HUE035250T2 - Humán CD38-ra specifikus teljesen humán HuCAL GOLD-eredetû terápiás ellenanyagok létrehozása és profilozása - Google Patents

Humán CD38-ra specifikus teljesen humán HuCAL GOLD-eredetû terápiás ellenanyagok létrehozása és profilozása Download PDF

Info

Publication number
HUE035250T2
HUE035250T2 HUE14196972A HUE14196972A HUE035250T2 HU E035250 T2 HUE035250 T2 HU E035250T2 HU E14196972 A HUE14196972 A HU E14196972A HU E14196972 A HUE14196972 A HU E14196972A HU E035250 T2 HUE035250 T2 HU E035250T2
Authority
HU
Hungary
Prior art keywords
ser
gly
thr
val
leu
Prior art date
Application number
HUE14196972A
Other languages
English (en)
Inventor
Michael Tesar
Ute Jäger
Original Assignee
Morphosys Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morphosys Ag filed Critical Morphosys Ag
Publication of HUE035250T2 publication Critical patent/HUE035250T2/hu

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3061Blood cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) IntCI.: of the grant of the patent: C07K 16128 <2006 01> C07K 16140 <2006 01> 27.09.2017 Bulletin 2017/39 C07K 16l30<200601> G01N 331574 <2006 01> A61K 39100<2006 01> (21) Application number: 14196972.5 (22) Date of filing: 12.10.2006 (54) Generation and profiling of fully human HuCAL GOLD-derived therapeutic antibodies specific for human CD38
Gewinnung und Profilierung von vollstandig humanen, von HuCAL GOLD-abgeleiteten therapeutischen Antikorpern fiir humanes CD38
Production et profilage d’anticorps therapeutiques derives de la technologie HuCAL GOLD entierement humains specifiques a la proteine humaine CD38 (84) Designated Contracting States: · ELLIS JONATHAN Η ET AL: "Engineered AT BE BG CH CY CZ DE DK EE ES FI FR GB GR anti-CD38 monoclonal antibodies for
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI immunotherapy of multiplemyeloma", JOURNAL
SK TR OFIMMUNOLOGY.THEWILLIAMS ANDWILKINS
Designated Extension States: CO. BALTIMORE, US, vol. 155, no. 2,1995, pages AL BA HR MK RS 925-937, XP002146232, ISSN: 0022-1767
• STEVENSON F K ETAL: "PRELIMINARY
(30) Priority: 12.10.2005 US 725297 P STUDIES FOR AN IMMUNOTHERAPEUTIC
APPROACH TO THE TREATMENT OF HUMAN (43) Date of publication of application: MYELOMA USING CHIMERIC ANTI-CD38 15.04.2015 Bulletin 2015/16 ANTIBODY", BLOOD, W.B. SAUNDERS, PHILADELPHIA, VA, US, vol. 77, no. 5, 1 March (62) Document number(s) of the earlier application(s) in 1991 (1991-03-01), pages 1071-1079, accordance with Art. 76 EPC: XP000930093, ISSN: 0006-4971
06806243.9 /1 945 671 · MALONEY D G ET AL: "ANTIBODY THERAPY FOR TREATMENT OF MULTIPLE MYELOMA", (73) Proprietor: MorphoSys AG SEMINARS IN HEMATOLOGY, PHILADELPHIA, 82152 Planegg (DE) PA, US, vol. 36, no. 1, SUPPL 3, January 1999 (1999-01), pages 30-33, XP000857401, ISSN: (72) Inventors: 0037-1963 • Tesar, Michael · ZOCCHI ELENA ET AL: "A single protein 86316 Friedberg (DE) immunologically identified as CD38 displays • Jager, Ute NAD+ glycohydrolase, ADP-ribosyl cyclase and 81667 Miinchen (DE) cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes",
(74) Representative: Hutter, Bernd et al BIOCHEMICAL AND BIOPHYSICAL RESEARCH
MorphoSys AG COMMUNICATIONS, ACADEMIC PRESS INC.
Semmelweisstrasse 7 ORLANDO, FL, US, vol. 196, no. 3, 1993, pages
82152 Planegg (DE) 1459-1465, XP002410154, ISSN: 0006-291X (56) References cited: EP-A- 1 174 440 WO-A-2006/125640 WO-A1-2007/096149 WO-A2-2005/103083 US-A1-2002 164 788
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). • BOLLEN P ET AL: "The Goettingen Minipig in · "MorphoSys Presents Updated Clinical Results pharmacology and toxicology", for MOR202 at Medical Conference", PHARMACOLOGY AND TOXICOLOGY, MORPHOSYS MEDIA RELEASE, 17 October 2016 MUNKSGAARD INTERNATIONAL PUBLISHERS, (2016-10-17), COPENHAGEN,, DK, vol. 80, no. SUPPL 2, 1997, pages 3-4, XP009075772, ISSN: 0901-9928
Description
Background [0001] Anti-CD38 specific antibodies are known in the prior art. See, for instance, US 2002/164788 and EP 1 174 440.
SUMMARY OF THE INVENTION
[0002] The present invention relates a human anti-CD38 specific antibody comprising: (i) an H-CDR1, H-CDR2 and H-CDR3 region depicted in SEQ ID NO: 21, and an L-CDR1, L-CDR2 and L-CDR3 region depicted in SEQ ID NO: 51; (ii) a variable heavy chain of SEQ ID NO: 21, and a variable light chain of SEQ ID NO: 51; or (iii) a variable heavy chain encoded by SEQ ID NO: 6, and a variable light chain encoded by SEQ ID NO: 36.
[0003] In EP1174440 the CD38 specific single chain fragment (scFv) UM16 is disclosed. However, in comparison to the antibodies disclosed herein UM16 is unable to mediate ADCC and/or CDC activity and further differs in binding properties.
[0004] In a further embodiment the disclosure herein relates to an isolated antibody or functional fragment thereof that is specific for CD38, which comprises (i) a variable heavy chain depicted in SEQ ID NO: 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105 or 106 or (ii) a variable heavy chain that has at least a sixty percent identity to a variable heavy chain depicted in SEQ ID NO: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105 or 106.
[0005] Additionally, the present disclosure relates to an isolated antigen-binding region that is specific for CD38, which comprises (i) an L-CDR3 region depicted in SEQ ID NO: 46, 47, 48, 49, 50, 51,52, 53, 54, 55, 56, 57, 58, 59, 60, 109 or 110 or (ii) an L-CDR3 region that has at least a sixty percent identity to an L-CDR3 region depicted in SEQ ID NO: 46, 47, 48, 49, 50, 51,52, 53, 54, 55, 56, 57, 58, 59, 60, 109 or 110.
[0006] Also, the present disclosure relates to an isolated antibody or functional fragment thereof, which comprises (i) a variable light chain depicted in SEQ ID NO: 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 109 or 110 or (ii) a variable light chain that has at least a sixty percent identity to a variable light chain depicted in SEQ ID NO: 46, 47, 48, 49, 50, 51,52, 53, 54, 55, 56, 57, 58, 59, 60, 109 or 110.
[0007] The present disclosure further relates to a variable heavy chain of an isolated antigen-binding region that is encoded by (i) a nucleic acid sequence comprising SEQ ID NO: 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 77, 78, 79, 80, 81,82, 83, 84, 85, 86, 87, 88, 89, 90 or 91 or (ii) a nucleic acid sequences that hybridizes under high stringency conditions to the complementary strand of SEQ ID NO: 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 or 91, wherein said antigen-binding region is specific for CD38.
[0008] The present disclosure also relates to a variable light chain of an isolated antigen-binding region that is encoded by (i) a nucleic acid sequence comprising SEQ ID NO: 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41,42, 43, 44, 45, 107 or 108 or (ii) a nucleic acid sequences that hybridizes under high stringency conditions to the complementary strand of SEQ ID NO: 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41,42, 43, 44, 45, 107 or 108, wherein said antibody or functional fragment thereof is specific for CD38.
[0009] Further, the present disclosure relates to an isolated nucleic acid sequence that encodes an antigen-binding region of a human antibody or functional fragment thereof that is specific for CD38.
[0010] Additionally, the disclosure relates to a nucleic acid sequence encoding a variable heavy chain of an isolated antigen-binding region, which comprises (i) a sequence selected from the group consisting of SEQ ID NOS: 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 and 91 or (ii) a nucleic acid sequence that hybridizes under high stringency conditions to the complementary strand of SEQ ID NO: 1,2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 or 91, wherein said antigen-binding region is specific for CD38.
[0011] The present disclosure also relates to a nucleic acid sequence encoding a variable light chain of an isolated antigen-binding region, which comprises (i) a sequence selected from the group consisting of SEQ ID NOS: 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 107 and 108 or (ii) a nucleic acid sequence that hybridizes under high stringency conditions to the complementary strand of SEQ ID NO: 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41,42, 43, 44, 45, 107 or 108 wherein said antigen-binding region is specific for CD38.
[0012] The present disclosure further relates to a method of inducing specific killing of tumor cells that express CD38, wherein said specific killing occurs by CD38 cross-linking, comprising the step of incubating said cells in the presence of a sufficient amount of an isolated human or humanized anti-CD38 antibody or a functional fragment thereof, wherein said human or humanized anti-CD38 antibody comprises (i) a nucleic acid sequence encoding a heavy chain depicted in SEQ ID NO: 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 77, 78, 79, 80, 81,82, 83, 84, 85, 86, 87, 88, 89, 90 or91 or (ii) a nucleic acid sequences that hybridizes under high stringency conditions to the complementary strand of SEQ ID NO: 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15,77,78,79,80,81,82, 83,84,85, 86,87,88, 89,90 or 91, wherein said antibody or a functional fragment thereof is specific for CD38.
[0013] Additionally, the present disclosure relates to a method of inducing specific killing of tumor cells that express CD38, wherein said specific killing occurs by CD38 cross-linking, comprising the step of incubating said cells in the presence of a sufficient amount of an isolated human or humanized anti-CD38 antibody or a functional fragment thereof, wherein said human or humanized anti-CD38 antibody comprises (i) a nucleic acid sequence encoding a light chain depicted in SEQ ID NO: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 107 or 108 or (ii) a nucleic acid sequences that hybridizes under high stringency conditions to the complementary strand of SEQ ID NO: 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41,42, 43, 44, 45, 107 or 108, wherein said antibody or a functional fragment thereof is specific for CD38.
[0014] Also, the present disclosure relates to a method of inducing specific killing of tumor cells that express CD38, wherein said specific killing occurs by CD38 cross-linking, comprising the step of incubating said cells in the presence of a sufficient amount of an isolated human or humanized anti-CD38 antibody or a functional fragment thereof, wherein said human or humanized anti-CD38 antibody or said functional fragment thereof comprises (i) a heavy chain amino acid sequence depicted in SEQ ID NO: 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105 or 106 or (ii) a variable heavy chain that has at least a sixty percent identity to a variable heavy chain depicted in SEQ ID NO: 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105 or 106.
[0015] Also, the present disclosure relates to a method of inducing specific killing of tumor cells that express CD38, wherein said specific killing occurs by CD38 cross-linking, comprising the step of incubating said cells in the presence of a sufficient amount of an isolated human or humanized anti-CD38 antibody or a functional fragment thereof, wherein said human or humanized anti-CD38 antibody comprises (i) and/or a light chain amino acid sequence depicted in SEQ ID NO: 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 109 or 110 or (ii) a variable light chain that has at least a sixty percent identity to a variable light chain depicted in SEQ ID NO: 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 109 or 110.
[0016] Furthermore, the present disclosure relates to a method of detecting specific killing of tumor cells that express CD38, by CD38 cross-linking, comprising the steps of: (i) administering to a subject in need thereof an effective amount of a human or humanized anti-CD38 antibody or a functional fragment thereof, and (ii) detecting the specific killing activity of said human or humanized anti-CD38 antibody or said functional fragment thereof.
[0017] Also, the present disclosure relates to a method of detecting the presence of CD38 in a tissue or a cell of minipig origin, comprising the steps of: (i) allowing a human or humanized anti-CD38 antibody or a functional fragment thereof to come into contact with said CD38, and (ii) detecting the specific binding of said human or humanized anti-CD38 antibody or functional fragment thereof to said CD38 minipig cells, wherein said antibody or functional fragment thereof is also able to specifically bind to CD38 of human origin.
[0018] Furthermore, the present disclosure relates to A method of detecting CD38 in a CD38-expressing erythrocyte, comprising the steps of: (i) allowing a human or humanized anti-CD38 antibody or a functional fragment thereof to come into contact with said CD38-expressing erythrocyte, and (ii) detecting the specific binding of said human or humanized anti-CD38 antibody or functional fragment thereof to said CD38-expressing erythrocytes, wherein said antibody or functional fragment thereof is also able to specifically bind to human CD38 from a cell or tissue other than human erythrocytes.
[0019] The present disclosure also relates to an isolated antibody or functional fragment thereof, which comprises (i) an H-CDR3 region depicted in SEQ ID NO: 21 or 22 or (ii) an H-CDR3 region at least a sixty percent identity thereto, and that is specific for human CD38 and marmoset CD38.
BRIEF DESCRIPTION OF THE FIGURES
[0020]
Figure 1a provides nucleic acid sequences of various antibody variable heavy regions.
Figure 1 b provides amino acid sequences ofvarious antibody variable heavy regions. CDR regions HCDR1, HCDR2 and HCDR3 are designated from N- to C-terminus in boldface.
Figure 2a provides nucleic acid sequences ofvarious antibody variable light regions. Figure 2b provides amino acid sequences ofvarious antibody variable light regions. CDR regions LCDR1, LCDR2 and LCDR3 are designated from N- to C-terminus in boldface.
Figure 3 provides amino acid sequences of variable heavy regions ofvarious consensus-based HuCAL antibody master gene sequences. CDR regions HCDR1, HCDR2 and HCDR3 are designated from N- to C-terminus in boldface.
Figure 4 provides amino acid sequences of variable light regions ofvarious consensus-based HuCAL antibody mastergene sequences. CDR regions LCDR1, LCDR2 and LCDR3 are designated from N-to C-terminus in boldface. Figure 5 provides the amino acid sequence of CD38 (SWISS-PROT primary accession number P28907).
Figure 6 provides the nucleotide sequences of the heavy and light chains of chimeric OKT10.
Figure 7 provides the DNA sequence of pMORPH®_h_lgG1_1 (bp 601-2100) (SEQ ID NO: 74): The vector is based on the pcDNA3.1+ vectors (Invitrogen). The amino acid sequence of the VH-stuffer sequence is indicated in bold, whereas the final reading frames of the VH-leader sequence and the constant region gene are printed in non-bold. Restriction sites are indicated above the sequence. The priming sites of the sequencing primers are underlined. Figure 8 provides the DNA sequence of Ig kappa light chain expression vector pMORPH®_h_lgK_1 (bp 601-1400) (SEQ ID NO: 75): The vector is based on the pcDNA3.1+ vectors (Invitrogen). The amino acid sequences of the νκ-stuffer sequence is indicated in bold, whereas the final reading frames of the νκ-leader sequence and of the constant region gene are printed in non-bold. Restriction sites are indicated above the sequence. The priming sites of the sequencing primers are underlined.
Figure 9 provides the DNA sequence of HuCAL Ig lambda light chain vector pMORPH®_h_lgL_ (bp 601-1400) (SEQ ID NO: 76): The amino acid sequence of the VZ - stuffer sequence is indicated in bold, whereas the final reading frames of the VZ· -leader sequence and of the constant region gene are printed in non-bold. Restriction sites are indicated above the sequence. The priming sites of the sequencing primers are underlined.
Figure 10 provides different combinations of heavy and light chains in the Fab/IgG format.
Figure 11 provides CD38-expression analysis of Lymphocytes and Erythrocytes obtained by FACS. PBMCs and Erythrocytes were isolated from whole blood of cynomolgus, rhesus and marmoset by density gradient centrifugation followed by FACS-analysis using anti-CD38 Fab antibodies MOR03087 (A, right histograms, light arrow) and MOR03088 (B, right histograms; light arrow). An irrelevant Fab-antibody (A &amp; B, left histograms; black arrow) was used as a negative control.
Figure 12 provides CD38 expression analysis of Lymphocytes and Erythrocytes obtained by FACS. PBMCs and Erythrocytes were isolated from whole blood of human, cynomolgus and marmoset by density gradient centrifugation followed by FACS-analysis using anti-CD38 lgG1 MOR03087 (right histograms; white arrow). An irrelevant IgG 1 control antibody (A &amp; B, left histograms; black arrow) was used as a negative control.
Figure 13 provides a comparative overview of Cross-Reactivity of different anti-CD38 antibodies.
Figures 14(a) and 14(b) delineate the CDR and FR regions for certain antibodies and compare amino acids at agiven position to each other and to corresponding consensus sequences.
DETAILED DESCRIPTION OF THE INVENTION
[0021] The present disclosure is based on the discovery of novel antibodies and methods of using antibodies that are specific to or have a high affinity for CD38 and can deliver a therapeutic benefit to a subject. The antibodies, which may be human or humanized, can be used in many contexts, which are more fully described herein.
[0022] A "human" antibody or functional human antibody fragment is hereby defined as one that is not chimeric (e.g., not "humanized") and not from (either in whole or in part) a non-human species. A human antibody or functional antibody fragment can be derived from a human or can be a synthetic human antibody. A "synthetic human antibody" is defined herein as an antibody having a sequence derived, in whole or in part, in silico from synthetic sequences that are based on the analysis of known human antibody sequences. In silico design of a human antibody sequence or fragment thereof can be achieved, for example, by analyzing a database of human antibody or antibody fragment sequences and devising a polypeptide sequence utilizing the data obtained therefrom. Another example of a human antibody orfunctional antibody fragment, is one that is encoded by a nucleic acid isolated from a library of antibody sequences of human origin (/'.e., such library being based on antibodies taken from a human natural source).
[0023] A "humanized antibody" or functional humanized antibody fragment is defined herein as one that is (i) derived from a non-human source (e.g., a transgenic mouse which bears a heterologous immune system), which antibody is based on a human germline sequence; or (ii) chimeric, wherein the variable domain is derived from a non-human origin and the constant domain is derived from a human origin or (iii) CDR-grafted, wherein the CDRs of the variable domain are from a non-human origin, while one or more frameworks of the variable domain are of human origin and the constant domain (if any) is of human origin.
[0024] As used herein, an antibody "binds specifically to," is "specific to/for" or "specifically recognizes" an antigen (here, CD38) if such antibody is able to discriminate between such antigen and one or more reference antigen(s), since binding specificity is not an absolute, but a relative property. In its most general form (and when no defined reference is mentioned), "specific binding" is referring to the ability of the antibody to discriminate between the antigen of interest and an unrelated antigen, as determined, for example, in accordance with one of the following methods. Such methods comprise Western blots, ELISA-, RIA-, ECL-, IRMA-tests, FACS, IHC and peptide scans. For exam pie, a standard ELISA assay can be carried out. The scoring may be carried out by standard color development (e.g. secondary antibody with horseradish peroxide and tetramethyl benzidine with hydrogenperoxide). The reaction in certain wells is scored by the optical density, for example, at 450 nm. Typical background (=negative reaction) may be 0.1 OD; typical positive reaction may be 1 OD. This means the difference positive/negative can be more than 10-fold. Typically, determination of binding specificity is performed by using not a single reference antigen, but a set of about three to five unrelated antigens, such as milk powder, BSA, transferrin or the like. It is possible for an antibody to be "specific to" or "specific for" an antigen of 2 or more cells/tissues and/or 2 or more species, provided that the antibody meets binding criteria for each of such cells/tissues and species, for example. Accordingly, an antibody may bind specifically to the target antigen CD38 on various cell types and/or tissues, e.g. erythrocytes, lymphocytes isolated from peripheral blood, spleen or lymph-nodes. In addition, an antibody may be specific to both CD38 of one species and CD38 of another species.
[0025] "Specific binding" also may refer to the ability of an antibody to discriminate between the target antigen and one or more closely related antigen(s), which are used as reference points, e.g. between CD38 and CD157. Additionally, "specific binding" may relate to the ability of an antibody to discriminate between different parts of its target antigen, e.g. different domains or regions of CD38, such as epitopes in the N-terminal or in the C-terminal region of CD38, or between one or more key amino acid residues or stretches of amino acid residues of CD38.
[0026] Also, as used herein, an "immunoglobulin" (Ig) hereby is defined as a protein belonging to the class IgG, IgM, IgE, IgA, or IgD (or any subclass thereof), and includes all conventionally known antibodies and functional fragments thereof. A "functional fragment" of an antibody/immunoglobulin hereby is defined as a fragment of an antibody/immu-noglobulin (e.g., a variable region of an IgG) that retains the antigen-binding region. An "antigen-binding region" of an antibody typically is found in one or more hypervariable region(s) of an antibody, i.e., the CDR-1, -2, and/or -3 regions; however, the variable "framework" regions can also play an important role in antigen binding, such as by providing a scaffold for the CDRs. Preferably, the "antigen-binding region" comprises at least amino acid residues 4 to 103 of the variable light (VL) chain and 5 to 109 of the variable heavy (VH) chain, more preferably amino acid residues 3 to 107 of VL and 4 to 111 of VH, and particularly preferred are the complete VL and VH chains (amino acid positions 1 to 109 of VL and 1 to 113 of VH; numbering according to WO 97/08320). A preferred class of immunoglobulins for use in the present invention is IgG. "Functional fragments" of the disclosure include the domain of a F(ab’)2 fragment, a Fab fragment and scFv. The F(ab’)2 or Fab may be engineered to minimize or completely remove the intermolecular disulphide interactions that occur between the CH1 and CL domains.
[0027] The term "parental binder" as used in connection with the present disclosure denotes any binder which has not undergone the process of optimization. A process of optimization is described elsewhere in the present specification. [0028] The term "binder" as used in connection with the present disclosure may be used in a synonymous manner as the term "immunoglobulin" or "antibody".
[0029] An antibody for use in the invention may be derived from a recombinant antibody library that is based on amino acid sequences that have been designed in silico and encoded by nucleic acids that are synthetically created. In silico design of an antibody sequence is achieved, for example, by analyzing a database of human sequences and devising a polypeptide sequence utilizing the data obtained therefrom. Methods for designing and obtaining in s/7/co-created sequences are described, for example, in Knappik et al., J. Mol. Biol. (2000) 296:57; Krebs et al., J. Immunol. Methods. (2001) 254:67; and U.S. Patent No. 6,300,064 issued to Knappik et al..
Antibodies for Use in the Invention [0030] Throughout this document, reference is made to the following representative antibodies for use in the disclosure herein: "antibody nos." or "LACS" or "MOR" 3076 or 03076, 3078 or 03078, 3081 or 03081, 3085 or 03085, 3086 or 03086, 3087 or 03087, 3088 or 03088, 3089 or 03089, 3101 or 03101, 3102 or 03102, 3127 or 03127, 3128 or 03128, 3129 or 03129, 3130 or 03130, 3131 or 03131,6183 or 06183, 6184 or 06184, 6185 or 06185, 6186 or 06186, 6187 or 06187, 6188 or 06188, 6189 or 06189, 6190 or 06190, 6192 or 06192, 6195 or 06195, 6197 or 06197, 6200 or 06200, 6201 or 06201,6204 or 06204, 6214 or 06214, 6278 or 06278, 6279 or 06279. LAC 3076 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 1 (DNA)/SEQ ID NO: 16 (protein) and a variable light region corresponding to SEQ ID NO: 31 (DNA)/SEQ ID NO: 46 (protein). LAC 3078 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 2 (DNA)/SEQ ID NO: 17 (protein) and a variable light region corresponding to SEQ ID NO: 32 (DNA)/SEQ ID NO: 47 (protein). LAC 3081 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 3 (DNA)/SEQ ID NO: 18 (protein) and a variable light region corresponding to SEQ ID NO: 33 (DNA)/SEQ ID NO: 48 (protein). LAC 3085 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 4 (DNA)/SEQ ID NO: 19 (protein) and a variable light region corresponding to SEQ ID NO: 34 (DNA)/SEQ ID NO: 49 (protein). LAC 3086 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 5 (DNA)/SEQ ID NO: 20 (protein) and a variable light region corresponding to SEQ ID NO: 35 (DNA)/SEQ ID NO: 50 (protein). LAC 3087 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 6 (DNA)/SEQ ID NO: 21 (protein) and a variable light region corresponding to SEQ ID NO: 36 (DNA)/SEQ ID NO: 51 (protein). LAC 3088 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 7 (DNA)/SEQ ID NO: 22 (protein) and a variable light region corresponding to SEQ ID NO: 37 (DNA)/SEQ ID NO: 52 (protein). LAC 3089 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 8 (DNA)/SEQ ID NO: 23 (protein) and a variable light region corresponding to SEQ ID NO: 38 (DNA)/SEQ ID NO: 53 (protein). LAC 3101 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 9 (DNA)/SEQ ID NO: 24 (protein) and a variable light region corresponding to SEQ ID NO: 39 (DNA)/SEQ ID NO: 54 (protein). LAC 3102 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 10 (DNA)/SEQ ID NO: 25 (protein) and a variable light region corresponding to SEQ ID NO: 40 (DNA)/SEQ ID NO: 55 (protein). LAC 3127 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 11 (DNA)/SEQ ID NO: 26 (protein) and a variable light region corresponding to SEQ ID NO: 41 (DNA)/SEQ ID NO: 56 (protein). LAC 3128 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 12 (DNA)/SEQ ID NO: 27 (protein) and a variable light region corresponding to SEQ ID NO: 42 (DNA)/SEQ ID NO: 57 (protein). LAC 3129 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 13 (DNA)/SEQ ID NO: 28 (protein) and a variable light region corresponding to SEQ ID NO: 43 (DNA)/SEQ ID NO: 58 (protein). LAC 3130 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 14 (DNA)/SEQ ID NO: 29 (protein) and a variable light region corresponding to SEQ ID NO: 44 (DNA)/SEQ ID NO: 59 (protein). LAC 3131 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 15 (DNA)/SEQ ID NO: 30 (protein) and a variable light region corresponding to SEQ ID NO: 45 (DNA)/SEQ ID NO: 60 (protein). Furthermore, optimized clones, which were derived from the parental binders MOR03087 and MOR03088, comprise the following: MOR06183 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 77 (DNA)/SEQ ID NO: 92 (protein). MOR06184 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 78 (DNA)/SEQ ID NO: 93 (protein). MOR06185 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 79 (DNA)/SEQ ID NO: 94 (protein). MOR06186 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 80 (DNA)/SEQ ID NO: 95 (protein). MOR06187 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 81 (DNA)/SEQ ID NO: 96 (protein). MOR06188 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 82 (DNA)/SEQ ID NO: 97. MOR06189 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 83 (DNA)/SEQ ID NO:98 (protein). MOR06190 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 84 (DNA)/SEQ ID NO: 99 (protein). MOR06192 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 85 (DNA)/SEQ ID NO: 100 (protein). MOR06195 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 86 (DNA)/SEQ ID NO: 101 (protein). MOR06197 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 87 (DNA)/SEQ ID NO: 102 (protein). MOR06200 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 88 (DNA)/SEQ ID NO: 103 (protein). MOR06201 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 89 (DNA)/SEQ ID NO: 104 (protein). MOR 06204 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 90(DNA)/SEQ ID NO: 105 (protein). MOR06214 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 91 (DNA)/SEQ ID NO: 106 (protein). MOR06278 represents an antibody having a variable light region corresponding to SEQ ID NO: 107 (DNA)/SEQ ID NO: 109 (protein). MOR 06279 represents an antibody having a variable light region corresponding to SEQ ID NO: 108 (DNA)/SEQ ID NO: 110 (protein).
[0031] Antibodies of the present disclosure were characterized in Fab and/or IgG format and comprise various combinations of the light and heavy chains of optimized and parental binders. Figure 10 shows several non-limiting combinations which can be used in connection with the present disclosure.
[0032] In one aspect, the present disclosure provides methods for using antibodies having an antigen-binding region that can bind specifically to or has a high affinity for one or more regions of CD38, whose amino acid sequence is depicted by SEQ ID NO: 71. An antibody is said to have a "high affinity" for an antigen if the affinity measurement is at least 100 nM (monovalent affinity of Fab fragment). An antibody or antigen-binding region for use in the present invention preferably can bind to CD38 with an affinity of about less than 600 nM. Preferably, the antibody or antigen-binding region for use
in the present invention can bind to CD38 with an affinity of about less than 100 nM, more preferably less than about 60 nM, and still more preferably less than about 30 nM. Further preferred are uses of antibodies that bind to CD38 with an affinity of less than about 10 nM, and more preferably less than 3 about nM. For instance, the affinity of an antibody for use in the invention against CD38 may be about 10.0 nM or 2.4 nM (monovalent affinity of Fab fragment).
[0033] Table 1 provides a summary of affinities of representative antibodies, as determined by surface plasmon resonance (Biacore) and FACS Scatchard analysis:
Table 1: Antibody Affinities
[0034] With reference to Table 1, the affinity of LACs was measured by surface plasmon resonance (Biacore) on human CD38 Fc-fusion and by a flow cytometry procedure utilizing the CD38-expressing human Raji cell line. The Biacore studies were performed on directly immobilized antigen (CD38-Fc fusion protein). The Fab format of LACs exhibit an monovalent affinity range between about 30 and 596 nM on immobilized CD38-Fc fusion protein.
[0035] The lgG1 format was used for the cell-based affinity determination (FACS Scatchard). The right column of Table 1 denotes the binding strength of the LACS in this format.
[0036] Another preferred feature of preferred antibodies for use in the present disclosure is their specificity for an area within the N-terminal region of CD38. For example, LACs of the present disclosure can bind specifically to the N-terminal region of CD38.
[0037] Optimized antibodies of the present disclosure were further characterized as shown in Tables 2 and 3. Summaries are provided of affinities as determined by surface plasmon resonance (Biacore) and FACS Scatchard analysis. Additionally, FACS-binding to human erythrocytes and ELISA binding studies to CD38 Fc-Fusion protein have also been determined. The characterizations show that several optimized binders show a reduced binding to human erythrocytes and a higher ELISA signal as compared to the parental clone. In addition derivatives of MOR03088 have an improved affinity as shown by FACS Scatchards and affinity determinations.
Table 3: ECso in FACS-Scatchard, ADCC and CDC
a: single measurement b: mean from 2 measurements [0038] The type of epitope to which an antibody for use in the present disclosure binds maybe linear (i.e. one consecutive stretch of amino acids) or conformational (i.e. multiple stretches of amino acids). In order to determine whether the epitope of a particular antibody is linear or conformational, the skilled worker can analyze the binding of antibodies to overlapping peptides (e.g., 13-mer peptides with an overlap of 11 amino acids) covering different domains of CD38. LACS may recognize discontinuous or linear epitopes in the N-terminal region of CD38. Combined with the knowledge provided herein, the skilled worker in the art will know how to use one or more isolated epitopes of CD38 for generating antibodies having an antigen-binding region that is specific for said epitopes (e.g. using synthetic peptides of epitopes of CD38 or cells expressing epitopes of CD38).
[0039] An antibody for use in the present disclosure preferably is species cross-reactive with humans and at least one other non-human species. The non-human species can be non-human primate, e.g. rhesus, baboon and/or cynomolgus. Other non-human species can be minipig, rabbit, mouse, rat and/or hamster. An antibody that is cross reactive with at least one other species beside human can provide greater flexibility and benefits over known anti-CD38 antibodies, for purposes of conducting in vivo studies in multiple species with the same antibody. An antibody that is cross reactive with minipig and/or rabbit, for example, can be a candidate for toxicology and safety studies.
[0040] Preferably, an antibody for use in the present disclosure not only is able to bind to CD38, but also is able to mediate killing of a cell expressing CD38. More specifically, an anti body for use in the invention can mediate its therapeutic effect by depleting CD38-positive (e.g., malignant) cells via antibody-effectorfunctions. These functions include antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC).
[0041] CD38-expression, however, is notonly found on immune cells within the myeloid (e.g. monocytes, granulocytes) and lymphoid lineage (e.g. activated B and T-cells; plasma cells), but also on the respective precursor cells. Since it is important that those cells are not affected by antibody-mediated killing of malignant cells, the antibodies of the present invention are preferably not cytotoxic to precursor cells.
[0042] In addition to its catalytic activities as a cyclic ADP-ribose cyclase and hydrolase, CD38 8 displays the ability to transduce signals of biological relevance (Hoshino etal., 1997; Ausiello etal., 2000). Those functions can be induced in vivo by, e.g. receptor-ligand interactionsor by cross-linking with agonistic anti-CD38 antibodies, leading, e.g. to calcium mobilization, lymphocyte proliferation and release of cytokines. Preferably, the antibodies of the present disclosure are non-agonistic antibodies.
Peptide Variants [0043] The present disclosure also embodies the use of variants of these polypeptides. With reference to the instant disclosure and conventionally available technologies and references, the skilled worker will be able to prepare, test and utilize functional variants of the antibodies disclosed herein, while appreciating that variants having the ability to mediate killing of a CD38+ target cell fall within the scope of the present disclosure. As used in this context, "ability to mediate killing of a CD38+target cell" means afunctional characteristic ascribed to an anti-CD38 anti body for use in the disclosure. Ability to mediate killing of a CD38+ target cell, thus, includes the ability to mediate killing of a CD38+ target cell, e.g. by ADCC and/or CDC, or by toxin constructs conjugated to an antibody for use in the disclosure.
[0044] A variant can include, for example, an antibody that has at least one altered complementarity determining region (CDR) (hyper-variable) and/or framework (FR) (variable) domain/position, vis-a-vis a peptide sequence disclosed herein. To better illustrate this concept, a brief description of antibody structure follows.
[0045] An antibody is composed of two peptide chains, each containing one (light chain) orthree (heavy chain) constant domains and a variable region (VL, VH), the latter of which is in each case made up of four FR regions and three interspaced CDRs. The antigen-binding site is formed by one or more CDRs, yet the FR regions provide the structural framework for the CDRs and, hence, play an important role in antigen binding. By altering one or more amino acid residues in a CDR or FR region, the skilled worker routinely can generate mutated or diversified antibody sequences, which can be screened against the antigen, for new or improved properties, for example.
[0046] Figures 14 a (VH) and 14 b (VL) delineate the CDR and FR regions for certain antibodies and compare amino acids at a given position to each other and to corresponding consensus or "master gene" sequences (as described in U.S. Patent No. 6,300,064).
[0047] The skilled worker will be able to design peptide variants. It is preferred that variants are constructed by changing amino acids within one or more CDR regions; a variant might also have one or more altered framework regions. Alterations also may be made in the framework regions. For example, a peptide FR domain might be altered where there is a deviation in a residue compared to a germline sequence.
[0048] Furthermore, variants may be obtained by using one LAC as starting point for optimization by diversifying one or more amino acid residues in the LAC, preferably amino acid residues in one or more CDRs, and by screening the resulting collection of antibody variants for variants with improved properties. Particularly preferred is diversification of one or more amino acid residues in CDR-3 of VL, CDR-3 of VH, CDR-1 of VL and/or CDR-2 of VH. Diversification can be done by synthesizing a collection of DNA molecules using trinucleotide mutagenesis (TRIM) technology (Virnekas, B., Ge, L., Pliickthun, A., Schneider, K.C., Wellnhofer, G., and Moroney S.E. (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucl. Acids Res. 22, 5600).
Conservative Amino Acid Variants [0049] Polypeptide variants maybe made that conserve the overall molecular structure of an antibody peptide sequence described herein. Given the properties of the individual amino acids, some rational substitutions will be recognized by the skilled worker. Amino acid substitutions, i.e., "conservative substitutions," may be made, for instance, on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved.
[0050] For example, (a) nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; (b) polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; (c) positively charged (basic) amino acids include arginine, lysine, and histidine; and (d) negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Substitutions typically may be made within groups (a)-(d). In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices. Similarly, certain amino acids, such as alanine, cysteine, leucine, methionine, glutamicacid, glutamine, histidine and lysine are more commonly found in α-helices, while valine, isoleucine, phenylalanine, tyrosine, tryptophan and threonine are more commonly found in β-pleated sheets. Glycine, serine, aspartic acid, asparagine, and proline are commonly found in turns. Some preferred substitutions may be made among the following groups: (i) S and T; (ii) P and G; and (iii) A, V, L and I. Given the known genetic code, and recombinant and synthetic DNA techniques, the skilled scientist readily can construct DNAs encoding the conservative amino acid variants. In one particular example, amino acid position 3 in SEQ ID NOS: 5, 6, 7, and/or 8 can be changed from a Q to an E.
[0051] As used herein, "sequence identity" between two polypeptide sequences indicates the percentage of amino acids that are identical between the sequences. "Sequence similarity" indicates the percentage of amino acids that either are identical or that represent conservative amino acid substitutions. Preferred polypeptide sequences have a sequence identity in the CDR regions of at least 60%, more preferably, at least 70% or 80%, still more preferably at least 90% and most preferably at least 95%. Preferred antibodies also have a sequence similarity in the CDR regions of at least 80%, more preferably 90% and most preferably 95%. Preferred polypeptide sequences have a sequence identity in the variable regions of at least 60%, more preferably, at least 70% or 80%, still more preferably at least 90% and most preferably at least 95%. Preferred antibodies also have a sequence similarity in the variable regions of at least 80%, more preferably 90% and most preferably 95%. DNA molecules of the invention [0052] The present disclosure also relates to uses of DNA molecules that encode an antibody. These sequences includethose DNA molecules set forth in Figures 1a and 2a.
[0053] The skilled worker will recognize that DNA can be used to identify its complement and, since DNA is double stranded, its equivalent or homolog, using nucleic acid hybridization techniques. It also will be recognized that hybridization can occur with less than 100% complementarity. However, given appropriate choice of conditions, hybridization techniques can be used to differentiate among DNA sequences based on their structural relatedness to a particular probe. For guidance regarding such conditions see, Sambrook et al., 1989 (Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA) and Ausubel et al., 1995 (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Sedman, J. G., Smith, J. A., &amp; Struhl, K. eds. (1995). Current Protocols in Molecular Biology. New York: John Wiley and Sons).
[0054] Structural similarity between two polynucleotide sequences can be expressed as a function of "stringency" of the conditions under which the two sequences will hybridize with one another. As used herein, the term "stringency" refers to the extent that the conditions disfavor hybridization. Stringent conditions strongly disfavor hybridization, and only the most structurally related molecules will hybridize to one another under such conditions. Conversely, non-stringent conditions favor hybridization of molecules displaying a lesser degree of structural relatedness. Hybridization stringency, therefore, directly correlates with the structural relationships of two nucleic acid sequences. The following relationships are useful in correlating hybridization and relatedness (where Tm is the melting temperature of a nucleic acid duplex): a.
Tm= 69.3 + 0.41 (G+C)% b. The Tm of a duplex DNA decreases by 1 °C with every increase of 1 % in the number of mismatched base pairs. c. (Tm)g2- (Tm)gi = 18.5 1(^ιομ2/μ1 where μ1 and μ2 are the ionic strengths of two solutions.
[0055] Hybridization stringency is a function of many factors, including overall DNA concentration, ionic strength, temperature, probe size and the presence of agents which disrupt hydrogen bonding. Factors promoting hybridization include high DNA concentrations, high ionic strengths, low temperatures, longer probe size and the absence of agents that disrupt hydrogen bonding. Hybridization typically is performed in two phases: the "binding" phase and the "washing" phase.
[0056] First, in the binding phase, the probe is bound to the target under conditions favoring hybridization. Stringency is usually controlled at this stage by altering the temperature. For high stringency, the temperature is usually between 65°C and 70°C, unless short (< 20 nt) oligonucleotide probes are used. A representative hybridization solution comprises 6X SSC, 0.5% SDS, 5X Denhardt’s solution and 100 μg of nonspecific carrier DNA. See Ausubel et al., section 2.9, supplement 27 (1994). Of course, many different, yet functionally equivalent, buffer conditions are known. Where the degree of relatedness is lower, a lower temperature may be chosen. Low stringency binding temperatures are between about 25°C and 40°C. Medium stringency is between at least about 40°C to less than about 65°C. High stringency is at least about 65°C.
[0057] Second, the excess probe is removed by washing. It is at this phase that more stringent conditions usually are applied. Hence, it is this "washing" stage that is most important in determining relatedness via hybridization. Washing solutions typically contain lower salt concentrations. One exemplary medium stringency solution contains 2X SSC and 0.1 % SDS. A high stringency wash solution contains the equivalent (in ionic strength) of less than about 0.2X SSC, with a preferred stringent solution containing about O.1X SSC. The temperatures associated with various stringencies are the same as discussed above for "binding." The washing solution also typically is replaced a number of times during washing. For example, typical high stringency washing conditions comprise washing twice for 30 minutes at 55° C. and three times for 15 minutes at 60° C.
[0058] Accordingly, the present disclosure includes the use of nucleic acid molecules that hybridize to the molecules of set forth in Figures 1a and 2a under high stringency binding and washing conditions, where such nucleic molecules encode an antibody or functional fragment thereof for uses as described herein. Preferred molecules (from an mRNA perspective) are those that have at least 75% or 80% (preferably at least 85%, more preferably at least 90% and most preferably at least 95%) homology or sequence identity with one of the DNA molecules described herein.
Functionally Equivalent Variants [0059] Yet another class of DNA variants the use of which is within the scope of the disclosure may be described with reference to the product they encode (see the peptides listed in figures 1b and 2b). These functionally equivalent genes are characterized by the fact that they encode the same peptide sequences found in figures 1b and 2b due to the degeneracy of the genetic code.
[0060] It is recognized that variants of DNA molecules provided herein can be constructed in several different ways. For example, they may be constructed as completely synthetic DNAs. Methods of efficiently synthesizing oligonucleotides in the range of 20 to about 150 nucleotides are widely available. See Ausubel etal., section 2.11, Supplement 21 (1993). Overlapping oligonucleotides may be synthesized and assembled in a fashion first reported by Khorana et al., J. Mol. Biol. 72:209-217 (1971); see also Ausubel et al., supra, Section 8.2. Synthetic DNAs preferably are designed with convenient restriction sites engineered at the 5’ and 3’ ends of the gene to facilitate cloning into an appropriate vector. [0061] As indicated, a method of generating variants is to start with one of the DNAs disclosed herein and then to conduct site-directed mutagenesis. See Ausubel etal., supra, chapter 8, Supplement 37 (1997). In atypical method, a target DNA is cloned into a single-stranded DNA bacteriophage vehicle. Single-stranded DNA is isolated and hybridized with an oligonucleotide containing the desired nucleotide alteration(s). The complementary strand is synthesized and the double stranded phage is introduced into a host. Some of the resulting progeny will contain the desired mutant, which can be confirmed using DNA sequencing. In addition, various methods are available that increase the probability that the progeny phage will be the desired mutant. These methods are well known to those in the field and kits are commercially available for generating such mutants.
Recombinant DNA constructs and expression [0062] The present disclosure further provides for the use of recombinant DNA constructs comprising one or more of the nucleotide sequences of the present disclosure. The recombinant constructs are used in connection with a vector, such as a plasmid or viral vector, into which a DNA molecule encoding an antibody for use in the disclosure is inserted. [0063] The encoded gene may be produced by techniques described in Sambrook et al., 1989, and Ausubel et al., 1989. Alternatively, the DNA sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in OLIGONUCLEOTIDE SYNTHESIS (1984, Gait, ed., IRL Press, Oxford), which is incorporated by reference herein in its entirety. Recombinant constructs of the invention are comprised with expression vectors that are capable of expressing the RNA and/or protein products of the encoded DNA(s). The vector may further comprise regulatory sequences, including a promoter operably linked to the open reading frame (ORF). The vector may further comprise a selectable marker sequence. Specific initiation and bacterial secretory signals also may be required for efficient translation of inserted target gene coding sequences.
[0064] The present disclosure further provides for uses of host cells containing at least one of the DNAs disclosed herein. The host cell can be virtually any cell for which expression vectors are available. It may be, for example, a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, but preferably is a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, electroporation or phage infection.
Bacterial Expression [0065] Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, if desirable, to provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus.
[0066] Bacterial vectors may be, for example, bacteriophage-, plasmid- or phagemid-based. These vectors can contain a selectable marker and bacterial origin of replication derived from commercially available plasmids typically containing elements of the well known cloning vector pBR322 (ATCC 37017). Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is de-repressed/induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
[0067] In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the protein being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies or to screen peptide libraries, for example, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable.
Therapeutic Methods [0068] Therapeutic methods involve administering to a subject in need of treatment a therapeutically effective amount of an antibody contemplated by the present disclosure. A "therapeutically effective" amount hereby is defined as the amount of an antibody that is of sufficient quantity to deplete CD38-positive cells in a treated area of a subject-either as a single dose or according to a multiple dose regimen, alone or in combination with other agents, which leads to the alleviation of an adverse condition, yet which amount is toxicologically tolerable. The subject may be a human or nonhuman animal (e.g., rabbit, rat, mouse, monkey or other lower-order primate).
[0069] An antibody for use in the invention might be co-administered with known medicaments, and in some instances the antibody might itself be modified. For example, an antibody could be conjugated to an immunotoxin or radioisotope to potentially further increase efficacy.
[0070] Disorders and conditions particularly suitable for treatment with an antibody are multiple myeloma (MM) and other haematological diseases, such as chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), acute myelogenous leukemia (AML), and acute lymphocytic leukemia (ALL). An antibody also might be used to treat inflammatory disease such as rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE).
[0071] To treat any of the foregoing disorders, pharmaceutical compositions for use in accordance with the present invention may be formulated in a conventional manner using one or more physiologically acceptable carriers or excipients. An antibody for use in the invention can be administered by any suitable means, which can vary, depending on the type of disorder being treated. Possible administration routes include parenteral (e.g., intramuscular, intravenous, intraarterial, intraperitoneal, orsubcutaneous), intrapulmonary and intranasal, and, if desired for local immunosuppressive treatment, intralesional administration. In addition, an antibody for use in the invention might be administered by pulse infusion, with, e.g., declining doses of the antibody. Preferably, the dosing is given by injections, most preferably intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic. The amount to be administered will depend on a variety of factors such as the clinical symptoms, weight of the individual, whether other drugs are administered. The skilled artisan will recognize that the route of administration will vary depending on the disorder or condition to be treated.
[0072] Determining a therapeutically effective amount of the novel polypeptidelargely will depend on particular patient characteristics, route of administration, and the nature of the disorder being treated. General guidance can be found, for example, in the publications of the International Conference on Harmonisation and in REMINGTON’S PHARMACEUTICAL SCIENCES, chapters 27 and 28, pp. 484-528 (18th ed., Alfonso R. Gennaro, Ed., Easton, Pa.: Mack Pub. Co., 1990). More specifically, determining a therapeutically effective amount will depend on such factors as toxicity and efficacy of the medicament. Toxicity may be determined using methods well known in the art and found in the foregoing references. Efficacy may be determined utilizing the same guidance in conjunction with the methods described below in the Examples.
Diagnostic Methods [0073] CD38 is highly expressed on hematological cells in certain malignancies; thus, an anti-CD38 antibody may be employed in order to image or visualize a site of possible accumulation of malignant cells in a patient. In this regard, an antibody can bedetectably labeled, through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.) fluorescent labels, paramagnetic atoms, etc. Procedures for accomplishing such labeling are well known to the art. Clinical application of antibodies in diagnostic imaging are reviewed by Grossman, Η. B., Urol. Clin. North Amer. 13:465-474 (1986)), Unger, E. C. et al., Invest. Radiol. 20:693-700 (1985)), and Khaw, B. A. et al., Science 209:295-297 (1980)). Preferred antibodies or antigen-binding regions for use as a diagnostic compound comprise a variable heavy chain sequence selected from the group consisting of SEQ ID NO: 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105 and 106 and/or a variable light chain sequence selected from the group consisting of SEQ ID NO: 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 109 and 110.
[0074] The detection of foci of such detectably labeled antibodies might be indicative of a site of tumor development, for example. In one embodiment, this examination is done by removing samples of tissue or blood and incubating such samples in the presence of the detectably labeled antibodies. In a preferred embodiment, this technique is done in a non-invasive manner through the use of magnetic imaging, fluorography, etc. Such a diagnostic test may be employed in monitoring the success of treatment of diseases, where presence or absence of CD38-positive cells is a relevant indicator. The disclosure also contemplates the use of an anti-CD38 antibody, as described herein for diagnostics in an ex vivo setting.
Therapeutic And Diagnostic Compositions [0075] The antibodies for use in the present disclosure can be formulated according to known methods to prepare pharmaceutically useful compositions, wherein an antibody is combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation are described, for example, in REMINGTON’S PHARMACEUTICAL SCIENCES (18th ed., Alfonso R. Gennaro, Ed., Easton, Pa.: Mack Pub. Co.,1990). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the antibodies for use in the present disclosure, together with a suitable amount of carrier vehicle. Preferred antibodies or antigen-binding regions of the disclosure for use as a diagnostic compound comprise a variable heavy chain sequence selected from the group consisting of SEQ ID NO: 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105 and 106 and/or a variable light chain sequence selected from the group consisting of SEQ ID NO: 46, 47, 48, 49, 50, 51,52, 53, 54, 55, 56, 57, 58, 59, 60, 109 and 110. [0076] Preparations may be suitably formulated to give controlled-release of the active compound. Controlled-release preparations may be achieved through the use of polymers to complex or absorb anti-CD38 antibody. The controlled delivery may be exercised by selecting appropriate macromolecules (for example polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinyl-acetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate) and the concentration of macromolecules as well as the methods of incorporation in order to control release. Another possible method to control the duration of action by controlled release preparations is to incorporate anti-CD38 antibody into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethyl-cellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in Remington’s Pharmaceutical Sciences (1980).
[0077] The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules, or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily oraqueous vehicles, and may contain formulatory agentssuch assuspending, stabilizing and/ordispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
[0078] The compositions may, if desired, be presented in a pack or dispenser device, which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.
EXAMPLES
Cell-lines [0079] The following cell-lines were obtained from the European Collection of Cell Cultures (ECACC), the German Collection of Microorganisms (DSMZ) or the American Type Culture collection (ATCC): hybridoma cell line producing the CD38 mouse IgG 1 monoclonal antibody OKT10 (ECACC, #87021903), Jurkat cells (DSMZ, ACC282), LP-1 (DSMZ, ACC41), RPMI8226 (ATCC, CCL-155), HEK293 (ATCC, CRL-1573), CHO-K1 (ATCC, CRL-61), Raji (ATCC, CCL-86), and OPM2 (DSMZ, ACC50).
Cells and culture-conditions [0080] All cells were cultured under standardized conditions at 37°C and 5% CO2 in a humidified incubator. The celllines LP-1, RPMI8226, Jurkat and Raji were cultured in RPMI1640 (Pan biotech GmbH, #P04-16500) supplemented with 10 % FCS (PAN biotech GmbH, #P30-3302), 50 U/ml penicillin, 50 μg/ml streptomycin (Gibco, #15140-122) and 2 mM glutamine (Gibco, #25030-024) and, in case of Jurkat- and Raji-cells, additionally 10 mM Hepes (Pan biotech GmbH, #P05-01100) and 1 mM sodium pyruvate (Pan biotech GmbH, # P04-43100) had to be added.
[0081] CHO-K1 and HEK293 were grown in DMEM (Gibco, #10938-025) supplemented with 2 mM glutamine and 10% FCS. Stable CD38 CHO-K1 transfectants were maintained in the presence of G418 (PAA GmbH, P11-012) whereas for HEK293 the addition of 1mM sodium-pyruvate was essential. After transient transfection of HEK293 the 10% FCS was replaced by Ultra low IgG FCS (Invitrogen, #16250-078). The cell-line OKT10 was cultured in IDMEM (Gibco, #31980-022), supplemented with 2 mM glutamine and 20 % FCS.
Preparation of single cell suspensions from peripheral blood [0082] All blood samples were taken after informed consent. Peripheral blood mononuclear cells (PBMC) were isolated by Histopaque®-1077 (Sigma) according to the manufacturer’s instructions from healthy donors. Red blood cells were depleted from these cell suspensions by incubation in ACK Lysis Buffer (0.15 M NH4CI, 10 mM KHCO3, 0.1 M EDTA) for 5 min at RT or a commercial derivative (Bioscience, #00-4333). Cells were washed twice with PBS and then further processed for flow cytometry or ADCC (see below).
Flow cytometry ("FACS") [0083] All stainings were performed in round bottom 96-well culture plates (Nalge Nunc) with 2 x 105 cells per well. Cells were incubated with Fab or IgG antibodies at the indicated concentrations in 50 μΙ FACS buffer (PBS, 3% FCS, 0.02% NaN3) for 40 min at 4°C. Cells were washed twice and then incubated with R-Phycoerythrin (PE) conjugated goat-anti-human or goat-anti-mouse IgG (H+L) F(ab’)2 (Jackson Immuno Research), diluted 1:200 in FACS buffer, for 30 min at 4°C. Cells were again washed, resuspended in 0.3 ml FACS buffer and then analyzed by flow cytometry in a FACSCalibur (Becton Dickinson, San Diego, CA).
For FACS based Scatchard analyses RPMI8226 cells were stained with at 12 different dilutions (1:2n) starting at 12.5 μg/ml (IgG) final concentration. At least two independent measurements were used for each concentration and KD values extrapolated from median fluorescence intensities according to Chamow et al. (1994).
Surface plasmon resonance [0084] The kinetic constants kon and koffwere determined with serial dilutions of the respective Fab binding to covalently immobilized CD38-Fcfusion protein using the BIAcore 3000 instrument (Biacore, Uppsala, Sweden). Forcovalentantigen immobilization standard EDC-NHS amine coupling chemistry was used. For direct coupling ofCD38 Fc-fusion protein CM5 senor chips (Biacore) were coated with -600-700 RU in 10 mM acetate buffer, pH 4.5. For the reference flow cell a respective amount of HSA (human serum albumin) was used. Kinetic measurements were done in PBS (136 mM NaCI, 2.7 mM KCI, 10mM Na2HPO4,1.76 mM KH2PO4 pH 7.4) at a flow rate of 20 μΙ/min using Fab concentration range from 1.5-500 nM. Injection time for each concentration was 1 min, followed by 2 min dissociation phase. For regeneration 5 μΙ 10mM HCI was used. All sensograms were fitted locally using BIA evaluation software 3.1 (Biacore). EXAMPLE 1: Antibody Generation from HuCAL Libraries [0085] For the generation of therapeutic antibodies against CD38, selections with the MorphoSys HuCAL GOLD® phage display library were carried out. HuCAL GOLD® is a Fab library based on the HuCAL® concept (Knappik et al., 2000; Krebs et al., 2001), in which all six CDRs are diversified, and which employs the CysDisplay™ technology for linking Fab fragments to the phage surface (Lohning, 2001). A. Phagemid rescue, phage amplification and purification [0086] HuCAL GOLD® phagemid library was amplified in 2 x TY medium containing 34 μg/ml chloramphenicol and 1 % glucose (2 x TY-CG). After helper phage infection (VCSM13) at an OD600 of 0.5 (30 min at 37°C without shaking; 30 min at 37°C shaking at 250 rpm), cells were spun down (4120 g; 5 min; 4°C), resuspended in 2xTY/ 34 μg/ml chloramphenicol /50 μg/ml kanamycin and grown overnight at 22°C. Phages were PEG-precipitated from the supernatant, resuspended in PBS/20 % glycerol and stored at-80°C. Phage amplification between two panning rounds was conducted as follows: mid-log phase TG1 cells were infected with eluted phages and plated onto LB-agar supplemented with 1 % of glucose and 34 μg/ml of chloramphenicol (LB-CG). After overnight incubation at 30°C, colonies were scraped off, adjusted to an OD600 of 0.5 and helper phage added as described above. B. Pannings with HuCAL GOLD® [0087] For the selections HuCAL GOLD® antibody-phages were divided into three pools corresponding to different VH master genes (pool 1: VHI/δλκ, pool 2: VH3 λκ, pool 3: VH2/4/6 λκ). These pools were individually subjected to 3 rounds of whole cell panning on CD38-expressing CHO-K1 cells followed by pH-elution and a post-adsorption step on CD38-negative CHO-K1-cells for depletion of irrelevant antibody-phages. Finally, the remaining antibody phages were used to infect E. coli TG1 cells. After centrifugation the bacterial pellet was resuspended in 2 x TY medium, plated on agar plates and incubated overnight at 30°C. The selected clones were then scraped from the plates, phages were rescued and amplified. The second and the third round of selections were performed as the initial one.
[0088] The Fab encoding inserts of the selected HuCAL GOLD® phages were subcloned into the expression vector pMORPH®x9_Fab_FS (Rauchenbergeret al., 2003) to facilitate rapid expression of soluble Fab. The DNA of the selected clones was digested with Xbal and EcoRI thereby cutting out the Fab encoding insert (ompA-VLCL and phoA-Fd), and cloned into the Xbal / EcoRI cut vector pMORPH®x9_Fab_FS. Fab expressed in this vector carry two C-terminal tags (FLAG™ and Strep-tag® II) for detection and purification. EXAMPLE 2: Biological assays [0089] Antibody dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity was measured according to a published protocol based on flow-cytometry analysis (Naundorf et al., 2002) as follows: ADCC: [0090] For ADCC measurements, target cells (T) were adjusted to 2.0E+05 cells/ml and labeled with 100 ng/ml Calcein AM (Molecular Probes, C-3099) in RPMI1640 medium (Pan biotech GmbH) for 2 minutes at room temperature. Residual calcein was removed by 3 washing steps in RPMI1640 medium. In parallel PBMC were prepared as source for (natural killer) effector cells (E), adjusted to 1.0E+07 and mixed with the labeled target cells to yield a final E:T-ratio of 50:1 or less, depending on the assay conditions. Cells were washed once and the cell-mix resuspended in 200 μΙ RPMI1640 medium containing the respective antibody at different dilutions. The plate was incubated for 4 hrs under standardized conditions at 37°C and 5% CO2 in a humidified incubator. Prior to FACS analysis cells were labeled with propidium-iodide (PI) and analyzed by flow-cytometry (Becton-Dickinson). Between 50.000 and 150.000 events were counted for each assay.
[0091] The following equation gave rise to the killing activity [in %]:
EDA ----------- x 100 ela + eda with EDA = events dead cells (calcein + PI stained cells), and ELA = events living cells (calcein stained cells) CDC: [0092] For CDC measurements, 5.0E+04 CD38 CHO-K1 transfectants were added to a microtiter well plate (Nunc) together with a 1:4 dilution of human serum (Sigma, #S-1764) and the respective antibody. All reagents and cells were diluted in RPMI1640 medium (Pan biotech GmbH) supplemented with 10% FCS. The reaction-mix was incubated for 2 hrs under standardized conditions at 37°C and 5% CO2 in a humidified incubator. As negative controls served either heat-inactivated complement or CD38-transfectants without antibody. Cells were labeled with PI and subjected to FACS-analysis.
[0093] In total 5000 events were counted and the number of dead cells at different antibody concentrations used for the determination of EC50 values. The following equation gave rise to the killing activity [in %]:
EDC ----------- x 100
ELC + EDC with EDC = events dead cells (PI stained cells), and ELC = events living cells (unstained) [0094] Cytotoxicity values from a total of 12 different antibody-dilutions (1:2n) in triplicates were used in ADCC and duplicates in CDC for each antibody in order obtain EC-50 values with a standard analysis software (PRISM®, Graph Pad Software). EXAMPLE 3: Generation of stable CD38-transfectants and CD38 Fc-fusion proteins [0095] In order to generate CD38 protein for panning and screening two different expression systems had to be established. The first strategy included the generation of CD38-Fc-fusion protein, which was purified from supernatants after transient transfection of HEK293 cells. The second strategy involved the generation of a stable CHO-K1 -cell line for high CD38 surface expression to be used for selection of antibody-phages via whole cell panning.
[0096] As an initial step Jurkat cells (DSMZ ACC282) were used for the generation of cDNA (Invitrogen) followed by
amplification of the entire CD38-coding sequence using primers complementary to the first 7 and the last 9 codons of CD38, respectively (primer MTE001 &amp; MTE002rev; Table 4). Sequence analysis of the CD38-insert confirmed the published amino acid sequence by Jackson et al. (1990) except for position 49 which revealed a glutamine instead of a tyrosine as described by Nata et al. (1997). For introduction of restriction endonuclease sites and cloning into different derivatives of expression vector pcDNA3.1 (Stratagene), the purified PCR-product served as a template for the reamplification of the entire gene (primers MTE006 &amp; MTE007rev, Table 4) or a part (primers MTE004 &amp; MTE009rev, Table 4) of it. In the latter case a fragment encoding for the extracellular domain (aa 45 to 300) was amplified and cloned in frame between a human Vkappa leader sequence and a human Fc-gamma 1 sequence. This vector served as expression vector for the generation of soluble CD38-Fc fusion-protein. Another pcDNA3.1-derivative without leader-sequence was used for insertion of the CD38 full-length gene. In this case a stop codon in front of the Fc-coding region and the missing leader-sequence gave rise to CD38-surface expression. HEK293 cells were transiently transfected with the Fc-fusion protein vector for generation of soluble CD38 Fc-fusion protein and, in case of the full-length derivative, CHO-K1-cells were transfected for the generation of a stable CD38-expressing cell line.
Table 4:
EXAMPLE 4: Cloning, expression and purification of HuCAL® lgG1: [0097] In order to express full length IgG, variable domain fragments of heavy (VH) and light chains (VL) were subcloned from Fab expression vectors into appropriate MORPH®_hlg vectors (see Figures 7 to 9). Restriction endonuclease pairs Blpl/Mfel (insert-preparation) and BIpl/EcoRI (vector-preparation) were used for subcloning of the VH domain fragment into pMORPH®_hlgG1. Enzyme-pairs EcoRV/Hpal (lambda-insert) and EcoRV/BsiWI (kappa-insert) were used for subcloning of the VL domain fragment into the respective pMORPH®_hlgK_1 or pMORPH®_h_lgX_1 vectors. Resulting IgG constructs were expressed in HEK293 cells (ATCC CRL-1573) by transient transfection using standard calcium phosphate -DNA coprecipitation technique.
[0098] IgGs were purified from cell culture supernatants by affinity chromatography via Protein A Sepharose column. Further down stream processing included a buffer exchange by gel filtration and sterile filtration of purified IgG. Quality control revealed a purity of >90 % by reducing SDS-PAGE and >90 % monomeric IgG as determined by analytical size exclusion chromatography. The endotoxin content of the material was determined by a kinetic LAL based assay (Cambrex European Endotoxin Testing Service, Belgium). EXAMPLE 5: Generation and production of chimeric OKT10 (chOKTIO; SEQ ID NOS: 72 and 73) [0099] For the construction of chOKTIO the mouse VH and VL regions were amplified by PCR using cDNA prepared from the murine OKT10 hybridoma cell line (ECACC #87021903). A set of primers was used as published (Dattamajumdar et al., 1996; Zhou et al., 1994). PCR products were used forTopo-cloning (Invitrogen; pCRII-vector) and single colonies subjected to sequence analysis (M13 reverse primer) which revealed two different kappa light chain sequences and one heavy chain sequence. According to sequence alignments (EMBL-nucleotide sequence database) and literature (Krebber et al, 1997) one of the kappa-sequence belongs to the intrinsic repertoire of the tumor cell fusion partner X63Ag8.653 and hence does not belong to OKT10 antibody. Therefore, only the new kappa sequence and the single VH-fragment was used for further cloning. Both fragments were reamplified for the addition of restriction endonuclease sites followed by cloning into the respective pMORPH® IgG 1-expression vectors. The sequences for the heavy chain (SEQ ID NO: 72) and light chain (SEQ ID NO: 73) are given in Fig. 6. HEK293 cells were transfected transiently and the supernatant analyzed in FACS for the chimeric QKT10 antibody binding to the CD38 over-expressing Raji cell line (ATCC).
Example 6: Cross reactivity analysis by FACS (MOR 03087 and MOR 03088) 1. Materials and Methods: [0100] Figures 11 and 12 show FACS analyses of lymphocytes and erythrocytes: EDTA-treated blood samples were obtained from healthy humans (after obtaining informed consent) and from non human primates (Rhesus, Cynomolgus and Marmoset) and were subjected to density gradient centrifugation using the Histopaque cell separation system according to the instructions of the supplier (Sigma). For FACS-analysis, cells from the interphase (PBMC-fraction) and pellet (Erythrocyte-fraction) were incubated with anti-CD38 HuCAL® antibodies in different formats An overview of cross reactivity profiles of different anti CD38 antibodies is shown in Figure 13 2. Summary and conclusion: [0101] The results show that among all CD38 antibodies only MOR03087 and MOR03088 showed cross-reactivity to marmoset PBMCs. Surprisingly, CD38-expression on marmoset erythrocytes is almost not detectable as compared to the strong expression on cynomolgus and rhesus erythrocytes. Thus, the CD38 expression on marmoset erythrocytes and PBMCs is more reflecting the human situation, where CD38 expression is low on erythrocytes and moderate to high on PBMCs. Marmoset is therefore considered to be suited as a model to study toxicity of molecules binding to CD38. [0102] Based on the above study, it was decided to further optimize the binders MOR 03087 and MOR 03088, as described elsewhere in the specification, see e.g. paragraph relating to "Antibodies for use in the invention". A person skilled in the art would expect that also the derivative antibodies of the parentals would show a comparable cross reactivity profile.
References: [0103]
Antonelli, A., Baj., G., Marchetti., P., Fallahi, P., Surico, N., Pupilli, C., Malavasi, F. , Ferrannini, P. (2001). Human anti-CD38 autoantibodies raise intracellular calcium and stimulate insulin release in human pancreatic islets. Diabetes 50: 985-991
Ausiello C.M., Urbani F., Lande R., la Saia A., Di Carlo B., Baj G., Surico N., Hilgers J., Deaglio S., Funaro A., Malavasi F. (2000) Functional topography of discrete domains of human CD38. Tissue Antigens. 2000 Dec;56(6):539-47.
Chamow, S.M., Zhang, D.Z., Tan.X.Y, Mathre, S.M., Marsters, S.A., Peers, D.H., Byrn, R.A., Ashknazi, A., Junghans, R.P (1994). humanized, bispecific immunoadhesin-antibody that retargets CD3+ effectors to kill HIV-1-infected cells. J Immunol. 1994 Nov 1 ;153(9):4268-80
Dattamajumdar, A.K., Jacobsen, D.P., Hood, L.E., Osman, G.E. (1996). Rapid cloning of rearranged mouse immunoglobulin variable genes. Immunogentetics 43, 141-151
Ellis J. H., Barber, K. A., Tutt, A., Hale, C., Lewis, A. P., Glennie, M. J., Stevenson, G. T., and Crowe, J. (1995). Engineered anti-CD38 monoclonal antibodies for immunotherapy of multiple myeloma. J. Immunol.155:925-937.
Ferrero, E., Orciani, M., Vacca, P., Ortolan, E., Crovella, S., Titti, F., Saccucci, F., Malavasi, F. (2004). Characterization and phylogenetic epitope mapping of CD38 ADPR cyclase in the cynomolgus macaque. BMC Immunology 5:21
Flavell, D. J., Boehm, D. A., Noss, A., Warnes, S. L., and Flavell, S. U. Therapy of human T-cell acute lymphoblastic leukaemia with a combination of anti-CD7 and anti-CD38-saporin immunotoxins is significantly better than therapy with each individual immunotoxin, Br. J. Cancer. 84:571-578 (2001).
Funaro, A., Spagnoli, G.C., Ausiello, C.M., Alessio, M., Roggero, S., Delia, D., Zaccolo, M., and Malavasi, F. (1990) Involvement of the multilineage CD38 molecule in a unique pathway of cell activation and proliferation. J. Immunol. 145, 2390-2396.
Golay, J., Zaffaroni, Luisella, Vaccari, T., Lazzari, M., Borleri, G.-M., Bernasconi, S., Tedesco, F., Rambaldi, Al,
Introna, Μ. (2000). Biological response of B lymphoma to anti-CD20 monoclonal antibody in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 95: 3900-3908.
Hayashi, T.,Treon, S.P., Hideshima, T.,Tai, Y-T., Akiyama, M., Richardson, R., Chauhan, D., Grewal, I.S., Anderson, K.C. (2003). Recombinant humanized anti-CD40 monoclonal antibody triggers autologous antibody-dependent cell-mediated cytotoxicity against multiple myeloma. Br. J. Heamatol. 121,592-596.
Hoshino S., Kukimoto I., Kontani K., Inoue S., Kanda Y., Malavasi F., Katada T. (1997) Mapping of the catalytic and epitopic sites of human CD38/NAD+ glycohydrolase to a functional domain in the carboxyl terminus. J Immunol. 158(2):741-7.
Jackson D.G., Bell J.I. (1990) Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J Immunol. 144(7):2811-5.
Knappik.A., Ge,L., Honegger,A., Pack,P., Fischer,M., Wellnhofer.G., Hoess.A., Wolle.J., Pluckthun.A., and Virnekas.B. (2000). Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296, 57-86.
Kono, K., Takahashi, A., Ichihara, F., Sugai, H., Fujii, H., and Matsumoto, Y. (2002). Impaired antibody-dependent cellular cytotoxicity mediated by Herceptin in patients with gastritic cancer. Cancer Res. 62, 5813-5817.
Konopleva M., Estrov Z., Zhao S., Andreeff M., Mehta K. (1998) Ligation of cell surface CD38 protein with agonistic monoclonal antibody induces a cell growth signal in myeloid leukemia cells. J Immunol. 161(9):4702-8.
Krebber, A., Bornhauser, S., Burmester, J., Honegger, A., Willuda, J., Bossard, H.R., Pliickthun, A. (1997). Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Imm. Meth. 201, 35-55.
Krebs,B., Rauchenberger.R., Reiffert.S., Rothe.C., Tesar.M., Thomassen.E., Cao,M., Dreier,T., Fischer,D., Hoss,A., lnge,L., Knappik.A., Marget.M., Pack,P., Meng.X.Q., Schier.R., Sohlemann.P., Winter,J., Wolle.J., and Kretzschmar.T. (2001). High-throughput generation and engineering of recombinant human antibodies. J Immunol Methods 254, 67-84.
Lohning, C. (2001). Novel methods for displaying (poly)peptides/proteins on bacteriophage particles via disulfide bonds. WO 01/05950.
Malavasi, F., Caligaris-Cappio, F., Milanese, C., Dellabona, P., Richiardi, P., Carbonara, A. O. (1984). Characterization of a murine monoclonal antibody specific for human early lymphohemopoietic cells. Hum. Immunol. 9: 9-20
Maloney, D. G., Smith, B., and Rose, A. (2002). Rituximab: Mechanism of Action and Resistance. Sem. Oncol. 29,2-9.
Marchetti, P., Antonelli, A., Lupi, R., Marselli, L., Fallahi, P., Nesti, C., Baj, G., Ferrannini, E. (2002). Prolonged in vitro exposure to autoantibodies against CD38 impairs the function and survival of human pancreatic islets. Diabetes 51,474-477.
Mehta, K., Ocanas, L., Malavasi, f., Marks; J.W., Rosenblum, M.G (2004). Retinoic acid-induced CD38 antigen as a target for immunotoxin-mediated killing of leukemia cells. Mol. Cancer Ther. 3, 345-352
Namba, M., Otsuki, T., Mori, M., Togawa, A., Wada, H., Sugihara, T., Yawata, Y., Kimoto, T. (1989). Establishment of five human myeloma cell lines. In Vitro Cell Dev. Biol. 25: 723.
Nata K., Takamura T., Karasawa T., Kumagai T., Hashioka W., Tohgo A., Yonekura H., Takasawa S., Nakamura S., Okamoto H. (1997). Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene 186(2):285-92.
Naundorf, S., Preithner, S., Mayer, P., Lippold, S., Wolf, A., Hanakam, F., Fichtner, I., Kufer, P., Raum, T., Riethmtiller, G., Baeuerle, P.A., Dreier, T. (2002). Int. J. Cancer 100, 101-110.
Pliickthun A, and Pack P. (1997) New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology 3(2):83-105.
Rauchenberger R., Borges E., Thomassen-Wolf E., Rom E., Adar R., Yaniv Y., Malka M., Chumakov I., Kotzer S., Resnitzky D., Knappik A., Reiffert S., Prassler J., Jury K., Waldherr D., Bauer S., Kretzschmar T., Yayon A., Rothe C. (2003). Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. J Biol Chem. 278(40):38194-205.
Reff, M.E., Carner, K., Chambers, K.S., Chinn, P.C., Leonard, J.E., Raab, R., Newman, R.A., Hanna, N., Anderson, D. R. (1994). Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435-445
Santin, A.D., Bellone, S., Gokden, M., Palmieri, M., Dunn, D., Agha, J., Roman, J.J., Hutchins, L., Pecorelli, S., O’Brian, T., Cannon, M.J., Parham, G.P. (2002). Overexpression of HER-2/Neu in Uterine serous papillary cancer. Cl. Cancer Res. 8: 1271-1279.
Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M., Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., Hanai, N., Shitara, K. (2003). The absence offucose but Not the presence of galactose or bisectin N-Acteylglucosamine of human IgG 1 complex-type oligoscaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466-3473.
Zhou, H., Fisher, R.J., Papas, T.S. (1994). Optimization of primer sequences for mouse scFv repertoire display library construction. Nucleic Acids Res. 22: 888-889.
SEQUENCE LISTING
[0104]
<110> MORPHOSYS AG <120> GENERATION AND PROFILING OF FULLY HUMAN HUCAL GOLD-DERIVED THERAPEUTIC ANTIBODIES SPECIFIC FOR HUMAN CD38 <130> M101299PCEPT1 <140> Divisioanl of EP 06806243.9-1405 based on PCT/EP2006/009889 <141> 2006-10-12 <150> 60/725,297 <151> 2005-10-12 <160> 139 <170> Patentln version 3.5 <210> 1 <211> 363 <212> DNA <213> Homo sapiens <400> 1 caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg 60 agctgcaaag cctccggagg cactttttct tctaatgcta tttcttgggt gcgccaagcc 120 cctgggcagg gtctcgagtg gatgggcaat atctggccga tttttggcac tgcgaattac 180 gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240 atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtaatggt 300 tatcttgata ctaatactta tattgattat tggggccaag gcaccctggt gacggttagc 360 tea 363 <210> 2 <211> 360
<212> DNA <213> Homo sapiens <400> 2 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agetgegegg cctccggatt taccttttct gattatgeta tgtcttgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct atccgttatg atggtagcaa tacctattat 180 geggatageg tgaaaggccg ttttaccatt teaegtgata attegaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgeggaagat acggccgtgt attattgcgc gegttattat 300 tctggtattt atcagcatat tgattattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 3 <211> 369
<212> DNA <213> Homo sapiens <400> 3 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agetgegegg cctccggatt taccttttct tcttatgctc ttcattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagctct atctctggtc ttggtagcac tacctattat 180 geggatageg tgaaaggccg ttttaccatt teaegtgata attegaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgeggaagat acggccgtgt attattgcgc gcgttatcat 300 tatgagtatc attatttttc ttctggtttt gataattggg gccaaggcac cctggtgacg 360 gttagetea 369 <210> 4 <211> 351
<212> DNA <213> Homo sapiens <400>4 caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg 60 agctgcaaag cctccggata tacctttact ggttattata ttaattgggt ccgccaagcc 120 cctgggcagg gtctcgagtg gatgggctgg atctttccga atggtggctc tacgggttac 180 gcgcagaagt ttcagggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat 240 atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtggtaat 300 atttttattt ttgattattg gggccaaggc accctggtga cggttagctc a 351 <210> 5 <211> 360
<212> DNA <213> Homo sapiens <400> 5 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt tacctttact tcttattata tgcattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagctat atcgattctt ctggtagctc tacctattat 180 gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtcagctt 300 atgccttttg gtggttattt tgatgtttgg ggccaaggca ccctggtgac ggttagctca 360 <210> 6 <211> 360
<212> DNA <213> Homo sapiens <400> 6 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcggt atctctggtg atcctagcaa tacctattat 180 gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 7 <211> 363
<212> DNA <213> Homo sapiens <400>7 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttatgcta tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcggt atctcttctt ggggtagctc tacctattat 180 gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgaggat 300 ggttcttata tgactgatta ttttgcttat tggggccaag gcaccctggt gacggttagc 360 tea 363 <210> 8 <211> 372
<212> DNA <213> Homo sapiens <400> 8 caggtgcaat tgaaagaaag cggcccggcc ctggtgaaac cgacccaaac cctgaccctg 60 acctgtacct tttccggatt tagcctgtct tctgatggta tgggtgtggg ttggattcgc 120 cagccgcctg ggaaagccct cgagtggctg getettateg attgggatga tgataagcgt 180 tatagcacca gcctgaaaac gcgtctgacc attagcaaag ataettegaa aaatcaggtg 240 gtgctgacta tgaccaacat ggacccggtg gatacggcca cctattattg cgcgcgtttt 300 aattggtttt ategtettge ttttgttaat cctgatgttt ggggccaagg caccctggtg 360 acggttagct ca 372 <210> 9 <211> 366
<212> DNA <213> Homo sapiens <400> 9 caggtgcaat tgaaagaaag cggcccggcc ctggtgaaac cgacccaaac cctgaccctg 60 acctgtacct tttccggatt tagcctgtct aettetegtg ttggtgtgtc ttggattcgc 120 cagccgcctg ggaaagccct cgagtggctg gctcatatcg attggaatga tgataagtat 180 tatagcacca gcctgaaaac gcgtctgacc attagcaaag ataettegaa aaatcaggtg 240 gtgctgacta tgaccaacat ggacccggtg gatacggcca cctattattg egegegtgag 300 gategtette ttggtggtta tggttatgat gtttggggcc aaggcaccct ggtgacggtt 360 agetea 366 <210> 10 <211> 360
<212> DNA <213> Homo sapiens <400> 10 caggtgcaat tgcaagaaag tggtccgggc ctggtgaaac cgggcgaaac cctgagcctg 60 acctgcaccg tttccggagg cagcatttct ggtaattatt ggtcttggat tcgccaggcc 120 cctgggaagg gtctcgagtg gattggcgat tatcatggct ctacctatta taatccgagc 180 ctgaaaggcc gggtgaccat tagcgttgat acttcgaaaa accagtttag cctgaaactg 240 agcagcgtga cggcggaaga tacggccgtg tattattgcg cgcgtgagca gtatcattgg 300 ggtcttgctt ggactggttt tgataattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 11 <211> 354
<212> DNA <213> Homo sapiens <400> 11 caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt 60 agctgcaaag gttccggata ttccttttct acttcttggg ttggttgggt gcgccagatg 120 cctgggaagg gtctcgagtg gatgggcatt atcgatccgg atattagcta tacctcttat 180 tctccgagct ttcagggcca ggtgaccatt agcgcggata aaagcattag caccgcgtat 240 cttcaatgga gcagcctgaa agcgagcgat acggccatgt attattgcgc gcgttatctt 300 atgggtcttg gttatgatgt ttggggccaa ggcaccctgg tgacggttag ctca 354 <210> 12 <211> 363
<212> DNA <213> Homo sapiens <400> 12 caggtgcaat tgaaagaaag cggcccggcc ctggtgaaac cgacccaaac cctgaccctg 60 acctgtacct tttccggatt tagcctgtct tcttctggta tgtctgtgtc ttggattcgc 120 cagccgcctg ggaaagccct cgagtggctg gctcgtatct attctgatga ttctaagtct 180 tatagcacca gcctgaaaac gcgtctgacc attagcaaag atacttcgaa aaatcaggtg 240 gtgctgacta tgaccaacat ggacccggtg gatacggcca cctattattg cgcgcgtgct 300 gctcattgga atggtcctct ttttgatgtt tggggccaag gcaccctggt gacggttagc 360 tea 363 <210> 13 <211> 351
<212> DNA <213> Homo sapiens <400> 13 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agetgegegg cctccggatt taccttttct aattatteta tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagctat atctatggtg gtggtagcta tacctattat 180 geggatageg tgaaaggccg ttttaccatt teaegtgata attegaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgeggaagat acggccgtgt attattgege gegteagget 300 ggtatgtatt ttgatgtttg gggccaaggc accctggtga cggttagctc a 351 <210> 14 <211> 372
<212> DNA <213> Homo sapiens <400> 14 caggtgcaat tgcaagaaag tggtccgggc ctggtgaaac cgggcgaaac cctgagcctg 60 acctgcaccg tttccggagg cagcattggt tattattgga attggatteg ccaggcccct 120 gggaagggtc tcgagtggat tggccatatc tctcgttttg gctctaccaa ttataatccg 180 agcctgaaag gccgggtgac cattagcgtt gataettega aaaaccagtt tagcctgaaa 240 ctgagcagcg tgaeggegga agataeggee gtgtattatt gegegeggga gtatactggt 300 aatgattggt ategteagea gggtcagcat getgattatt ggggccaagg caccctggtg 360 acggttagct ca 372 <210> 15 <211> 354
<212> DNA <213> Homo sapiens <400> 15 caggtgcaat tgaaagaaag cggcccggcc ctggtgaaac cgacccaaac cctgaccctg 60 acctgtacct tttccggatt tagcctgtct aattctggtg ttggtgtggg ttggattcgc 120 cagccgcctg ggaaagccct cgagtggctg gctgatatct attctgatac tactaagcgt 180 tatagcacca gcctgaaaac gcgtctgacc attagcaaag atacttcgaa aaatcaggtg 240 gtgctgacta tgaccaacat ggacccggtg gatacggcca cctattattg cgcgcgttat 300 ggtgaggctt attttgatta ttggggccaa ggcaccctgg tgacggttag ctca 354 <210> 16 <211> 121
<212> PRT <213> Homo sapiens <400> 16
Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 15 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Asn 20 25 30
Ala lie Ser Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met 35 40 45
Gly Asn lie Trp Pro lie Phe Gly Thr Ala Asn Tyr Ala Gin Lys Phe 50 55 60
Gin Gly Arg Val Thr lie Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asn Gly Tyr Leu Asp Thr Asn Thr Tyr lie Asp Tyr Trp Gly 100 105 110
Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 17 <211> 120
<212> PRT <213> Homo sapiens <400> 17
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30
Ala Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Arg Tyr Asp Gly Ser Asn Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Tyr Tyr Ser Gly lie Tyr Gin His lie Asp Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 18 <211> 123
<212> PRT <213> Homo sapiens <400> 18
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Ala Leu His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ser lie Ser Gly Leu Gly Ser Thr Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Tyr His Tyr Glu Tyr His Tyr Phe Ser Ser Gly Phe Asp Asn 100 105 110
Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 19 <211> 117
<212> PRT <213> Homo sapiens <400> 19
Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 15 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr 20 25 30
Tyr lie Asn Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met 35 40 45
Gly Trp lie Phe Pro Asn Gly Gly Ser Thr Gly Tyr Ala Gin Lys Phe 50 55 60
Gin Gly Arg Val Thr Met Thr Arg Asp Thr Ser lie Ser Thr Ala Tyr 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Gly Asn lie Phe lie Phe Asp Tyr Trp Gly Gin Gly Thr Leu 100 105 110
Val Thr Val Ser Ser 115 <210> 20 <211> 120
<212> PRT <213> Homo sapiens <400> 20
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Thr Ser Tyr 20 25 30
Tyr Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Tyr lie Asp Ser Ser Gly Ser Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Gin Leu Met Pro Phe Gly Gly Tyr Phe Asp Val Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 21 <211> 120
<212> PRT <213> Homo sapiens <400> 21
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Gly lie Ser Gly Asp Pro Ser Asn Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 22 <211> 121
<212> PRT <213> Homo sapiens <400> 22
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Ala Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Gly lie Ser Ser Trp Gly Ser Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Glu Asp Gly Ser Tyr Met Thr Asp Tyr Phe Ala Tyr Trp Gly 100 105 110
Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 23 <211> 124
<212> PRT <213> Homo sapiens <400> 23
Gin Val Gin Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gin 15 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Ser Asp 20 25 30
Gly Met Gly Val Gly Trp lie Arg Gin Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala Leu lie Asp Trp Asp Asp Asp Lys Arg Tyr Ser Thr Ser 50 55 60
Leu Lys Thr Arg Leu Thr lie Ser Lys Asp Thr Ser Lys Asn Gin Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Phe Asn Trp Phe Tyr Arg Leu Ala Phe Val Asn Pro Asp 100 105 110
Val Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 24 <211> 122
<212> PRT <213> Homo sapiens <400> 24
Gin Val Gin Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gin 15 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30
Arg Val Gly Val Ser Trp lie Arg Gin Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala His lie Asp Trp Asn Asp Asp Lys Tyr Tyr Ser Thr Ser 50 55 60
Leu Lys Thr Arg Leu Thr lie Ser Lys Asp Thr Ser Lys Asn Gin Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Glu Asp Arg Leu Leu Gly Gly Tyr Gly Tyr Asp Val Trp 100 105 110
Gly Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 25 <211> 120
<212> PRT <213> Homo sapiens <400> 25
Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Gly Glu 15 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser lie Ser Gly Asn 20 25 30
Tyr Trp Ser Trp lie Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp lie 35 40 45
Gly Asp Tyr His Gly Ser Thr Tyr Tyr Asn Pro Ser Leu Lys Gly Arg 50 55 60
Val Thr lie Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys Leu 65 70 75 80
Ser Ser Val Thr Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu 85 90 95
Gin Tyr His Trp Gly Leu Ala Trp Thr Gly Phe Asp Asn Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 26 <211> 118
<212> PRT <213> Homo sapiens <400> 26
Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 15 10 15
Ser Leu Lys lie Ser Cys Lys Gly Ser Gly Tyr Ser Phe Ser Thr Ser 20 25 30
Trp Val Gly Trp Val Arg Gin Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45
Gly lie lie Asp Pro Asp lie Ser Tyr Thr Ser Tyr Ser Pro Ser Phe 50 55 60
Gin Gly Gin Val Thr lie Ser Ala Asp Lys Ser lie Ser Thr Ala Tyr 65 70 75 80
Leu Gin Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95
Ala Arg Tyr Leu Met Gly Leu Gly Tyr Asp Val Trp Gly Gin Gly Thr 100 105 110
Leu Val Thr Val Ser Ser 115 <210> 27 <211> 121
<212> PRT <213> Homo sapiens <400> 27
Gin Val Gin Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gin 15 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Ser Ser 20 25 30
Gly Met Ser Val Ser Trp lie Arg Gin Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala Arg lie Tyr Ser Asp Asp Ser Lys Ser Tyr Ser Thr Ser 50 55 60
Leu Lys Thr Arg Leu Thr lie Ser Lys Asp Thr Ser Lys Asn Gin Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Ala Ala His Trp Asn Gly Pro Leu Phe Asp Val Trp Gly 100 105 110
Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 28 <211> 117
<212> PRT <213> Homo sapiens <400> 28
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 20 25 30
Ser Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Tyr lie Tyr Gly Gly Gly Ser Tyr Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Gin Ala Gly Met Tyr Phe Asp Val Trp Gly Gin Gly Thr Leu 100 105 110
Val Thr Val Ser Ser 115 <210> 29 <211> 124
<212> PRT <213> Homo sapiens <400> 29
Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Gly Glu 15 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser lie Gly Tyr Tyr 20 25 30
Trp Asn Trp lie Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp lie Gly 35 40 45
His lie Ser Arg Phe Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Gly 50 55 60
Arg Val Thr lie Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu Lys 65 70 75 80
Leu Ser Ser Val Thr Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg 85 90 95
Glu Tyr Thr Gly Asn Asp Trp Tyr Arg Gin Gin Gly Gin His Ala Asp 100 105 110
Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 30 <211> 118
<212> PRT <213> Homo sapiens <400> 30
Gin Val Gin Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gin 15 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Asn Ser 20 25 30
Gly Val Gly Val Gly Trp lie Arg Gin Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala Asp lie Tyr Ser Asp Thr Thr Lys Arg Tyr Ser Thr Ser 50 55 60
Leu Lys Thr Arg Leu Thr lie Ser Lys Asp Thr Ser Lys Asn Gin Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Tyr Gly Glu Ala Tyr Phe Asp Tyr Trp Gly Gin Gly Thr 100 105 110
Leu Val Thr Val Ser Ser 115 <210> 31 <211> 333
<212> DNA <213> Homo sapiens <400> 31 gatatcgcac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60 tcgtgtacgg gtactagcag cgatattggt gcttatgtgt cttggtacca gcagcatccc 120 gggaaggcgc cgaaacttat gatttatgag gtttcttctc gtccctcagg cgtgagcaac 180 cgttttagcg gatccaaaag cggcaacacc gcgagcctga ccattagcgg cctgcaagcg 240 gaagacgaag cggattatta ttgctcttct tatgatctta ctcctcctgg taaggtgttt 300 ggcggcggca cgaagttaac cgttcttggc cag 333 <210> 32 <211> 324
<212> DNA <213> Homo sapiens <400> 32 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatat tggtcattat tatgtttctt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat ttatggtgat aataatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg cgcttctgat gttggttctc ttgatgtgtt tggcggcggc 300 acgaagttaa ccgttcttgg ccag 324 <210> 33 <211> 330
<212> DNA <213> Homo sapiens <400> 33 gatatcgtgc tgacccagag cccggcgacc ctgagcctgt ctccgggcga acgtgcgacc 60 ctgagctgca gagcgagcca gactggttct acttcttatc tggcttggta ccagcagaaa 120 ccaggtcaag caccgcgtct attaatttat gatgcttcta agcgtgcaac tggggtcccg 180 gcgcgtttta gcggctctgg atccggcacg gattttaccc tgaccattag cagcctggaa 240 cctgaagact ttgcgactta ttattgccat cagtattata acgttcctca tacctttggc 300 cagggtacga aagttgaaat taaacgtacg 330 <210> 34 <211> 333
<212> DNA <213> Homo sapiens <400> 34 gatatcgtgc tgacccagcc gccttcagtg agtggcgcac caggtcagcg tgtgaccatc 60 tcgtgtagcg gcagcagcag caacattggt aataattatg tgtcttggta ccagcagttg 120 cccgggacgg cgccgaaact tctgatttat ggtgatgatc agcgtccctc aggcgtgccg 180 gatcgtttta gcggatccaa aagcggcacc agcgcgagcc ttgcgattac gggcctgcaa 240 agcgaagacg aagcggatta ttattgccag tcttatggta ctttttcttc ttttgtgttt 300 ggcggcggca cgaagttaac cgttcttggc cag 333 <210> 35 <211> 327
<212> DNA <213> Homo sapiens <400> 35 gatatccaga tgacccagag cccgtctagc ctgagcgcga gcgtgggtga tcgtgtgacc 60 attacctgca gagcgagcca gaatatttct cagtggctga attggtacca gcagaaacca 120 ggtaaagcac cgaaactatt aatttatggt gcttctaatt tgcaaagcgg ggtcccgtcc 180 cgttttagcg gctctggatc cggcactgat tttaccctga ccattagcag cctgcaacct 240 gaagactttg cgacttatta ttgccagcag tattatgatc ttcctaatac ctttggccag 300 ggtacgaaag ttgaaattaa acgtacg 327 <210> 36 <211> 327
<212> DNA <213> Homo sapiens <400> 36 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatct tcgtcattat tatgtttatt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat ttatggtgat tctaagcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ccagacttat actggtggtg cttctcttgt gtttggcggc 300 ggcacgaagt taaccgttct tggccag 327 <210> 37 <211> 321
<212> DNA <213> Homo sapiens <400> 37 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatat tggtcattat tatgtttctt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat ttattctgat tctaatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ccagtcttat aatggtactt atgtgtttgg cggcggcacg 300 aagttaaccg ttcttggcca g 321 <210> 38 <211> 330
<212> DNA <213> Homo sapiens <400> 38 gatatcgtgc tgacccagag cccggcgacc ctgagcctgt ctccgggcga acgtgcgacc 60 ctgagctgca gagcgagcca gtctgtttct tcttcttatc tggcttggta ccagcagaaa 120 ccaggtcaag caccgcgtct attaatttat ggtgcttctt ctcgtgcaac tggggtcccg 180 gcgcgtttta gcggctctgg atccggcacg gattttaccc tgaccattag cagcctggaa 240 cctgaagact ttgcggttta ttattgccag cagggttata attctccttt tacctttggc 300 cagggtacga aagttgaaat taaacgtacg 330 <210> 39 <211> 330
<212> DNA <213> Homo sapiens <400> 39 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgattctct tggttcttat tatgttcatt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat tggtgatgat actaagcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg cggttctcgt actggttata ataattcttt tgtgtttggc 300 ggcggcacga agttaaccgt tcttggccag 330 <210> 40 <211> 324
<212> DNA <213> Homo sapiens <400> 40 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatct tggtcattat tatgtttctt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat ttatgatgat tctgatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg cggtgcttat gctatgcata tgactgtgtt tggcggcggc 300 acgaagttaa ccgttcttgg ccag 324 <210> 41 <211> 339
<212> DNA <213> Homo sapiens <400> 41 gatatcgcac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60 tcgtgtacgg gtactagcag cgatgttggt gctattaatt atgtgtcttg gtaccagcag 120 catcccggga aggcgccgaa acttatgatt tatgatgtta ataagcgtcc ctcaggcgtg 180 ccggatcgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240 caagcggaag acgaagcgga ttattattgc ggttcttata ctatgcaggt tggttcttat 300 gtgtttggcg gcggcacgaa gttaaccgtt cttggccag 339 <210> 42 <211> 327
<212> DNA <213> Homo sapiens <400> 42 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatat tggtcattat tatgctcatt ggtaccagca gaaacccggg 120 caggcgccag ttgttgtgat ttatgatgat aatgatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ccaggcttat actggtgatg gtggtcgtgt gtttggcggc 300 ggcacgaagt taaccgttct tggccag 327 <210> 43 <211> 330
<212> DNA <213> Homo sapiens <400> 43 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatct tggttctaag gttgtttctt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat ttattatgat aataagcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ccagtcttat acttttgagt ctggttctgt tgtgtttggc 300 ggcggcacga agttaaccgt tcttggccag 330 <210> 44 <211> 324
<212> DNA <213> Homo sapiens <400> 44 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatct tggtcattat tatgttgatt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat ttatgctgat aataatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ctcttcttat tctcagcagt ctatggtgtt tggcggcggc 300 acgaagttaa ccgttcttgg ccag 324 <210> 45 <211> 330
<212> DNA <213> Homo sapiens <400> 45 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatct tggtaatttt tatgttcatt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat ttatgaggat tctaatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ctcttcttgg gatatgtatc gtactatttt tgtgtttggc 300 ggcggcacga agttaaccgt tcttggccag 330 <210> 46 <211> 111
<212> PRT <213> Homo sapiens <400> 46
Asp lie Ala Leu Thr Gin Pro Ala Ser Val Ser Gly Ser Pro Gly Gin 15 10 15
Ser lie Thr lie Ser Cys Thr Gly Thr Ser Ser Asp lie Gly Ala Tyr 20 25 30
Val Ser Trp Tyr Gin Gin His Pro Gly Lys Ala Pro Lys Leu Met lie 35 40 45
Tyr Glu Val Ser Ser Arg Pro Ser Gly Val Ser Asn Arg Phe Ser Gly 50 55 60
Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr lie Ser Gly Leu Gin Ala 65 70 75 80
Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr Asp Leu Thr Pro Pro 85 90 95
Gly Lys Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 110 <210> 47 <211> 108
<212> PRT <213> Homo sapiens <400> 47
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn lie Gly His Tyr Tyr Val 20 25 30
Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Gly Asp Asn Asn Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Ala Ser Asp Val Gly Ser Leu Asp Val 85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 <210> 48 <211> 110
<212> PRT <213> Homo sapiens <400> 48
Asp lie Val Leu Thr Gin Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 15 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Thr Gly Ser Thr Ser 20 25 30
Tyr Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu 35 40 45 lie Tyr Asp Ala Ser Lys Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Thr Tyr Tyr Cys His Gin Tyr Tyr Asn Val Pro 85 90 95
His Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg Thr 100 105 110 <210> 49 <211> 111
<212> PRT <213> Homo sapiens <400> 49
Asp lie Val Leu Thr Gin Pro Pro Ser Val Ser Gly Ala Pro Gly Gin 15 10 15
Arg Val Thr lie Ser Cys Ser Gly Ser Ser Ser Asn lie Gly Asn Asn 20 25 30
Tyr Val Ser Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45 lie Tyr Gly Asp Asp Gin Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala lie Thr Gly Leu Gin 65 70 75 80
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Gly Thr Phe Ser 85 90 95
Ser Phe Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 110 <210> 50 <211> 109
<212> PRT <213> Homo sapiens <400> 50
Asp lie Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 15 10 15
Asp Arg Val Thr lie Thr Cys Arg Ala Ser Gin Asn lie Ser Gin Trp 20 25 30
Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu lie 35 40 45
Tyr Gly Ala Ser Asn Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser Leu Gin Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Tyr Tyr Asp Leu Pro Asn 85 90 95
Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg Thr 100 105 <210> 51 <211> 109
<212> PRT <213> Homo sapiens <400> 51
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn Leu Arg His Tyr Tyr Val 20 25 30
Tyr Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Gly Asp Ser Lys Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gin Thr Tyr Thr Gly Gly Ala Ser Leu 85 90 95
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 <210> 52 <211> 107
<212> PRT <213> Homo sapiens <400> 52
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn lie Gly His Tyr Tyr Val 20 25 30
Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Ser Asp Ser Asn Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Asn Gly Thr Tyr Val Phe 85 90 95
Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 <210> 53 <211> 110
<212> PRT <213> Homo sapiens <400> 53
Asp lie Val Leu Thr Gin Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 15 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Ser 20 25 30
Tyr Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu 35 40 45 lie Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin Gly Tyr Asn Ser Pro 85 90 95
Phe Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg Thr 100 105 110 <210> 54 <211> 110
<212> PRT <213> Homo sapiens <400> 54
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Ser Leu Gly Ser Tyr Tyr Val 20 25 30
His Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Gly 35 40 45
Asp Asp Thr Lys Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gly Ser Arg Thr Gly Tyr Asn Asn Ser 85 90 95
Phe Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 110 <210> 55 <211> 108
<212> PRT <213> Homo sapiens <400> 55
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn Leu Gly His Tyr Tyr Val 20 25 30
Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gly Ala Tyr Ala Met His Met Thr Val 85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 <210> 56 <211> 113
<212> PRT <213> Homo sapiens <400> 56
Asp lie Ala Leu Thr Gin Pro Ala Ser Val Ser Gly Ser Pro Gly Gin 15 10 15
Ser lie Thr lie Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Ala lie 20 25 30
Asn Tyr Val Ser Trp Tyr Gin Gin His Pro Gly Lys Ala Pro Lys Leu 35 40 45
Met lie Tyr Asp Val Asn Lys Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr lie Ser Gly Leu 65 70 75 80
Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Ser Tyr Thr Met Gin 85 90 95
Val Gly Ser Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
Gin <210> 57 <211> 109
<212> PRT <213> Homo sapiens <400> 57
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn lie Gly His Tyr Tyr Ala 20 25 30
His Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Val Val lie Tyr 35 40 45
Asp Asp Asn Asp Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gin Ala Tyr Thr Gly Asp Gly Gly Arg 85 90 95
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 <210> 58 <211> 110
<212> PRT <213> Homo sapiens <400> 58
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn Leu Gly Ser Lys Val Val 20 25 30
Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Tyr Asp Asn Lys Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Thr Phe Glu Ser Gly Ser 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 110 <210> 59 <211> 108
<212> PRT <213> Homo sapiens <400> 59
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn Leu Gly His Tyr Tyr Val 20 25 30
Asp Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Ala Asp Asn Asn Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr Ser Gin Gin Ser Met Val 85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 <210> 60 <211> 110
<212> PRT <213> Homo sapiens <400> 60
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn Leu Gly Asn Phe Tyr Val 20 25 30
His Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Glu Asp Ser Asn Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Trp Asp Met Tyr Arg Thr lie 85 90 95
Phe Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 110 <210> 61 <211> 120
<212> PRT <213> Homo sapiens <400> 61
Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 15 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30
Ala lie Ser Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met 35 40 45
Gly Gly lie lie Pro lie Phe Gly Thr Ala Asn Tyr Ala Gin Lys Phe 50 55 60
Gin Gly Arg Val Thr lie Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 62 <211> 121
<212> PRT <213> Homo sapiens <400> 62
Gin Val Gin Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gin 15 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30
Gly Val Gly Val Gly Trp lie Arg Gin Pro Pro Gly Lys Ala Leu Glu 35 40 45
Trp Leu Ala Leu lie Asp Trp Asp Asp Asp Lys Tyr Tyr Ser Thr Ser 50 55 60
Leu Lys Thr Arg Leu Thr lie Ser Lys Asp Thr Ser Lys Asn Gin Val 65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95
Cys Ala Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly 100 105 110
Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 63 <211> 120
<212> PRT <213> Homo sapiens <400> 63
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Ala Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 64 <211> 119
<212> PRT <213> Homo sapiens <400> 64
Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 15 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser lie Ser Ser Tyr 20 25 30
Tyr Trp Ser Trp lie Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp lie 35 40 45
Gly Tyr lie Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60
Ser Arg Val Thr lie Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu 65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gin Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115 <210> 65 <211> 120
<212> PRT <213> Homo sapiens <400> 65
Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 15 10 15
Ser Leu Lys lie Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr 20 25 30
Trp lie Gly Trp Val Arg Gin Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45
Gly lie lie Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe 50 55 60
Gin Gly Gin Val Thr lie Ser Ala Asp Lys Ser lie Ser Thr Ala Tyr 65 70 75 80
Leu Gin Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95
Ala Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 66 <211> 110
<212> PRT <213> Homo sapiens <400> 66
Asp lie Val Leu Thr Gin Pro Pro Ser Val Ser Gly Ala Pro Gly Gin 15 10 15
Arg Val Thr lie Ser Cys Ser Gly Ser Ser Ser Asn lie Gly Ser Asn 20 25 30
Tyr Val Ser Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45 lie Tyr Asp Asn Asn Gin Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala lie Thr Gly Leu Gin 65 70 75 80
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gin Gin His Tyr Thr Thr Pro 85 90 95
Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 110 <210> 67 <211> 111
<212> PRT <213> Homo sapiens <400> 67
Asp lie Ala Leu Thr Gin Pro Ala Ser Val Ser Gly Ser Pro Gly Gin 15 10 15
Ser lie Thr lie Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30
Asn Tyr Val Ser Trp Tyr Gin Gin His Pro Gly Lys Ala Pro Lys Leu 35 40 45
Met lie Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr lie Ser Gly Leu 65 70 75 80
Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gin Gin His Tyr Thr Thr 85 90 95
Pro Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 110 <210> 68 <211> 107
<212> PRT <213> Homo sapiens <400> 68
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 25 30
Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gin Gin His Tyr Thr Thr Pro Pro Val 85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 100 105 <210> 69 <211> 108
<212> PRT <213> Homo sapiens <400> 69
Asp lie Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 15 10 15
Asp Arg Val Thr lie Thr Cys Arg Ala Ser Gin Gly lie Ser Ser Tyr 20 25 30
Leu Ala Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu lie 35 40 45
Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser Leu Gin Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin His Tyr Thr Thr Pro Pro 85 90 95
Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg 100 105 <210> 70 <211> 110
<212> PRT <213> Homo sapiens <400> 70
Asp lie Val Leu Thr Gin Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 15 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Ser 20 25 30
Tyr Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu 35 40 45 lie Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gin Gin His Tyr Thr Thr Pro 85 90 95
Pro Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg Thr 100 105 110 <210> 71 <211> 300
<212> PRT <213> Homo sapiens <400> 71
Met Ala Asn Cys Glu Phe Ser Pro Val Ser Gly Asp Lys Pro Cys Cys 15 10 15
Arg Leu Ser Arg Arg Ala Gin Leu Cys Leu Gly Val Ser lie Leu Val 20 25 30
Leu lie Leu Val Val Val Leu Ala Val Val Val Pro Arg Trp Arg Gin 35 40 45
Gin Trp Ser Gly Pro Gly Thr Thr Lys Arg Phe Pro Glu Thr Val Leu 50 55 60
Ala Arg Cys Val Lys Tyr Thr Glu lie His Pro Glu Met Arg His Val 65 70 75 80
Asp Cys Gin Ser Val Trp Asp Ala Phe Lys Gly Ala Phe lie Ser Lys 85 90 95
His Pro Cys Asn lie Thr Glu Glu Asp Tyr Gin Pro Leu Met Lys Leu 100 105 110
Gly Thr Gin Thr Val Pro Cys Asn Lys lie Leu Leu Trp Ser Arg lie 115 120 125
Lys Asp Leu Ala His Gin Phe Thr Gin Val Gin Arg Asp Met Phe Thr 130 135 140
Leu Glu Asp Thr Leu Leu Gly Tyr Leu Ala Asp Asp Leu Thr Trp Cys 145 150 155 160
Gly Glu Phe Asn Thr Ser Lys lie Asn Tyr Gin Ser Cys Pro Asp Trp 165 170 175
Arg Lys Asp Cys Ser Asn Asn Pro Val Ser Val Phe Trp Lys Thr Val 180 185 190
Ser Arg Arg Phe Ala Glu Ala Ala Cys Asp Val Val His Val Met Leu 195 200 205
Asn Gly Ser Arg Ser Lys lie Phe Asp Lys Asn Ser Thr Phe Gly Ser 210 215 220
Val Glu Val His Asn Leu Gin Pro Glu Lys Val Gin Thr Leu Glu Ala 225 230 235 240
Trp Val lie His Gly Gly Arg Glu Asp Ser Arg Asp Leu Cys Gin Asp 245 250 255
Pro Thr lie Lys Glu Leu Glu Ser lie lie Ser Lys Arg Asn lie Gin 260 265 270
Phe Ser Cys Lys Asn lie Tyr Arg Pro Asp Lys Phe Leu Gin Cys Val 275 280 285
Lys Asn Pro Glu Asp Ser Ser Cys Thr Ser Glu lie 290 295 300 <210> 72 <211> 1317
<212> DNA <213> Homo sapiens <400> 72 caggtggaat tggtggaatc tggaggatcc ctgaaactct cctgtgcagc ctcaggattc 60 gattttagta gatcctggat gaattgggtc cggcaggctc caggaaaagg gctagaatgg 120 attggagaaa ttaatccaga tagcagtacg ataaactata cgacatctct aaaggataaa 180 ttcatcatct ccagagacaa cgccaaaaat acgctgtacc tgcaaatgac caaagtgaga 240 tctgaggaca cagcccttta ttactgtgca agatatggta actggtttcc ttattggggc 300 caagggactc tggtcactgt cagctcagcc tccaccaagg gtccatcggt cttccccctg 360 gcaccctcct ccaagagcac ctctgggggc acagcggccc tgggctgcct ggtcaaggac 420 tacttccccg aaccggtgac ggtgtcgtgg aactcaggcg ccctgaccag cggcgtgcac 480 accttcccgg ctgtcctaca gtcctcagga ctctactccc tcagcagcgt ggtgaccgtg 540 ccctccagca gcttgggcac ccagacctac atctgcaacg tgaatcacaa gcccagcaac 600 accaaggtgg acaagaaagt tgagcccaaa tcttgtgaca aaactcacac atgcccaccg 660 tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc aaaacccaag 720 gacaccctca tgatctcccg gacccctgag gtcacatgcg tggtggtgga cgtgagccac 780 gaagaccctg aggtcaagtt caactggtac gtggacggcg tggaggtgca taatgccaag 840 acaaagccgc gggaggagca gtacaacagc acgtaccggg tggtcagcgt cctcaccgtc 900 ctgcaccagg actggctgaa tggcaaggag tacaagtgca aggtctccaa caaagccctc 960 ccagccccca tcgagaaaac catctccaaa gccaaagggc agccccgaga accacaggtg 1020 tacaccctgc ccccatcccg ggatgagctg accaagaacc aggtcagcct gacctgcctg 1080 gtcaaaggct tctatcccag cgacatcgcc gtggagtggg agagcaatgg gcagccggag 1140 aacaactaca agaccacgcc tcccgtgctg gactccgacg gctccttctt cctctacagc 1200 aagctcaccg tggacaagag caggtggcag caggggaacg tcttctcatg ctccgtgatg 1260 catgaggctc tgcacaacca ctacacgcag aagagcctct ccctgtctcc gggtaaa 1317 <210> 73 <211> 642
<212> DNA <213> Homo sapiens <400> 73 gatatcctga tgacccagtc tcaaaaaatc atgcccacat cagtgggaga cagggtcagc 60 gtcacctgca aggccagtca aaatgtggat actaatgtag cctggtatca acagaaacca 120 ggacagtctc ctaaagcact gatttactcg gcatcctacc gatacagtgg agtccctgat 180 cgcttcacag gcagtggatc tgggacagat ttcactctca ccatcaccaa tgtgcagtct 240 gaggacttgg cagagtattt ctgtcagcaa tatgacagct atcctctcac gttcggtgct 300 gggaccaagc tggacctgaa acgtacggtg gctgcaccat ctgtcttcat cttcccgcca 360 tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 420 cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 480 gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 540 ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 600 ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gt 642 <210> 74 <211> 1500
<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 74 tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 60 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 120 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 180 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 240 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 300 gccaccatga aacacctgtg gttcttcctc ctgctggtgg cagctcccag atgggtcctg 360 tcccaggtgg aattctgcag gcggttagct cagcctccac caagggtcca tcggtcttcc 420 ccctggcacc ctcctccaag agcacctctg ggggcacagc ggccctgggc tgcctggtca 480 aggactactt ccccgaaccg gtgacggtgt cgtggaactc aggcgccctg accagcggcg 540 tgcacacctt cccggctgtc ctacagtcct caggactcta ctccctcagc agcgtggtga 600 ccgtgccctc cagcagcttg ggcacccaga cctacatctg caacgtgaat cacaagccca 660 gcaacaccaa ggtggacaag aaagttgagc ccaaatcttg tgacaaaact cacacatgcc 720 caccgtgccc agcacctgaa ctcctggggg gaccgtcagt cttcctcttc cccccaaaac 780 ccaaggacac cctcatgatc tcccggaccc ctgaggtcac atgcgtggtg gtggacgtga 840 gccacgaaga ccctgaggtc aagttcaact ggtacgtgga cggcgtggag gtgcataatg 900 ccaagacaaa gccgcgggag gagcagtaca acagcacgta ccgggtggtc agcgtcctca 960 ccgtcctgca ccaggactgg ctgaatggca aggagtacaa gtgcaaggtc tccaacaaag 1020 ccctcccagc ccccatcgag aaaaccatct ccaaagccaa agggcagccc cgagaaccac 1080 aggtgtacac cctgccccca tcccgggatg agctgaccaa gaaccaggtc agcctgacct 1140 gcctggtcaa aggcttctat cccagcgaca tcgccgtgga gtgggagagc aatgggcagc 1200 cggagaacaa ctacaagacc acgcctcccg tgctggactc cgacggctcc ttcttcctct 1260 acagcaagct caccgtggac aagagcaggt ggcagcaggg gaacgtcttc tcatgctccg 1320 tgatgcatga ggctctgcac aaccactaca cgcagaagag cctctccctg tctccgggta 1380 aatgagggcc cgtttaaacc cgctgatcag cctcgactgt gccttctagt tgccagccat 1440 ctgttgtttg cccctccccc gtgccttcct tgaccctgga aggtgccact cccactgtcc 1500 <210> 75 <211> 800
<212> DNA <213> Homo sapiens <220>
<221 > CDS <222> (307)..(705) <400> 75 tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 60 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 120 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 180 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 240 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 300 gccacc atg gtg ttg cag acc cag gtc ttc att tct ctg ttg etc tgg 348
Met Val Leu Gin Thr Gin Val Phe lie Ser Leu Leu Leu Trp 15 10 ate tct ggt gcc tac ggg gat ate gtg atg att aaa cgt aeg gtg get 396 lie Ser Gly Ala Tyr Gly Asp lie Val Met lie Lys Arg Thr Val Ala 15 20 25 30 gca cca tct gtc ttc ate ttc ccg cca tct gat gag cag ttg aaa tct 444
Ala Pro Ser Val Phe lie Phe Pro Pro Ser Asp Glu Gin Leu Lys Ser 35 40 45 gga act gcc tct gtt gtg tgc ctg ctg aat aac ttc tat ccc aga gag 492
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 50 55 60 gcc aaa gta cag tgg aag gtg gat aac gcc etc caa teg ggt aac tcc 540
Ala Lys Val Gin Trp Lys Val Asp Asn Ala Leu Gin Ser Gly Asn Ser 65 70 75 cag gag agt gtc aca gag cag gac age aag gac age acc tac age etc 588
Gin Glu Ser Val Thr Glu Gin Asp Ser Lys Asp Ser Thr Tyr Ser Leu 80 85 90 age age acc ctg aeg ctg age aaa gca gac tac gag aaa cac aaa gtc 636
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val 95 100 105 110 tac gcc tgc gaa gtc acc cat cag ggc ctg age teg ccc gtc aca aag 684
Tyr Ala Cys Glu Val Thr His Gin Gly Leu Ser Ser Pro Val Thr Lys 115 120 125 age ttc aac agg gga gag tgt taggggcccg tttaaacccg ctgatcagcc 735
Ser Phe Asn Arg Gly Glu Cys 130 tcgactgtgc cttctagttg ccagccatct gttgtttgcc cctcccccgt gccttccttg 795 accct 800 <210> 76 <211> 800
<212> DNA <213> Homo sapiens <220>
<221 > CDS <222> (307)..(384) <220>
<221 > CDS <222> (386)..(712) <400> 76 tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 60 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 120 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 180 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 240 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 300 gccacc atg gcc tgg get ctg ctg etc etc acc etc etc act cag ggc 348
Met Ala Trp Ala Leu Leu Leu Leu Thr Leu Leu Thr Gin Gly 15 10 aca gga tee tgg get gat ate gtg atg cac gaa gtt a acc gtc eta ggt 397
Thr Gly Ser Trp Ala Asp lie Val Met His Glu Val Thr Val Leu Gly 15 20 25 30 cag ccc aag get gcc ccc teg gtc act ctg ttc ccg ccc tee tet gag 445
Gin Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu 35 40 45 gag ett caa gcc aac aag gcc aca ctg gtg tgt etc ata agt gac ttc 493
Glu Leu Gin Ala Asn Lys Ala Thr Leu Val Cys Leu lie Ser Asp Phe 50 55 60 tac ccg gga gcc gtg aca gtg gcc tgg aag gga gat age age ccc gtc 541
Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Gly Asp Ser Ser Pro Val 65 70 75 aag geg gga gtg gag acc acc aca ccc tee aaa caa age aac aac aag 589
Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gin Ser Asn Asn Lys 80 85 90 tac geg gcc age age tat ctg age ctg aeg cct gag cag tgg aag tee 637
Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gin Trp Lys Ser 95 100 105 110 cac aga age tac age tgc cag gtc aeg cat gaa ggg age acc gtg gag 685
His Arg Ser Tyr Ser Cys Gin Val Thr His Glu Gly Ser Thr Val Glu 115 120 125 aag aca gtg gcc cct aca gaa tgt tea taggggcccg tttaaacccg 732
Lys Thr Val Ala Pro Thr Glu Cys Ser 130 135 ctgatcagcc tcgactgtgc cttctagttg ccagccatct gttgtttgcc cctcccccgt 792 gccttcct 800 <210> 77 <211> 360
<212> DNA <213> Homo sapiens <400> 77 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcggt attaatatgg agtctactcg tatttattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 78 <211> 360
<212> DNA <213> Homo sapiens <400> 78 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct atttctcatg atggtaatgt taagtattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 79 <211> 360
<212> DNA <213> Homo sapiens <400> 79 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct atttctatga atggtgatta tatttcttat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 80 <211> 360
<212> DNA <213> Homo sapiens <400> 80 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct attaatcttt ctggttctgc taagtattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 81 <211> 360
<212> DNA <213> Homo sapiens <400> 81 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct atttcttcta atggtgatat tacttattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 82 <211> 360
<212> DNA <213> Homo sapiens <400> 82 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct atttctacta atggttggca gacttattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 83 <211> 360
<212> DNA <213> Homo sapiens <400> 83 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct attaatatga ttggtaatgt tactaattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 84 <211> 360
<212> DNA <213> Homo sapiens <400> 84 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagctat attaatccta atggtatgat gactaattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 85 <211> 360
<212> DNA <213> Homo sapiens <400> 85 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgtt atttctcctg gtggtgaggc taagtcttat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 86 <211> 360
<212> DNA <213> Homo sapiens <400> 86 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct atttctggta atggtggtca tacttattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 87 <211> 360
<212> DNA <213> Homo sapiens <400> 87 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct atttctatgg atggtgttta taagtattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 88 <211> 360
<212> DNA <213> Homo sapiens <400> 88 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct atttctaata atggtaatgt tacttattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 89 <211> 360
<212> DNA <213> Homo sapiens <400> 89 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttattata tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcgct atttctatgc atggtgatac tacttattat 180 gctgattctg ttaagggtcg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtgatctt 300 cctcttgttt atactggttt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 90 <211> 369
<212> DNA <213> Homo sapiens <400> 90 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttatgcta tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagccat attcgtaaga agaatacttc ttatactact 180 gagtatgctg cttctgttaa gggtcgtttt accatttcac gtgataattc gaaaaacacc 240 ctgtatctgc aaatgaacag cctgcgtgcg gaagatacgg ccgtgtatta ttgcgcgcgt 300 gaggatggtt cttatatgac tgattatttt gcttattggg gccaaggcac cctggtgacg 360 gttagctca 369 <210> 91 <211> 360
<212> DNA <213> Homo sapiens <400> 91 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttatgcta tgaattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcaat attcagcgtg ttggttctac ttattatgct 180 gattctgtta agggtcgttt taccatttca cgtgataatt cgaaaaacac cctgtatctg 240 caaatgaaca gcctgcgtgc ggaagatacg gccgtgtatt attgcgcgcg tgaggatggt 300 tcttatatga ctgattattt tgcttattgg ggccaaggca ccctggtgac ggttagctca 360 <210> 92 <211> 120
<212> PRT <213> Homo sapiens <400> 92
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Gly lie Asn Met Glu Ser Thr Arg lie Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 93 <211> 120
<212> PRT <213> Homo sapiens <400> 93
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Ser His Asp Gly Asn Val Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 94 <211> 120
<212> PRT <213> Homo sapiens <400> 94
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Ser Met Asn Gly Asp Tyr lie Ser Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 95 <211> 120
<212> PRT <213> Homo sapiens <400> 95
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Asn Leu Ser Gly Ser Ala Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 96 <211> 120
<212> PRT <213> Homo sapiens <400> 96
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Ser Ser Asn Gly Asp lie Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 97 <211> 120
<212> PRT <213> Homo sapiens <400> 97
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Ser Thr Asn Gly Trp Gin Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 98 <211> 120
<212> PRT <213> Homo sapiens <400> 98
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Asn Met lie Gly Asn Val Thr Asn Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 99 <211> 120
<212> PRT <213> Homo sapiens <400> 99
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Tyr lie Asn Pro Asn Gly Met Met Thr Asn Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 100 <211> 120
<212> PRT <213> Homo sapiens <400> 100
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Val lie Ser Pro Gly Gly Glu Ala Lys Ser Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 101 <211> 120
<212> PRT <213> Homo sapiens <400> 101
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Ser Gly Asn Gly Gly His Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 102 <211> 120
<212> PRT <213> Homo sapiens <400> 102
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Ser Met Asp Gly Val Tyr Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 103 <211> 120
<212> PRT <213> Homo sapiens <400> 103
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Ser Asn Asn Gly Asn Val Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 104 <211> 120
<212> PRT <213> Homo sapiens <400> 104
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ala lie Ser Met His Gly Asp Thr Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asp Leu Pro Leu Val Tyr Thr Gly Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 105 <211> 123
<212> PRT <213> Homo sapiens <400> 105
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Ala Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser His lie Arg Lys Lys Asn Thr Ser Tyr Thr Thr Glu Tyr Ala Ala 50 55 60
Ser Val Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Ala Arg Glu Asp Gly Ser Tyr Met Thr Asp Tyr Phe Ala Tyr 100 105 110
Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 106 <211> 120
<212> PRT <213> Homo sapiens <400> 106
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Ala Met Asn Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Asn lie Gin Arg Val Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys 50 55 60
Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu 65 70 75 80
Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Glu Asp Gly Ser Tyr Met Thr Asp Tyr Phe Ala Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 107 <211> 324
<212> DNA <213> Homo sapiens <400> 107 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatat tggtcattat tatgtttctt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat ttattctgat tctaatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ccagtctgct gataattttc cttttgtgtt tggcggcggc 300 acgaagttaa ccgtcctagg tcag 324 <210> 108 <211> 330
<212> DNA <213> Homo sapiens <400> 108 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatat tggtcattat tatgtttctt ggtaccagca gaaacccggg 120 caggcgccag ttcttgtgat ttattctgat tctaatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ccagtcttat actatgtctg atgttcttgt tgtgtttggc 300 ggcggcacga agttaaccgt cctaggtcag 330 <210> 109 <211> 108
<212> PRT <213> Homo sapiens <400> 109
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn lie Gly His Tyr Tyr Val 20 25 30
Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Ser Asp Ser Asn Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Ala Asp Asn Phe Pro Phe Val 85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 <210> 110 <211> 110
<212> PRT <213> Homo sapiens <400> 110
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn lie Gly His Tyr Tyr Val 20 25 30
Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Ser Asp Ser Asn Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Thr Met Ser Asp Val Leu 85 90 95
Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 110 <210> 111 <211> 363
<212> DNA <213> Homo sapiens <400> 111 caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg 60 agctgcaaag cctccggata tacctttact tcttattcta ttaattgggt ccgccaagcc 120 cctgggcagg gtctcgagtg gatgggctat atcgatccga atcgtggcaa tacgaattac 180 gcgcagaagt ttcagggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat 240 atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtgagtat 300 atttatttta ttcatggtat gcttgatttt tggggccaag gcaccctggt gacggttagc 360 tea 363 <210> 112 <211> 366
<212> DNA <213> Homo sapiens <400> 112 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct aattatggta tgcattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcaat atccgttctg atggtagctg gacctattat 180 gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtcgttat 300 tggtctaagt ctcatgcttc tgttactgat tattggggcc aaggcaccct ggtgacggtt 360 agctca 366 <210> 113 <211> 366
<212> DNA <213> Homo sapiens <400> 113 caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60 agctgcgcgg cctccggatt taccttttct tcttatggta tgcattgggt gcgccaagcc 120 cctgggaagg gtctcgagtg ggtgagcaat atctattctg atggtagcaa taccttttat 180 gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240 ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtaatatg 300 tatcgttggc cttttcatta tttttttgat tattggggcc aaggcaccct ggtgacggtt 360 agctca 366 <210> 114 <211> 121
<212> PRT <213> Homo sapiens <400> 114
Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 15 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30
Ser lie Asn Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met 35 40 45
Gly Tyr lie Asp Pro Asn Arg Gly Asn Thr Asn Tyr Ala Gin Lys Phe 50 55 60
Gin Gly Arg Val Thr Met Thr Arg Asp Thr Ser lie Ser Thr Ala Tyr 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Glu Tyr lie Tyr Phe lie His Gly Met Leu Asp Phe Trp Gly 100 105 110
Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 115 <211> 122
<212> PRT <213> Homo sapiens <400> 115
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 20 25 30
Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Asn lie Arg Ser Asp Gly Ser Trp Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Arg Tyr Trp Ser Lys Ser His Ala Ser Val Thr Asp Tyr Trp 100 105 110
Gly Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 116 <211> 122
<212> PRT <213> Homo sapiens <400> 116
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Asn lie Tyr Ser Asp Gly Ser Asn Thr Phe Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Asn Met Tyr Arg Trp Pro Phe His Tyr Phe Phe Asp Tyr Trp 100 105 110
Gly Gin Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 117 <211> 342
<212> DNA <213> Homo sapiens <400> 117 gatatcgtga tgacccagag cccactgagc ctgccagtga ctccgggcga gcctgcgagc 60 attagctgca gaagcagcca aagcctgctt tttattgatg gcaataatta tctgaattgg 120 taccttcaaa aaccaggtca aagcccgcag ctattaattt atcttggttc taatcgtgcc 180 agtggggtcc cggatcgttt tagcggctct ggatccggca ccgattttac cctgaaaatt 240 agccgtgtgg aagctgaaga cgtgggcgtg tattattgcc agcagtattc ttctaagtct 300 gctacctttg gccagggtac gaaagttgaa attaaacgta eg 342 <210> 118 <211> 327
<212> DNA <213> Homo sapiens <400> 118 gatatccaga tgacccagag cccgtctagc ctgagcgcga gcgtgggtga tcgtgtgacc 60 attacctgca gagcgagcca ggatatttct gcttttctga attggtacca gcagaaacca 120 ggtaaagcac cgaaactatt aatttataag gtttctaatt tgcaaagcgg ggtcccgtcc 180 cgttttagcg gctctggatc cggcactgat tttaccctga ccattagcag cctgcaacct 240 gaagactttg cgacttatta ttgccagcag gcttattctg gttctattac ctttggccag 300 ggtacgaaag ttgaaattaa acgtacg 327 <210> 119 <211> 324
<212> DNA <213> Homo sapiens <400> 119 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60 tcgtgtagcg gcgataatat tggtaataag tatgtttctt ggtaccagca gaaacccggg 120 caggcgccag ttgttgtgat ttatggtgat aataatcgtc cctcaggcat cccggaacgc 180 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240 gacgaagcgg attattattg ctcttcttat gattcttctt attttgtgtt tggcggcggc 300 acgaagttaa ccgttcttgg ccag 324 <210> 120 <211> 114
<212> PRT <213> Homo sapiens <400> 120
Asp lie Val Met Thr Gin Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 15 10 15
Glu Pro Ala Ser lie Ser Cys Arg Ser Ser Gin Ser Leu Leu Phe lie 20 25 30
Asp Gly Asn Asn Tyr Leu Asn Trp Tyr Leu Gin Lys Pro Gly Gin Ser 35 40 45
Pro Gin Leu Leu lie Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys lie 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Gin Gin Tyr 85 90 95
Ser Ser Lys Ser Ala Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys 100 105 110
Arg Thr <210> 121 <211> 109
<212> PRT <213> Homo sapiens <400> 121
Asp lie Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 15 10 15
Asp Arg Val Thr lie Thr Cys Arg Ala Ser Gin Asp lie Ser Ala Phe 20 25 30
Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu lie 35 40 45
Tyr Lys Val Ser Asn Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser Leu Gin Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin Ala Tyr Ser Gly Ser lie 85 90 95
Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg Thr 100 105 <210> 122 <211> 108
<212> PRT <213> Homo sapiens <400> 122
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn lie Gly Asn Lys Tyr Val 20 25 30
Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Val Val lie Tyr 35 40 45
Gly Asp Asn Asn Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr Asp Ser Ser Tyr Phe Val 85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 <210> 123 <211> 21
<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer <400> 123 atggccaact gcgagttcag c 21 <210> 124 <211> 27
<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer <400> 124 tcagatctca gatgtgcaag atgaatc 27 <210> 125 <211> 25
<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer <400> 125 ttggtaccag gtggcgccag cagtg 25 <210> 126 <211> 23
<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer <400> 126 ttggtaccat ggccaactgc gag 23 <210> 127 <211> 29
<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer <400> 127 ccgatatcag atctcagatg tgcaagatg 29 <210> 128 <211> 28
<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic primer <400> 128 ccgatatcga tctcagatgt gcaagatg 28 <210> 129 <211> 29
<212> PRT <213> Homo sapiens <400> 129
Met Lys His Leu Trp Phe Phe Leu Leu Leu Val Ala Ala Pro Arg Trp 15 10 15
Val Leu Ser Gin Val Glu Phe Cys Arg Arg Leu Ala Gin 20 25 <210> 130 <211> 133
<212> PRT <213> Homo sapiens <400> 130
Met Val Leu Gin Thr Gin Val Phe lie Ser Leu Leu Leu Trp lie Ser 15 10 15
Gly Ala Tyr Gly Asp lie Val Met lie Lys Arg Thr Val Ala Ala Pro 20 25 30
Ser Val Phe lie Phe Pro Pro Ser Asp Glu Gin Leu Lys Ser Gly Thr 35 40 45
Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys 50 55 60
Val Gin Trp Lys Val Asp Asn Ala Leu Gin Ser Gly Asn Ser Gin Glu 65 70 75 80
Ser Val Thr Glu Gin Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser 85 90 95
Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala 100 105 110
Cys Glu Val Thr His Gin Gly Leu Ser Ser Pro Val Thr Lys Ser Phe 115 120 125
Asn Arg Gly Glu Cys 130 <210> 131 <211> 26
<212> PRT <213> Homo sapiens <400> 131
Met Ala Trp Ala Leu Leu Leu Leu Thr Leu Leu Thr Gin Gly Thr Gly 15 10 15
Ser Trp Ala Asp lie Val Met His Glu Val 20 25 <210> 132 <211> 120
<212> PRT <213> Homo sapiens <400> 132
Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 15 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30
Tyr Met His Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met 35 40 45
Gly Trp lie Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gin Lys Phe 50 55 60
Gin Gly Arg Val Thr Met Thr Arg Asp Thr Ser lie Ser Thr Ala Tyr 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gin 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 133 <211> 119
<212> PRT <213> Homo sapiens <400> 133
Gin Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 15 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn 20 25 30
Gly Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Asn lie Ser Tyr Leu Ser Ser Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr lie Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Phe Tyr Gly Tyr Phe Asn Tyr Ala Asp Val Trp Gly Gin Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115 <210> 134 <211> 109
<212> PRT <213> Homo sapiens <400> 134
Asp lie Glu Leu Thr Gin Pro Pro Ser Val Ser Val Ala Pro Gly Gin 15 10 15
Thr Ala Arg lie Ser Cys Ser Gly Asp Asn lie Gly His Tyr Tyr Ala 20 25 30
Ser Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val lie Tyr 35 40 45
Arg Asp Asn Asp Arg Pro Ser Gly lie Pro Glu Arg Phe Ser Gly Ser 50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr lie Ser Gly Thr Gin Ala Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Asp Tyr Leu His Asp Phe 85 90 95
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin 100 105 <210> 135 <211> 109
<212> PRT <213> Homo sapiens <400> 135
Asp lie Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 15 10 15
Asp Arg Val Thr lie Thr Cys Arg Ala Ser Gin Gly lie Ser Ser Tyr 20 25 30
Leu Ala Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu lie 35 40 45
Tyr Ala Ala Ser Ser Leu Gin Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser Leu Gin Pro 65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin His Tyr Thr Thr Pro Pro 85 90 95
Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg Thr 100 105 <210> 136 <211> 114
<212> PRT <213> Homo sapiens <400> 136
Asp lie Val Met Thr Gin Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 15 10 15
Glu Pro Ala Ser lie Ser Cys Arg Ser Ser Gin Ser Leu Leu His Ser 20 25 30
Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gin Lys Pro Gly Gin Ser 35 40 45
Pro Gin Leu Leu lie Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys lie 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Gin Gin His 85 90 95
Tyr Thr Thr Pro Pro Thr Phe Gly Gin Gly Thr Lys Leu Glu lie Lys 100 105 110
Arg Thr <210> 137 <211> 110
<212> PRT <213> Homo sapiens <220>
<221 > MOD_RES <222> (86) <223> Thr or Val <400> 137
Asp lie Val Leu Thr Gin Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 15 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gin Ser Val Ser Ser Ser 20 25 30
Tyr Leu Ala Trp Tyr Gin Gin Lys Pro Gly Gin Ala Pro Arg Leu Leu 35 40 45 lie Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser Leu Glu 65 70 75 80
Pro Glu Asp Phe Ala Xaa Tyr Tyr Cys Gin Gin His Tyr Thr Thr Pro 85 90 95
Pro Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg Thr 100 105 110 <210> 138 <211> 330
<212> PRT <213> Homo sapiens <400> 138
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 15 10 15
Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45
Gly Val His Thr Phe Pro Ala Val Leu Gin Ser Ser Gly Leu Tyr Ser 50 55 60
Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gin Thr 65 70 75 80
Tyr lie Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95
Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110
Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 115 120 125
Lys Pro Lys Asp Thr Leu Met lie Ser Arg Thr Pro Glu Val Thr Cys 130 135 140
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 145 150 155 160
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 165 170 175
Glu Gin Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 185 190
His Gin Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 195 200 205
Lys Ala Leu Pro Ala Pro lie Glu Lys Thr lie Ser Lys Ala Lys Gly 210 215 220
Gin Pro Arg Glu Pro Gin Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 225 230 235 240
Leu Thr Lys Asn Gin Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 250 255
Pro Ser Asp lie Ala Val Glu Trp Glu Ser Asn Gly Gin Pro Glu Asn 260 265 270
Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285
Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gin Gin Gly Asn 290 295 300
Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 305 310 315 320
Gin Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330 <210> 139 <211> 109 <212> PRT <213> Homo sapiens <400> 139
Thr Val Leu Gly Gin Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro 15 10 15
Pro Ser Ser Glu Glu Leu Gin Ala Asn Lys Ala Thr Leu Val Cys Leu 20 25 30 lie Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Gly Asp 35 40 45
Ser Ser Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gin 50 55 60
Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu 65 70 75 80
Gin Trp Lys Ser His Arg Ser Tyr Ser Cys Gin Val Thr His Glu Gly 85 90 95
Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 100 105
Claims 1. A human anti-CD38 specific antibody comprising: (i) an H-CDR1, H-CDR2 and H-CDR3 region depicted in SEQ ID NO: 21, and an L-CDR1, L-CDR2 and L-CDR3 region depicted in SEQ ID NO: 51; (ii) a variable heavy chain of SEQ ID NO: 21, and a variable light chain of SEQ ID NO: 51; or (iii) a variable heavy chain encoded by SEQ ID NO: 6, and a variable light chain encoded by SEQ ID NO: 36. 2. The antibody of claim 1, wherein the antibody is an IgG, preferably IgG 1. 3. A nucleic acid composition comprising a nucleic acid sequence or a plurality of nucleic acid sequences encoding the antibody of claim 1 or 2. 4. A vector composition comprising a vector or a plurality of vectors comprising the nucleic acid sequence or plurality of nucleic acid sequences of claim 3. 5. A cell comprising the vector composition of claim 4, wherein optionally the cell is a bacterial cell or a mammalian cell. 6. A pharmaceutical composition comprising the antibody of claim 1 or 2 and a pharmaceutically acceptable carrier or excipient. 7. The antibody of claim 1 or 2 for use in the treatment of a haematological disease or an inflammatory disease 8. A pharmaceutical composition comprising the antibody of claim 1 or 2 and a pharmaceutically acceptable carrier or excipient for use in the treatment of a haematological disease or an inflammatory disease. 9. The antibody, for use according to claim 7 or the pharmaceutical composition for use according to claim 8, wherein said haematological disease is taken from the list of multiple myeloma, chronic lymphocytic leukemia, chronic myelogenous leukemia, acute myelogenous leukemia and acute lymphocytic leukemia. 10. The antibody for use according to claim 7 or the pharmaceutical composition for use according to claim 8, wherein said inflammatory disease is taken from the list of rheumatoid arthritis and systemic lupus erythematosus. 11. An in vitro method of inducing specific killing of tumor cells that express CD38, wherein said specific killing occurs by CD38 cross-linking, comprising the step of incubating said cells in the presence of a sufficient amount of the antibody of claim 1 or 2. 12. A method of detecting specific killing of tumor cells that express CD38, by CD38 cross-linking, in a subject administered the antibody of claim 1 or 2 comprising the step of in vitro detecting the specific killing activity of said antibody, wherein optionally the tumor cells are of human, minipig or rabbit origin. 13. A method of detecting the presence of CD38 in a tissue or a cell of minipig origin contacted with the antibody of claim 1 or 2, comprising the step of in vitro detecting the specific binding of said antibody to said CD38 minipig cells, wherein said antibody is also able to specifically bind to CD38 of human origin, wherein optionally the CD38 of minipig origin is comprised within an isolated cell type selected from the group consisting of peripheral blood monocyte, erythrocyte, lymphocyte, thymocyte, muscle cell, cerebellum cell, pancreas cell, lymph-node cell, tonsil cell, spleen cell, prostate cell, skin cell and a cell of the retina. 14. A method of detecting CD38 in a CD38-expressing erythrocyte contacted with the antibody of claim 1 or 2, comprising the step of in vitro detecting the specific binding of said antibody to said CD38-expressing erythrocytes, wherein said antibody is also able to specifically bind to human CD38 from a cell or tissue other than human erythrocytes, wherein optionally the antibody is also able to specifically bind to human CD38from a cell that is a human lymphocyte. 15. A diagnostic composition comprising the antibody of claim 1 or 2 and an acceptable carrier or excipient.
Patentanspriiche 1. Menschlicher spezifischer Anti-CD38-Antikorper, der (i) eine H-CDR1-, H-CDR2- und H-CDR3-Region, dargestellt in SEQ ID NO: 21, und eine L-CDR1-, L-CDR2-und L-CDR3-Region, dargestellt in SEQ ID NO: 51; (ii) eine variable schwere Kette unter SEQ ID NO: 21 und eine variable leichte Kette unter SEQ ID NO: 51; Oder (iii) eine variable schwere Kette, codiert von SEQ ID NO: 6, und eine variable leichte Kette, codiert von SEQ ID NO: 36 umfasst. 2. Antikorper nach Anspruch 1, wobei es sich bei dem Antikorper urn ein IgG, vorzugsweise IgG 1 handelt. 3. Nukleinsaurezusammensetzung, die eine Nukleinsauresequenz Oder mehrere Nukleinsauresequenzen umfasst, die den Antikorper nach Anspruch 1 Oder 2 codiert/codieren. 4. Vektorzusammensetzung, die einen Vektoroder mehrere Vektoren umfasst, der bzw. die die Nukleinsauresequenz
Oder mehreren Nukleinsauresequenzen nach Anspruch 3 umfasst bzw. umfassen. 5. Zelle, die die Vektorzusammensetzung nach Anspruch 4 umfasst, wobei es sich gegebenenfalls bei der Zelle um eine Bakterienzelle Oder eine Saugerzelle handelt. 6. Pharmazeutische Zusammensetzung, die den Antikorper nach Anspruch 1 Oder 2 und einen pharmazeutisch un-bedenklichen Trager Oder Hilfsstoff umfasst. 7. Antikorper nach Anspruch 1 Oder 2 zur Verwendung bei der Behandlung einer hamatologischen Krankheit Oder einer Entziindungskrankheit. 8. Pharmazeutische Zusammensetzung, die den Antikorper nach Anspruch 1 Oder 2 und einen pharmazeutisch un-bedenklichen Trager Oder Hilfsstoff umfasst, zur Verwendung bei der Behandlung einer hamatologischen Krankheit Oder einer Entziindungskrankheit. 9. Antikorper zur Verwendung gems^ Anspruch 7 Oder pharmazeutische Zusammensetzung zur Verwendung gems^ Anspruch 8, wobei die hamatologische Krankheit der Liste multiples Myelom, chronische lymphatische Leukamie, chronische myeloische Leukamie, akute myeloische Leukamie und akute lymphatische Leukamie entnommen ist. 10. Antikorper zur Verwendung gems^ Anspruch 7 Oder pharmazeutische Zusammensetzung zur Verwendung gems^ Anspruch 8, wobei die Entziindungskrankheit der Liste rheumatoide Arthritis und systemischer Lupus erythematodes entnommen ist. 11. In-vitro-Verfahren zum Induzieren eines spezifischen Abtotens von Tumorzellen, die CD38 exprimieren, wobei das spezifische Abtoten durch CD38-Vernetzung erfolgt, das den Schritt umfasst, bei dem die Zellen in Gegenwart einer hinreichenden Menge des Antikorpers nach Anspruch 1 Oder 2 inkubiert werden. 12. Verfahren zum Nachweisen eines spezifischen Abtotens von Tumorzellen, die CD38 exprimieren, durch CD38-Vernetzung bei einem Individuum, dem der Antikorper nach Anspruch 1 Oder 2 verabreicht wurde, das den Schritt umfasst, bei dem die spezifische Abtotungsaktivitat des Antikorpers in vitro nachgewiesen wird, wobei gegebenenfalls die Tumorzellen aus Mensch, Minischwein Oder Kaninchen stammen. 13. Verfahren zum Nachweisen des Vorliegens von CD38 in einem Gewebe Oder einer Zelle, das bzw. die aus Minischwein stammt und mit dem Antikorper nach Anspruch 1 Oder 2 in Kontaktgebracht wurde, das den Schritt umfasst, bei dem die spezifische Bindung des Antikorpers an die CD38-Minischweinzellen in vitro nachgewiesen wird, wobei der Antikorper auch spezifisch an CD38 menschlichen Ursprungs binden kann, wobei gegebenenfalls das aus Minischwein stammende CD38 in einem isolierten Zelltyp enthalten ist, der aus der aus Peripheres-Blut-Monozyt, Erythrozyt, Lymphozyt, Thymozyt, Muskelzelle, Kleinhirnzelle, Pankreaszelle, Lymphknotenzelle, Mandelzelle, Milz-zelle, Prostatazelle, Hautzelle und einer Zelle der Retina bestehenden Gruppe ausgewahlt ist. 14. Verfahren zum Nachweisen von CD38 in einem CD38 exprimierenden Erythrozyten, der mit dem Antikorper nach Anspruch 1 Oder 2 in Kontakt gebracht wurde, das den Schritt umfasst, bei dem die spezifische Bindung des Antikorpers an die CD38 exprimierenden Erythrozyten in vitro nachgewiesen wird, wobei der Antikorper auch spezifisch an menschliches CD38 aus einer anderen Zelle bzw. einem anderen Gewebe als menschlichen Erythrozyten binden kann, wobei gegebenenfalls der Antikorper auch spezifisch an menschliches CD38 aus einer Zelle, bei der es sich um einen menschlichen Lymphozyten handelt, binden kann. 15. Diagnostische Zusammensetzung, die den Antikorper nach Anspruch 1 Oder 2 und einen unbedenklichen Trager Oder Hilfsstoff umfasst.
Revendications 1. Anticorps specifique anti-CD38 humain comprenant: (i) une region H-CDR1, H-CDR2 et H-CDR3, decrite dans la SEQ ID n° : 21, ainsi qu’une region L-CDR1, L-CDR2 et L-CDR3 decrite dans la SEQ ID n° : 51 ; (ii) une chafne lourde variable de SEQ ID n° : 21 et une chafne legere variable de SEQ ID n° : 51 ; ou (iii) une chalne lourde variable de SEQ ID n° : 6 et une chalne legere variable de SEQ ID n° : 36. 2. Anticorps selon la revendication 1, I’anticorps etant une IgG, de preference une IgG 1. 3. Composition d’acides nucleiques comprenant une sequence d’acides nucleiques ou une pluralite de sequences d’acides nucleiques codant pour I’anticorps selon les revendications 1 ou 2. 4. Composition a vecteur comprenant un vecteurou une pluralite de vecteurs, qui comprend/comprennent la sequence d’acides nucleiques ou la pluralite de sequences d’acides nucleiques selon la revendication 3. 5. Cellule comprenant la composition a vecteur selon la revendication 4, la cellule etant facultativement une cellule bacterienne ou une cellule mammalienne. 6. Composition pharmaceutique comprenant I’anticorps, selon les revendications 1 ou 2, ainsi qu’un vehicule ou excipient acceptable d’un point de vue pharmaceutique. 7. Anticorps, selon les revendications 1 ou 2, destine a etre utilise dans le traitement d’une maladie hematologique ou d’une maladie inflammatoire. 8. Composition pharmaceutique comprenant I’anticorps, selon les revendications 1 ou 2, ainsi qu’un vehicule ou excipient acceptable d’un point de vue pharmaceutique, destinee a etre utilisee dans le traitement d’une maladie hematologique ou d’une maladie inflammatoire. 9. Anticorps, destine a etre utilise selon la revendication 7, ou composition pharmaceutique, destinee a etre utilisee selon la revendication 8, dans lequel/laquelle ladite maladie hematologique est prise a partirde la liste des myelome multiple, leucemie lymphocytaire chronique, leucemie myelogene chronique, leucemie myelogene aigiie et leucemie lymphocytaire aigiie. 10. Anticorps, destine a etre utilise selon la revendication 7, ou composition pharmaceutique, destinee a etre utilisee selon la revendication 8, dans lequel/laquelle ladite maladie inflammatoire est prise a partirde la liste d’une arthrite rhumato'ide etdu lupus erythemateux systemique. 11. Precede in vitro d’induction d’une destruction specifique de cellules tumorales qui expriment des CD38, dans lequel ladite destruction specifique a lieu par reticulation des CD38, comprenant I’etape d’incubation desdites cellules en presence d’une quantite suffisante de I’anticorps selon les revendications 1 ou 2. 12. Precede de detection d’une destruction specifique de cellules tumorales qui expriment des CD38, par reticulation des CD38, chez un sujet auquel on a administre I’anticorps selon les revendications 1 ou 2, comprenant I’etape de detection in vitro de I’activite de destruction specifique dudit anticorps, dans lequel en option les cellules tumorales proviennent d’un etre humain, d’un mini-pore ou d’un lapin. 13. Precede de detection de la presence de CD38 dans un tissu ou une cellule provenant d’un mini-pore mis(e) en contact avec I’anticorps selon les revendications 1 ou 2, comprenant I’etape de detection in vitro de la liaison specifique dudit anticorps auxdites cellules de mini-pore a CD38, dans lequel ledit anticorps est egalement capable de se Her specifiquement aux CD38 d’origine humaine, dans lequel en option le CD38 provenant d’un mini-pore est compris dans un type de cellule isolee, choisi dans le groupe constitue par un monocyte du sang peripherique, un erythrocyte, un lymphocyte, un thymocyte, une cellule de muscle, une cellule du cervelet, une cellule du pancreas, une cellule de ganglion lymphatique, une cellule d’amygdale, une cellule de la rate, une cellule de la prostate, une cellule de peau et une cellule de la retine. 14. Precede de detection de CD38 dans un erythrocyte exprimant des CD38 ayant ete mis en contact avec I’anticorps selon les revendications 1 ou 2, comprenant I’etape de detection in vitro de la liaison specifique dudit anticorps auxdits erythrocytes exprimant des CD38, dans lequel ledit anticorps est egalement capable dese lier specifiquement a des CD38 humains provenant d’une cellule ou d’un tissu autre que des erythrocytes humains, dans lequel en option I’anticorps est egalement capable de se lier specifiquement a des CD38 humains provenant d’une cellule qui est un lymphocyte humain. 15. Composition diagnostique comprenant I’anticorps, selon les revendications 1 ou 2, ainsi qu’un vehicule ou excipient acceptable.
Figure la
Variable Heavy Chain DNA 3O76_VH1A (SEQ ID NO: 1):
CAGGTGCAATTGGTTCAGTCTGGCGCGGAAGTGAAAAAACCGGGCAGCAGCGTGAAAGTGAGCTGC
AAAGCCTCCGGAGGCACTTTTTCTTCTAATGCTATTTCTTGGGTGCGCCAAGCCCCTGGGCAGGGTC
TCGAGTGGATGGGCAATATCTGGCCGATTTTTGGCACTGCGAATTACGCGCAGAAGTTTCAGGGCC
GGGTGACCATTACCGCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCGTAGCG
AAGATACGGCCGTGTATTATTGCGCGCGTAATGGTTATCTTGATACTAATACTTATATTGATTATTGG
GGCCAAGGCACCCTGGTGACGGTTAGCTCA 3078_VH3 (SEQ ID NO: 2):
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTGATTATGCTATGTCTTGGGTGCGCCAAGCCCCTGGGAAGG
GTCTCGAGTGGGTGAGCGCTATCCGTTATGATGGTAGCAATACCTATTATGCGGATAGCGTGAAAGG
CCGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGG
AAGATACGGCCGTGTATTATTGCGCGCGTTATTATTCTGGTATTTATCAGCATATTGATTATTGGGGC
CAAGGCACCCTGGTGACGGTTAGCTCA 3081_ VH3 (SEQ ID NO: 3):
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATGCTCTTCATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCTCTATCTCTGGTCTTGGTAGCACTACCTATTATGCGGATAGCGTGAAAGGC
CGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGA
AGATACGGCCGTGTATTATTGCGCGCGTTATCATTATGAGTATCATTATTTTTCTTCTGGTTTTGATAA
TTGGGGCCAAGGCACCCTGGTGACGGTTAGCTCA 3085_ VH1A (SEQ ID NO: 4):
CAGGTGCAATTGGTTCAGAGCGGCGCGGAAGTGAAAAAACCGGGCGCGAGCGTGAAAGTGAGCTG
CAAAGCCTCCGGATATACCTTTACTGGTTATTATATTAATTGGGTCCGCCAAGCCCCTGGGCAGGGT
CTCGAGTGGATGGGCTGGATCTTTCCGAATGGTGGCTCTACGGGTTACGCGCAGAAGTTTCAGGGC
CGGGTGACCATGACCCGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCGTAGC
GAAGATACGGCCGTGTATTATTGCGCGCGTGGTAATATTTTTATTTTTGATTATTGGGGCCAAGGCAC
CCTGGTGACGGTTAGCTCA 3086_VH3 (SEQ ID NO: 5):
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTACTTCTTATTATATGCATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCTATATCGATTCTTCTGGTAGCTCTACCTATTATGCGGATAGCGTGAAAGGC
CGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGA
AGATACGGCCGTGTATTATTGCGCGCGTCAGCTTATGCCTTTTGGTGGTTATTTTGATGTTTGGGGC
CAAGGCACCCTGGTGACGGTTAGCTCA 3087_ VH3 (SEQ ID NO: 6):
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGGTATCTCTGGTGATCCTAGCAATACCTATTATGCGGATAGCGTGAAAGGC
CGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGA
AGATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCC
AAGGCACCCTGGTGACGGTTAGCTCA 3088_ VH3 (SEQ ID NO: 7):
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATGCTATGAATTGGGTGCGCCAAGCCCCTGGGAAGG
GTCTCGAGTGGGTGAGCGGTATCTCTTCTTGGGGTAGCTCTACCTATTATGCGGATAGCGTGAAAGG
CCGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGG
AAGATACGGCCGTGTATTATTGCGCGCGTGAGGATGGTTCTTATATGACTGATTATTTTGCTTATTGG
GGCCAAGGCACCCTGGTGACGGTTAGCTCA 3089_ VH2 (SEQ ID NO: 8):
CAGGTGCAATTGAAAGAAAGCGGCCCGGCCCTGGTGAAACCGACCCAAACCCTGACCCTGACCTGT
ACCTTTTCCGGATTTAGCCTGTCTTCTGATGGTATGGGTGTGGGTTGGATTCGCCAGCCGCCTGGGA
AAGCCCTCGAGTGGCTGGCTCTTATCGATTGGGATGATGATAAGCGTTATAGCACCAGCCTGAAAAC
GCGTCTGACCATTAGCAAAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACATGGACCCG
GTGGATACGGCCACCTATTATTGCGCGCGTTTTAATTGGTTTTATCGTCTTGCTTTTGTTAATCCTGAT
GTTTGGGGCCAAGGCACCCTGGTGACGGTTAGCTCA 3101_ VH2 (SEQ ID NO: 9):
CAGGTGCAATTGAAAGAAAGCGGCCCGGCCCTGGTGAAACCGACCCAAACCCTGACCCTGACCTGT
ACCTTTTCCGGATTTAGCCTGTCTACTTCTCGTGTTGGTGTGTCTTGGATTCGCCAGCCGCCTGGGA
AAGCCCTCGAGTGGCTGGCTCATATCGATTGGAATGATGATAAGTATTATAGCACCAGCCTGAAAAC
GCGTCTGACCATTAGCAAAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACATGGACCCG
GTGGATACGGCCACCTATTATTGCGCGCGTGAGGATCGTCTTCTTGGTGGTTATGGTTATGATGTTT
GGGGCCAAGGCACCCTGGTGACGGTTAGCTCA 3102_ VH4 (SEQ ID NO: 10):
CAGGTGCAATTGCAAGAAAGTGGTCCGGGCCTGGTGAAACCGGGCGAAACCCTGAGCCTGACCTG
CACCGTTTCCGGAGGCAGCATTTCTGGTAATTATTGGTCTTGGATTCGCCAGGCCCCTGGGAAGGG
TCTCGAGTGGATTGGCGATTATCATGGCTCTACCTATTATAATCCGAGCCTGAAAGGCCGGGTGACC
ATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTGAAACTGAGCAGCGTGACGGCGGAAGATACGG
CCGTGTATTATTGCGCGCGTGAGCAGTATCATTGGGGTCTTGCTTGGACTGGTTTTGATAATTGGGG
CCAAGGCACCCTGGTGACGGTTAGCTCA 3127_ VH5 (SEQ ID NO: 11):
CAGGTGCAATTGGTTCAGAGCGGCGCGGAAGTGAAAAAACCGGGCGAAAGCCTGAAAATTAGCTGC
AAAGGTTCCGGATATTCCTTTTCTACTTCTTGGGTTGGTTGGGTGCGCCAGATGCCTGGGAAGGGTC
TCGAGTGGATGGGCATTATCGATCCGGATATTAGCTATACCTCTTATTCTCCGAGCTTTCAGGGCCA
GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTCAATGGAGCAGCCTGAAAGCGAG
CGATACGGCCATGTATTATTGCGCGCGTTATCTTATGGGTCTTGGTTATGATGTTTGGGGCCAAGGC
ACCCTGGTGACGGTTAGCTCA 3128_ VH2 (SEQ ID NO: 12):
CAGGTGCAATTGAAAGAAAGCGGCCCGGCCCTGGTGAAACCGACCCAAACCCTGACCCTGACCTGT
ACCTTTTCCGGATTTAGCCTGTCTTCTTCTGGTATGTCTGTGTCTTGGATTCGCCAGCCGCCTGGGA
AAGCCCTCGAGTGGCTGGCTCGTATCTATTCTGATGATTCTAAGTCTTATAGCACCAGCCTGAAAAC
GCGTCTGACCATTAGCAAAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACATGGACCCG
GTGGATACGGCCACCTATTATTGCGCGCGTGCTGCTCATTGGAATGGTCCTCTTTTTGATGTTTGGG
GCCAAGGCACCCTGGTGACGGTTAGCTCA 3129_ VH3 (SEQ ID NO: 13):
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTAATTATTCTATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCTATATCTATGGTGGTGGTAGCTATACCTATTATGCGGATAGCGTGAAAGGC
CGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGA
AGATACGGCCGTGTATTATTGCGCGCGTCAGGCTGGTATGTATTTTGATGTTTGGGGCCAAGGCACC
CTGGTGACGGTTAGCTCA 3130_ VH4 (SEQ ID NO: 14):
CAGGTGCAATTGCAAGAAAGTGGTCCGGGCCTGGTGAAACCGGGCGAAACCCTGAGCCTGACCTG
CACCGTTTCCGGAGGCAGCATTGGTTATTATTGGAATTGGATTCGCCAGGCCCCTGGGAAGGGTCT
CGAGTGGATTGGCCATATCTCTCGTTTTGGCTCTACCAATTATAATCCGAGCCTGAAAGGCCGGGTG
ACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTGAAACTGAGCAGCGTGACGGCGGAAGATA
CGGCCGTGTATTATTGCGCGCGGGAGTATACTGGTAATGATTGGTATCGTCAGCAGGGTCAGCATG
CTGATTATTGGGGCCAAGGCACCCTGGTGACGGTTAGCTCA 3131_ VH2 (SEQ ID NO: 15):
CAGGTGCAATTGAAAGAAAGCGGCCCGGCCCTGGTGAAACCGACCCAAACCCTGACCCTGACCTGT
ACCTTTTCCGGATTTAGCCTGTCTAATTCTGGTGTTGGTGTGGGTTGGATTCGCCAGCCGCCTGGGA
AAGCCCTCGAGTGGCTGGCTGATATCTATTCTGATACTACTAAGCGTTATAGCACCAGCCTGAAAAC
GCGTCTGACCATTAGCAAAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACATGGACCCG
GTGGATACGGCCACCTATTATTGCGCGCGTTATGGTGAGGCTTATTTTGATTATTGGGGCCAAGGCA
CCCTGGTGACGGTTAGCTCA 6183_VH3 (SEQ ID NO: 77)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGGTATTAATATGGAGTCTACTCGTATTTATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6184_VH3 (SEQ ID NO: 78)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTTCTCATGATGGTAATGTTAAGTATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6185_VH3 (SEQ ID NO: 79)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTTCTATGAATGGTGATTATATTTCTTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6186_VH3 (SEQ ID NO: 80)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTAATCTTTCTGGTTCTGCTAAGTATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6187 VH3 (SEQ ID NO: 81)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTTCTTCTAATGGTGATATTACTTATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6188_VH3 (SEQ ID NO: 82)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTTCTACTAATGGTTGGCAGACTTATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6189_VH3 (SEQ ID NO: 83)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTAATATGATTGGTAATGTTACTAATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6190_VH3 (SEQ ID NO: 84)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCTATATTAATCCTAATGGTATGATGACTAATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6192_VH3 (SEQ ID NO: 85)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGTTATTTCTCCTGGTGGTGAGGCTAAGTCTTATGCTGATTCTGTTAAGGGT
CGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGA
AGATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCC
AAGGCACCCTGGTGACGGTTAGCTCA 6195_VH3 (SEQ ID NO: 86)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTTCTGGTAATGGTGGTCATACTTATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6197_VH3 (SEQ ID NO: 87)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTTCTATGGATGGTGTTTATAAGTATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6200_VH3 (SEQ ID NO: 88)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTTCTAATAATGGTAATGTTACTTATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6201_VH3 (SEQ ID NO: 89)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATTATATGAATTGGGTGCGCCAAGCCCCTGGGAAGGG
TCTCGAGTGGGTGAGCGCTATTTCTATGCATGGTGATACTACTTATTATGCTGATTCTGTTAAGGGTC
GTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAA
GATACGGCCGTGTATTATTGCGCGCGTGATCTTCCTCTTGTTTATACTGGTTTTGCTTATTGGGGCCA
AGGCACCCTGGTGACGGTTAGCTCA 6204_VH3 (SEQ ID NO: 90)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATGCTATGAATTGGGTGCGCCAAGCCCCTGGGAAGG
GTCTCGAGTGGGTGAGCCATATTCGTAAGAAGAATACTTCTTATACTACTGAGTATGCTGCTTCTGTT
AAGGGTCGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCG
TGCGGAAGATACGGCCGTGTATTATTGCGCGCGTGAGGATGGTTCTTATATGACTGATTATTTTGCTT
ATTGGGGCCAAGGCACCCTGGTGACGGTTAGCTCA 6214VH3 (SEQ ID NO: 91)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATGCTATGAATTGGGTGCGCCAAGCCCCTGGGAAGG
GTCTCGAGTGGGTGAGCAATATTCAGCGTGTTGGTTCTACTTATTATGCTGATTCTGTTAAGGGTCGT
TTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGGAAGA
TACGGCCGTGTATTATTGCGCGCGTGAGGATGGTTCTTATATGACTGATTATTTTGCTTATTGGGGCC
AAGGCACCCTGGTGACGGTTAGCTCA 3O77_VH1B (SEQ ID NO: 111)
CAGGTGCAATTGGTTCAGAGCGGCGCGGAAGTGAAAAAACCGGGCGCGAGCGTGAAAGTGAGCTG
CAAAGCCTCCGGATATACCTTTACTTCTTATTCTATTAATTGGGTCCGCCAAGCCCCTGGGCAGGGT
CTCGAGTGGATGGGCTATATCGATCCGAATCGTGGCAATACGAATTACGCGCAGAAGTTTCAGGGC
CGGGTGACCATGACCCGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCGTAGC
GAAGATACGGCCGTGTATTATTGCGCGCGTGAGTATATTTATTTTATTCATGGTATGCTTGATTTTTG
GGGCCAAGGCACCCTGGTGACGGTTAGCTCA 3079_VH3 (SEQ ID NO: 112)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTAATTATGGTATGCATTGGGTGCGCCAAGCCCCTGGGAAGG
GTCTCGAGTGGGTGAGCAATATCCGTTCTGATGGTAGCTGGACCTATTATGCGGATAGCGTGAAAG
GCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCG
GAAGATACGGCCGTGTATTATTGCGCGCGTCGTTATTGGTCTAAGTCTCATGCTTCTGTTACTGATTA
TTGGGGCCAAGGCACCCTGGTGACGGTTAGCTCA 3080_ VH3 (SEQ ID NO: 113)
CAGGTGCAATTGGTGGAAAGCGGCGGCGGCCTGGTGCAACCGGGCGGCAGCCTGCGTCTGAGCT
GCGCGGCCTCCGGATTTACCTTTTCTTCTTATGGTATGCATTGGGTGCGCCAAGCCCCTGGGAAGG
GTCTCGAGTGGGTGAGCAATATCTATTCTGATGGTAGCAATACCTTTTATGCGGATAGCGTGAAAGG
CCGTTTTACCATTTCACGTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAGCCTGCGTGCGG
AAGATACGGCCGTGTATTATTGCGCGCGTAATATGTATCGTTGGCCTTTTCATTATTTTTTTGATTATT
GGGGCCAAGGCACCCTGGTGACGGTTAGCTCA
Figure lb
Variable Heavy Chain Peptide (CDR Regions in Bold or underlined) 3O76_VH1A (SEQ ID NO: 16):
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSNAISWVRQAPGQGLEWMGNIWPIFGTANYAQKFQGR
VTITADESTSTAYMELSSLRSEDTAVYYCARNGYLDTNTYIDYWGQGTLVTVSS 3078_VH3 (SEQ ID NO: 17):
QVQLVESGGGLVQPGGSLRLSCAASGFTFSDYAMSWVRQAPGKGLEVWSAIRYDGSNTYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARYYSGIYQHIDYWGQGTLVTVSS 3081_ VH3 (SEQ ID NO: 18):
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYALHWVRQAPGKGLEWVSSISGLGSTTYYADSVKGRF
TISRDNSKNTLYLQMNSLRAEDTAVYYCARYHYEYHYFSSGFDNWGQGTLVTVSS 3085_ VH1A (SEQ ID NO: 19):
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYINWVRQAPGQGLEWMGWIFPNGGSTGYAQKFQGR
VTMTRDTSISTAYMELSSLRSEDTAVYYCARGNIFIFDYWGQGTLVTVSS 3086_VH3 (SEQ ID NO: 20):
QVQLVESGGGLVQPGGSLRLSCAASGFTFTSYYMHWVRQAPGKGLEWVSYIDSSGSSTYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQLMPFGGYFDVWGQGTLVTVSS 3087_ VH3 (SEQ ID NO: 21):
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPGKGLEWVSGISGDPSNTYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 3088_ VH3 (SEQ ID NO: 22):
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSGISSWGSSTYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCAREDGSYMTDYFAYWGQGTLVTVSS 3089_ VH2 (SEQ ID NO: 23):
QVQLKESGPALVKPTQTLTLTCTFSGFSLSSDGMGVGWIRQPPGKALEWLALIDWDDDKRYSTSLKTRL
TISKDTSKNQWLTMTNMDPVDTATYYCARFNWFYRLAFVNPDVWGQGTLVTVSS 3101_ VH2 (SEQ ID NO: 24):
QVQLKESGPALVKPTQTLTLTCTFSGFSLSTSRVGVSWIRQPPGKALEWLAHIDWNDDKYYSTSLKTRLT
ISKDTSKNQWLTMTNMDPVDTATYYCAREDRLLGGYGYDVWGQGTLVTVSS 3102_ VH4 (SEQ ID NO: 25):
QVQLQESGPGLVKPGETLSLTCTVSGGSISGNYWSWIRQAPGKGLEWIGDYHGSTYYNPSLKGRVTISV
DTSKNQFSLKLSSVTAEDTAVYYCAREQYHWGLAWTGFDNWGQGTLVTVSS 3127_ VH5 (SEQ ID NO: 26): QVQLVQSGAEVKKPGESLKISCKGSGYSFSTSWVGWVRQMPGKGLEWMGIIDPDISYTSYSPSFQGQV TISADKSISTAYLQWSSLKASDTAMYYCARYLMGLGYDVWGQGTLVTVSS . 3128_ VH2 (SEQ ID NO: 27):
QVQLKESGPALVKPTQTLTLTCTFSGFSLSSSGMSVSWIRQPPGKALEWLARIYSDDSKSYSTSLKTRLTI
SKDTSKNQWLTMTNMDPVDTATYYCARAAHWNGPLFDVWGQGTLVTVSS 3129_ VH3 (SEQ ID NO: 28):
QVQLVESGGGLVQPGGSLRLSCAASGFTFSNYSMNWVRQAPGKGLEWVSYIYGGGSYTYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARQAGMYFDVWGQGTLVTVSS 3130_ VH4 (SEQ ID NO: 29):
QVQLQESGPGLVKPGETLSLTCTVSGGSIGYYWNWIRQAPGKGLEWIGHISRFGSTNYNPSLKGRVTISV
DTSKNQFSLKLSSVTAEDTAVYYCAREYTGNDWYRQQGQHADYWGQGTLVTVSS 3131_ VH2 (SEQ ID NO: 30):
QVQLKESGPALVKPTQTLTLTCTFSGFSLSNSGVGVGWIRQPPGKALEWLADIYSDTTKRYSTSLKTRLTI
SKDTSKNQWLTMTNMDPVDTATYYCARYGEAYFDYWGQGTLVTVSS 6183_VH3 (SEQ ID NO: 92)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPGKGLEWVSGINMESTRIYYADSVKGRF
TISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6184_VH3 (SEQ ID NO: 93)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNVWRQAPGKGLEWVSAISHDGNVKYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6185_VH3 (SEQ ID NO: 94)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNVWRQAPGKGLEVWSAISMNGDYISYADSVKGRF
TISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6186_VH3 (SEQ ID NO: 95)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPGKGLEWVSAINLSGSAKYYADSVKGRF
TISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6187_VH3 (SEQ ID NO: 96)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNVWRQAPGKGLEWVSAISSNGDIPfYADSVKGRF
TISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6188_VH3 (SEQ ID NO: 97)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNVWRQAPGKGLEWVSAISTNGWQTYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6189_VH3 (SEQ ID NO: 98)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPGKGLEWVSAINMIGNVTNYADSVKGRF
TISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6190_VH3 (SEQ ID NO: 99)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPGKGLEVWSYINPNGMMTNYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6192_VH3 (SEQ ID NO: 100)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPGKGLEWVSVISPGGEAKSYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6195_VH3 (SEQ ID NO: 101)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPGKGLEWVSAISGNGGHTYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6197_VH3 (SEQ ID NO: 102)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPGKGLEWVSAISMDGVYKYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6200_VH3 (SEQ ID NO: 103)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNWVRQAPGKGLEWVSAISNNGNVTYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6201_VH3 (SEQ ID NO: 104)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMNVWRQAPGKGLEWVSAISMHGDTTYYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPLVYTGFAYWGQGTLVTVSS 6204_VH3 (SEQ ID NO: 105)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSHIRKKNTSYTTEYAASVKG
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREDGSYMTDYFAYWGQGTLVTVSS 6214_VH3 (SEQ ID NO: 106)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSNIQRVGSTYYADSVKGRF
TISRDNSKNTLYLQMNSLRAEDTAVYYCAREDGSYMTDYFAYWGQGTLVTVSS 3O77_VH1B (SEQ ID NO: 114)
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYSINWVRQAPGQGLEWMGYIDPNRGNTNYAQKFQGR
VTMTRDTSISTAYMELSSLRSEDTAVYYCAREYIYFIHGMLDFWGQGTLVTVSS 3079 VH3 (SEQ ID NO: 115)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVSNIRSDGSWTYYADSVKG
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARRYWSKSHASVTDYWGQGTLVTVSS 3080_ VH3 (SEQ ID NO: 116)
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVSNIYSDGSNTFYADSVKGR
FTISRDNSKNTLYLQMNSLRAEDTAVYYCARNMYRWPFHYFFDYWGQGTLVTVSS
Figure 2a
Variable Light Chain DNA 3O76_V1 lambda 2 (SEQ ID NO: 31):
GATATCGCACTGACCCAGCCAGCTTCAGTGAGCGGCTCACCAGGTCAGAGCATTACCATCTCGTGT
ACGGGTACTAGCAGCGATATTGGTGCTTATGTGTCTTGGTACCAGCAGCATCCCGGGAAGGCGCCG
AAACTTATGATTTATGAGGTTTCTTCTCGTCCCTCAGGCGTGAGCAACCGTTTTAGCGGATCCAAAAG
CGGCAACACCGCGAGCCTGACCATTAGCGGCCTGCAAGCGGAAGACGAAGCGGATTATTATTGCTC
TTCTTATGATCTTACTCCTCCTGGTAAGGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3O78_V1 lambda 3 (SEQ ID NO: 32):
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATATTGGTCATTATTATGTTTCTTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTC
TTGTGATTTATGGTGATAATAATCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCGCTTC
TGATGTTGGTTCTCTTGATGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3081_ Vk kappa 3 (SEQ ID NO: 33):
GATATCGTGCTGACCCAGAGCCCGGCGACCCTGAGCCTGTCTCCGGGCGAACGTGCGACCCTGAG
CTGCAGAGCGAGCCAGACTGGTTCTACTTCTTATCTGGCTTGGTACCAGCAGAAACCAGGTCAAGCA
CCGCGTCTATTAATTTATGATGCTTCTAAGCGTGCAACTGGGGTCCCGGCGCGTTTTAGCGGCTCTG
GATCCGGCACGGATTTTACCCTGACCATTAGCAGCCTGGAACCTGAAGACTTTGCGACTTATTATTG
CCATCAGTATTATAACGTTCCTCATACCTTTGGCCAGGGTACGAAAGTTGAAATTAAACGTACG 3085_ VI lambda 1 (SEQ ID NO: 34):
GATATCGTGCTGACCCAGCCGCCTTCAGTGAGTGGCGCACCAGGTCAGCGTGTGACCATCTCGTGT
AGCGGCAGCAGCAGCAACATTGGTAATAATTATGTGTCrTGGTACCAGCAGTTGCCCGGGACGGCG
CCGAAACTTCTGATTTATGGTGATGATCAGCGTCCCTCAGGCGTGCCGGATCGTTTTAGCGGATCCA
AAAGCGGCACCAGCGCGAGCCTTGCGATTACGGGCCTGCAAAGCGAAGACGAAGCGGATTATTATT
GCCAGTCTTATGGTACTTTTTCTTCTTTTGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3086_Vk kappa 1 (SEQ ID NO: 35):
GATATCCAGATGACCCAGAGCCCGTCTAGCCTGAGCGCGAGCGTGGGTGATCGTGTGACCATTACC
TGCAGAGCGAGCCAGAATATTTCTCAGTGGCTGAATTGGTACCAGCAGAAACCAGGTAAAGCACCG
AAACTATTAATTTATGGTGCTTCTAATTTGCAAAGCGGGGTCCCGTCCCGTTTTAGCGGCTCTGGATC
CGGCACTGATTTTACCCTGACCATTAGCAGCCTGCAACCTGAAGACTTTGCGACTTATTATTGCCAG
CAGTATTATGATCTTCCTAATACCTTTGGCCAGGGTACGAAAGTTGAAATTAAACGTACG 3087_ VI lambda 3 (SEQ ID NO: 36):
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATCTTCGTCATTATTATGTTTATTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTC
TTGTGATTTATGGTGATTCTAAGCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCCAGAC
TTATACTGGTGGTGCTTCTCTTGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3088_ VI lambda 3 (SEQ ID NO: 37):
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATATTGGTCATTATTATGTTTCTTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTC
TTGTGATTTATTCTGATTCTAATCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCCAGTC
TTATAATGGTACTTATGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3089_ Vk kappa 3 (SEQ ID NO: 38):
GATATCGTGCTGACCCAGAGCCCGGCGACCCTGAGCCTGTCTCCGGGCGAACGTGCGACCCTGAG
CTGCAGAGCGAGCCAGTCTGTTTCTTCTTCTTATCTGGCTTGGTACCAGCAGAAACCAGGTCAAGCA
CCGCGTCTATTAATTTATGGTGCTTCTTCTCGTGCAACTGGGGTCCCGGCGCGTTTTAGCGGCTCTG
GATCCGGCACGGATTTTACCCTGACCATTAGCAGCCTGGAACCTGAAGACTTTGCGGTTTATTATTG
CCAGCAGGGTTATAATTCTCCTTTTACCTTTGGCCAGGGTACGAAAGTTGAAATTAAACGTACG 3101_ VI lambda 3 (SEQ ID NO: 39):
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATTCTCTTGGTTCTTATTATGTTCATTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTC
TTGTGATTGGTGATGATACTAAGCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCG
GCAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCGGTT
CTCGTACTGGTTATAATAATTCTTTTGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3102_ V'l lambda 3 (SEQ ID NO: 40):
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATCTTGGTCATTATTATGTTTCTTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTC
TTGTGATTTATGATGATTCTGATCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCGGTGC
TTATGCTATGCATATGACTGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3127_ VI lambda 2 (SEQ ID NO: 41):
GATATCGCACTGACCCAGCCAGCTTCAGTGAGCGGCTCACCAGGTCAGAGCATTACCATCTCGTGT
ACGGGTACTAGCAGCGATGTTGGTGCTATTAATTATGTGTCTTGGTACCAGCAGCATCCCGGGAAGG
CGCCGAAACTTATGATTTATGATGTTAATAAGCGTCCCTCAGGCGTGCCGGATCGTTTTAGCGGATC
CAAAAGCGGCAACACCGCGAGCCTGACCATTAGCGGCCTGCAAGCGGAAGACGAAGCGGATTATTA
TTGCGGTTCTTATACTATGCAGGTTGGTTCTTATGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTG
GCCAG 3128_ VI lambda 3 (SEQ ID NO: 42):
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATATTGGTCATTATTATGCTCATTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTG
TTGTGATTTATGATGATAATGATCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCCAGGC
TTATACTGGTGATGGTGGTCGTGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3129_ VI lambda 3 (SEQ ID NO: 43):
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATCTTGGTTCTAAGGTTGTTTCTTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTT
CTTGTGATTTATTATGATAATAAGCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCG
GCAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCCAGT
CTTATACTTTTGAGTCTGGTTCTGTTGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3130_ VI lambda 3 (SEQ ID NO: 44):
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATCTTGGTCATTATTATGTTGATTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTC
TTGTGATTTATGCTGATAATAATCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCTCTTCT
TATTCTCAGCAGTCTATGGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 3131_ VI lambda 3 (SEQ ID NO: 45):
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATCTTGGTAATTTTTATGTTCATTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTC
TTGTGATTTATGAGGATTCTAATCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCTCTTCT
TGGGATATGTATCGTACTATTTTTGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG 6278_V1 lambda 3 (SEQ ID NO: 107)
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATATTGGTCATTATTATGTTTCTTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTC
TTGTGATTTATTCTGATTCTAATCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCCAGTC
TGCTGATAATTTTCCTTTTGTGTTTGGCGGCGGCACGAAGTTAACCGTCCTAGGTCAG 6279_ VI lambda 3 (SEQ ID NO: 108)
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATATTGGTCATTATTATGTTTCTTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTC
TTGTGATTTATTCTGATTCTAATCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCCAGTC
TTATACTATGTCTGATGTTCTTGTTGTGTTTGGCGGCGGCACGAAGTTAACCGTCCTAGGTCAG 3077_Vk kappa 2 (SEQ ID NO: 117)
GATATCGTGATGACCCAGAGCCCACTGAGCCTGCCAGTGACTCCGGGCGAGCCTGCGAGCATTAGC
TGCAGAAGCAGCCAAAGCCTGCTTTTTATTGATGGCAATAATTATCTGAATTGGTACCTTCAAAAACC
AGGTCAAAGCCCGCAGCTATTAATTTATCTTGGTTCTAATCGTGCCAGTGGGGTCCCGGATCGTTT
TAGCGGCTCTGGATCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTGGAAGCTGAAGACGTGGG
CGTGTATTATTGCCAGCAGTATTCTTCTAAGTCTGCTACCTTTGGCCAGGGTACGAAAGTTGAAATTA
AACGTACG 3079_Vk kappa 1 (SEQ ID NO: 118)
GATATCCAGATGACCCAGAGCCCGTCTAGCCTGAGCGCGAGCGTGGGTGATCGTGTGACCATTACC
TGCAGAGCGAGCCAGGATATTTCTGCTTTTCTGAATTGGTACCAGCAGAAACCAGGTAAAGCACCGA
AACTATTAATTTATAAGGTTTCTAATTTGCAAAGCGGGGTCCCGTCCCGTTTTAGCGGCTCTGGATCC
GGCACTGATTTTACCCTGACCATTAGCAGCCTGCAACCTGAAGACTTTGCGACTTATTATTGCCAGCA
GGCTTATTCTGGTTCTATTACCTTTGGCCAGGGTACGAAAGTTGAAATTAAACGTACG 3080_Vl lambda 3 (SEQ ID NO: 119)
GATATCGAACTGACCCAGCCGCCTTCAGTGAGCGTTGCACCAGGTCAGACCGCGCGTATCTCGTGT
AGCGGCGATAATATTGGTAATAAGTATGTTTCTTGGTACCAGCAGAAACCCGGGCAGGCGCCAGTTG
TTGTGATTTATGGTGATAATAATCGTCCCTCAGGCATCCCGGAACGCTTTAGCGGATCCAACAGCGG
CAACACCGCGACCCTGACCATTAGCGGCACTCAGGCGGAAGACGAAGCGGATTATTATTGCTCTTCT
TATGATTCTTCTTATTTTGTGTTTGGCGGCGGCACGAAGTTAACCGTTCTTGGCCAG
Figure 2b
Variable Light Chain Peptide (CDR Regions in Bold or underlined) 3O76_V1 lambda 2 (SEQ ID NO: 46):
DIALTQPASVSGSPGQSITISCTGTSSDIGAYVSWYQQHPGKAPKLMIYEVSSRPSGVSNRFSGSKSGNT
ASLTISGLQAEDEADYYCSSYDLTPPGKVFGGGTKLTVLGQ 3O78_V1 lambda 3 (SEQ ID NO: 47):
DIELTQPPSVSVAPGQTARISCSGDNIGHYYVSWYQQKPGQAPVLVIYGDNNRPSGIPERFSGSNSGNTA
TLTISGTQAEDEADYYCASDVGSLDVFGGGTKLTVLGQ 3081_ Vk kappa 3 (SEQ ID NO: 48):
DIVLTQSPATLSLSPGERATLSCRASQTGSTSYLAWYQQKPGQAPRLLIYDASKRATGVPARFSGSGSGT
DFTLTISSLEPEDFATYYCHQYYNVPHTFGQGTKVEIKRT 3085_ VI lambda 1 (SEQ ID NO: 49):
DIVLTQPPSVSGAPGQRVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYGDDQRPSGVPDRFSGSKSG
TSASLAITGLQSEDEADYYCQSYGTFSSFVFGGGTKLTVLGQ 3086_Vk kappa 1 (SEQ ID NO: 50):
DIQMTQSPSSLSASVGDRVTITCRASQNISQWLNWYQQKPGKAPKLLIYGASNLQSGVPSRFSGSGSGT
DFTLTISSLQPEDFATYYCQQYYDLPNTFGQGTKVEIKRT 3087_ VI lambda 3 (SEQ ID NO: 51):
DIELTQPPSVSVAPGQTARISCSGDNLRHYYVYWYQQKPGQAPVLVIYGDSKRPSGIPERFSGSNSGNT
ATLTISGTQAEDEADYYCQTYTGGASLVFGGGTKLTVLGQ 3088_ VI lambda 3 (SEQ ID NO: 52):
DIELTQPPSVSVAPGQTARISCSGDNIGHYYVSWYQQKPGQAPVLVIYSDSNRPSGIPERFSGSNSGNTA
TLTISGTQAEDEADYYCQSYNGTYVFGGGTKLTVLGQ 3089_ Vk kappa 3 (SEQ ID NO: 53):
DIVLTQSPATLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGVPARFSGSGSGT
DFTLTISSLEPEDFAVYYCQQGYNSPFTFGQGTKVEIKRT 3101_ VI lambda 3 (SEQ ID NO: 54):
DIELTQPPSVSVAPGQTARISCSGDSLGSYYVHWYQQKPGQAPVLVIGDDTKRPSGIPERFSGSNSGNT
ATLTISGTQAEDEADYYCGSRTGYNNSFVFGGGTKLTVLGQ 3102_ VI lambda 3 (SEQ ID NO: 55):
DIELTQPPSVSVAPGQTARISCSGDNLGHYYVSWYQQKPGQAPVLVIYDDSDRPSGIPERFSGSNSGNT
ATLTISGTQAEDEADYYCGAYAMHMTVFGGGTKLTVLGQ 3127_ VI lambda 2 (SEQ ID NO: 56):
DIALTQPASVSGSPGQSITISCTGTSSDVGAINYVSWYQQHPGKAPKLMIYDVNKRPSGVPDRFSGSKSG
NTASLTISGLQAEDEADYYCGSYTMQVGSYVFGGGTKLTVLGQ 3128_ VI lambda 3 (SEQ ID NO: 57):
DIELTQPPSVSVAPGQTARISCSGDNIGHYYAHWYQQKPGQAPWVIYDDNDRPSGIPERFSGSNSGNT
ATLTISGTQAEDEADYYCQAYTGDGGRVFGGGTKLTVLGQ 3129_ VI lambda 3 (SEQ ID NO: 58):
DIELTQPPSVSVAPGQTARISCSGDNLGSKWSWYQQKPGQAPVLVIYYDNKRPSGIPERFSGSNSGNTA
TLTISGTQAEDEADYYCQSYTFESGSWFGGGTKLTVLGQ 3130_ VI lambda 3 (SEQ ID NO: 59):
DIELTQPPSVSVAPGQTARISCSGDNLGHYYVDWYQQKPGQAPVLVIYADNNRPSGIPERFSGSNSGNT
ATLTISGTQAEDEADYYCSSYSQQSMVFGGGTKLTVLGQ 3131_ VI lambda 3 (SEQ ID NO: 60):
DIELTQPPSVSVAPGQTARISCSGDNLGNFYVHWYQQKPGQAPVLVIYEDSNRPSGIPERFSGSNSGNT
ATLTISGTQAEDEADYYCSSWDMYRTIFVFGGGTKLTVLGQ 6278_ VI lambda 3 (SEQ ID NO: 109)
DIELTQPPSVSVAPGQTARISCSGDNIGHYYVSWYQQKPGQAPVLVIYSDSNRPSGIPERFSGSNSGNTA
TLTISGTQAEDEADYYCQSADNFPFVFGGGTKLTVLGQ 6279_ VI lambda 3 (SEQ ID NO: 110)
DIELTQPPSVSVAPGQTARISCSGDNIGHYYVSWYQQKPGQAPVLVIYSDSNRPSGIPERFSGSNSGNTA
TLTISGTQAEDEADYYCQSYTMSDVLWFGGGTKLTVLGQ 3077_Vk kappa 2 (SEQ ID NO: 120)
DIVMTQSPLSLPVTPGEPASISCRSSQSLLFIDGNNYLNWYLQKPGQSPQLLIYLGSNRASGVPDRFSGS
GSGTDFTLKISRVEAEDVGVYYCQQYSSKSATFGQGTKVEIKRT 3079_Vk kappa 1 (SEQ ID NO: 121)
DIQMTQSPSSLSASVGDRVTITCRASQDISAFLNWYQQKPGKAPKLLIYKVSNLQSGVPSRFSGSGSGT
DFTLTISSLQPEDFATYYCQQAYSGSITFGQGTKVEIKRT 3080_VI lambda3 (SEQ ID NO: 122)
DIELTQPPSVSVAPGQTARISCSGDNIGNKYVSWYQQKPGQAPVWIYGDNNRPSGIPERFSGSNSGNT
ATLTISGTQAEDEADYYCSSYDSSYFVFGGGTKLTVLGQ
Figure 3
Variable Heavy Chain Consensus Sequences (CDR Regions in Bold) VH1A Consensus (SEQ ID NO: 61): QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTI TADES T S TAYMELS S LRS E DTAVYYCARWGGDGFYAMDYWGQGTLVTVSS. VH2 Consensus (SEQ ID NO: 62)
QVQLKESGPALVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALEWLALIDWDDDKYYSTSLKTRLT
ISKDTSKNQWLTMTNMDPVDTATYYCARWGGDGFYAMDYWGQGTLVTVSS VH3 Consensus (SEQ ID NO: 63):
(1) QVQLVESGGG LVQPGGSLRL SCAASGFTFS SYAMSWVRQA PGKGLEWVSA
(51) ISGSGGSTYY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARWG
(101) GDGFYAMDYW GQGTLVTVS S VH4 Consensus (SEQ ID NO: 64):
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTIS
VDTSKNQFSLKLSSVTAADTAVYYCARWGGDGFYAMDYWGQGTLVTVSS VH5 Consensus (SEQ ID NO: 65):
QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTI SADKSIS TAYLQWS S LKAS DTAMYYCARWGGDGFYAMDYWGQGTLVTVS S
Figure 4
Variable Light Chain Consensus Sequences (CDR Regions in Bold)
VlXl Consensus (SEQ ID NO: 66):
DIVLTQPPSVSGAPGQRVTISCSGSSSNIGSNYVSWYQQLPGTAPKLLIYDNNQRPSGVPDRFSGSKSGT SAS LAITGLQS E DEADYYCQQHYTTPPVFGGGTKLTVLGQ V1_X2 Consensus (SEQ ID NO: 67):
DIALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSG NTAS LTIS GLQAE DEADYYCQQHYTTPPVFGGGTKLTVLGQ V1_X3 Consensus (SEQ ID NO: 68):
(1) DIELTQPPSV SVAPGQTARI SCSGDALGDK YASWYQQKPG QAPVLVIYDD
(51) SDRPSGIPER FSGSNSGNTA TLTISGTQAE DEADYYCQQH YTTPPVFGGG
(101) TKLTVLG
Vlkl Consensus (SEQ ID NO: 69):
(1) DIQMTQSPSS LSASVGDRVT ITCRASQGIS SYLAWYQQKP GKAPKLLIYA
(51) ASSLQSGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ HYTTPPTFGQ
(101) GTKVEIKR
Vl_k3 Consensus (SEQ ID NO: 70):
DIVLTQSPATLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGVPARFSGSGSGT DFTLTIS S LE PEDFAVYYCQQHYTTPPT FGQGTKVEIKRT
Figure 5
Peptide Sequence of CD38 (SEQ ID NO: 71): 1 mancefspvs gdkpccrlsr raqlclgvsi lvlilvvvla vvvprwrqqw sgpgttkrfp 61 etvlarcvky teihpemrhv dcqsvwdafk gafiskhpcn iteedyqplm klgtqtvpcn 121 killwsrikd lahqftqvqr dmftledtll gyladdltwc gefntskiny qscpdwrkdc 181 snnpvsvfwk tvsrrfaeaa cdvvhvmlng srskifdkns tfgsvevhnl qpekvqtlea 241 wvihggreds rdlcqdptik elesiiskrn iqfsckniyr pdkflqcvkn pedssctsei
Figure 6
Nucleotide Sequence of Chimeric OKTIO
Heavy Chain (SEQ ID NO: 72): caggtggaat tggtggaatc tggaggatcc ctgaaactct cctgtgcagc ctcaggattc gattttagta gatcctggat gaattgggtc cggcaggctc caggaaaagg gctagaatgg attggagaaa ttaatccaga tagcagtacg ataaactata cgacatctct aaaggataaa ttcatcatct ccagagacaa cgccaaaaat acgctgtacc tgcaaatgac caaagtgaga tctgaggaca cagcccttta ttactgtgca agatatggta actggtttcc ttattggggc caagggactc tggtcactgt cagctcagcc tccaccaagg gtccatcggt cttccccctg gcaccctcct ccaagagcac ctctgggggc acagcggccc tgggctgcct ggtcaaggac tacttccccg aaccggtgac ggtgtcgtgg aactcaggcg ccctgaccag cggcgtgcac accttcccgg ctgtcctaca gtcctcagga ctctactccc tcagcagcgt ggtgaccgtg ccctccagca gcttgggcac ccagacctac atctgcaacg tgaatcacaa gcccagcaac accaaggtgg acaagaaagt tgagcccaaa tcttgtgaca aaactcacac atgcccaccg tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc aaaacccaag gacaccctca tgatctcccg gacccctgag gtcacatgcg tggtggtgga cgtgagccac gaagaccctg aggtcaagtt caactggtac gtggacggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gtacaacagc acgtaccggg tggtcagcgt cctcaccgtc ctgcaccagg actggctgaa tggcaaggag tacaagtgca aggtctccaa caaagccctc ccagccccca tcgagaaaac catctccaaa gccaaagggc agccccgaga accacaggtg tacaccctgc ccccatcccg ggatgagctg accaagaacc aggtcagcct gacctgcctg gtcaaaggct tctatcccag cgacatcgcc gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc tcccgtgctg gactccgacg gctccttctt cctctacagc aagctcaccg tggacaagag caggtggcag caggggaacg tcttctcatg ctccgtgatg catgaggctc tgcacaacca ctacacgcag aagagcctct ccctgtctcc gggtaaa
Light Chain (SEQ ID NO: 73): gatatcctga tgacccagtc tcaaaaaatc atgcccacat cagtgggaga cagggtcagc gtcacctgca aggccagtca aaatgtggat actaatgtag cctggtatca acagaaacca ggacagtctc ctaaagcact gatttactcg gcatcctacc gatacagtgg agtccctgat cgcttcacag gcagtggatc tgggacagat ttcactctca ccatcaccaa tgtgcagtct gaggacttgg cagagtattt ctgtcagcaa tatgacagct atcctctcac gttcggtgct gggaccaagc tggacctgaa acgtacggtg gctgcaccat ctgtcttcat cttcccgcca tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gt
Figure 7: DNA sequence of pMOPRH®_h_IgGl_l
Styl
601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA AGCGATAATG GTACCACTAC GCCAAAACCG TCATGTAGTT ACCCGCACCT
Aatll
651 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT
701 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA ACCCTCAAAC AAAACCGTGG TTTTAGTTGC CCTGAAAGGT TTTACAGCAT
751 ACAACTCCGC CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG TGTTGAGGCG GGGTAACTGC GTTTACCCGC CATCCGCACA TGCCACCCTC
801 GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA CTGCTTACTG CAGATATATT CGTCTCGAGA GACCGATTGA TCTCTTGGGT GACGAATGAC pMORPH®_Ig_FOR 100.0% Nhel
851 GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC CGAATAGCTT TAATTATGCT GAGTGATATC CCTCTGGGTT CGACCGATCG
Μ K HLW FFL L L V A APR· 901 GCCACCATGA AACACCTGTG GTTCTTCCTC CTGCTGGTGG CAGCTCCCAG
CGGTGGTACT TTGTGGACAC CAAGAAGGAG GACGACCACC GTCGAGGGTC
EcoRI BlpI Styl AST·
•WVL SQVE FCR RLA Q 951 ATGGGTCCTG TCCCAGGTGG AATTCTGCAG GCGGTTAGCT CAGCCTCCAC
TACCCAGGAC AGGGTCCACC TTAAGACGTC CGCCAATCGA GTCGGAGGTG
Styl Bbsl
•KGP SVFP LAP SSK STSG· 1001 CAAGGGTCCA TCGGTCTTCC CCCTGGCACC CTCCTCCAAG AGCACCTCTG
GTTCCCAGGT AGCCAGAAGG GGGACCGTGG GAGGAGGTTC TCGTGGAGAC
• GTA ALG CLVK DYF PEP 1051 GGGGCACAGC GGCCCTGGGC TGCCTGGTCA AGGACTACTT CCCCGAACCG
CCCCGTGTCG CCGGGACCCG ACGGACCAGT TCCTGATGAA GGGGCTTGGC
VTVS WNS GAL TSGV Η T F · 1101 GTGACGGTGT CGTGGAACTC AGGCGCCCTG ACCAGCGGCG TGCACACCTT
CACTGCCACA GCACCTTGAG TCCGCGGGAC TGGTCGCCGC ACGTGTGGAA
•PAV LQSS GLY SLS SVVT· 1151 CCCGGCTGTC CTACAGTCCT CAGGACTCTA CTCCCTCAGC AGCGTGGTGA
GGGCCGACAG GATGTCAGGA GTCCTGAGAT GAGGGAGTCG TCGCACCACT
• VPS SSL GTQT YIC NVN 1201 CCGTGCCCTC CAGCAGCTTG GGCACCCAGA CCTACATCTG CAACGTGAAT
GGCACGGGAG GTCGTCGAAC CCGTGGGTCT GGATGTAGAC GTTGCACTTA
Styl
HKPS NTK VDK KVEP KSC· 1251 CACAAGCCCA GCAACACCAA GGTGGACAAG AAAGTTGAGC CCAAATCTTG
GTGTTCGGGT CGTTGTGGTT CCACCTGTTC TTTCAACTCG GGTTTAGAAC
• D K T HTCP PCP APE LLGG· 1301 TGACAAAACT CACACATGCC CACCGTGCCC AGCACCTGAA CTCCTGGGGG
ACTGTTTTGA GTGTGTACGG GTGGCACGGG TCGTGGACTT GAGGACCCCC
Bbsl Styl
• PSV FLF PPKP KDT L Μ I 1351 GACCGTCAGT CTTCCTCTTC CCCCCAAAAC CCAAGGACAC CCTCATGATC
CTGGCAGTCA GAAGGAGAAG GGGGGTTTTG GGTTCCTGTG GGAGTACTAG
Bbsl
SRTP EVT CVV VDVS Η E D · 1401 TCCCGGACCC CTGAGGTCAC ATGCGTGGTG GTGGACGTGA GCCACGAAGA
AGGGCCTGGG GACTCCAGTG TACGCACCAC CACCTGCACT CGGTGCTTCT
Bbsl
•PEV KFNW YVD GVE V Η N A · 1451 CCCTGAGGTC AAGTTCAACT GGTACGTGGA CGGCGTGGAG GTGCATAATG
GGGACTCCAG TTCAAGTTGA CCATGCACCT GCCGCACCTC CACGTATTAC
• KTK PRE EQYN STY RVV 1501 CCAAGACAAA GCCGCGGGAG GAGCAGTACA ACAGCACGTA CCGGGTGGTC
GGTTCTGTTT CGGCGCCCTC CTCGTCATGT TGTCGTGCAT GGCCCACCAG
SVLT VLH Q D W LNGK E Y K · 1551 AGCGTCCTCA CCGTCCTGCA CCAGGACTGG CTGAATGGCA AGGAGTACAA
TCGCAGGAGT GGCAGGACGT GGTCCTGACC GACTTACCGT TCCTCATGTT
•CKV SNKA LPA PIE KTIS· 1601 GTGCAAGGTC TCCAACAAAG CCCTCCCAGC CCCCATCGAG AAAACCATCT
CACGTTCCAG AGGTTGTTTC GGGAGGGTCG GGGGTAGCTC TTTTGGTAGA
BsrGI
• KAK GQP REPQ VYT LPP 1651 CCAAAGCCAA AGGGCAGCCC CGAGAACCAC AGGTGTACAC CCTGCCCCCA GGTTTCGGTT TCCCGTCGGG GCTCTTGGTG TCCACATGTG GGACGGGGGT SRDE LTK NQV SLTC L V K ·
1701 TCCCGGGATG AGCTGACCAA GAACCAGGTC AGCCTGACCT GCCTGGTCAA AGGGCCCTAC TCGACTGGTT CTTGGTCCAG TCGGACTGGA CGGACCAGTT
•GFY PSDI AVE WES NGQP· 1751 AGGCTTCTAT CCCAGCGACA TCGCCGTGGA GTGGGAGAGC AATGGGCAGC
TCCGAAGATA GGGTCGCTGT AGCGGCACCT CACCCTCTCG TTACCCGTCG
• ENN YKT TPPV LDS DGS 1801 CGGAGAACAA CTACAAGACC ACGCCTCCCG TGCTGGACTC CGACGGCTCC
GCCTCTTGTT GATGTTCTGG TGCGGAGGGC ACGACCTGAG GCTGCCGAGG
FFLY SKL TVD KSRW Q Q G · 1851 TTCTTCCTCT ACAGCAAGCT CACCGTGGAC AAGAGCAGGT GGCAGCAGGG
AAGAAGGAGA TGTCGTTCGA GTGGCACCTG TTCTCGTCCA CCGTCGTCCC
Bbsl Nsil
• N V F SCSV MHE A L Η NHYT· 1901 GAACGTCTTC TCATGCTCCG TGATGCATGA GGCTCTGCAC AACCACTACA
CTTGCAGAAG AGTACGAGGC ACTACGTACT CCGAGACGTG TTGGTGATGT
Sapl Pmel • QKS LSL SPGK *
1951 CGCAGAAGAG CCTCTCCCTG TCTCCGGGTA AATGAGGGCC CGTTTAAACC GCGTCTTCTC GGAGAGGGAC AGAGGCCCAT TTACTCCCGG GCAAATTTGG
2001 CGCTGATCAG CCTCGACTGT GCCTTCTAGT TGCCAGCCAT CTGTTGTTTG GCGACTAGTC GGAGCTGACA CGGAAGATCA ACGGTCGGTA GACAACAAAC pMORPH®_Ig_REV 100.0%
2051 CCCCTCCCCC GTGCCTTCCT TGACCCTGGA AGGTGCCACT CCCACTGTCC GGGGAGGGGG CACGGAAGGA ACTGGGACCT TCCACGGTGA GGGTGACAGG
Figure 8: DNA Sequence of Ig kappa light chain expression vector pMORPH®_h_IgK_l
Styl
601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA
AGCGATAATG GTACCACTAC GCCAAAACCG TCATGTAGTT ACCCGCACCT
651 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA
ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT
701 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA
ACCCTCAAAC AAAACCGTGG TTTTAGTTGC CCTGAAAGGT TTTACAGCAT
751 ACAACTCCGC CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG
TGTTGAGGCG GGGTAACTGC GTTTACCCGC CATCCGCACA TGCCACCCTC
801 GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA CTGCTTACTG
CAGATATATT CGTCTCGAGA GACCGATTGA TCTCTTGGGT GACGAATGAC pMORPH®_Ig_FOR 100% Nhel
851 GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
CGAATAGCTT TAATTATGCT GAGTGATATC CCTCTGGGTT CGACCGATCG
+ 1 MV LQT QVF ISLL LWI
Styl
901 GCCACCATGG TGTTGCAGAC CCAGGTCTTC ATTTCTCTGT TGCTCTGGAT CGGTGGTACC ACAACGTCTG GGTCCAGAAG TAAAGAGACA ACGAGACCTA
Bbsl
+ 1 SGA YGDI VMI KRT VAA
EcoRV BsiWI
951 CTCTGGTGCC TACGGGGATA TCGTGATGAT TAAACGTACG GTGGCTGCAC
GAGACCACGG ATGCCCCTAT AGCACTACTA ATTTGCATGC CACCGACGTG
+ 1PSVF IFP PSDE QLK SGT 1001 CATCTGTCTT CATCTTCCCG CCATCTGATG AGCAGTTGAA ATCTGGAACT
GTAGACAGAA GTAGAAGGGC GGTAGACTAC TCGTCAACTT TAGACCTTGA
Bbsl
+ 1 A S V V CLL NNF YPRE AKV 1051 GCCTCTGTTG TGTGCCTGCT GAATAACTTC TATCCCAGAG AGGCCAAAGT
CGGAGACAAC ACACGGACGA CTTATTGAAG ATAGGGTCTC TCCGGTTTCA
+ 1 QWK VDNA LQS GNS QES 1101 ACAGTGGAAG GTGGATAACG CCCTCCAATC GGGTAACTCC CAGGAGAGTG
TGTCACCTTC CACCTATTGC GGGAGGTTAG CCCATTGAGG GTCCTCTCAC
+ 1VTEQ DSK DSTY SLS STL 1151 TCACAGAGCA GGACAGCAAG GACAGCACCT ACAGCCTCAG CAGCACCCTG
AGTGTCTCGT CCTGTCGTTC CTGTCGTGGA TGTCGGAGTC GTCGTGGGAC
+ 1TLSK ADY EKH KVYA CEV BlpI
1201 ACGCTGAGCA AAGCAGACTA CGAGAAACAC AAAGTCTACG CCTGCGAAGT
TGCGACTCGT TTCGTCTGAT GCTCTTTGTG TTTCAGATGC GGACGCTTCA
+ 1 THQ GLSS PVT KSF NRG
1251 CACCCATCAG GGCCTGAGCT CGCCCGTCAC AAAGAGCTTC AACAGGGGAG
GTGGGTAGTC CCGGACTCGA GCGGGCAGTG TTTCTCGAAG TTGTCCCCTC + 1 E C *
Pmel pMORPH®_Ig_REV 100%
1301 AGTGTTAGGG GCCCGTTTAA ACCCGCTGAT CAGCCTCGAC TGTGCCTTCT
TCACAATCCC CGGGCAAATT TGGGCGACTA GTCGGAGCTG ACACGGAAGA
1351 AGTTGCCAGC CATCTGTTGT TTGCCCCTCC CCCGTGCCTT CCTTGACCCT
TCAACGGTCG GTAGACAACA AACGGGGAGG GGGCACGGAA GGAACTGGGA
Figure 9: DNA Sequence of HuCAL® Ig lambda light chain vector pMORPH®_h_Igk_l
Styl
601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA
AGCGATAATG GTACCACTAC GCCAAAACCG TCATGTAGTT ACCCGCACCT
651 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA
ATCGCCAAAC TGAGTGCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT
701 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA
ACCCTCAAAC AAAACCGTGG TTTTAGTTGC CCTGAAAGGT TTTACAGCAT
751 ACAACTCCGC CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG
TGTTGAGGCG GGGTAACTGC GTTTACCCGC CATCCGCACA TGCCACCCTC
801 GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA CTGCTTACTG
CAGATATATT CGTCTCGAGA GACCGATTGA TCTCTTGGGT GACGAATGAC pM_Ig_FOR 100.0% Nhel
851 GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
CGAATAGCTT TAATTATGCT GAGTGATATC CCTCTGGGTT CGACCGATCG
+ 1 MA WAL LLL TLLT QGT
Styl
901 GCCACCATGG CCTGGGCTCT GCTGCTCCTC ACCCTCCTCA CTCAGGGCAC CGGTGGTACC GGACCCGAGA CGACGAGGAG TGGGAGGAGT GAGTCCCGTG
+2 T V L G Q
+ 1 GSW ADIV MHE V
BamHI EcoRV Hpal Styl
951 AGGATCCTGG GCTGATATCG TGATGCACGA AGTTAACCGT CCTAGGTCAG TCCTAGGACC CGACTATAGC ACTACGTGCT TCAATTGGCA GGATCCAGTC +2 P K A A PSV TLF PPSS EEL Styl
1001 CCCAAGGCTG CCCCCTCGGT CACTCTGTTC CCGCCCTCCT CTGAGGAGCT
GGGTTCCGAC GGGGGAGCCA GTGAGACAAG GGCGGGAGGA GACTCCTCGA
+ 2 QAN KATL VCL ISD FYP
1051 TCAAGCCAAC AAGGCCACAC TGGTGTGTCT CATAAGTGAC TTCTACCCGG
AGTTCGGTTG TTCCGGTGTG ACCACACAGA GTATTCACTG AAGATGGGCC
+2 G A V T V A W KGDS SPV KAG
1101 GAGCCGTGAC AGTGGCCTGG AAGGGAGATA GCAGCCCCGT CAAGGCGGGA CTCGGCACTG TCACCGGACC TTCCCTCTAT CGTCGGGGCA GTTCCGCCCT
+2VETT TPS KQS NNKY AAS
1151 GTGGAGACCA CCACACCCTC CAAACAAAGC AACAACAAGT ACGCGGCCAG
CACCTCTGGT GGTGTGGGAG GTTTGTTTCG TTGTTGTTCA TGCGCCGGTC
+2 SYL SLTP EQW KSHRSY
1201 CAGCTATCTG AGCCTGACGC CTGAGCAGTG GAAGTCCCAC AGAAGCTACA
GTCGATAGAC TCGGACTGCG GACTCGTCAC CTTCAGGGTG TCTTCGATGT +2SCQV THE GSTV EKT VAP Bbsl
1251 GCTGCCAGGT CACGCATGAA GGGAGCACCG TGGAGAAGAC AGTGGCCCCT CGACGGTCCA GTGCGTACTT CCCTCGTGGC ACCTCTTCTG TCACCGGGGA +2 T E C S *
Pmel
1301 ACAGAATGTT CATAGGGGCC CGTTTAAACC CGCTGATCAG CCTCGACTGT
TGTCTTACAA GTATCCCCGG GCAAATTTGG GCGACTAGTC GGAGCTGACA pM_Ig_REV 100%
1351 GCCTTCTAGT TGCCAGCCAT CTGTTGTTTG CCCCTCCCCC GTGCCTTCCT
CGGAAGATCA ACGGTCGGTA GACAACAAAC GGGGAGGGGG CACGGAAGGA pM_Ig_REV 100.0%
Figure 10
FIGURE 11: CD38-expression analysis of Lymphocytes and Erythrocytes A:MOR3087 B: MOR3088
Figure 12: CD38 expression analysis of Lymphocytes and Erythrocytes MOR 03087:
Figure 13: Overview Cross-Reactivity Anti-CD38 Antibodies_
+ : positive staining +/-: weak positive staining -: negative staining n.d.: not determined
• · Λ ττ I , i Η9 π S8533 15558555515555555355 555 58 353 «3 &amp; >· • · Ό ω 9
C ·*< fl ο ω u
-Q Ο ·** Λ
V Η δ fa
fi ο
U
.SP Ξ
73 ω 3 S3 • Μ e ο ο ω Λ ο w Λ
rH
U h
S bo •Μ
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 2002164788 A [0001] · WO 0105950 A [0103] • EP 1174440 A[0001][0003] · EP 0680624391405 A[0104] • WO 9708320 A [0026] · EP 2006009889 W [0104] • US 6300064 B, Knappik [0029] [0046]
Non-patent literature cited in the description • KNAPPIKetal. J. Mol. Biol., 2000, vol.296,57 [0029] · CHAMOW, S.M. ; ZHANG, D.Z. ; TAN, X.Y ; MATH- • KREBS etal. J. Immunol. Methods, 2001, vol. 254, RE, S.M. ; MARSTERS, S.A. ; PEERS, D.H.; 67 [0029] BYRN.R.A. ;ASHKNAZI,A. ; JUNGHANS, R.P. hu- • VIRNEKAS, B. ; GE, L. ; PLLJCKTHUN, A. ; SCH- manized, bispecific immunoadhesin-antibody that re-
NEIDER, K.C. ; WELLNHOFER, G. ; MORONEY targets CD3+ effectors to kill HIV-1-infected cells. J S.E. Trinucleotide phosphoramidites: ideal reagents Immunol., 01 November 1994, vol. 153 (9), 4268-80 for the synthesis of mixed oligonucleotides for ran- [0103] dom mutagenesis. Nucl. Acids Res., 1994, vol. 22, · DATTAMAJUMDAR, A.K. ; JACOBSEN, D.P.; 5600 [0048] HOOD, L.E.; OSMAN, G.E. Rapid cloning of rear- • SAMBROOK, J. ; FRITSCH, E. F. ; MANIATIS, T. ranged mouse immunoglobulin variable genes, im-
Molecular Cloning: A laboratory manual. Cold Spring munogentetics, 1996, vol. 43, 141-151 [0103]
Harbor Laboratory Press, 1989 [0053] · ELLIS J. H.; BARBER, K. A. ; TUTT, A. ; HALE, • AUSUBEL et al. Current Protocols in Molecular Bi- C.; LEWIS, A. P. ; GLENNIE, M. J.; STEVENSON, ology. John Wiley and Sons, 1995 [0053] G. T. ; CROWE, J. Engineered anti-CD38 mono- • KHORANAetal. J. Mol. Biol., 1971, vol. 72, 209-217 clonal antibodies for immunotherapy of multiple my- [0060] eloma. J. Immunol., 1995, vol. 155, 925-937 [0103] • OLIGONUCLEOTIDE SYNTHESIS. IRLPress, 1984 · FERRERO, E. ; ORCIANI, M. ; VACCA, P. ; ORTO- [0063] LAN, E. ; CROVELLA, S. ; TITTI, F. ; SACCUCCI, • REMINGTON’S PHARMACEUTICAL SCIENCES. F. ; MALAVASI, F. Characterization and phylogenet-
Mack Pub. Co, 1990, 484-528 [0072] ic epitope mapping of CD38 ADPR cyclase in the cy- • GROSSMAN, Η. B. Urol. Clin. North Amer., 1986, nomolgus macaque. BMC Immunology 5:21, 2004 vol. 13, 465-474 [0073] [0103] • UNGER, E. C. et al. Invest. Radiol., 1985, vol. 20, · FLAVELL, D. J.; BOEHM, D. A.; NOSS, A.; 693-700 [0073] WARNES, S. L. ; FLAVELL, S. U. Therapy of human • KHAW, B. A. et al. Science, 1980, vol. 209, 295-297 T-cell acute lymphoblastic leukaemia with a combi- [0073] nation of anti-CD7 and anti-CD38-saporin immuno- • REMINGTON’S PHARMACEUTICAL SCIENCES. toxins is significantly better than therapy with each
Mack Pub. Co, 1990 [0075] individual immunotoxin, Br. J. Cancer, 2001, vol. 84, • ANTONELLI, A. ; BAJ., G. ; MARCHETTI., P. ; FAL- 571-578 [0103] LAHI, P. ; SURICO, N. ; PUPILLI, C. ; MALAVASI, · FUNARO, A. ; SPAGNOLI, G.C. ; AUSIELLO, F. ; FERRANNINI, P. Humananti-CD38autoantibod- C.M. ; ALESSIO, M. ; ROGGERO, S., DELIA, D.; ies raise intracellular calcium and stimulate insulin ZACCOLO, M.; MALAVASI, F. Involvement of the release in human pancreatic islets. Diabetes, 2001, multilineage CD38 molecule in a unique pathway of vol. 50, 985-991 [0103] cell activation and proliferation. J. Immunol., 1990, • AUSIELLO C.M. ; URBANI F. ; LANDE R. ; LA SA- vol. 145, 2390-2396 [0103] LA A. ; DI CARLO B. ; BAJ G. ; SURICO N. ; HILGERS J. ;DEAGLIOS. ; FUNARO A. Functional topography ofdiscrete domains of human CD38. Tissue Antigens, December 2000, vol. 56 (6), 539-47 [0103] • GOLAY, J. ; ZAFFARONI, LUISELLA ; VACCARI, · MALAVASI, F. ; CALIGARIS-CAPPIO, F. ; MILA- T. ; LAZZARI, M. ; BORLERI, G.-M. ; BERNASCO- NESE, C. ; DELLABONA, P. ; RICHIARDI, P. ;
Nl, S.; TEDESCO, F. ; RAMBALDI, AL ; INTRONA, CARBONARA, A. O. Characterization of a murine M. Biological response of B lymphoma to anti-CD20 monoclonal antibody specific for human early lym- monoclonal antibody in vitro: CD55 and CD59 regu- phohemopoietic cells. Hum. Immunol., 1984, vol. 9, late complement-mediated cell lysis. Blood, 2000, 9-20 [0103] vol. 95, 3900-3908 [0103] · MALONEY, D. G. ; SMITH, B. ; ROSE, A. Rituximab: • HAYASHI, T. ;TREON,S.P.; HIDESHIMA, T. ; TAI, Mechanism of Action and Resistance. Sem. Oncol., Y-T. ; AKIYAMA, M. ; RICHARDSON, R. ; CHAU- 2002, vol. 29, 2-9 [0103] HAN, D. ; GREWAL, I.S. ; ANDERSON, K.C. Re- · MARCHETTI, P. ; ANTONELLI, A. ; LUPI, R. ; combinant humanized anti-CD40 monoclonal anti- MARSELLI, L.; FALLAHI, P. ; NESTI, C. ; BAJ, G.; body triggers autologous antibody-dependent FERRANNINI, E. Prolonged in vitro exposure to au- cell-mediated cytotoxicity against multiple myeloma. toantibodies against CD38 impairs the function and
Br. J. Heamatol., 2003, vol. 121, 592-596 [0103] survival of human pancreatic islets. Diabetes, 2002, • HOSHINO S. ; KUKIMOTO I. ; KONTANI K. ; IN- vol. 51,474-477 [0103] OUE S. ; KANDA Y. ; MALAVASI F. ; KATADA T. · MEHTA, K. ; OCANAS, L. ; MALAVASI, F. ; Mapping of the catalytic and epitopic sites of human MARKS; J.W. ; ROSENBLUM, M.G. Retinoic ac- CD38/NAD+ glycohydrolase to a functional domain id-induced CD38 antigen as a target for immunotox- in the carboxyl terminus. J Immunol., 1997, vol. 158 in-mediated killing of leukemia cells. Mol. Cancer (2), 741-7 [0103] Ther., 2004, vol. 3, 345-352 [0103] • JACKSON D.G. ; BELL J.l. Isolation of a cDNA en- · NAMBA, M. ; OTSUKI, T. ; MORI, M. ; TOGAWA, coding the human CD38 (T10) molecule, a cell sur- A.; WADA, H. ; SUGIHARA, T. ; YAWATA, Y.; Kl- face glycoprotein with an unusual discontinuous pat- MOTO, T. Establishment of five human myeloma cell tern of expression during lymphocyte differentiation. lines. In Vitro Cell Dev. Biol., 1989, vol. 25,723 [0103] J Immunol., 1990, vol. 144 (7), 2811-5 [0103] · ΝΑΤΑ K. ; TAKAMURA T. ; KARASAWA T. ; KU- • ΚΝΑΡΡΙΚ,Α. ; GE,L. ; HONEGGER,A. ; PACK.P. ; MAGAIT. ; HASHIOKA W. ; TOHGO A. ;YONEKU- FISCHER.M. ; WELLNHOFER.G.; HOESS.A.; RAH. ; TAKAS AWAS. ; NAKAMURAS. ; OKAMO- WOLLE.J. ; PLUCKTHUN.A.; VIRNEKAS.B. Fully TO H. Human gene encoding CD38 (ADP-ribosyl cy- synthetic human combinatorial antibody libraries clase/cyclicADP-ribose hydrolase): organization, nu- (HuCAL) based on modular consensus frameworks cleotide sequence and alternative splicing. Gene, and CDRs randomized with trinucleotides. JMolBiol, 1997, vol. 186 (2), 285-92 [0103] 2000, vol. 296, 57-86 [0103] · NAUNDORF, S. ; PREITHNER, S. ; MAYER, P. ; • KONO, K. ; TAKAHASHI, A. ; ICHIHARA, F. ; SUG- LIPPOLD, S. ; WOLF, A. ; HANAKAM, F. ; FICH-
Al, H. ; FUJII, H. ; MATSUMOTO, Y. Impaired anti- TNER, I. ; KUFER, P. ; RAUM, T. ; RIETHMljLLER, body-dependent cellular cytotoxicity mediated by G. Int. J. Cancer, 2002, vol. 100, 101-110 [0103]
Herceptin in patients with gastritic cancer. Cancer · PLIJCKTHUN A ; PACK P. New protein engineering Res., 2002, vol. 62, 5813-5817 [0103] approaches to multivalent and bispecific antibody • KONOPLEVA M. ; ESTROV Z. ; ZHAO S. ; AN- fragments. Immunotechnology, 1997, vol. 3 (2), DREEFF M.; MEHTA K. Ligation of cell surface 83-105 [0103] CD38 protein with agonistic monoclonal antibody in- · RAUCHENBERGER R. ; BORGES E. ; THOMAS-duces a cell growth signal in myeloid leukemia cells. SEN-WOLF E. ; ROM E. ; ADAR R. ; YANIV Y.; J Immunol., 1998, vol. 161 (9), 4702-8 [0103] MALKA M. ; CHUMAKOV I. ; KOTZER S. ; RES- • KREBBER, A.; BORNHAUSER, S. ; BURM- NITZKY D. Human combinatorial Fab library yielding ESTER, J. ; HONEGGER, A. ; WILLUDA, J. ; BOS- specific and functional antibodies against the human SARD, H.R.; PLLJCKTHUN, A. Reliable cloning of fibroblast growth factor receptor 3. J Biol Chem., functional antibody variable domains from hybrido- 2003, vol. 278 (40), 38194-205 [0103] mas and spleen cell repertoires employing a reengi- · REFF, M.E. ; CARNER, K. ; CHAMBERS, K.S.; neered phage display system. J. Imm. Meth., 1997, CHINN, P.C. ; LEONARD, J.E.; RAAB, R. ; NEW- vol. 201,35-55 [0103] MAN, R.A. ; HANNA, N. ; ANDERSON, D.R. Deple- • KREBS,B. ; RAUCHENBERGER,R. ; tion of B cells in vivo by a chimeric mouse human REIFFERT.S. ; ROTHE.C. ; TESAR.M. ; monoclonal antibody to CD20. Blood, 1994, vol. 83, THOMASSEN.E.; CAO,M. ; DREIER.T.; 435-445 [0103] FISCHER,D.; HOSS,A. High-throughput generation · SANTIN, A.D. ; BELLONE, S. ; GOKDEN, M.; and engineering of recombinant human antibodies. PALMIERI, M. ; DUNN, D. ; AGHA, J. ; ROMAN, J Immunol Methods, 2001, vol. 254, 67-84 [0103] J.J. ; HUTCHINS, L. ; PECORELLI, S. ; O’BRIAN, • LOHNING, C. Novel methods for displaying (po- T. Overexpression of HER-2/Neu in Uterine serous ly)peptideslproteins on bacteriophage particles via papillary cancer. Cl. Cancer Res., 2002, vol. 8, disulfide bonds, 2001 [0103] 1271-1279 [0103] • SHINKAWA, T. ; NAKAMURA, K. ; YAMANE, N. ; · ZHOU, H. ; FISHER, R.J. ; PAPAS, T.S. Optimiza- SHOJI-HOSAKA, E. ; KANDA, Y. ; SAKURADA, tion of primer sequences for mouse scFv repertoire M. ;UCHIDA,K. ;ANAZAWA,H. ;SATOH,M. ;YA- display library construction. Nucleic Acids Res., MASAKI, M. The absence of fucose but Not the pres- 1994, vol.22, 888-889 [0103] ence of galactose or bisectin N-Acteylglucosamine of human lgG1 complex-type oligoscaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem., 2003, vol. 278, 3466-3473 [0103]

Claims (4)

  1. Ózababahttí (gégybízaOS 0 HUiásii abií~C:O2h sgedbfcgs bhéhanyag, «Ον tartalmaz; (r j a. SBQ IP OO: ?2 > szekvébeigb bsOigaírttí Η*(2ΡΚ·Ο 10000 gs tPÓOtt régibb és a S>00 ID NO: :; I szekvencián feibíiaizíhit ΟΌΟΟ I, O-C0R2 és Ι,·ϋί>:Ο régiért 00 REQ JÓ NO· Rí széria; i VsrMbiits rehézkhveaa, és SOQ K> NO: aí szerinti varishnb 'toyöOnsce; vagy OO SO.Q IO NO: 0 éhet gébek varíbbiOs negézlénee;, és SEQ IP NO: R? bitéi Obbeh varObÓb knooy&amp;fceol Ó yyz }:. igény-pbét sZéribó óibéahyág, Ortb sz esiénáeyag igO, dbbyb»éZi: Igó 0
    0, OúfeOóasOfeáaOiOíOys antéiy az; 1. vagy R igéeygéth: szeri Pb 0 Onaa veget kébe lé «nfeiéiasaOSzéRvénóát vagy 0(0 snfepinsév-bzéfcvesstíb ortsiPtaA
  2. 4, VéOvfS'kssziíséOsy, zataly a a, iseén>'P<J!iÍ szertárt pekléinsav-'Szakvepeiat vagy Óbb iPikRiésaV'SZégveaelát artaheaxö vektort vagy több vektort tartalmaz. 5, z>ep., anteb e - .g<n>po(P szetam setrtor.krvPéOftytuminuz, ahol ab>vt esv?t»en a 've b«kte»uh\ zen í.tgy eoUés sejt. ó Oyögyészaíí gésaib:eépy, »φ I. vagy, R ígéeypeat száriért g.tie«»«yngöt «s gybgyaszórtag értegaéhsté gérttezel: vagy eveiglepsí easabnax. ?, Λ?: i, vagy í igeeypnat szerinti artsrísayag, VeeaeOóai&amp;i betegség vagy gyértlébésos betegség kezdésében tértéért aikahrtaxasra, &amp; Gyógyászati készítmény, a«'«iy 1, vagy: 2 Igééypote szeriért ellenanyagot és gybgyáSzatilag aitégarthteé korósvO vagy exeigieest tartartaax, beznáiétégiai betegség vagy gyplláshisbs betegség kezetésébep törtérsé aiGbnnertn : n. R A ?. igénypont szerinti ellenanyag; aikainrazásra va^y a S. igénygoe; szeriéi! gyógyászati keszSimáéy gikainsazásra( ahol a hantattólögiai betegség a kővotkezb I isiit rél vakv mieléms é5PÍrtgÍes:> feréPikss ílrPíéeitikas n nu a ki >η \v. > sí < 0\<'nt Ős; < \it'UM^n ; kw, > aO (n^tk skuéniu 10, A 7- Igény péíé szertárt éMééaayag: slkahészásra: vagy a Ü, igéayyost szerinti gyógyászati keszirtbééy atbartneeásó, ábáí a gyaitartásas betegség a agvéíkSzb hstáréí valé: rttenrsstrtirt arthritis és szisztétbaS ttsgas ntythanmosns.
  3. 10 .Ο Ov étjéfas ClOk-as esransszáté bagabatseítsb seeeirtkés álpgasíitásézz, aha: a specifikus elpusztítás OkOÉ .kesasztátyásSél törtééik, sUéely téagápsa (bgisíla a vegeknek az 1. vagy R ígénygehSszentéi élíétssttyag elegepéb tésbny íségépök jéiehiéiébert iérteab Ínkrtbiiíásának. lépesét. Π. Eljárás Cllm· a; expresszálp R-.k. sgeeiflkas: cipészt hámnak detektálására, élDdd ksresztkötéssel, olymt alanyban, akinek. 1. vagy 2. Igénypont szerinti esleoaóyng tó beadva, amely magában foglalja a® •,'Pena5ö,ig rpredlkav elpos?thö ttnE i;n\an<ík ,·>. > ;η\- duekhikísanak lépését, abnt adott m-etött· a οηρν'ηίρρρίΛ hasisán, aíhpsertás vagy s·y>:Π δzedéíőék, ΙΛ I non,, <'}>3<5 pdeolen.ta l< vHeVtiU'-vi „z I, vagy 2, l^ányjmni szerinti: ellenanyaggal éríntkezieteti rnlniseriés eredeti! szövetben vagy s'ejtben, amely .magában tbglalja az allananyagmk a 038 imnísertes sejtéklséz való speerftkes kötődése- 1« vdm detektálásának lépését, ahöl a® ellenanyag: képes apeclPknssn köiödtn barnán eredetű CDékésbz Is, ahol adott esetben a mlolsertés emdetti CDs® a következők által slketött csöpörthdl kiválásáét! knialt séjltlpasbaa van: perifériás vér monoéba, vörösvértesí, -lkaikéba, «secsemömirigy sajt, Izörtise 5 km„g> s sejt, hasnyáltnlrigy sejt, nylrokesomP sejt, mandula: sejt, lép: sejk prosztata: sejt, körsejt és retíoasejt.
  4. 14. Eljárás Oék jelenlétének detektáláséra az 1. vagy 2. Igénypont szeriíitf ellenanyaggal: erkdkezteíett €1328-tsl eapresszélö Yörösvérsejfbea, amely magában foglalja az ellenanyagnak a; CD2k-at expresszalé: Yörosvérsepekbez való: specifikus kötődése 1« -w® detektálásának. lépését, ahol aa ellenanyag képes specifikusan kötődni humán vörös vérsejtekíöl eltérd sejtből vagy szövetből szétmazö CDkk-boz Is, ahol adott esetben azeilenanyng képes speeiflkusan kíkösbb: humán. lííníöeiiáhöi származá humán CBak-hoz is,. i öéöísgnoszilktis készítmény, amely 1, vagy. 2 Igénypont szerinti ellenanyagot és eilpgíidhaió Imrdözéf vagy mongiensi: tartalmaz.
HUE14196972A 2005-10-12 2006-10-12 Humán CD38-ra specifikus teljesen humán HuCAL GOLD-eredetû terápiás ellenanyagok létrehozása és profilozása HUE035250T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US72529705P 2005-10-12 2005-10-12

Publications (1)

Publication Number Publication Date
HUE035250T2 true HUE035250T2 (hu) 2018-05-02

Family

ID=37467440

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE14196972A HUE035250T2 (hu) 2005-10-12 2006-10-12 Humán CD38-ra specifikus teljesen humán HuCAL GOLD-eredetû terápiás ellenanyagok létrehozása és profilozása

Country Status (29)

Country Link
US (6) US8088896B2 (hu)
EP (3) EP3284756B1 (hu)
JP (2) JP5362359B2 (hu)
KR (4) KR101574920B1 (hu)
CN (4) CN101287764B (hu)
AR (2) AR055191A1 (hu)
AU (1) AU2006301446B2 (hu)
BR (1) BRPI0618399B1 (hu)
CA (1) CA2625681C (hu)
CY (1) CY1119722T1 (hu)
DK (1) DK2860192T3 (hu)
ES (1) ES2653664T3 (hu)
HK (2) HK1122822A1 (hu)
HR (1) HRP20171978T1 (hu)
HU (1) HUE035250T2 (hu)
IL (1) IL190665B (hu)
LT (1) LT2860192T (hu)
ME (1) ME02886B (hu)
NO (1) NO344961B1 (hu)
NZ (1) NZ566915A (hu)
PL (1) PL2860192T3 (hu)
PT (1) PT2860192T (hu)
RS (1) RS56677B1 (hu)
RU (1) RU2425841C2 (hu)
SG (1) SG10201400973XA (hu)
SI (1) SI2860192T1 (hu)
TW (1) TWI428444B (hu)
WO (1) WO2007042309A2 (hu)
ZA (1) ZA200803208B (hu)

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200061B2 (en) * 2004-02-06 2015-12-01 Morpho Sys AG Generation and profiling of fully human HuCAL gold®-derived therapeutic antibodies specific for human CD3i
TWI428444B (zh) 2005-10-12 2014-03-01 Morphosys Ag 由全長人類HuCAL GOLD-衍生之對人類CD38有特異性之治療抗體之產生及鑑定
PE20090368A1 (es) 2007-06-19 2009-04-28 Boehringer Ingelheim Int Anticuerpos anti-igf
PE20090499A1 (es) 2007-08-09 2009-05-18 Boehringer Ingelheim Int Anticuerpos anti-cd37
UY32317A (es) * 2008-12-12 2010-07-30 Boehringer Ingelheim Int Anticuerpos anti-igf
US20100291106A1 (en) * 2009-05-06 2010-11-18 Novartis Ag Compositions and methods for antibodies targeting complement protein c3b
RU2595839C2 (ru) 2010-09-27 2016-08-27 МорфоСис АГ Антитело к cd38 и леналидомид или бортезомиб для лечения множественной миеломы и nhl
JOP20210044A1 (ar) 2010-12-30 2017-06-16 Takeda Pharmaceuticals Co الأجسام المضادة لـ cd38
WO2013010955A1 (en) * 2011-07-15 2013-01-24 Morphosys Ag Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt)
US20130122005A1 (en) 2011-10-27 2013-05-16 Paul Adam Anticancer combination therapy
KR102037541B1 (ko) 2011-10-28 2019-10-29 테바 파마슈티컬즈 오스트레일리아 피티와이 엘티디 폴리펩티드 구축물 및 이의 용도
CA2859493A1 (en) 2011-12-21 2013-06-27 Novartis Ag Compositions and methods for antibodies targeting factor p
EP2843051B1 (en) 2012-04-23 2018-06-06 GeneFrontier Corporation Anti-human cd69 antibody, and use thereof for medical purposes
CA2885792C (en) * 2012-09-25 2021-09-28 Jan Endell Pharmaceutical combination of an anti-cd38 antibody and melphalan for treating multiple myeloma
DK2914302T3 (en) 2012-11-05 2017-04-10 Morphosys Ag RADIOACTIVALLY MARKED ANTIBODY AND USES OF IT
CN108424453B (zh) 2012-11-09 2021-08-06 基因先端领域株式会社 用于治疗癌症的抗adam28抗体
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
CN110981964B (zh) 2013-01-14 2023-09-15 Xencor股份有限公司 新型异二聚体蛋白
US20140255413A1 (en) 2013-03-07 2014-09-11 Boehringer Ingelheim International Gmbh Combination therapy for neoplasia treatment
MY175418A (en) * 2013-03-13 2020-06-24 Sanofi Sa Compositions comprising anti-cd38 antibodies and carfilzomib
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
EA033115B1 (ru) 2013-04-29 2019-08-30 Тева Фармасьютикалз Острэйлиа Пти Лтд. АНТИТЕЛА ПРОТИВ CD38 И СЛИТЫЕ БЕЛКИ С ОСЛАБЛЕННЫМ ИНТЕРФЕРОНОМ АЛЬФА-2b
US11117975B2 (en) 2013-04-29 2021-09-14 Teva Pharmaceuticals Australia Pty Ltd Anti-CD38 antibodies and fusions to attenuated interferon alpha-2B
JP5892117B2 (ja) * 2013-07-17 2016-03-23 横河電機株式会社 フィールド機器及び通信システム
CN103513040B (zh) * 2013-10-16 2015-03-11 常晓天 蛋白cd38在制备类风湿性关节炎诊断标记物中的应用
US9603927B2 (en) 2014-02-28 2017-03-28 Janssen Biotech, Inc. Combination therapies with anti-CD38 antibodies
US9732154B2 (en) 2014-02-28 2017-08-15 Janssen Biotech, Inc. Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia
KR102497443B1 (ko) 2014-03-28 2023-02-08 젠코어 인코포레이티드 Cd38 및 cd3에 결합하는 이중특이적 항체
UA119352C2 (uk) 2014-05-01 2019-06-10 Тева Фармасьютикалз Острейліа Пті Лтд Комбінація леналідоміду або помалідоміду і конструкції анти-cd38 антитіло-атенуйований інтерферон альфа-2b та спосіб лікування суб'єкта, який має cd38-експресуючу пухлину
EP3175289A4 (en) 2014-08-03 2018-04-18 Pogotec, Inc. Wearable camera systems and apparatus and method for attaching camera systems or other electronic devices to wearable articles
WO2016040294A2 (en) 2014-09-09 2016-03-17 Janssen Biotech, Inc. Combination therapies with anti-cd38 antibodies
IL251822B2 (en) 2014-10-29 2023-03-01 Teva Pharmaceuticals Australia Pty Ltd Variants of interferon alpha-2-b
MA40894A (fr) * 2014-11-04 2017-09-12 Glenmark Pharmaceuticals Sa Immunoglobulines hétéro-dimères reciblant des lymphocytes t cd3/cd38 et leurs procédés de production
US11773166B2 (en) 2014-11-04 2023-10-03 Ichnos Sciences SA CD3/CD38 T cell retargeting hetero-dimeric immunoglobulins and methods of their production
CA2967426A1 (en) 2014-11-26 2016-06-02 Xencor, Inc. Heterodimeric antibodies that bind cd3 and tumor antigens
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
PE20171103A1 (es) 2014-11-26 2017-08-07 Xencor Inc Anticuerpos heterodimericos que se unen a cd3 y cd38
SG11201704390PA (en) * 2014-12-04 2017-06-29 Janssen Biotech Inc Anti-cd38 antibodies for treatment of acute myeloid leukemia
US10329358B2 (en) 2015-03-06 2019-06-25 Genefrontier Corporation Anti-human membrane-type ADAM28 antibody
WO2016164656A1 (en) * 2015-04-08 2016-10-13 Sorrento Therapeutics, Inc. Antibody therapeutics that bind cd38
CA2984464C (en) 2015-05-13 2023-10-10 Morphosys Ag Treatment for multiple myeloma (mm)
BR112017024877A2 (pt) 2015-05-20 2019-09-17 Janssen Biotech, Inc. anticorpo anti-cd38 e seu uso no tratamento de amiloidose de cadeia leve e outras malignidades hematológicas positivas para cd38
CA2990406A1 (en) * 2015-06-22 2016-12-29 Janssen Biotech, Inc. Combination therapies for heme malignancies with anti-cd38 antibodies and survivin inhibitors
US20160376373A1 (en) 2015-06-24 2016-12-29 Janssen Biotech, Inc. Immune Modulation and Treatment of Solid Tumors with Antibodies that Specifically Bind CD38
US20170044265A1 (en) 2015-06-24 2017-02-16 Janssen Biotech, Inc. Immune Modulation and Treatment of Solid Tumors with Antibodies that Specifically Bind CD38
US10781261B2 (en) 2015-11-03 2020-09-22 Janssen Biotech, Inc. Subcutaneous formulations of anti-CD38 antibodies and their uses
EA202190808A2 (ru) 2015-11-03 2021-12-31 Янссен Байотек, Инк. Составы антител к cd38 для подкожного введения и их применение
CN108699136B (zh) 2015-12-07 2022-03-18 Xencor股份有限公司 结合cd3和psma的异二聚抗体
AU2017226960B2 (en) 2016-03-04 2024-03-21 Morphosys Ag Clinical assessment of M-protein response in multiple myeloma
KR102405278B1 (ko) 2016-04-22 2022-06-07 악셀레론 파마 인코포레이티드 Alk7 결합 단백질 및 이들의 용도
RU2022104399A (ru) 2016-06-14 2022-05-05 Ксенкор, Инк. Биспецифические антитела-ингибиторы контрольных точек
WO2018002181A1 (en) 2016-06-28 2018-01-04 Umc Utrecht Holding B.V. TREATMENT OF IgE-MEDIATED DISEASES WITH ANTIBODIES THAT SPECIFICALLY BIND CD38
WO2018015498A1 (en) 2016-07-20 2018-01-25 Hybrigenics Sa Combinations of inecalcitol with an anti-cd38 agent and their uses for treating cancer
JOP20190009A1 (ar) 2016-09-21 2019-01-27 Alx Oncology Inc أجسام مضادة ضد بروتين ألفا منظم للإشارات وطرق استخدامها
MX2019004621A (es) 2016-11-02 2019-11-28 Engmab Sarl Anticuerpo biespecifico contra bcma y cd3 y un farmaco inmunologico para uso combinado en el tratamiento del mieloma multiple.
EP3360898A1 (en) 2017-02-14 2018-08-15 Boehringer Ingelheim International GmbH Bispecific anti-tnf-related apoptosis-inducing ligand receptor 2 and anti-cadherin 17 binding molecules for the treatment of cancer
CN111051344B (zh) 2017-06-08 2023-10-27 黑带医疗有限公司 Cd38调节抗体
US11542338B2 (en) 2017-08-16 2023-01-03 Black Belt Therapeutics Limited CD38 modulating antibody
CA3072296A1 (en) * 2017-08-16 2019-02-21 Black Belt Therapeutics Limited Cd38 antibody
WO2019035938A1 (en) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. MULTISPECIFIC MOLECULES BINDING TO BCMA AND USES THEREOF
US20200207867A1 (en) 2017-09-13 2020-07-02 Teneobio, Inc. Heavy chain antibodies binding to ectoenzymes
BR112020005028A2 (pt) 2017-09-14 2020-09-15 Glaxosmithkline Intellectual Property Development Limited tratamento em combinação para câncer
MA50514A (fr) 2017-10-31 2020-09-09 Janssen Biotech Inc Méthodes de traitement du myélome multiple à haut risque
JP2021501587A (ja) 2017-11-03 2021-01-21 ソレント・セラピューティクス・インコーポレイテッドSorrento Therapeutics, Inc. Cd38指向性キメラ抗原受容体構築物
CN116731173A (zh) * 2017-12-14 2023-09-12 Abl生物公司 抗a-syn/igf1r的双特异性抗体及其用途
CN110144008B (zh) 2018-02-12 2021-03-19 杭州尚健生物技术有限公司 Cd38蛋白抗体及其应用
KR20200133376A (ko) 2018-03-21 2020-11-27 알렉소 온콜로지 인크. 신호-조절 단백질 알파에 대한 항체 및 사용 방법
CA3100118A1 (en) 2018-05-16 2019-11-21 Janssen Biotech, Inc. Bcma/cd3 and gprdc5d/cd3 bispecific antibodies for use in cancer therapy
EP3569618A1 (en) 2018-05-19 2019-11-20 Boehringer Ingelheim International GmbH Antagonizing cd73 antibody
TW202016151A (zh) 2018-06-09 2020-05-01 德商百靈佳殷格翰國際股份有限公司 針對癌症治療之多特異性結合蛋白
WO2019245616A1 (en) * 2018-06-20 2019-12-26 Sorrento Therapeutics, Inc. Variant antibody that binds cd38
EP3820890A1 (en) 2018-07-13 2021-05-19 Genmab A/S Trogocytosis-mediated therapy using cd38 antibodies
SG11202012993SA (en) 2018-07-13 2021-02-25 Genmab As Variants of cd38 antibody and uses thereof
AU2019338999A1 (en) 2018-09-11 2021-03-18 Jiangsu Hengrui Medicine Co., Ltd. Anti-CD38 antibody, antigen-binding fragment thereof, and pharmaceutical use
CN109293773B (zh) * 2018-09-25 2020-09-04 上海邦耀生物科技有限公司 靶向cd38蛋白的抗体、嵌合抗原受体和药物
BR112021007227A2 (pt) 2018-10-17 2021-08-10 Janssen Biotech, Inc. método para fornecer administração subcutânea de anticorpos anti-cd38
KR20210086651A (ko) 2018-10-26 2021-07-08 테네오바이오, 인코포레이티드 Cd38에 결합하는 중쇄 항체
BR112021008879A2 (pt) 2018-11-13 2021-10-26 Janssen Biotech, Inc. Controle de oligometais durante a produção de anticorpos anti-cd38
SG11202104012QA (en) 2018-12-14 2021-05-28 Morphosys Ag Antibody formulations
BR112021014574A2 (pt) * 2019-01-23 2021-10-05 Encefa Competidores cd31 e usos dos mesmos
WO2020187718A1 (en) 2019-03-15 2020-09-24 Morphosys Ag Anti-cd38 antibodies and pharmaceutical compositions thereof for the treatment of autoantibody-mediated autoimmune disease
AU2020299600A1 (en) * 2019-07-03 2022-01-06 Crystal Bioscience Inc. Anti-CD38 antibody and methods of use thereof
JP2022548925A (ja) * 2019-09-18 2022-11-22 モメンタ ファーマシューティカルズ インコーポレイテッド CD38を標的とした改変されたFc抗原結合ドメイン構築物に関する組成物及び方法
TW202128756A (zh) 2019-10-02 2021-08-01 德商百靈佳殷格翰國際股份有限公司 用於癌症治療之多重專一性結合蛋白
GB201916150D0 (en) 2019-11-06 2019-12-18 Univ Of Ireland Galway Treatment of multiple myeloma
WO2021112196A1 (ja) * 2019-12-05 2021-06-10 学校法人東京薬科大学 筋組織の減少を抑制するための組成物
CN115023441A (zh) 2019-12-18 2022-09-06 特诺福尔股份有限公司 与cd38结合的重链抗体
JP2023510397A (ja) 2020-01-16 2023-03-13 ジェンマブ エー/エス Cd38抗体の製剤およびその使用
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
AU2021276332A1 (en) 2020-05-19 2022-11-17 Boehringer Ingelheim International Gmbh Binding molecules for the treatment of cancer
CN111808193B (zh) * 2020-06-30 2022-04-05 源道隆(苏州)医学科技有限公司 可结合人cd38的纳米抗体及其应用
CN113861292A (zh) * 2020-06-30 2021-12-31 百奥泰生物制药股份有限公司 抗cd40抗体或抗原结合片段及其应用
KR102607909B1 (ko) 2020-08-19 2023-12-01 젠코어 인코포레이티드 항-cd28 조성물
EP4232476A2 (en) 2020-10-21 2023-08-30 Boehringer Ingelheim International GmbH Agonistic trkb binding molecules for the treatment of eye diseases
AU2022208200A1 (en) 2021-01-14 2023-07-20 Morphosys Ag Anti-cd38 antibodies and their uses
US20220275090A1 (en) 2021-02-22 2022-09-01 Janssen Biotech, Inc. Combination Therapies with Anti-CD38 Antibodies and PARP or Adenosine Receptor Inhibitors
TW202302642A (zh) 2021-03-01 2023-01-16 德商莫菲西斯公司 用於治療抗體介導移植物排斥用途之抗cd38抗體
CA3212665A1 (en) 2021-03-09 2022-09-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cldn6
KR20230154311A (ko) 2021-03-10 2023-11-07 젠코어 인코포레이티드 Cd3 및 gpc3에 결합하는 이종이량체 항체
EP4355778A1 (en) 2021-06-17 2024-04-24 Boehringer Ingelheim International GmbH Novel tri-specific binding molecules
WO2022271987A1 (en) 2021-06-23 2022-12-29 TeneoFour, Inc. Anti-cd38 antibodies and epitopes of same
TW202321303A (zh) 2021-07-19 2023-06-01 德商莫菲西斯公司 抗pla2r自體抗體媒介膜性腎病變之治療
IL310372A (en) 2021-07-28 2024-03-01 Genentech Inc IL15/IL15R alpha heterodimeric FC-fused proteins for the treatment of blood cancer
WO2023079494A1 (en) 2021-11-03 2023-05-11 Janssen Biotech, Inc. Corticosteriod reduction in treatment with anti-cd38 antibodies
WO2023143547A1 (zh) * 2022-01-30 2023-08-03 百奥泰生物制药股份有限公司 抗cd28抗体及其应用
WO2023144303A1 (en) 2022-01-31 2023-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd38 as a biomarker and biotarget in t-cell lymphomas
WO2023240135A2 (en) 2022-06-07 2023-12-14 Actinium Pharmaceuticals, Inc. Bifunctional chelators and conjugates
US20240052065A1 (en) 2022-07-15 2024-02-15 Boehringer Ingelheim International Gmbh Binding molecules for the treatment of cancer

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
EP0250486A4 (en) * 1986-01-03 1988-05-25 Univ Melbourne MELPHALAN DERIVATIVES.
SU1595902A1 (ru) * 1988-06-30 1990-09-30 Всесоюзный онкологический научный центр АМН СССР Штамм гибридных культивируемых клеток животных MUS мUSсULUS L, используемый дл получени моноклональных антител к антигену СД38 кортикальных тимоцитов
US5156951A (en) * 1989-07-13 1992-10-20 Becton Dickinson And Company Detecting immunological changes in HIV infected patient samples
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
GB9022543D0 (en) 1990-10-17 1990-11-28 Wellcome Found Antibody production
AU6123894A (en) 1993-01-29 1994-08-15 Board Of Trustees Of The Leland Stanford Junior University Modulation of physiological responses of lymphocytes by cd38 or antibodies thereto
US6555324B1 (en) 1993-11-04 2003-04-29 Becton Dickinson & Company Method to distinguish hematopoietic progenitor cells
GB9424449D0 (en) * 1994-12-02 1995-01-18 Wellcome Found Antibodies
US20020164788A1 (en) 1994-12-02 2002-11-07 The Wellcome Foundation Limited Humanized antibodies to CD38
WO1996035782A1 (en) 1995-05-11 1996-11-14 Applied Research Systems Il-6 activity inhibitor
WO1997008320A1 (en) 1995-08-18 1997-03-06 Morphosys Gesellschaft Für Proteinoptimierung Mbh Protein/(poly)peptide libraries
US5594116A (en) 1995-11-08 1997-01-14 Promega Corporation Tryptase polyclonal antibody and purification method for use in human tryptase immunoassay
JP4233608B2 (ja) * 1996-10-15 2009-03-04 塩野義製薬株式会社 自己抗体測定方法
AU770718B2 (en) 1998-06-05 2004-02-26 Mayo Foundation For Medical Education And Research Use of genetically engineered antibodies to CD38 to treat multiple myeloma
US7223397B1 (en) 1999-01-07 2007-05-29 Research Development Foundation Potentiation of anti-CD38-Immunotoxin cytotoxicity
GB9903664D0 (en) 1999-02-17 1999-04-14 Isis Innovation Adjuvant and cell maturation agent
JP2000316578A (ja) 1999-05-12 2000-11-21 Bml Inc 糖尿病発症危険因子の検出方法
EP1990409A3 (en) 1999-07-20 2011-05-18 MorphoSys AG Bacteriophage
US7442776B2 (en) * 1999-10-08 2008-10-28 Young David S F Cancerous disease modifying antibodies
US20020028488A1 (en) 2000-06-19 2002-03-07 Sujay Singh Transgenic avian species for making human and chimeric antibodies
EP1174440A1 (en) 2000-07-19 2002-01-23 U-BISys B.V. A selectively-expressed epitope on the human CD38 molecule detected by a phage display library-derived human scFv antibody fragment
JP4139214B2 (ja) 2000-10-17 2008-08-27 トリュデュ インスティチュート,インク. Cd38により調節される走化性
US20070042436A1 (en) 2000-10-17 2007-02-22 Lund Frances E CD38 modulated chemotaxis
US6892140B1 (en) 2000-11-27 2005-05-10 Enteron, Inc. Immunogenic cancer peptides and uses thereof
US7361343B2 (en) * 2003-01-21 2008-04-22 Arius Research Inc. Cytotoxicity mediation of cells evidencing surface expression of CD63
DK1409646T3 (da) 2000-12-19 2012-08-06 Altor Bioscience Corp Transgene dyr omfattende et humaniseret immunsystem
US20040081981A1 (en) 2001-01-31 2004-04-29 Toru Egashira Method of detecting risk factor for onset of diabetes
DE60237969D1 (de) 2001-04-24 2010-11-25 Bayer Corp Menschliche antikörper gegen timp-1
WO2004003019A2 (en) * 2002-06-28 2004-01-08 Domantis Limited Immunoglobin single variant antigen-binding domains and dual-specific constructs
US7084257B2 (en) 2001-10-05 2006-08-01 Amgen Inc. Fully human antibody Fab fragments with human interferon-gamma neutralizing activity
JP3665324B2 (ja) 2001-10-15 2005-06-29 麒麟麦酒株式会社 抗hla−dr抗体
AR038568A1 (es) 2002-02-20 2005-01-19 Hoffmann La Roche Anticuerpos anti-a beta y su uso
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
WO2003091275A2 (en) 2002-04-23 2003-11-06 Andrea Savarino Compositions containing anti-hiv peptides and methods of use
ITMI20021527A1 (it) 2002-07-11 2004-01-12 Consiglio Nazionale Ricerche Anticorpi anti componente c5 del complemento e loro uso
US7393531B2 (en) * 2003-01-21 2008-07-01 Arius Research Inc. Cytotoxicity mediation of cells evidencing surface expression of MCSP
WO2005042019A1 (en) 2003-10-22 2005-05-12 University Of Rochester Anti-thymocyte antiserum and use thereof to trigger b cell apoptosis
US9200061B2 (en) 2004-02-06 2015-12-01 Morpho Sys AG Generation and profiling of fully human HuCAL gold®-derived therapeutic antibodies specific for human CD3i
AU2005235811B2 (en) 2004-02-06 2011-11-03 Morphosys Ag Anti-CD38 human antibodies and uses therefor
EP1720907B1 (en) 2004-02-06 2015-04-08 MorphoSys AG Anti-cd38 human antibodies and uses therefor
ATE446315T1 (de) 2004-02-13 2009-11-15 Boehringer Ingelheim Pharma Cd38-spleiss-varianten und deren anwendungen
SG10201912554TA (en) 2005-03-23 2020-02-27 Genmab As Antibodies against cd38 for treatment of multiple myeloma
WO2006110585A2 (en) 2005-04-07 2006-10-19 Novartis Vaccines And Diagnostics Inc. Cancer-related genes (prlr)
EP1888647A2 (en) * 2005-05-24 2008-02-20 MorphoSys AG Generation and profiling of fully human hucal gold®-derived therapeutic antibodies specific for human cd38
TWI428444B (zh) 2005-10-12 2014-03-01 Morphosys Ag 由全長人類HuCAL GOLD-衍生之對人類CD38有特異性之治療抗體之產生及鑑定
GB0603683D0 (en) * 2006-02-23 2006-04-05 Novartis Ag Organic compounds
EP1914242A1 (en) 2006-10-19 2008-04-23 Sanofi-Aventis Novel anti-CD38 antibodies for the treatment of cancer
HUE027683T2 (hu) 2007-10-01 2016-10-28 Codexis Inc Ketoreduktáz polipeptidek azetidinon elõállítására
WO2011045704A1 (en) 2009-10-12 2011-04-21 Pfizer Inc. Cancer treatment
RU2595839C2 (ru) * 2010-09-27 2016-08-27 МорфоСис АГ Антитело к cd38 и леналидомид или бортезомиб для лечения множественной миеломы и nhl
JOP20210044A1 (ar) 2010-12-30 2017-06-16 Takeda Pharmaceuticals Co الأجسام المضادة لـ cd38
CA2885792C (en) * 2012-09-25 2021-09-28 Jan Endell Pharmaceutical combination of an anti-cd38 antibody and melphalan for treating multiple myeloma
DK2914302T3 (en) * 2012-11-05 2017-04-10 Morphosys Ag RADIOACTIVALLY MARKED ANTIBODY AND USES OF IT
US11920830B1 (en) 2022-11-11 2024-03-05 Russell Dwayne Mcnally Tool and method for cleaning and draining a water heater

Also Published As

Publication number Publication date
US9193799B2 (en) 2015-11-24
CN103554259B (zh) 2016-05-18
US20120052078A1 (en) 2012-03-01
EP3284756B1 (en) 2021-05-05
CN106434683A (zh) 2017-02-22
CN103554260A (zh) 2014-02-05
TW200730624A (en) 2007-08-16
SG10201400973XA (en) 2014-08-28
JP5362359B2 (ja) 2013-12-11
KR101472250B1 (ko) 2014-12-11
NO344961B1 (no) 2020-08-03
BRPI0618399B1 (pt) 2023-10-03
HK1194398A1 (zh) 2014-10-17
KR20140105029A (ko) 2014-08-29
KR101574920B1 (ko) 2015-12-04
JP2013079238A (ja) 2013-05-02
CY1119722T1 (el) 2018-06-27
KR20140022427A (ko) 2014-02-24
IL190665B (en) 2018-06-28
US20210292431A1 (en) 2021-09-23
EP1945671A2 (en) 2008-07-23
CA2625681A1 (en) 2007-04-19
US20190077877A1 (en) 2019-03-14
EP2860192A2 (en) 2015-04-15
DK2860192T3 (en) 2018-01-02
CA2625681C (en) 2016-08-02
US11939395B2 (en) 2024-03-26
US20130273072A1 (en) 2013-10-17
ES2653664T3 (es) 2018-02-08
BRPI0618399A2 (pt) 2011-08-30
CN101287764B (zh) 2013-11-13
US8486394B2 (en) 2013-07-16
CN106434683B (zh) 2020-03-13
RU2425841C2 (ru) 2011-08-10
WO2007042309A3 (en) 2007-09-13
RS56677B1 (sr) 2018-03-30
AU2006301446B2 (en) 2012-06-07
NO20081972L (no) 2008-04-25
NZ566915A (en) 2011-09-30
KR20150139636A (ko) 2015-12-11
US20160075796A1 (en) 2016-03-17
SI2860192T1 (en) 2018-04-30
JP2009511033A (ja) 2009-03-19
JP5752667B2 (ja) 2015-07-22
WO2007042309A2 (en) 2007-04-19
US10184005B2 (en) 2019-01-22
EP3284756A1 (en) 2018-02-21
EP2860192A3 (en) 2015-04-22
KR20080068056A (ko) 2008-07-22
EP2860192B1 (en) 2017-09-27
ME02886B (me) 2018-04-20
RU2008111882A (ru) 2009-11-20
IL190665A0 (en) 2008-11-03
US20090252733A1 (en) 2009-10-08
ZA200803208B (en) 2009-02-25
HK1122822A1 (en) 2009-05-29
US11059902B2 (en) 2021-07-13
AU2006301446A1 (en) 2007-04-19
CN101287764A (zh) 2008-10-15
AR105490A2 (es) 2017-10-11
CN103554259A (zh) 2014-02-05
PT2860192T (pt) 2017-12-26
AR055191A1 (es) 2007-08-08
US8088896B2 (en) 2012-01-03
HRP20171978T1 (hr) 2018-04-06
KR101512853B1 (ko) 2015-04-28
TWI428444B (zh) 2014-03-01
LT2860192T (lt) 2017-12-11
PL2860192T3 (pl) 2018-03-30

Similar Documents

Publication Publication Date Title
DK2860192T3 (en) Generation and profiling of fully human HuCAL GOLD-derived therapeutic antibodies specific for human CD38
KR101392284B1 (ko) 항-cd38 인간 항체 및 그의 용도
US10035861B2 (en) Compositions and methods relating to anti-IGF-1 receptor antibodies
CA2679548C (en) Methods and compositions for treating tumor diseases
KR102623427B1 (ko) 카파 골수종 항원 키메라 항원 수용체 및 이의 용도
US8455629B2 (en) Human anti-OPGL neutralizing antibodies as selective OPGL pathway inhibitors
KR20130126747A (ko) 항-cd38 인간 항체 및 그의 용도
KR20170113704A (ko) 항-인간 cd52 면역글루불린
TW201130973A (en) Human antigen binding proteins that bind β-klotho, FGF receptors and complexes thereof
KR20200109339A (ko) Tim3에 대한 항체를 사용하여 암을 치료하는 방법
WO2022257984A1 (zh) 一种增强型嵌合抗原受体(car)细胞的制备及其应用
AU767443B2 (en) Immunological reagent specifically interacting with the extracellular domain of the human zeta chain
MXPA01000325A (en) Immunological reagent specifically interacting with the extracellular domain of the human zeta chain
AU2007202619A1 (en) Human Anti-OPGL Neutralizing Antibodies as Selective OPGL, Pathway Inhibitors