晶及びその形成方法、並びに光電変換素子
US20230037147A1 (en) High-efficiency photoelectrochemical electrode as hydrogen generator composed of metal oxide and transition metal dichalcogenide bond on three-dimensional carbon textile and method of manufacturing same
Oluwabi et al. Combinative solution processing and Li doping approach to develop p-type NiO thin films with enchanced electrical properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees