JP2001319891A - 薄膜処理方法及び薄膜処理装置 - Google Patents

薄膜処理方法及び薄膜処理装置

Info

Publication number
JP2001319891A
JP2001319891A JP2000136646A JP2000136646A JP2001319891A JP 2001319891 A JP2001319891 A JP 2001319891A JP 2000136646 A JP2000136646 A JP 2000136646A JP 2000136646 A JP2000136646 A JP 2000136646A JP 2001319891 A JP2001319891 A JP 2001319891A
Authority
JP
Japan
Prior art keywords
thin film
pulse
light
irradiation
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000136646A
Other languages
English (en)
Inventor
Hiroshi Tanabe
浩 田邉
Akihiko Taneda
昭彦 種子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Sumitomo Heavy Industries Ltd
Original Assignee
NEC Corp
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Sumitomo Heavy Industries Ltd filed Critical NEC Corp
Priority to JP2000136646A priority Critical patent/JP2001319891A/ja
Priority to KR1020057006292A priority patent/KR100738295B1/ko
Priority to TW090111157A priority patent/TW488079B/zh
Priority to KR1020027015050A priority patent/KR20030024664A/ko
Priority to US10/275,692 priority patent/US7063999B2/en
Priority to PCT/JP2001/003908 priority patent/WO2001086705A1/ja
Publication of JP2001319891A publication Critical patent/JP2001319891A/ja
Priority to US11/400,526 priority patent/US7396712B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Abstract

(57)【要約】 【課題】 トラップ準位密度の小さいシリコン薄膜を光
照射によって形成する。 【解決手段】 薄膜に光ビームを照射することにより薄
膜を処理する薄膜処理方法において、光ビームの一照射
単位が、第1及び第2の光パルスの薄膜への照射から構
成され、一照射単位の照射を繰り返し行うことにより薄
膜を処理するものであり、第1及び第2の光パルスは互
いに異なるパルス波形を有する。好ましくは、光ビーム
の一照射単位が、第1の光パルスの薄膜への照射と、第
1の光パルスの薄膜への照射の開始と実質的に同時に開
始される、第2の光パルスの薄膜への照射とから構成さ
れる。この場合、第1及び第2の光パルスは、(前記第
1の光パルスのパルス幅)<(前記第2の光パルスのパ
ルス幅)及び(前記第1の光パルスの照射強度)≧(前
記第2の光パルスの照射強度)を満たす。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、結晶性シリコン薄
膜トランジスタに用いるシリコン薄膜及び電界効果型ト
ランジスタに応用するための良質な半導体−絶縁膜界面
を形成する装置に関する。また本発明は、パルスレーザ
光を用いた半導体薄膜の製造装置に関する。さらに本発
明は、上記半導体薄膜あるいは電界効果型薄膜トランジ
スタにより構成されるディスプレイ、センサー等の駆動
素子または駆動回路を製造するための装置に関する。
【0002】
【従来の技術】ガラス基板上に薄膜トランジスタ(TF
T)を形成する代表的な技術として、水素化アモルファ
スシリコンTFT技術及び、多結晶シリコンTFT技術
が挙げられる。前者は作製プロセス最高温度300℃程
度であり、移動度1cm/Vsec程度のキャリア移動度を
実現している。この技術は、アクティブマトリクス型
(AM)液晶ディスプレイ(LCD)における各画素の
スイッチングトランジスタとして用いられ、画面周辺に
配置されたドライバー集積回路(IC、単結晶シリコン
基板上に形成されたLSI)によって駆動される。各画
素毎にスイッチング素子TFTがついているため、周辺
ドライバ回路から液晶駆動用の電気信号を送るパッシブ
マトリクス型LCDに比べ、クロストーク等が低減され
良好な画像品質を得られるという特徴を有する。一方後
者は、例えば石英基板を用い1000℃程度のLSIと
類似した高温プロセスを用いることで、キャリア移動度
30〜100cm2/Vsecの性能を得ることができる。この
ような高いキャリア移動度の実現は、たとえば液晶ディ
スプレイに応用した場合、各画素を駆動する画素TFT
と同時に、周辺駆動回路部までもが同一ガラス基板上に
同時に形成することができるという製造プロセスコスト
の低減、小型化に関する利点がある。小型化、高解像度
化によりAM−LCD基板と周辺ドライバー集積回路の
接続ピッチが狭小化し、タブ接続やワイヤボンディング
法では対処しきれないからである。ところが、多結晶シ
リコンTFT技術において、上述のような高温プロセス
を用いる場合、前者のプロセスが用いることができる安
価な低軟化点ガラスを用いることができない。そこで多
結晶シリコンTFTプロセスの温度低減が必要になって
おり、レーザ結晶化技術を応用した多結晶シリコン膜の
低温形成技術が研究・開発されている。
【0003】一般に、これらのレーザ結晶化は図15に
示すような構成のパルスレーザ照射装置により実現され
る。パルスレーザ光源1101から供給されるレーザ光はミ
ラー1102,1103,1105及び空間的な強度の均一化を行うべ
く設置されるビームホモジナイザ1104等の光学素子群に
よって規定される光路1106を介し、被照射体であるガラ
ス基板1109上のシリコン薄膜1107に到達する。一般にガ
ラス基板に比べ1照射範囲が小さいため、xyステージ
1109上のガラス基板を移動させることにより基板上の任
意の位置へのレーザ照射が行われている。xyステージ
の代わりに、上述の光学素子群を移動させることや、光
学素子群とステージを組み合わせる方法も可能である。
レーザ照射が真空チャンバ内で真空中あるいは高純度ガ
ス雰囲気下で行われることもある。また、必要に応じて
シリコン薄膜付きガラス基板入りカセット1110と基板搬
送機構1111を有し、機械的にカセットとステージ間の基
板の取りだし収納を行うこともできる。
【0004】また、短波長パルスレーザ光を照射し非晶
質基板上の非晶質シリコン薄膜を結晶化し、薄膜トラン
ジスタに応用する技術が特公平7−118443号公報
に開示されている。本手法によれば基板全体を高温にす
ることなく非晶質シリコンの結晶化が可能であるため、
液晶ディスプレイ等の大面積かつガラス等の安価な基板
上への半導体素子、半導体集積回路を作製できるという
利点がある。ところが上記公報においても述べられてい
るように、短波長レーザによる非晶質シリコン薄膜の結
晶化には50-500mJ/cm2程度の照射強度が必要である。一
方、現在一般に入手できるパルスレーザ装置の発光出力
は最大1J/pulse程度であり、単純換算によっても一度に
照射できる面積は2-20cm2程度にすぎない。したがっ
て、たとえば基板サイズ47x37cm基板全面をレーザ結晶
化するためには、少なくとも87-870箇所にレーザ照射が
必要となる。1m角というように、基板サイズが拡大す
れば、同様に照射箇所数が増加する。一般に、これらの
レーザ結晶化は上述のように図15に示すような構成の
パルスレーザ照射装置により実現される。
【0005】上記の方法で大面積基板上に薄膜半導体素
子群を均一に形成するためには、特開平5−21116
7号公報(特願平3−315863号)に開示されてい
るような、素子群をレーザのビームサイズよりも小さく
分割し、ステップアンドリピートにより数パルス照射+
照射領域の移動+数パルス照射+照射領域の移動+…を
繰り返す方法が有効であることが知られている。図16
(2)に示すように、レーザの発振とステージ(すなわ
ち基板もしくはビーム)の移動とが交互に行われる方法
である。ところが、本手法によっても現在入手しうる発
振強度均一性±5〜10%(連続発振時)程度のパルス
レーザ装置を用い、たとえば1パルス/場所〜20パル
ス/場所程度の照射を繰り返す場合、発振強度バラツキ
が±5〜10%を超え、結果として得られる多結晶シリ
コン薄膜並びに多結晶シリコン薄膜トランジスタ特性が
十分な均一性を有さないという問題があった。特にスパ
イキングと呼ばれる、レーザ発振初期の放電の不安定に
起因した、強光あるいは弱光の発生が不均一化の問題と
なっている。この補正を行うべく、積算強度結果により
次の発振時の印加電圧を制御するような方法では、スパ
イキングの発生は抑制できるもののかえって弱光を発振
してしまうという問題があった。すなわち、図17に示
すように、照射時間と非発振時間とが交互に連続する場
合、各照射時間に発振される第1のパルス強度が、最も
不安定でありバラツキやすく、また照射箇所によって照
射強度履歴が異なるため、基板面内でのトランジスタ素
子及び薄膜集積回路の十分な均一性が得られないという
問題があった。このようなスパイキングの回避方法とし
ては、図16(1)に示すように、レーザ発振を、素子
形成領域への照射開始以前から開始することにより回避
する方法が知られているが、図16(2)に示すような
レーザの発振とステージの移動とが断続的に繰り返す場
合には応用できないという問題があった。
【0006】さらにこれらの問題を回避すべく、特開平
5−90191号公報ではパルスレーザ光源を連続発振
させると共にステージの移動期間には光遮蔽装置を用い
て基板への照射を防ぐ方法が提案されている。すなわ
ち、図16(3)に示すようにレーザをある周波数で連
続発振させ、所望の照射位置へのステージの移動と光路
の遮蔽を同期させることによって、強度の安定したレー
ザ光を所望の照射位置へ照射を可能にした。ところが、
本方法によればレーザビームの安定した基板への照射が
可能になるものの、多結晶シリコン薄膜形成に寄与する
ことのない無駄なレーザ発振が増え、高価なレーザ光源
や励起ガスの寿命に対する多結晶シリコン薄膜の生産性
及び、レーザ発振に要する電力等に対する多結晶シリコ
ン薄膜の生産効率が低下するため、生産コストの上昇を
招くという問題があった。また、レーザが露光される基
板も、照射強度ばらつきによって所望の値に比べ過度な
強光が照射されると、基板ダメージが生じる。LCD等の
イメージングデバイスでは基板を透過する光が、基板上
のダメージを受けた領域において散乱等を引き起こし画
像品質の低下が生じるという問題があった。
【0007】さて上記のようなレーザ照射を行う際に、
複数のパルスをある遅延時間をもたせて照射する方法が 公知資料:Ryoichi Ishihara et al. “Effects of lig
ht pulse duration on excimer laser crystallization
characteristics of silicon thin films”, Japanese
journal of applied physics, vol. 34, No.4A, (199
5) pp1759に開示されている。上記公知資料によれば、
レーザ再結晶化プロセスにおける溶融シリコンの結晶化
固化速度は1m/sec以上であり、良好な結晶成長を
得るためには、固化速度の低減が必要である。固化が完
了した直後に第2のレーザパルスを照射することにより
第2の照射によってより固化速度の小さな再結晶化過程
を得られるというものである。さて、図18に示すよう
なシリコンの温度変化(時間履歴曲線)によれば、レー
ザエネルギー(例えば図19に示す強度パルス)の照射
とともにシリコンの温度が上昇し、出発材料がa−Si
の場合、a−Siの融点を経た後さらに温度が上昇、エ
ネルギーの供給が温度上昇に必要な値を下回ると、冷却
が始まる。結晶Siの凝固点において、凝固時間を経て
固化が終了した後、雰囲気温度まで冷却される。ここ
で、シリコンの固化がシリコン−基板界面を起点に膜厚
方向に進むとすると、上記固化速度の平均値は以下のよ
うな式で表される。
【0008】固化速度の平均値=シリコンの膜厚/凝固
時間 すなわち、シリコンの膜厚が一定であれば、固化速度を
小さくするためには凝固時間の長時間化が有効である。
したがって、熱平衡学的に理想的な状態を維持したプロ
セスであれば、理想的な投入するエネルギーすなわちレ
ーザ照射エネルギーを大きくすることで、凝固時間の拡
大が可能である。ところが上記公知文書においても指摘
されているとおり、照射エネルギーの増大は膜の非晶質
化、微結晶化を引き起こすという問題があった。現実的
な溶融・再結晶化工程においては図18のような理想的
な温度変化を示さず、加熱時には温度の過上昇、冷却時
には過冷却過程を経て安定状態に到達する。特に冷却時
の冷却速度が大きく過度の過冷却を経る場合、凝固点近
傍での結晶化が生ずることなく、急速冷却固化によりア
モルファス(非晶質)固体が形成されるためである。薄
膜においては上記公知文献中でも述べられているとお
り、条件によってアモルファスではなく、微結晶体を形
成することもある。微結晶体は、多結晶薄膜あるいは単
結晶薄膜に比べその粒径が極端に小さいために、粒界ポ
テンシャルの大きな結晶粒界が多数存在し、たとえば薄
膜トランジスタへの応用ではオン電流の低下、あるいは
オフリーク電流の増大を招くといった問題を有する。
【0009】
【発明が解決しようとする課題】本発明の目的は、上記
述べてきた問題を克服すべく、トラップ準位密度の小さ
いシリコン薄膜を光照射によって形成する技術を提供す
ると共に、大面積基板上に再現性よくその技術を応用す
るための技術/装置を提供することにある。
【0010】本発明のもう一つの目的は、それらの良質
なシリコン膜を用いた、すなわち優れた特性を有する電
界効果型トランジスタを製造する装置を提供することに
ある。
【0011】
【課題を解決するための手段】(1)本発明によれば、
薄膜に光ビームを照射することにより前記薄膜を処理す
る薄膜処理方法において、前記光ビームの一照射単位
が、第1及び第2の光パルスの前記薄膜への照射から構
成され、上記一照射単位の照射を繰り返し行うことによ
り前記薄膜を処理するものであり、前記第1及び前記第
2の光パルスは互いに異なるパルス波形を有することを
特徴とする薄膜処理方法が得られる。
【0012】(2)本発明によれば、上記(1)に記載
の薄膜処理方法において、前記光ビームの一照射単位
が、前記第1の光パルスの前記薄膜への照射と、該第1
の光パルスの前記薄膜への照射の開始と実質的に同時に
開始される、前記第2の光パルスの前記薄膜への照射と
から構成されていることを特徴とする薄膜処理方法が得
られる。
【0013】(3)本発明によれば、上記(2)に記載
の薄膜処理方法において、前記第1及び前記第2の光パ
ルスは、 (前記第1の光パルスのパルス幅)<(前記第2の光パ
ルスのパルス幅) 及び (前記第1の光パルスの照射強度)≧(前記第2の光パ
ルスの照射強度) を満たすことを特徴とする薄膜処理方法が得られる。
【0014】(4)本発明によれば、上記(1)に記載
の薄膜処理方法において、前記光ビームの一照射単位
が、前記第1の光パルスの前記薄膜への照射と、該第1
の光パルスの前記薄膜への照射の開始から時間的に遅延
を持たせて開始される、前記第2の光パルスの前記薄膜
への照射とから構成されていることを特徴とする薄膜処
理方法が得られる。
【0015】(5)本発明によれば、上記(4)に記載
の薄膜処理方法において、前記第1及び前記第2の光パ
ルスは、 (前記第1の光パルスのパルス幅)<(前記第2の光パ
ルスのパルス幅) を満たすことを特徴とする薄膜処理方法が得られる。
【0016】(6)本発明によれば、上記(5)に記載
の薄膜処理方法において、前記第1及び前記第2の光パ
ルスは、 (前記第1の光パルスの照射強度)≧(前記第2の光パ
ルスの照射強度) を更に満たすことを特徴とする薄膜処理方法が得られ
る。
【0017】(7)本発明によれば、薄膜に光ビームを
照射することにより前記薄膜を処理する装置において、
互いに異なるパルス波形を有する第1及び第2の光パル
スを発生する第1及び第2のパルス光源と、前記光ビー
ムの一照射単位が、前記第1及び前記第2の光パルスの
前記薄膜への照射から構成され、上記一照射単位の照射
を繰り返し行うことにより前記薄膜を処理する手段とを
有することを特徴とする薄膜処理装置が得られる。
【0018】(8)本発明によれば、上記(7)に記載
の薄膜処理装置において、前記光ビームの一照射単位
が、前記第1の光パルスの前記薄膜への照射と、該第1
の光パルスの前記薄膜への照射の開始と実質的に同時に
開始される、前記第2の光パルスの前記薄膜への照射と
から構成されていることを特徴とする薄膜処理装置が得
られる。
【0019】(9)本発明によれば、上記(8)に記載
の薄膜処理装置において、前記第1及び前記第2の光パ
ルスは、 (前記第1の光パルスのパルス幅)<(前記第2の光パ
ルスのパルス幅) 及び (前記第1の光パルスの照射強度)≧(前記第2の光パ
ルスの照射強度) を満たすことを特徴とする薄膜処理装置が得られる。
【0020】(10)本発明によれば、上記(7)に記
載の薄膜処理装置において、前記光ビームの一照射単位
が、前記第1の光パルスの前記薄膜への照射と、該第1
の光パルスの前記薄膜への照射の開始から時間的に遅延
を持たせて開始される、前記第2の光パルスの前記薄膜
への照射とから構成されていることを特徴とする薄膜処
理装置が得られる。
【0021】(11)本発明によれば、上記(10)に
記載の薄膜処理装置において、前記第1及び前記第2の
光パルスは、 (前記第1の光パルスのパルス幅)<(前記第2の光パ
ルスのパルス幅) を満たすことを特徴とする薄膜処理装置が得られる。
【0022】(12)本発明によれば、上記(11)に
記載の薄膜処理装置において、前記第1及び前記第2の
光パルスは、 (前記第1の光パルスの照射強度)≧(前記第2の光パ
ルスの照射強度) を更に満たすことを特徴とする薄膜処理装置が得られ
る。
【0023】図11に膜厚75nmのシリコン薄膜に波
長308nmのエキシマレーザを照射した場合の、数値
計算から求めた最大冷却速度(Cooling rate, K/sec)
と、レーザ照射後の膜のSEM観察から得られた結晶化
−微結晶化の照射強度のしきい値を示す。図19は実験
に用いたレーザの発光パルス波形である。3つの主ピー
クを有し発光時間は約120nsecに及ぶ。このよう
なパルス波形は、上記公知資料に記載されているパルス
幅21.4nsecの矩形パルスに比べ5倍以上の発光
時間を有することから、単一パルス照射であっても上記
公知資料中で述べられているような固化速度の低減とい
った効果が期待できる。さて、このようなパルス波形を
用いたレーザ再結晶化時の数値計算から求めたシリコン
の温度−時間曲線は図12に示すようになる。図12は
シリコン膜厚75nm、基板にSiO2、XeClレー
ザ(波長308nm)照射強度450mJ/cmの時
のシリコン薄膜の温度変化を示す。第2の発光ピークが
ほぼ終了する約60nsec後に最高温度に達し冷却へ
と転じる。(なお、本数値計算では溶融・凝固点として
非晶質シリコンの値を用いており、凝固点付近の振る舞
いは現実のものとは異なる。特に結晶化膜が得られる場
合は、結晶シリコンの凝固点で結晶化が完了する。)い
ったん大きな傾きを持って冷却が開始されるが、第3の
ピークが存在する100nsec程度の傾きは非常に小
さくなることがわかる。完全に発光が終了する120n
sec以降では、再び急速な冷却過程を経て凝固する。
一般に、熱平衡過程を大きくはずれるような“急冷”を
経た液体からの固化過程の場合、結晶構造の形成に必要
な十分な凝固時間を得ることができず、アモルファス
(非晶質)固体を形成する。前出の図11は図12に示
すようなシリコンの温度−時間曲線から各照射強度に対
し発光終了後の最大冷却速度を見積もった結果である。
照射強度の増大とともに冷却速度が増加することがわか
る。一方、レーザ照射後のシリコン薄膜の構造を走査型
電子顕微鏡を用いて観察したところ、図13に示すよう
に照射強度の増大とともにいったん粒径は増大するもの
の、470mJ/cm程度の設定照射強度条件におい
て、微結晶化が観測された。同様に照射パルス数を3パ
ルスにした場合、470mJ/cm程度の設定照射強
度条件においても、部分的に微結晶化領域が残るものの
1パルスの時とは異なり粒径の飛躍的な増大が観測され
た(図13)。なお、実照射強度は、エキシマレーザの
特に最初の数パルスにおいて、設定値に比べ5〜10%
程度高くなるため、微結晶化が生じるしきい強度は50
0mJ/cm程度と見積もることができる。以上のよ
うな結果から、図11の500mJ/cm条件から冷
却速度を見積もることにより、微結晶化は約1.6x1
10℃/sec以上の冷却速度条件で生じることがわ
かった。被照射膜がa−Siの場合、約500mJ/c
以上の照射強度で微結晶化が、同様に、被照射膜が
poly−Siの場合にこの冷却速度を当てはめると、
a−Siに比べ約30mJ/cm大きい照射強度が示
唆される。したがって、冷却速度を1.6x1010
/sec以下に制御することによって、微結晶化、アモ
ルファス化を防ぐことができ、良好な結晶成長過程を得
ることが可能になる。
【0024】第2のレーザ光を第1のレーザ光に遅延し
て導入した場合について述べる。すでに述べたように、
発光後期のレーザ光が冷却速度の増大を緩和するととも
に、発光終了後の冷却速度が結晶化を支配する。すなわ
ち、最終的に投入されたエネルギーによりそれ以前の冷
却過程は初期化されると考えられる。更に付加的なエネ
ルギーを投入することによって、それ以前の固化過程に
おいて急冷による非晶質化、微結晶化が生じていても、
エネルギーは保存されている(ナノ秒オーダと短時間の
ため、基板への熱伝導、雰囲気への放射は小さいと考え
られる。もちろん十分な熱の放出が可能な時間は考慮し
ない)ため一旦初期化され、再度固化過程を繰り返すも
のと考えられる。したがって再度投入されたエネルギー
による2次加熱終了後の冷却速度に注目することによっ
て、良好な結晶成長が期待できる。図14に示すよう
に、遅延時間を制御することによって冷却速度を所望の
値にコントロールする。
【0025】
【発明の実施の形態】図1は本願発明の実施の形態を表
した例である。それぞれの発振開始タイミングは図横軸
に表され、各照射エネルギーはパルスが表す面積で示さ
れる。図1(a)は第1パルスレーザと第2パルスレーザを同
時に発振させた形態を表す図である。発振制御用のトリ
ガ信号の供給から実際に光が発振するまでの時間は各レ
ーザ装置の形態によって異なることがあるため、それぞ
れの“トリガ−発振”時間をあらかじめ求め、同時に照
射可能になるように制御する。第1パルスに比べ第2パ
ルスの発光時間が長いため、溶融固化過程において徐冷
効果が高まる。また、第1パルスによる溶融過程におい
ても、第2パルスの初期領域が寄与するため、一度に溶
融できる面積が大きくなり、処理の高速化が可能にな
る。
【0026】図1(b)は第1パルスの発振に遅延させて
第2パルスを供給する形態を示す。第1パルスにパルス
幅が小さい光源を用いたとき、より好ましい形態とな
る。第1パルスのみで溶融再結晶化を行う場合、照射強
度の増加とともに投入される熱量が増えるためマクロ的
には徐冷される。ところが図11に示すようにレーザ照
射プロセス中での非常に短い時間における最大冷却速度
が増加し、ある臨界的な冷却速度を超えると、固化過程
が理想的な熱平衡状態から逸脱し、結果的に得られた膜
において微結晶化あるいは非晶質化が観測される。照射
パルスのピーク部分が照射された直後に、上記最大冷却
速度に到達するため、冷却が十分完了する以前に付加的
なエネルギーを供給することにより再び溶融状態に戻す
ことができる。上記付加的なエネルギーの供給手段とし
てよりパルス幅が長くピーク強度の小さいパルスを照射
することにより、非平衡過程への逸脱を防ぎ、再溶融を
経て徐冷固化過程を実現することができる。第2パルス
の遅延時間は、第一パルスの強度、パルス波形に依存す
るためあらかじめ実験で求めておく必要があるが、本実
施例においては50〜200nsec程度が好適であった。
第1パルスとして用いたパルス幅が120nsec程度であ
ったため、遅延時間が120nsecを超える条件では、図
1(c)に示すように、第1パルスの発光終了後に第2パ
ルスが照射されるように制御された。
【0027】図2は本発明の実施の形態を表した例であ
る。第1のエキシマレーザEL1及び第2のエキシマレー
ザEL2から供給されるパルスUV光は、ミラー類opt3, o
pt3'、レンズ類opt4を介してホモジナイザopt20'に導か
れる。ここでビームの強度プロファイルが光学マスクop
t21で所望の均一度、例えば面内分布±5%、になるよ
うに整形する。(エキシマレーザから供給されるオリジ
ナルなビームはその強度プロファイルや総エネルギー量
が、パルス間毎に変化する場合があるため、光学マスク
上での強度が、空間的分布、パルス間ばらつきについ
て、より均一化されるための機構が設けられることが望
ましい。ホモジナイザとしては、フライアイレンズやシ
リンドリカルレンズを用いたものが一般的に用いられ
る。)上記光学マスクによって形成された光パターンは
縮小投影露光装置opt23'、レーザ導入窓W0を介して、真
空チャンバC0内に設置されたsub0基板に照射される。上
記基板は、基板ステージS0上に載置されており、基板ス
テージの動作によって所望の領域、例えばパターン転写
領域ex0に光パターンを露光することができる。図2で
は縮小投影光学系を示したが、場合によっては等倍、拡
大投影を行ってもかまわない。基板ステージの移動(図
内X−Y)によって基板上の任意の領域に照射が行われ
る。また、上記光学マスクはマスクステージ(図示せ
ず)上に設置され、露光可能領域内であれば、上記光学
マスクを移動して基板上に照射されるビームを操作する
ことも可能である。
【0028】次に所望の光パターンを所望の条件で基板
上に照射するために必要な機構について例示する。光軸
の調整には微妙な調整が必要となるため、いったん調整
を終えた光軸を固定して基板の位置を調整する方法を示
す。光軸に対する基板照射面の位置は、焦点(Z)方向
位置及び光軸に対する垂直度を補正する必要がある。し
たがって、図中θxy傾き補正方向、θxz傾き補正方向、
θyz傾き補正方向、X露光領域移動方向、Y露光領域移動
方向、Z焦点合わせ方向で示すうち、θxy傾き補正方
向、θxz傾き補正方向、θyz傾き補正方向の調整により
光軸に対する垂直度を補正する。また、Z焦点合わせ方
向を調整することにより光学系の焦点深度にあった位置
に基板照射面を配置制御する。
【0029】図3は上記の調整や基板のアライメント機
構の側面図について例示した。露光軸L0に対し、光学マ
スクopt21、縮小投影露光装置opt23'、レーザ導入窓W0
が図のように配置される。真空チャンバC0内に配置され
た基板sub0は、基板吸着機構付きヒータH0、基板XYZθx
yθxzθyzステージS0'上に配置される。真空チャンバを
用いているが実際の光照射は真空排気後置換された不活
性ガス、水素、酸素、窒素等の雰囲気中で行われること
が望ましく、雰囲気圧も大気圧前後の圧力であってもよ
い。基板吸着機構付きヒータを用いることによって光照
射時に、室温〜400℃程度の基板加熱条件を選ぶこと
ができる。上記のように雰囲気圧を大気圧力程度にする
ことによって、真空チャック機能による基板の吸着がで
きるため、チャンバ内での基板ステージの移動等があっ
てもずれを防止でき、投入された基板に多少のそり、た
わみがあっても基板ステージに固定することができる。
さらに加熱による基板のそり、たわみによる焦点深度ず
れを最小限に抑えることができる。
【0030】レーザ干渉計i1, i2は、測長用窓W-i、測
長用ミラーopt-iを介して、基板のアライメント及び基
板のZ方向位置の測定を行う。アライメントには、基板
上のアライメントマークをオフアクシス顕微鏡m0、顕微
鏡用光源Lm、顕微鏡用素子opt-mを用いて計測し、レー
ザ干渉系による基板位置情報を用いて所望の露光位置を
計測できる。図3ではオフアクシス法を例示したが、Th
rough The Lens方式やThrough The Mask (Reticle)方式
を応用することも可能である。また、複数の計測地点か
ら線形座標を、最小2乗法を用いて決定することによ
り、計測時に生じる測定誤差を平均化する手段をとるこ
ともできる。
【0031】図4(A)〜(C)にマスクパターンとアライメ
ントマークの関係について示した。マスクはマスク(非
露光部)mask1とマスク(露光部)mask2とから構成され
る。例えばエキシマレーザを光源にする場合、紫外光が
透過する石英基板上にアルミニウム、クロム、タングス
テンなどの金属や、誘電体多層膜といった紫外光を吸
収、反射する膜を形成し、フォトリソグラフィとエッチ
ング技術を用いてパターンを形成する。マスク上の所望
のパターン(図4(A)において白色部で示される)に応
じて、シリコン膜が露光され図4(B)に示されるように
非露光Si(Si1)内に露光Si部(Si2)が形成される。こ
のとき、必要に応じてマスク上マークmark1が基板上マ
ークmark2に一致するようにアライメント調整後露光す
ることによって、シリコン薄膜上の予め設計された位置
を露光することが可能となる。また、上記シリコン薄膜
を用いた薄膜トランジスタ形成工程において、露光プロ
セスが位置決めを必要とする第1工程の場合(すなわち
アライメントマークが予め形成されていない場合)、シ
リコン薄膜への露光工程時に露光形成マークmark3を同
時に露光することによって、a-Siと結晶Siとの光学的色
差を利用したアライメントマークが形成できる。したが
ってこのマークを基準に後工程におけるフォトリソグラ
フィ等を行うことによって、露光改質された所望の領域
に、トランジスタや所望の機構、機能を作り込むことが
できる。露光工程後シリコン薄膜上にSi酸化膜を形成
し、シリコン層の所望の領域がエッチング除去された状
態を図4(C)に示す。Si除去部(Si3)は積層されたシリ
コン膜とSi酸化膜がエッチング除去された領域であり、
非露光Si (Si1)と露光Si (Si2)上にSi酸化膜(Si4,
Si5)が積層された形状が示されている。このように酸
化膜で覆われたシリコン膜からなる島状構造を作り込む
ことによって素子間分離された薄膜トランジスタのチャ
ネル/ソース・ドレイン領域や後工程のアライメントに
必要なマークを形成することができる。
【0032】図5(1)(2)に主要動作のタイミングチャー
トを示す。制御例1では基板ステージの動作により所望
の露光位置に基板を移動させる。次に焦点合わせやアラ
イメント動作を行い精密に露光位置を調整する。このと
き、例えば0.1μm〜100μm程度といった、所望
の設定誤差精度にはいるように調整する。その動作が完
了した時点で、基板への光照射が実行される。これらの
一連の動作を終了した時点で次の露光領域へ基板が移動
し、基板上の必要な箇所を照射終了した後、基板が交換
され第2の処理基板上で所定の一連の処理を行う。制御
例2では基板ステージの動作により所望の露光位置に基
板を移動させる。次に焦点合わせやアライメント動作を
行い精密に露光位置を調整する。このとき、例えば0.
1μm〜100μm程度といった、所望の設定誤差精度
にはいるように調整する。その動作が完了した時点で、
マスクステージの動作を始動する。始動時の移動ステッ
プ量のばらつきを避けるために、基板への光照射はマス
クステージ動作の開始よりもあとから開始されるチャー
トである。もちろんステージの移動によりアライメント
位置から離れた地点に露光されるため、その分のオフセ
ット量は予め考慮する必要があることはいうまでもな
い。基板への光照射よりも早く光源の運転を開始し、光
源の出力強度の安定性が高まった時点で、シャッタ等を
開き基板への光照射を行うことも可能である。特にエキ
シマレーザを光源に用い、発振期間と停止期間とが繰り
返されるような使用法をとった場合、初期の数10パル
スが特に不安定なことが知られており、これらの不安定
なレーザパルスを照射したくない場合には、マスクステ
ージの動作に合わせてビームを遮断する方式をとること
ができる。これらの一連の動作を終了した時点で次の露
光領域へ基板が移動し、基板上の必要な箇所を照射終了
した後、基板が交換され第2の処理基板上で所定の一連
の処理を行う。
【0033】膜厚75nmのa-Si薄膜に対して1mm x 50μm
のビームを短軸方向に0.5μmピッチで走査した。一
つの光源を用いてレーザ照射強度は照射面で470mJ/cm2
としたところ、走査方向に連続する単結晶シリコン薄膜
が得られた。さらに、第2光源を照射面で150mJ/cm2
なるように、100nsec遅延させて照射した条件では1.
0μmの走査ピッチ条件でも走査方向に連続する単結晶
シリコン薄膜が得られた。上記結晶化シリコン膜中のト
ラップ準位密度は1012 cm-2より低い値を示した。
【0034】図6は、本発明の実施の形態を示す半導体
薄膜形成装置の側面図である。プラズマCVD室C2、レ
ーザ照射室C5、基板搬送室C7から構成され、ゲートバル
ブGV2, GV5を介して基板の搬送が装置外部の雰囲気に触
れることなく真空中、不活性ガス、窒素、水素、酸素等
の雰囲気かつ高真空、減圧、加圧状態で可能である。レ
ーザ照射室においては400℃程度まで加熱可能なS5基
板ステージ上にチャック機構を用いて基板が設置され
る。プラズマCVD室では、400℃程度まで加熱可能な
基板ホルダーS2上に基板が設置される。この例ではガラ
ス基板Sub0上にシリコン薄膜(Si 1)が形成された状態
でレーザ照射室に導入され、表面のシリコン薄膜がレー
ザ照射により結晶性シリコン薄膜(Si 2)に改質され、
プラズマCVD室に搬送された状態を示している。
【0035】レーザ照射室に導入されるレーザ光は、エ
キシマレーザ1(EL 1)、エキシマレーザ2(EL 2)か
ら供給されるビームが第1のビームラインL 1、第2の
ビームラインL 2を通り、レーザ合成光学装置opt 1、ミ
ラーopt 11、透過ミラーopt12、レーザ照射光学装置opt
2、ホモジナイザopt 20、光学マスクステージopt 22に
固定された光学マスクopt 21、投影光学装置opt 23、レ
ーザ導入窓W 1を介して基板表面に到達する。ここでは
2台のエキシマレーザを図示したが、光源としては1台
以上所望の台数を設置することもできる。またエキシマ
レーザに限らず、炭酸ガスレーザ、YAGレーザ等のパ
ルスレーザや、アルゴンレーザ等のCW光源と高速シャ
ッタを用いてパルス上に供給してもよい。
【0036】一方プラズマCVD室はRF電極D 1とプラズマ
閉じこめ電極D 3によりプラズマ形成領域D 2が基板が配
置される領域とは離れた位置に形成される。プラズマ形
成領域には例えば酸素とヘリウムを、原料ガス導入装置
D 4を用いてシランガスを供給することにより、基板上
に酸化シリコン膜を形成することができる。
【0037】図7に本発明の実施の形態を示す半導体薄
膜形成装置の平面図を示す。ロード/アンロード室C1、
プラズマCVD室C2、基板加熱室C3、水素プラズマ処理室C
4、レーザ照射室C5、基板搬送室C7がそれぞれゲートバ
ルブGV1〜GV6を介して接続されている。第1のビームラ
インL1、第2のビームラインL2から供給されるレーザ光
がレーザ合成光学装置opt1、レーザ照射光学装置opt2、
レーザ導入窓W1を介して基板表面に照射される。また、
それぞれのプロセス室、搬送室はガス導入装置gas1〜ga
s7、排気装置vent1〜vent7が接続されており、所望のガ
ス種の供給、プロセス圧の設定、排気、真空が調整され
る。図に点線で示すように処理基板sub2, sub6が平面上
に配置される。
【0038】図8は本発明の半導体薄膜形成装置を薄膜
トランジスタの製造工程に応用した場合の工程フロー図
である。
【0039】(a)洗浄によって有機物や金属、微粒子等
を除去したガラス基板sub0上に基板カバー膜T1、シリコ
ン薄膜T2を順次形成する。基板カバー膜としてLPCVD
(減圧化学的気相成長)法でシランと酸素ガスを原料と
し、450℃で酸化シリコン膜を1μm形成する。LPCV
D法を用いることにより基板保持領域を除き基板外表面
全体をカバーすることも可能である(図示せず)。ある
いはテトラエトキシシラン(TEOS)と酸素を原料とした
プラズマCVD、TEOSとオゾンを原料とした常圧CV
D、図8に示すようなプラズマCVD等を利用すること
も可能であり、基板材料(アルカリ金属濃度を極力低減
したガラス、表面を研磨加工した石英・ガラス等)が含
む半導体デバイスに有害な不純物の拡散防止ができる材
料が基板カバー膜として有効である。シリコン薄膜はL
PCVDでジシランガスを原料として500℃で厚さ7
5nm形成する。この場合膜中に含まれる水素原子濃度
が1原子%以下となるため、レーザ照射工程での水素放
出による膜荒れ等を防ぐことができる。あるいは図7に
示すようなプラズマCVD室C2において行われるプラズマC
VD法や広く普及しているプラズマCVD法を用いても、
基板温度や水素/シラン流量比、水素/4フッ化シラン
流量比等を調整することによって水素原子濃度が低いシ
リコン薄膜を形成できる。
【0040】(b)上記(a)工程で準備した基板を、有機物
や金属、微粒子、表面酸化膜等を除去するための洗浄工
程を経た後、本発明の薄膜形成装置に導入する。レーザ
光L0を照射し、シリコン薄膜を結晶化シリコン薄膜T2'
に改質する。レーザ結晶化は99.9999%以上の高
純度窒素700torr以上の雰囲気で行われる。
【0041】(c)上記工程を経た基板は、ガスが排気さ
れた後基板搬送室を介してプラズマCVD室に搬送され
る。第1のゲート絶縁膜T3として、シラン、ヘリウム、
酸素を原料ガスとして基板温度350度で酸化シリコン
膜を10nm堆積する。このあと必要に応じて水素プラ
ズマ処理や加熱アニールを行う。ここまでが本発明の薄
膜形成装置において処理される。
【0042】(d)次に、フォトリソグラフィとエッチン
グ技術を用いてシリコン薄膜と酸化シリコン膜積層膜の
アイランドを形成する。このとき、シリコン薄膜に比べ
酸化シリコン膜のエッチングレートが高いエッチング条
件を選択することがこのましい。図に示すようにパター
ン断面が階段状(あるいはテーパ状)に形成することに
よって、ゲートリークを防ぎ信頼性の高い薄膜トランジ
スタを提供できる。
【0043】(e)次に、有機物や金属、微粒子等を除去
するための洗浄を行った後、上記アイランドを被覆する
ように第2のゲート絶縁膜T4を形成する。ここでは、LP
CVD法でシランと酸素ガスを原料とし、450℃で酸化
シリコン膜を30nm形成した。あるいはテトラエトキ
シシラン(TEOS)と酸素を原料としたプラズマCVD、
TEOSとオゾンを原料とした常圧CVD、図8に示すよう
なプラズマCVD等を利用することも可能である。次に
ゲート電極としてn+シリコン膜を80nm、タングステンシ
リサイド膜を110nm形成する。n+シリコン膜はプラズマC
VDやLPCVD法で形成された結晶性のリンドープシリコン
膜が望ましい。その後、フォトリソグラフィとエッチン
グ工程を経て、T5パターン化されたゲート電極を形成す
る。
【0044】(f1,f2)次に、ゲートをマスクとして不純
物注入領域T6, T6'を形成する。CMOS型回路を形成
する場合は、フォトリソグラフィを併用してn+領域が必
要なn-channel TFT及びp+領域を要するp-channel TFTを
作り分ける。注入される不純物イオンの質量分離を行わ
ないイオンドーピングや、イオン注入、プラズマドーピ
ング、レーザドーピング等の方法を採ることができる。
そのとき用途や不純物導入方法によって(f1)(f2)のよう
に表面の酸化シリコン膜を残したまま、あるいは除去し
た後に不純物の導入を行う。
【0045】(g1)(g2)層間分離絶縁膜T7, T7'を堆積、
コンタクトホールを開口後、金属を堆積、フォトリソグ
ラフィとエッチングにより金属配線T8を形成する。層間
分離絶縁膜としては、膜の平坦化が図れるTEOS系酸化膜
やシリカ系塗布膜、有機塗布膜を用いることができる。
コンタクトホール開口はフォトリソグラフィとエッチン
グにより、金属配線は抵抗の低いアルミニウム、銅ある
いはそれらをベースとした合金、タングステンやモリブ
デンといった高融点金属が応用できる。以上のような工
程を行うことによって、性能、信頼性の高い薄膜トラン
ジスタを形成することができる。
【0046】図9は予めアライメントマークを設け、ア
ライメントマークに応じたレーザ照射を行った場合の実
施例、図10はレーザ照射と同時にアライメントマーク
を形成する場合の実施例について、TFT製造工程フロ
ーをもとに説明する。基本的には図8の説明と類似して
いるため、特に異なる点を中心に説明する。
【0047】図9(a) 洗浄によって有機物や金属、微
粒子等を除去したガラス基板sub0上に基板カバー膜T1、
タングステンシリサイド膜を順次形成する。アライメン
トマークの形成のために、フォトリソグラフィとエッチ
ングによりパターン化しアライメントマークT9を基板上
に形成する。次にアライメントマークを保護するために
マーク保護膜T10を形成し、シリコン薄膜を形成する。
【0048】図9(b) レーザ光露光時にはアライメン
トマークを基準に所望の領域が露光される。その後は、
予め設けられたアライメントマークや、結晶化シリコン
薄膜パターニングによって形成されるアライメントマー
ク(図示せず)を基準に、次工程のアライメントを行う
ことができる。
【0049】図10(b) シリコン薄膜への露光と同時
に露光/非露光による改質の相違を利用した結晶化アラ
イメントマークT9'をシリコン薄膜に形成する。
【0050】図10(d) 結晶化アライメントマークT9'
を利用して、フォトリソグラフィ時の目合わせを行い、
エッチング工程を経てシリコン薄膜と酸化シリコン膜積
層膜のアイランドを形成する。
【0051】以上、XeCl, KrF, XeF, ArF等のエキシマ
レーザを光源として実施の形態を述べたが、エキシマレ
ーザ以外にもYAGレーザや炭酸ガスレーザ、パルス発光
の半導体レーザなどを用いることが可能である。また、
シリコンに代表される半導体薄膜に限らず、結晶性の薄
膜の形成、およびその形成装置に応用可能である。
【0052】
【発明の効果】本発明によれば、より良好な結晶構造を
得るために照射強度を増大させた場合においても、微結
晶化、非晶質化を防止できるため、トラップ準位密度の
小さいシリコン薄膜を光照射等のエネルギービーム照射
によって形成する技術を提供すると共に、大面積基板上
に再現性よくその技術を応用するための技術/半導体装
置を提供可能になった。また、それらの良質なシリコン
膜を用いた、すなわち優れた特性を有する電界効果型ト
ランジスタを製造する装置を提供することができた。
【0053】特にミクロンオーダに制御された微細ビー
ムを用いた結晶化では、一単位パルスによる結晶成長距
離が従来に比べ2倍以上に増加した。
【図面の簡単な説明】
【図1】本発明の実施の形態を説明するための光パルス
波形図である。
【図2】本発明の装置の実施の形態(全体)を説明する
ための図である。
【図3】本発明の装置の実施の形態(アライメント方
法)を説明するための図である。
【図4】本発明の装置の実施の形態(マスク投影法)を
説明するための図である。
【図5】本発明の装置の実施の形態(制御例)を説明す
るためのタイミングチャートである。
【図6】本発明の装置、搬送室、プラズマCVD室の側
面断面図である。
【図7】本発明の装置、搬送室、プラズマCVD室等複
合装置の平面図である。
【図8】本発明のTFT製造プロセスを説明するための
断面図である。
【図9】本発明のアライメントマークを用いたTFT製
造プロセスを説明するための断面図である。
【図10】本発明のアライメントマーク形成を含むTF
T製造プロセスを説明するための断面図である。
【図11】照射強度と冷却速度、非晶質化が生じる冷却
速度を示した図である。
【図12】シリコン薄膜温度変化の計算結果例を示した
図である。
【図13】各照射強度に対するシリコン薄膜の結晶形態
を示す顕微鏡写真である。
【図14】第2パルス投入後の最大冷却速度と凝固点近
傍の冷却速度を示した図である。
【図15】従来のエキシマレーザアニール装置の概念図
である。
【図16】従来のレーザ運転方法を説明するためのタイ
ミングチャートである。
【図17】レーザパルス強度のパルス間分布の例を示し
た図である。
【図18】シリコン膜温度変化の例を示した図である。
【図19】レーザパルス波形の一例を示した図である。
【符号の説明】
EL1 エキシマレーザ(パルス光源) EL2 エキシマレーザ(パルス光源)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/336 (72)発明者 種子田 昭彦 神奈川県平塚市夕陽ヶ丘63番30号 住友重 機械工業株式会社平塚事業所内 Fターム(参考) 5F052 AA02 BA11 BA12 BA15 BB02 BB06 BB07 DA01 DB02 JA01 5F053 AA16 AA50 BB58 BB60 DD01 FF01 GG02 HH05 JJ01 LL10 RR03 RR20 5F110 AA30 BB01 BB04 CC02 DD02 DD13 EE05 EE09 EE14 EE45 FF02 FF09 FF29 FF30 FF32 FF36 GG02 GG13 GG25 GG45 GG47 HJ12 HJ13 HJ18 HL02 HL03 HL04 HL06 NN23 NN27 NN35 NN36 PP03 PP04 PP05 PP07 PP13 QQ11

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 薄膜に光ビームを照射することにより前
    記薄膜を処理する薄膜処理方法において、 前記光ビームの一照射単位が、第1及び第2の光パルス
    の前記薄膜への照射から構成され、上記一照射単位の照
    射を繰り返し行うことにより前記薄膜を処理するもので
    あり、 前記第1及び前記第2の光パルスは互いに異なるパルス
    波形を有することを特徴とする薄膜処理方法。
  2. 【請求項2】 請求項1に記載の薄膜処理方法におい
    て、 前記光ビームの一照射単位が、前記第1の光パルスの前
    記薄膜への照射と、該第1の光パルスの前記薄膜への照
    射の開始と実質的に同時に開始される、前記第2の光パ
    ルスの前記薄膜への照射とから構成されていることを特
    徴とする薄膜処理方法。
  3. 【請求項3】 請求項2に記載の薄膜処理方法におい
    て、 前記第1及び前記第2の光パルスは、 (前記第1の光パルスのパルス幅)<(前記第2の光パ
    ルスのパルス幅)及び(前記第1の光パルスの照射強
    度)≧(前記第2の光パルスの照射強度)を満たすこと
    を特徴とする薄膜処理方法。
  4. 【請求項4】 請求項1に記載の薄膜処理方法におい
    て、 前記光ビームの一照射単位が、前記第1の光パルスの前
    記薄膜への照射と、該第1の光パルスの前記薄膜への照
    射の開始から時間的に遅延を持たせて開始される、前記
    第2の光パルスの前記薄膜への照射とから構成されてい
    ることを特徴とする薄膜処理方法。
  5. 【請求項5】 請求項4に記載の薄膜処理方法におい
    て、 前記第1及び前記第2の光パルスは、 (前記第1の光パルスのパルス幅)<(前記第2の光パ
    ルスのパルス幅)を満たすことを特徴とする薄膜処理方
    法。
  6. 【請求項6】 請求項5に記載の薄膜処理方法におい
    て、 前記第1及び前記第2の光パルスは、 (前記第1の光パルスの照射強度)≧(前記第2の光パ
    ルスの照射強度)を更に満たすことを特徴とする薄膜処
    理方法。
  7. 【請求項7】 薄膜に光ビームを照射することにより前
    記薄膜を処理する薄膜処理装置において、 互いに異なるパルス波形を有する第1及び第2の光パル
    スを発生する第1及び第2のパルス光源と、 前記光ビームの一照射単位が、前記第1及び前記第2の
    光パルスの前記薄膜への照射から構成され、上記一照射
    単位の照射を繰り返し行うことにより前記薄膜を処理す
    る手段とを有することを特徴とする薄膜処理装置。
  8. 【請求項8】 請求項7に記載の薄膜処理装置におい
    て、 前記光ビームの一照射単位が、前記第1の光パルスの前
    記薄膜への照射と、該第1の光パルスの前記薄膜への照
    射の開始と実質的に同時に開始される、前記第2の光パ
    ルスの前記薄膜への照射とから構成されていることを特
    徴とする薄膜処理装置。
  9. 【請求項9】 請求項8に記載の薄膜処理装置におい
    て、 前記第1及び前記第2の光パルスは、 (前記第1の光パルスのパルス幅)<(前記第2の光パ
    ルスのパルス幅)及び(前記第1の光パルスの照射強
    度)≧(前記第2の光パルスの照射強度)を満たすこと
    を特徴とする薄膜処理装置。
  10. 【請求項10】 請求項7に記載の薄膜処理装置におい
    て、 前記光ビームの一照射単位が、前記第1の光パルスの前
    記薄膜への照射と、該第1の光パルスの前記薄膜への照
    射の開始から時間的に遅延を持たせて開始される、前記
    第2の光パルスの前記薄膜への照射とから構成されてい
    ることを特徴とする薄膜処理装置。
  11. 【請求項11】 請求項10に記載の薄膜処理装置にお
    いて、 前記第1及び前記第2の光パルスは、 (前記第1の光パルスのパルス幅)<(前記第2の光パ
    ルスのパルス幅)を満たすことを特徴とする薄膜処理装
    置。
  12. 【請求項12】 請求項11に記載の薄膜処理装置にお
    いて、 前記第1及び前記第2の光パルスは、 (前記第1の光パルスの照射強度)≧(前記第2の光パ
    ルスの照射強度)を更に満たすことを特徴とする薄膜処
    理装置。
JP2000136646A 2000-05-10 2000-05-10 薄膜処理方法及び薄膜処理装置 Pending JP2001319891A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000136646A JP2001319891A (ja) 2000-05-10 2000-05-10 薄膜処理方法及び薄膜処理装置
KR1020057006292A KR100738295B1 (ko) 2000-05-10 2001-05-10 박막 처리 방법 및 박막 처리 장치
TW090111157A TW488079B (en) 2000-05-10 2001-05-10 Thin film processing method and device
KR1020027015050A KR20030024664A (ko) 2000-05-10 2001-05-10 박막 처리 방법 및 박막 처리 장치
US10/275,692 US7063999B2 (en) 2000-05-10 2001-05-10 Thin film processing method and thin film processing apparatus including controlling the cooling rate to control the crystal sizes
PCT/JP2001/003908 WO2001086705A1 (fr) 2000-05-10 2001-05-10 Procede et appareil de traitement de film mince
US11/400,526 US7396712B2 (en) 2000-05-10 2006-04-10 Thin film processing method and thin processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136646A JP2001319891A (ja) 2000-05-10 2000-05-10 薄膜処理方法及び薄膜処理装置

Publications (1)

Publication Number Publication Date
JP2001319891A true JP2001319891A (ja) 2001-11-16

Family

ID=18644557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136646A Pending JP2001319891A (ja) 2000-05-10 2000-05-10 薄膜処理方法及び薄膜処理装置

Country Status (5)

Country Link
US (2) US7063999B2 (ja)
JP (1) JP2001319891A (ja)
KR (2) KR100738295B1 (ja)
TW (1) TW488079B (ja)
WO (1) WO2001086705A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342954A (ja) * 2003-05-19 2004-12-02 Ishikawajima Harima Heavy Ind Co Ltd レーザアニール方法及び装置
JP2005252244A (ja) * 2004-02-03 2005-09-15 Ishikawajima Harima Heavy Ind Co Ltd 半導体基板の製造方法
JP2007123300A (ja) * 2005-10-25 2007-05-17 Toyota Motor Corp 不純物活性化方法、レーザアニール装置、半導体装置とその製造方法
JP2007288219A (ja) * 2007-07-06 2007-11-01 Sumitomo Heavy Ind Ltd レーザ照射装置
JP2012064959A (ja) * 2011-11-07 2012-03-29 Dainippon Screen Mfg Co Ltd 熱処理方法
KR20120098839A (ko) * 2009-11-30 2012-09-05 어플라이드 머티어리얼스, 인코포레이티드 반도체 응용들을 위한 결정화 프로세싱
JP2013157549A (ja) * 2012-01-31 2013-08-15 V Technology Co Ltd レーザアニール装置及びレーザアニール方法
JP2013211415A (ja) * 2012-03-30 2013-10-10 V Technology Co Ltd レーザアニール装置及びレーザアニール方法
US8592727B2 (en) 2007-02-09 2013-11-26 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus emitting flash of light
KR20140060536A (ko) * 2011-09-01 2014-05-20 어플라이드 머티어리얼스, 인코포레이티드 결정화 방법들
WO2014200077A1 (ja) * 2013-06-10 2014-12-18 東京エレクトロン株式会社 微細構造形成方法、半導体デバイスの製造方法、及びcmosの形成方法
US9245757B2 (en) 2010-07-05 2016-01-26 The Japan Steel Works, Ltd Laser annealing treatment apparatus and laser annealing treatment method
WO2016093287A1 (ja) * 2014-12-10 2016-06-16 東京エレクトロン株式会社 微細構造形成方法、半導体デバイスの製造方法、及びcmosの形成方法
JP2017212450A (ja) * 2007-11-08 2017-11-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated パルス列アニーリング方法および装置
US11040415B2 (en) 2007-11-08 2021-06-22 Applied Materials, Inc. Pulse train annealing method and apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG143981A1 (en) * 2001-08-31 2008-07-29 Semiconductor Energy Lab Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
KR100508001B1 (ko) * 2002-12-30 2005-08-17 엘지.필립스 엘시디 주식회사 구동회로 일체형 액정표시장치용 어레이 기판의 제조 방법
US7387922B2 (en) * 2003-01-21 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system
US7973313B2 (en) * 2003-02-24 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
US8407083B2 (en) 2003-09-30 2013-03-26 Visa U.S.A., Inc. Method and system for managing reward reversal after posting
US7018468B2 (en) * 2003-11-13 2006-03-28 Sharp Laboratories Of America, Inc. Process for long crystal lateral growth in silicon films by UV and IR pulse sequencing
CN100541722C (zh) 2004-03-26 2009-09-16 株式会社半导体能源研究所 激光辐照方法和激光辐照装置
US8525075B2 (en) 2004-05-06 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
JP2006041082A (ja) * 2004-07-26 2006-02-09 Sharp Corp 半導体薄膜の結晶化装置および半導体薄膜の結晶化方法
TWI247930B (en) * 2004-08-10 2006-01-21 Ind Tech Res Inst Mask reduction of LTPS-TFT array by use of photo-sensitive low-k dielectrics
CN101667538B (zh) * 2004-08-23 2012-10-10 株式会社半导体能源研究所 半导体器件及其制造方法
DE602006004913D1 (de) * 2005-04-28 2009-03-12 Semiconductor Energy Lab Verfahren und Vorrichtung zur Herstellung von Halbleitern mittels Laserstrahlung
WO2007046290A1 (en) * 2005-10-18 2007-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7514305B1 (en) * 2006-06-28 2009-04-07 Ultratech, Inc. Apparatus and methods for improving the intensity profile of a beam image used to process a substrate
JP4917382B2 (ja) * 2006-08-09 2012-04-18 株式会社ディスコ レーザー光線照射装置およびレーザー加工機
US7972943B2 (en) * 2007-03-02 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
GB0804955D0 (en) * 2008-03-18 2008-04-16 Rumsby Philip T Method and apparatus for laser processing the surface of a drum
WO2011071886A1 (en) * 2009-12-07 2011-06-16 J.P. Sercel Associates, Inc. Laser machining and scribing systems and methods
US20130256286A1 (en) * 2009-12-07 2013-10-03 Ipg Microsystems Llc Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
KR100966743B1 (ko) * 2010-02-16 2010-06-29 주식회사 삼성 에스앤에스 패널 온돌바닥 미장층의 균열방지구가 구비된 단열재
EP2565294A1 (en) * 2011-08-29 2013-03-06 Siemens Aktiengesellschaft Manufacturing a component of single crystal or directionally solidified material
US8669166B1 (en) * 2012-08-15 2014-03-11 Globalfoundries Inc. Methods of thinning and/or dicing semiconducting substrates having integrated circuit products formed thereon
DE102017209696A1 (de) * 2017-06-08 2018-12-13 Trumpf Laser Gmbh Schutzglas mit Transponder und Einbauhilfe sowie zugehöriges Laserwerkzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148423A (ja) * 1994-11-18 1996-06-07 Mitsubishi Electric Corp レーザアニーリング方法
JPH0963974A (ja) * 1995-08-22 1997-03-07 Rikagaku Kenkyusho 半導体基板中へのドーピング層の形成方法
JPH11307450A (ja) * 1998-04-17 1999-11-05 Nec Corp 薄膜の改質方法及びその実施に使用する装置
JP2000021776A (ja) * 1998-07-01 2000-01-21 Nec Corp 半導体薄膜の形成方法、パルスレーザ照射装置、および半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3065825B2 (ja) * 1992-10-21 2000-07-17 株式会社半導体エネルギー研究所 レーザー処理方法
JPH09293872A (ja) * 1996-04-26 1997-11-11 Sharp Corp 薄膜トランジスタの製造方法
JPH10289876A (ja) 1997-04-16 1998-10-27 Hitachi Ltd レーザ結晶化方法及びそれを用いた半導体装置並びに応用機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148423A (ja) * 1994-11-18 1996-06-07 Mitsubishi Electric Corp レーザアニーリング方法
JPH0963974A (ja) * 1995-08-22 1997-03-07 Rikagaku Kenkyusho 半導体基板中へのドーピング層の形成方法
JPH11307450A (ja) * 1998-04-17 1999-11-05 Nec Corp 薄膜の改質方法及びその実施に使用する装置
JP2000021776A (ja) * 1998-07-01 2000-01-21 Nec Corp 半導体薄膜の形成方法、パルスレーザ照射装置、および半導体装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342954A (ja) * 2003-05-19 2004-12-02 Ishikawajima Harima Heavy Ind Co Ltd レーザアニール方法及び装置
JP2005252244A (ja) * 2004-02-03 2005-09-15 Ishikawajima Harima Heavy Ind Co Ltd 半導体基板の製造方法
JP2007123300A (ja) * 2005-10-25 2007-05-17 Toyota Motor Corp 不純物活性化方法、レーザアニール装置、半導体装置とその製造方法
US10541150B2 (en) 2007-02-09 2020-01-21 SCREEN Holdings Co., Ltd. Heat treatment apparatus emitting flash of light
US9437456B2 (en) 2007-02-09 2016-09-06 SCREEN Holdings Co., Ltd. Heat treatment apparatus emitting flash of light
US8686320B2 (en) 2007-02-09 2014-04-01 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus emitting flash of light
US8592727B2 (en) 2007-02-09 2013-11-26 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus emitting flash of light
JP2007288219A (ja) * 2007-07-06 2007-11-01 Sumitomo Heavy Ind Ltd レーザ照射装置
JP2017212450A (ja) * 2007-11-08 2017-11-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated パルス列アニーリング方法および装置
US11040415B2 (en) 2007-11-08 2021-06-22 Applied Materials, Inc. Pulse train annealing method and apparatus
JP2020038973A (ja) * 2009-11-30 2020-03-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 半導体用途のための結晶化処理
JP2013512572A (ja) * 2009-11-30 2013-04-11 アプライド マテリアルズ インコーポレイテッド 半導体用途のための結晶化処理
KR20120098839A (ko) * 2009-11-30 2012-09-05 어플라이드 머티어리얼스, 인코포레이티드 반도체 응용들을 위한 결정화 프로세싱
KR101594880B1 (ko) 2009-11-30 2016-02-17 어플라이드 머티어리얼스, 인코포레이티드 반도체 응용들을 위한 결정화 프로세싱
US9245757B2 (en) 2010-07-05 2016-01-26 The Japan Steel Works, Ltd Laser annealing treatment apparatus and laser annealing treatment method
JP2014528162A (ja) * 2011-09-01 2014-10-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 結晶化法
KR101713662B1 (ko) 2011-09-01 2017-03-08 어플라이드 머티어리얼스, 인코포레이티드 결정화 방법들
KR20140060536A (ko) * 2011-09-01 2014-05-20 어플라이드 머티어리얼스, 인코포레이티드 결정화 방법들
US10074538B2 (en) 2011-09-01 2018-09-11 Applied Materials, Inc. Methods for crystallizing a substrate using a plurality of laser pulses and freeze periods
JP2012064959A (ja) * 2011-11-07 2012-03-29 Dainippon Screen Mfg Co Ltd 熱処理方法
JP2013157549A (ja) * 2012-01-31 2013-08-15 V Technology Co Ltd レーザアニール装置及びレーザアニール方法
JP2013211415A (ja) * 2012-03-30 2013-10-10 V Technology Co Ltd レーザアニール装置及びレーザアニール方法
WO2014200077A1 (ja) * 2013-06-10 2014-12-18 東京エレクトロン株式会社 微細構造形成方法、半導体デバイスの製造方法、及びcmosの形成方法
WO2016093287A1 (ja) * 2014-12-10 2016-06-16 東京エレクトロン株式会社 微細構造形成方法、半導体デバイスの製造方法、及びcmosの形成方法

Also Published As

Publication number Publication date
KR20050048682A (ko) 2005-05-24
TW488079B (en) 2002-05-21
WO2001086705A1 (fr) 2001-11-15
KR100738295B1 (ko) 2007-07-12
US7063999B2 (en) 2006-06-20
US7396712B2 (en) 2008-07-08
KR20030024664A (ko) 2003-03-26
US20060189034A1 (en) 2006-08-24
US20040009632A1 (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP2001319891A (ja) 薄膜処理方法及び薄膜処理装置
KR100534501B1 (ko) 박막 처리 방법 및 박막 처리 장치
JP3491571B2 (ja) 半導体薄膜の形成方法
US8710507B2 (en) Semiconductor thin film, thin film transistor, method for manufacturing same, and manufacturing equipment of semiconductor thin film
JP3586558B2 (ja) 薄膜の改質方法及びその実施に使用する装置
JP3393469B2 (ja) 薄膜半導体素子の製造方法及び薄膜半導体形成装置
KR100382868B1 (ko) 반도체박막 가열장치
JP4322373B2 (ja) 膜体部改質装置及び膜体部改質方法
US20090246939A1 (en) Method for dehydrogenation treatment and method for forming crystalline silicon film
JP4769491B2 (ja) 結晶化方法、薄膜トランジスタの製造方法、薄膜トランジスタおよび表示装置
JP4900128B2 (ja) 半導体薄膜改質方法
JP3496678B1 (ja) 半導体薄膜
JP2008098310A (ja) 結晶化方法、被結晶化基板、薄膜トランジスタの製造方法、薄膜トランジスタ及び表示装置
JPH09139346A (ja) レーザーアニール方法およびレーザーアニール装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110105