ES2364495T3 - Método para tratar cáncer resistente a gefitinib. - Google Patents

Método para tratar cáncer resistente a gefitinib. Download PDF

Info

Publication number
ES2364495T3
ES2364495T3 ES06720163T ES06720163T ES2364495T3 ES 2364495 T3 ES2364495 T3 ES 2364495T3 ES 06720163 T ES06720163 T ES 06720163T ES 06720163 T ES06720163 T ES 06720163T ES 2364495 T3 ES2364495 T3 ES 2364495T3
Authority
ES
Spain
Prior art keywords
cancer
gefitinib
use according
egfr inhibitor
egfr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES06720163T
Other languages
English (en)
Inventor
Daniel Haber
Daphne Winifred Bell
Jeffrey E. Settleman
Raffaella Sordella
Nadia G. Godin-Heymann
Eunice L. Kwak
Sridhar Krishna Rabindran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
General Hospital Corp
Original Assignee
Wyeth LLC
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36777922&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2364495(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wyeth LLC, General Hospital Corp filed Critical Wyeth LLC
Application granted granted Critical
Publication of ES2364495T3 publication Critical patent/ES2364495T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47064-Aminoquinolines; 8-Aminoquinolines, e.g. chloroquine, primaquine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Composición farmacéutica que comprende un inhibidor irreversible del receptor de factor de crecimiento epidérmico (EGFR) para su uso en el tratamiento de cáncer resistente a gefitinib y/o erlotinib mediante un método, que comprende las etapas de: a. monitorizar la evolución de un cáncer en un sujeto en un punto de tiempo tras haber iniciado el sujeto tratamiento con gefitinib y/o erlotinib, en el que la evolución del cáncer es indicativa de cáncer que es resistente al tratamiento con gefitinib y/o erlotinib; y b. administrar la composición farmacéutica al sujeto que tiene un cáncer que es resistente al tratamiento con gefitinib y/o erlotinib.

Description

ANTECEDENTES
Los cánceres de células epiteliales, por ejemplo, cáncer de próstata, cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer pancreático, cáncer de ovarios, cáncer del bazo, cáncer testicular, cáncer del timo, etc., son enfermedades caracterizadas por crecimiento acelerado, anómalo de células epiteliales. Este crecimiento acelerado provoca inicialmente que se forme un tumor. Finalmente, puede producirse también metástasis a diferentes sitios de órganos. Aunque se han realizado avances en el diagnóstico y tratamiento de diversos cánceres, estas enfermedades todavía dan como resultado una mortalidad significativa.
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en países industrializados. Los cánceres que comienzan en los pulmones se dividen en dos tipos principales, cáncer de pulmón de células no pequeñas y cáncer de pulmón de células pequeñas, dependiendo de cómo aparecen las células bajo un microscopio. El cáncer de pulmón de células no pequeñas (carcinoma de células escamosas, adenocarcinoma, y carcinoma de células grandes) se extiende generalmente a otros órganos más lentamente de lo que lo hace el cáncer de pulmón de células pequeñas. Aproximadamente el 75 por ciento de casos de cáncer de pulmón se clasifican como cáncer de pulmón de células no pequeñas (por ejemplo, adenocarcinomas), y el otro 25 por ciento son cáncer de pulmón de células pequeñas. El cáncer de pulmón de células no pequeñas (CPCNP) es la principal causa de muertes por cáncer en los Estados Unidos, Japón y Europa occidental. Para los pacientes con enfermedad avanzada, la quimioterapia proporciona un beneficio modesto en la supervivencia, pero al coste de toxicidad significativa, lo que subraya la necesidad de agentes terapéuticos que se dirijan específicamente a las lesiones genéticas críticas que impulsan el crecimiento tumoral (Schiller JH et al., N Engl J Med, 346: 92-98, 2002).
El receptor de factor de crecimiento epidérmico (EGFR) es una proteína unida a membrana de 170 kilodalton (kDa) expresada en la superficie de células epiteliales. EGFR es un miembro de la familia de receptores de factores de crecimiento de proteína tirosina cinasas, una clase de moléculas reguladoras del ciclo celular. (W. J. Gullick et al., 1986, Cancer Res., 46:285-292). EGFR se activa cuando su ligando (o bien EGF o bien TGF-) se une al dominio extracelular, dando como resultado la autofosforilación del dominio tirosina cinasa intracelular del receptor (S. Cohen et al., 1980, J. Biol. Chem., 255:4834-4842; A. B. Schreiber et al., 1983, J. Biol. Chem., 258:846-853).
EGFR es el producto proteico de un oncogén promotor del crecimiento, erbB o ErbB1, que es sólo un miembro de una familia, es decir, la familia ERBB de protooncogenes, que se cree que desempeña papeles fundamentales en el desarrollo y la evolución de muchos cánceres humanos. En particular, se ha observado aumento de la expresión de EGFR en cáncer de mama, vejiga, pulmón, cabeza, cuello y estómago así como glioblastomas. La familia ERBB de oncogenes codifica para cuatro receptores transmembrana relacionados estructuralmente, concretamente, EGFR, HER-2/neu (erbB2), HER-3 (erbB3) y HER-4 (erbB4). Clínicamente, se ha notificado que la amplificación del oncogén ERBB y/o sobreexpresión del receptor en tumores se correlaciona con la recidiva de la enfermedad y un mal pronóstico del paciente, así como con receptividad a la terapia. (L. Harris et al., 1999, Int. J. Biol. Markers, 14: 815; y J. Mendelsohn y J. Baselga, 2000, Oncogene, 19:6550-6565).
EGFR está compuesto por tres dominios principales, concretamente, el dominio extracelular (ECD), que está glicosilado y contiene el bolsillo de unión a ligando con dos regiones ricas en cisteína; un dominio transmembrana corto y un dominio intracelular que tiene actividad tirosina cinasa intrínseca. La región transmembrana une el dominio de unión a ligando con el dominio intracelular. El análisis de la secuencia de aminoácidos y ADN, así como los estudios de formas no glicosiladas de EGFR, indican que la estructura principal proteica de EGFR tiene una masa de 132 kDa, con 1186 residuos de aminoácido (A. L. Ullrich et al., 1984, Nature, 307:418-425; J. Downward et al., 1984, Nature, 307:521-527; C. R: Carlin et al., 1986, Mol. Cell. Biol., 6: 257-264; y F. L. V. Mayes y M. D. Waterfield, 1984, The EMBO J., 3:531-537).
La unión de EGF o TGF- a EGFR activa una ruta de transducción de señales y da como resultado proliferación celular. La dimerización, los cambios conformacionales y la internalización de las moléculas de EGFR funcionan transmitiendo señales intracelulares que conducen a la regulación del crecimiento celular (G. Carpenter y S. Cohen, 1979, Ann. Rev. Biochem., 48:193-216). Las alteraciones genéticas que afectan a la regulación de la función de receptores de factores de crecimiento, o que conducen a la sobreexpresión del receptor y/o ligando, dan como resultado proliferación celular. Además, se ha determinado que EGFR desempeña un papel en la diferenciación celular, potenciación de la movilidad celular, secreción de proteínas, neovascularización, invasión, metástasis y resistencia de células cancerosas a agentes quimioterápicos y radiación. (M.-J. Oh et al., 2000, Clin. Cancer Res., 6:4760-4763).
Se ha identificado una variedad de inhibidores de EGFR, incluyendo varios ensayos clínicos ya en curso para el tratamiento de diversos cánceres. Para un resumen reciente, véase de Bono, J. S. y Rowinsky, E. K. (2002), “The ErbB Receptor Family: A Therapeutic Target For Cancer”, Trends in Molecular Medicine, 8, S 19-26.
Un conjunto de dianas prometedoras para la intervención terapéutica en el tratamiento del cáncer incluye los elementos del eje HER-cinasa. Frecuentemente, están regulados por incremento en tumores epiteliales sólidos de, a modo de ejemplo, la próstata, el pulmón y la mama, y también están regulados por incremento en tumores de glioblastoma. El receptor del factor de crecimiento epidérmico (EGFR) es un elemento del eje HER-cinasa, y ha sido la diana de elección para el desarrollo de varias terapias contra el cáncer diferentes. Los inhibidores de EGFR tirosina cinasa (EGFR-TKI) están entres estas terapias; dado que se requiere la fosforilación reversible de residuos de tirosina para la activación de la ruta de EGFR. En otras palabras, los EGFR-TKI bloquean un receptor de superficie celular responsable de desencadenar y/o mantener la ruta de señalización celular que induce crecimiento y división de células tumorales. Específicamente, se cree que estos inhibidores interfieren con el dominio cinasa de EGFR, denominado HER-1. Entre los EGFR-TKI más prometedores están tres series de compuestos: quinazolinas, piridopirimidinas y pirrolopirimidinas.
Dos de los compuestos más avanzados en el desarrollo clínico incluyen gefitinib (compuesto ZD1839 desarrollado por AstraZeneca UK Ltd.; disponible con el nombre comercial IRESSA; a continuación en el presente documento “IRESSA”) y erlotinib (compuesto OSI-774 desarrollado por Genentech, Inc. y OSI Pharmaceuticals, Inc.; disponible con el nombre comercial TARCEVA; a continuación en el presente documento “TARCEVA”); ambos han generado resultados clínicos alentadores. El tratamiento del cáncer convencional tanto con IRESSA como con TARCEVA implica la administración oral, diaria de no más de 500 mg de los respectivos compuestos. En mayo de 2003, IRESSA se convirtió en el primero de estos productos que alcanzaba el mercado de los Estados Unidos, cuando se aprobó para el tratamiento de pacientes con cáncer de pulmón de células no pequeñas avanzado.
IRESSA es una quinazolina activa por vía oral que funciona inhibiendo directamente la fosforilación de tirosina cinasa sobre la molécula de EGFR. Compite por el sitio de unión a adenosina trifosfato (ATP), lo que conduce a la supresión del eje HER-cinasa. El mecanismo exacto de la respuesta de IRESSA no se entiende completamente, sin embargo, estudios sugieren que la presencia de EGFR es un prerrequisito necesario para su acción.
Una limitación significativa en el uso de estos compuestos es que los receptores de los mismos pueden desarrollar una resistencia a sus efectos terapéuticos tras responder inicialmente a la terapia, o pueden no responder a EGFRTKI en ningún grado medible en absoluto. La tasa de respuesta a EGFR-TKI varía entre diferentes grupos étnicos. En el extremo inferior de los pacientes que responden a EGFR-TKI, en algunas poblaciones, sólo el 10-15 por ciento de pacientes con cáncer de pulmón de células no pequeñas avanzado responden a inhibidores de EGFR cinasa. Por tanto, un mejor entendimiento de los mecanismos moleculares que subyacen a la sensibilidad a IRESSA y TARCEVA sería extremadamente beneficioso en el direccionamiento de la terapia a aquellos individuos que es más probable que se beneficien de una terapia de este tipo. El documento WO 03/103676 describe un método de tratamiento del cáncer en individuos que han desarrollado una resistencia a la terapia contra el cáncer con inhibidores de tirosina cinasa (TKI) convencionales o que no responden a los mismos desde el principio. El método incluye administrar a los pacientes una cantidad que supera la resistencia de un TKI, que puede administrarse con menos frecuencia que los tratamientos con TKI convencionales.
Existe una necesidad significativa en la técnica de un tratamiento del cáncer satisfactorio, y específicamente de cánceres de células epiteliales tales como cánceres de pulmón, ovarios, mama, cerebro, colon y próstata, que incorpore los beneficios de la terapia con TKI y supere la falta de respuesta mostrada por los pacientes. Un tratamiento de este tipo podría tener un impacto drástico sobre la salud de individuos, y especialmente individuos mayores, entre quienes el cáncer es especialmente común.
SUMARIO
La presente invención se define en y mediante las reivindicaciones adjuntas. Los inventores de la presente invención han descubierto sorprendentemente que inhibidores irreversibles de EGFR son eficaces en el tratamiento del cáncer en sujetos que ya no responden más a terapias con gefitinib y/o erlotinib. Por tanto, en una realización, la presente invención permite un método para el tratamiento del cáncer resistente a gefitinib y/o erlotinib. En esta realización, se monitoriza la evolución del cáncer en un sujeto en un punto de tiempo tras haber iniciado el sujeto el tratamiento con gefitinib y/o erlotinib. La evolución del cáncer es indicativa de cáncer que es resistente al tratamiento con gefitinib y/o erlotinib y se administra al sujeto una composición farmacéutica que comprende un inhibidor irreversible del receptor de factor de crecimiento epidérmico (EGFR).
En realizaciones preferidas, el inhibidor irreversible de EGFR es EKB-569, HKI-272 o HKI-357. Alternativamente, el inhibidor irreversible de EGFR puede ser cualquier compuesto que se une a la cisteína 773 de EGFR.
La evolución del cáncer puede monitorizarse mediante métodos bien conocidos por los expertos en la técnica. Por ejemplo, la evolución puede monitorizarse mediante inspección visual del cáncer, tal como, por medio de rayos X, tomografía computerizada o IRM. Alternativamente, la evolución puede monitorizarse mediante detección de biomarcadores tumorales.
En una realización, el paciente se monitoriza a diversos puntos de tiempo a lo largo de todo el tratamiento del cáncer. Por ejemplo, la evolución de un cáncer puede monitorizarse analizando la evolución del cáncer en un segundo punto de tiempo y comparando este análisis con un análisis en un primer punto de tiempo. El primer punto de tiempo puede estar antes o después de la iniciación del tratamiento con gefitinib y/o erlotinib y el segundo punto de tiempo está después del primero. Un aumento del crecimiento del cáncer indica evolución del cáncer.
En una realización, la evolución del cáncer se monitoriza analizando el tamaño del cáncer. En una realización, el tamaño del cáncer se analiza mediante inspección visual del cáncer por medio de rayos X, tomografía computerizada o IRM. En una realización, el tamaño del cáncer se monitoriza mediante detección de biomarcadores tumorales.
En una realización, el cáncer es cáncer de células epiteliales. En una realización, el cáncer es cáncer gastrointestinal, cáncer de próstata, cáncer de ovarios, cáncer de mama, cáncer de cabeza y cuello, cáncer de esófago, cáncer de pulmón, cáncer de pulmón de células no pequeñas, cáncer del sistema nervioso, cáncer de riñón, cáncer de retina, cáncer de piel, cáncer de hígado, cáncer pancreático, cáncer genito-urinario y cáncer de vejiga.
En una realización, el tamaño del cáncer se monitoriza en puntos de tiempo adicionales, y los puntos de tiempo adicionales están después del segundo punto de tiempo.
En una realización, el último punto de tiempo está al menos 2 meses después del punto de tiempo anterior. En una realización, el último punto de tiempo está al menos 6 meses después del punto de tiempo anterior. En una realización, el último punto de tiempo está al menos 10 meses después del punto de tiempo anterior. En una realización, el último punto de tiempo está al menos un año después del punto de tiempo anterior.
En otra realización, la presente invención permite un método de tratamiento del cáncer, que comprende administrar a un sujeto que tiene una mutación en EGFR, concretamente, una sustitución de una treonina por una metionina en la posición 790 (T790M) de SEQ ID. No. I, una composición farmacéutica que comprende un inhibidor irreversible de EGFR. La mutación T790M confiere resistencia al tratamiento con gefitinib y/o erlotinib.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Las figuras LA-IB muestran el análisis de secuencia de EGFR en lesiones metastásicas recurrentes de dos pacientes con CPCNP con resistencia a gefitinib adquirida. La figura IA muestra el análisis de secuencia para el caso I. La mutación T790M en EGFR está presente en una lesión de hígado recurrente tras el desarrollo de resistencia clínica a gefitinib. (Izquierda) La mutación no se detectó en la lesión pulmonar primaria en el momento del diagnóstico. (Derecha) Tanto el tumor de pulmón primario como la lesión de hígado recurrente albergan la mutación de sensibilización a gefitinib L858R. Obsérvese que la mutación L858R está presente en la razón esperada para una mutación heterocigota tanto en lesiones primarias como recurrentes, mientras que T790M es detectable a bajos niveles en comparación con el alelo de tipo natural. Se muestra un polimorfismo (G/A) en el mismo trazado para demostrar la representación equivalente de los dos alelos en el producto de PCR no clonado. La figura 1B muestra el análisis de secuencia para el caso 2. La mutación T790M está presente dentro de una pequeña minoría de células resistentes a gefitinib. (Izquierda) La mutación T790M era indetectable o bien en tumor de pulmón primario o bien en ocho lesiones de hígado recurrentes de este caso secuenciando los productos de PCR no clonados. La heterocigosidad en un polimorfismo adyacente (G/A) confirma la amplificación de ambos alelos de EGFR de estas muestras. La mutación de sensibilización a gefitinib heterocigota, L861Q, se detectó en la razón esperada dentro del tumor de pulmón primario así como las ocho lesiones de hígado recurrentes.
Las figuras 2A-2C muestran la resistencia adquirida a gefitinib en líneas celulares de cáncer broncoalveolar y la sensibilidad persistente a inhibidores irreversibles de la familia de ERBB. La figura 2A muestra la inhibición por inhibidores de tirosina cinasa de la proliferación de líneas celulares de cáncer broncoalveolar con EGFR de tipo natural (NCI-HI 666), la mutación de1E746-A750 activante en EGFR (NCIH1650), o dos subclones resistentes a gefitinib representativos de NCI-H1650 (G7 y C11). Se compara el efecto del inhibidor reversible gefitinib con el del inhibidor irreversible HKI-357. Se observaron resultados comparables con los otros inhibidores irreversibles. Se midieron los números de células mediante tinción con cristal violeta, tras cultivo en FCS al 5%, con EGFR 100 ng/ml, a las 72 h tras exposición a concentraciones de fármaco indicadas. Cada punto de datos representa la media de cuatro muestras. La figura 2B muestra la estructura química de gefitinib, un inhibidor reversible de EGFR; EKB-569, un inhibidor irreversible de EGFR; y HKI-272 y HKI-357, dos inhibidores duales irreversibles de EGFR y ERBB2. La figura 2C muestra la generación de células NCI-H1650 resistentes a fármaco tras el tratamiento con concentraciones variables de gefitinib o el inhibidor de ERBB irreversible EKB-569. Se tiñeron las colonias tras 12 días de cultivo en presencia de inhibidores.
Las figuras 3A-3D muestran la dependencia persistente de la señalización de EGFR y ERBB2 en células resistentes a gefitinib, y el tráfico de receptores alterado. La figura 3A muestra la viabilidad celular tras silenciamiento génico mediado por ARNip de EGFR y ERBB2 en líneas celulares broncoalveolares con EGFR de tipo natural (NCI-H1666), en comparación con células con la mutación delE746-A750 activante en EGFR (NCI-H1650) y dos derivados resistentes a gefitinib (G7 y C11). Se contaron las células viables 72 h tras el tratamiento con ARN bicatenario y se muestran como una fracción con respecto a las células tratadas con ARNip no específico, con desviaciones estándar basadas en muestras por triplicado. La figura 3B muestra la inhibición de la autofosforilación de EGFR (Y1068) y la fosforilación de efectores aguas abajo AKT y MAPK (ERK) en células tratadas con concentraciones crecientes de gefitinib o el inhibidor irreversible HKI-357, seguido por un pulso de 2 h con EGF. La línea celular original NCI-H1650 se compara con una línea resistente a gefitinib representativa, G7. Se muestran AKT y MAPK totales como controles; se usa tubulina como control de carga para los niveles de EGFR totales, que están en el límite inferior de detección en estas células. La figura 3C muestra la internalización de EGFR alterada en células NCI-H1650 (G7) resistentes a gefitinib, en comparación con la línea celular original NCI-H1650 sensible. Se usa EGF etiquetado con rodamina para marcar EGFR a los 5 y 20 min., tras la adición del ligando. El aumento de la internalización de EGFR en células NCI-H1650 (G7) es más evidente a los 20 min. (microscopio Zeiss, 63 aumentos). La figura 3D muestra la inmunotransferencia de EGFR internalizado a partir de células originales NCI-H1650 y el derivado resistente G7 tras marcaje por pulsos de proteínas de superficie celular mediante biotinilación y búsqueda durante 20 min. El aumento del EGFR intracelular en células NCI-H1650 (G7) se compara con la internalización del receptor de transferrina (TR) inalterado.
Las figuras 4A-4B muestran la eficacia de inhibidores irreversibles de ERBB en la supresión del mutante de EGFR T790M. La figura 4A muestra la comparación de gefitinib y dos inhibidores irreversibles, HKI-357 y HKI-272, en su capacidad para suprimir la autofosforilación de EGFR (Y1068) y la fosforilación de efectores aguas abajo AKT y MAPK (ERK) en la línea celular broncoalveolar NCI-H1975, que alberga tanto una mutación sensibilizante (L858R) como la mutación asociada a resistencia (T790M). Se muestran EGFR, AKT y MAPK totales como controles de carga. La figura 4B muestra la supresión de la proliferación en células NCI-H1975 que albergan las mutaciones L858R y T790M mediante tres inhibidores irreversibles de la familia de ERBB, en comparación con gefitinib.
La figura 5 muestra la secuencia de nucleótidos (SEQ ID NO: 2) y la secuencia de aminoácidos (SEQ ID NO: 1) de EGFR.
La figura 6 muestra que al igual que gefitinib, HKI 357 y EKB 569 (marcado “Wyeth”) demostraron un aumento de la destrucción celular de células de CPCNP que albergan una mutación de EGFR, pero a diferencia de gefitinib, los clones resistentes a estos fármacos no se generaron fácilmente in vitro y retuvieron su eficacia frente a clones resistentes a gefitinib.
DESCRIPCIÓN DETALLADA
Cánceres resistentes a gefitinib y erlotinib
Gefitinib (compuesto ZD 1839 desarrollado por AstraZeneca UK Ltd.; disponible con el nombre comercial IRESSA) y erlotinib (compuesto OSI-774 desarrollado por Genentech, Inc. y OSI Pharmaceuticals, Inc.; disponible con el nombre comercial TARCEVA) inducen respuestas clínicas drásticas en casos de cánceres de pulmón de células no pequeñas (CPCNP) que albergan mutaciones activantes en el receptor de EGF (EGFR) (1-3), que estos inhibidores competitivos de unión a ATP seleccionan como diana (4, 5). La eficacia de estos inhibidores de tirosina cinasa puede resultar tanto de alteraciones en la hendidura del ATP asociadas a estas mutaciones, que conducen a una inhibición potenciada de la cinasa mutante mediante estos fármacos, como de la dependencia biológica de estas células cancerosas del aumento de señales de supervivencia transducidas por los receptores mutantes, un fenómeno descrito como “adicción oncogénica” (6, 7).
Aunque las respuestas terapéuticas tanto a gefitinib como a erlotinib pueden persistir durante tanto como 2-3 años, la duración media de la respuesta en la mayoría de casos de CPCNP es de sólo 6-8 meses (8-10). Los mecanismos que subyacen a la resistencia a fármacos adquirida no se entienden bien. Por analogía con imatinib (GLEEVEC), que inhibe la BCR-ABL cinasa implicada en leucemias mieloides crónicas (LMC), la C-KIT cinasa implicada en tumores estromales gastrointestinales (TEGI) y la FIP1L1-PDGFR- cinasa en el síndrome hipereosinofílico idiopático (SHE), mutaciones del dominio cinasa secundario pueden suprimir posiblemente la unión al fármaco (1116). Sin embargo, el CPCNP recurrente no se somete a biopsia fácilmente; por tanto están disponibles para análisis sólo muestras clínicas limitadas. Recientemente, se ha notificado una mutación secundaria individual, T790M, dentro del dominio cinasa de EGFR en tres de seis casos con enfermedad recurrente tras terapia con gefitinib o erlotinib (17, 18). El codón 315 de BCR-ABL, que es análogo al codón 790 de EGFR, está mutado frecuentemente en LMC resistente a imatinib (11,12), y la mutación del residuo correspondiente en C-KIT (codón 670) y FIP1L1-PDGFR- (codón 674) está asociada con TEGI y BES resistentes a imatinib, respectivamente (15,16). El modelado in vitro temprano de la resistencia a inhibidores de EGFR indicó que la mutación del codón 790 dentro del receptor de tipo natural suprimiría de manera similar la inhibición mediante un inhibidor de EGFR tirosina cinasa (19). Recientemente, se demostró que proteínas de EGFR transfectadas que contienen mutaciones activantes junto con la sustitución T790M muestran inhibición reducida mediante gefitinib y erlotinib (17, 18). Aunque la mutación T790M parece contribuir a la resistencia adquirida en algunos casos de CPCNP, los mecanismos que subyacen al fracaso del tratamiento en casos que carecen de mutaciones de EGFR secundarias permanecen sin explicación.
A diferencia de la BCR-ABL cinasa citoplásmica, la señalización por EGFR unido a membrana implica una ruta compleja de unión al ligando, homodimerización del receptor y heterodimerización con ERBB2 y otros miembros de la familia, seguido por internalización y reciclaje del receptor unido al ligando o degradación del receptor mediada por ubiquitina (20). Se cree que se produce señalización dependiente de EGF significativa durante el proceso de internalización, que está asociado también con la disociación de complejos de EGFR al pH bajo de las vesículas intracelulares. Como tales, múltiples factores modulan la intensidad y la calidad de la señal traducida por el receptor, y se han vinculado de manera estrecha alteraciones en el tráfico de EGFR con la regulación de respuestas celulares dependientes de EGF (20).
La presente invención se basa en el descubrimiento de que cánceres resistentes a gefitinib pueden incluir aquéllos en los que la mutación de EGFR T790M sólo está presente en un subconjunto de células tumorales resistentes y aquéllos en los que no se observa la mutación T790M, pero se observa aumento de la internalización de EGF. La invención se basa además en el descubrimiento de que inhibidores irreversibles de EGFR, que reticulan de manera covalente el receptor, son eficaces en la inhibición de cánceres con la mutación T790M y en cánceres con tráfico de EGFR alterado que pueden hacer que tales cánceres sean resistentes al tratamiento con gefitinib y/o erlotinib. Por consiguiente, la presente invención permite un método de tratamiento de cánceres resistentes a gefitinib y/o erlotinib que comprende administrar inhibidores irreversibles de EGFR.
Método de tratamiento de un paciente
En una realización, la invención permite un método para tratar cáncer resistente a gefitinib/erlotinib. El método comprende administrar a un paciente que necesita un tratamiento de este tipo una cantidad eficaz de determinados inhibidores irreversibles de EGFR, incluyendo Eke-569 (4-anilinoquinolina-3-carbonitrilo; Greenberger et al., 11ª NCIEORTC-AACR Symposium on New Drugs in Cancer Therapy, Amsterdam, 7-10 de noviembre de 2000, resumen 388; Wyeth), HKI-357 (un derivado de 4-anilinoquinolina-3-carbonitrilo; Tsou et al. J. Med. Chem. 2005, 48: 11071131; Wyeth) y/o HKI-272 (un derivado de 4-anilinoquinolina-3-carbonitrilo; Rabindran et al., Cancer Res. 2004, 64, 3958-3965; Wyeth). En una realización preferida, la invención permite un método que comprende administrar a un paciente que necesita un tratamiento de este tipo una cantidad eficaz de EKB-569. En una realización preferida, la invención permite un método que comprende administrar a un paciente que necesita un tratamiento de este tipo una cantidad eficaz de HKI-357.
El tratamiento también puede implicar una combinación de tratamientos, incluyendo, pero sin limitarse a un inhibidor de tirosina cinasa en combinación con otros inhibidores de tirosina cinasa, quimioterapia, radiación, etc.
Los cánceres pueden diagnosticarse inicialmente como sensibles a gefitinib/erlotinib o predecirse que van a ser sensibles a gefitinib/erlotinib mediante los métodos descritos en Lynch et al., 2004; 350:2129-2139. Puede predecirse la sensibilidad a gefitinib/erlotinib por la presencia en el tumor de mutaciones de EGFR que incluyen, por ejemplo, deleción de los residuos 747 (lisina) a 749 (ácido glutámico) combinada con una mutación en 750 (alanina), deleción de los residuos 747 (lisina) a 750 (alanina), sustitución de leucina por arginina en el residuo 858, sustitución de leucina por glutamina en el residuo 861.
Los cánceres pueden diagnosticarse como resistentes a gefitinib y/o erlotinib tras haberse comenzado el tratamiento con gefitinib y/o erlotinib. Alternativamente, los cánceres pueden diagnotiscarse como resistentes a gefitinib y/o erlotinib antes de la iniciación del tratamiento con tales compuestos. La resistencia a gefitinib y/o erlotinib en el tumor pueden producirse tras, por ejemplo, 6 meses o más de tratamiento con gefitinib y/o erlotinib. Alternativamente, la resistencia a gefitinib y/o erlotinib del tumor puede diagnosticarse menos de 6 meses tras haberse comenzado el tratamiento con gefitinib y/o erlotinib. El diagnóstico de la resistencia a gefitinib y/o erlotinib puede lograrse mediante la monitorización de la evolución del tumor durante el tratamiento con gefitinib y/o erlotinib. La evolución del tumor puede determinarse mediante la comparación del estado del tumor entre puntos de tiempo tras haberse comenzado el tratamiento o mediante la comparación del estado del tumor entre un punto de tiempo tras haberse comenzado el tratamiento y un punto de tiempo antes de la iniciación del tratamiento con gefitinib y/o erlotinib. La evolución del tumor puede monitorizarse durante el tratamiento con gefitinib y/o erlotinib de manera visual, por ejemplo, por medio de radiografía, por ejemplo, rayos x, tomografía computerizada, u otros métodos de monitorización conocidos por el experto, incluyendo palpitación del cáncer o métodos para monitorizar los niveles de biomarcadores tumorales. La evolución del cáncer durante el tratamiento con gefitinib y/o erlotinib indica resistencia a gefitinib y/o erlotinib. Un aumento del nivel de biomarcadores tumorales indica evolución del tumor. Por tanto, un aumento de los niveles de biomarcadores tumorales durante el tratamiento con gefitinib y/o erlotinib indica resistencia a gefitinib y/o erlotinib. La detección de nuevos tumores o la detección de metástasis indica evolución del tumor. El cese de la contracción del tumor indica evolución del tumor. El crecimiento del cáncer viene indicado mediante, por ejemplo, el aumento del tamaño del tumor, la metástasis o la detección de nuevo cáncer y/o un aumento de los niveles de biomarcadores tumorales.
El desarrollo de resistencia a gefitinib y/o erlotinib puede monitorizarse por medio de pruebas para detectar la presencia de una mutación asociada a resistencia a gefitinib y/o erlotinib en células tumorales circulantes obtenidas de la circulación, u otro líquido corporal, del sujeto. La presencia de mutaciones asociadas a resistencia a gefitinib y/o erlotinib en células tumorales del sujeto es indicativa de un tumor resistente a gefitinib y/o erlotinib.
En una realización, el tumor del sujeto alberga mutaciones indicativas de sensibilidad a gefitinib y/o erlotinib, todavía es resistente al tratamiento con gefitinib y/o erlotinib. En una realización, el tumor del sujeto alberga mutaciones indicativas de sensibilidad a gefitinib y/o erlotinib y alberga mutaciones indicativas de resistencia a gefitinib y/o erlotinib, por ejemplo, la mutación T790M, es decir, cuando se sutituye el residuo de treonina nativo por un residuo de metionina, en EGFR, por ejemplo aumento de la internalización de EGFR. En una realización, el tumor del sujeto no alberga mutaciones indicativas de sensibilidad a gefitinib y/o erlotinib y no alberga mutaciones indicativas de resistencia a gefitinib y/o erlotinib, por ejemplo, la mutación T790M en EGFR, por ejemplo, aumento de la internalización de EGFR.
Con respecto a la administración del fármaco, una “cantidad eficaz” indica una cantidad que da como resultado un efecto beneficioso para al menos una fracción estadísticamente significativa de pacientes, tal como una mejora de los síntomas, una cura, una reducción de la carga de enfermedad, reducción de la masa tumoral o los números de células, extensión de la vida, mejora de la calidad de vida, u otro efecto reconocido generalmente como positivo por médicos familiarizados con el tratamiento del tipo particular de enfermedad o afección.
La dosificación eficaz del principio activo empleado puede variar dependiendo del compuesto particular empleado, el modo de administración y la gravedad del estado que va a tratarse. El experto es conciente de la dosis eficaz para cada paciente, que puede variar con la gravedad de la enfermedad, variación genética individual o tasa metabólica. Sin embargo, en general, se obtienen resultados satisfactorios cuando se administran los compuestos de la invención en una dosificación diaria de desde aproximadamente 0,5 hasta aproximadamente 1000 mg/kg de peso corporal, administrados opcionalmente en dosis divididas de dos a cuatro veces al día, o en una forma de liberación sostenida. Se pronostica que la dosificación diaria total es de desde aproximadamente 1 hasta 1000 mg, preferiblemente desde aproximadamente 2 hasta 500 mg. Formas farmacéuticas adecuadas para uso interno comprenden desde aproximadamente 0,5 hasta 1000 mg del compuesto activo en mezcla íntima con un portador farmacéuticamente aceptable sólido o líquido. Este régimen de dosificación puede ajustarse para proporcionar la respuesta terapéutica óptima. Por ejemplo, pueden administrarse diariamente varias dosis divididas o la dosis puede reducirse proporcionalmente tal como indiquen las exigencias de la situación terapéutica.
La vía de administración puede ser intravenosa (i.v.), intramuscular (i.m.), subcutánea (s.c.), intradérmica (i.d.), intraperitoneal (i.p.), intratecal (i.t.), intrapleural, intrauterina, rectal, vaginal, tópica, intratumoral y similares. Los compuestos de la invención pueden administrarse por vía parenteral mediante inyección o mediante infusión gradual a lo largo del tiempo y pueden suministrarse por medios peristálticos.
La administración puede ser por medios transmucosales o transdérmicos. Para la administración transmucosa o transdérmica, se usan en la formulación agentes de penetración apropiados para la barrera que va a permearse. Tales agentes de penetración se conocen generalmente en la técnica, e incluyen, por ejemplo, para la administración transmucosa derivados de ácido fusídico y sales biliares. Además, pueden usarse detergentes para facilitar la permeación. La administración transmucosa puede ser mediante pulverizadores nasales, por ejemplo, o usando supositorios. Para la administración oral, los compuestos de la invención se formulan en formas de administración oral convencional tales como cápsulas, comprimidos y tónicos.
Para la administración tópica, la composición farmacéutica (inhibidor de la actividad cinasa) se formula en pomadas, bálsamos, geles, o cremas, tal con se conoce generalmente en la técnica.
Las composiciones terapéuticas de esta invención, por ejemplo inhibidores irreversibles de EGFR, se administran convencionalmente por vía intravenosa, como por ejemplo, mediante inyección de una dosis unitaria. La expresión “dosis unitaria” cuando se usa en referencia a una composición terapéutica de la presente invención se refiere a unidades físicamente diferenciadas adecuadas como dosificación unitaria para el sujeto, conteniendo cada unidad una cantidad predeterminada de material activo calculada para producir el efecto terapéutico deseado en asociación con los diluyentes requeridos; es decir, portador o vehículo.
Las composiciones se administran de una manera compatible con la formulación de dosificación, y en una cantidad terapéuticamente eficaz. La cantidad que va a administrarse y el horario dependen del sujeto que va a tratarse, la capacidad del sistema del sujeto para utilizar el principio activo y el grado de efecto terapéutico deseado. Las cantidades precisas del principio activo requerido que va a administrarse dependen del criterio del médico y son peculiares para cada individuo.
Las composiciones terapéuticas útiles para poner en práctica los métodos de la presente invención, por ejemplo inhibidores irreversibles de EGFR, se describen en el presente documento. Puede usarse cualquier formulación o sistema de administración de fármacos que contenga los principios activos, que sea adecuado para el uso previsto, tal como conocen generalmente los expertos en la técnica. Los portadores farmacéuticamente aceptables adecuados para administración oral, rectal, tópica o parenteral (incluyendo por inhalación, subcutánea, intraperitoneal, intramuscular y intravenosa) los conocen los expertos en la técnica. El portador debe ser farmacéuticamente aceptable en el sentido de ser compatible con los otros componentes de la formulación y no perjudiciales para receptor de la misma.
Tal como se usa en el presente documento, las expresiones “farmacéuticamente aceptable”, “fisiológicamente tolerable” y variaciones gramaticales de las mismas, cuando se refieren a composiciones, portadores, diluyentes y reactivos, se usan de manera intercambiable y representan que los materiales pueden administrarse a un mamífero sin la producción de efectos fisiológicos indeseados.
Las formulaciones adecuadas para administración parenteral incluyen convenientemente una preparación acuosa estéril del compuesto activo que es preferiblemente isotónica con la sangre del receptor. Por tanto, tales formulaciones pueden contener convenientemente agua destilada, dextrosa al 5% en agua destilada o solución salina. Las formulaciones útiles incluyen también disoluciones concentradas o sólidos que contienen el compuesto que tras la dilución con un disolvente apropiado proporcionan una disolución adecuada para la administración parenteral anterior.
Para la administración entérica, puede incorporarse un compuesto en un portador inerte en unidades diferenciadas tales como cápsulas, cachets, comprimidos o pastillas para chupar, conteniendo cada una una cantidad predeterminada del compuesto activo; como un polvo o gránulos; o una suspensión o disolución en un líquido acuoso o líquido no acuoso, por ejemplo, un jarabe, un elixir, una emulsión o una pócima. Portadores adecuados puede ser almidones o azúcares e incluyen lubricantes, aromatizantes, aglutinantes, y otros materiales de la misma naturaleza.
Puede prepararse un comprimido mediante compresión o moldeo, opcionalmente con uno o más componentes accesorios. Pueden prepararse comprimidos comprimidos mediante compresión en una máquina adecuada del compuesto activo en una forma de flujo libre, por ejemplo un polvo o gránulos, mezclado opcionalmente con componentes accesorios, por ejemplo, aglutinantes, lubricantes, diluyentes inertes, o agentes tensioactivos o de dispersión. Pueden prepararse comprimidos moldeados mediante moldeo en una máquina adecuada de una mezcla del compuesto activo en polvo con cualquier portador adecuado.
Puede prepararse un jarabe o una suspensión añadiendo el compuesto activo a una disolución acuosa, concentrada de un azúcar, por ejemplo, sacarosa, a la que puede añadirse cualquier componente accesorio. Tales componentes accesorios pueden incluir aromatizante, un agente que retarda la cristalización del azúcar o un agente que aumenta la solubilidad de cualquier otro componente, por ejemplo, como un alcohol polihidroxilado, por ejemplo, glicerol o sorbitol.
Pueden presentarse formulaciones para administración rectal como un supositorio con un portador convencional, por ejemplo, manteca de cacao o Witepsol S55 (marca comercial de Dynamite Nobel Chemical, Alemania), para una base de supositorio.
Pueden presentarse formulaciones para administración oral con un potenciador. Los potenciadores de la absorción aceptables por vía oral incluyen tensioactivos tales como laurilsulfato de sodio, palmitoil-carnitina, Laureth-9, fosfatidilcolina, ciclodextrina y derivados de la misma, sales biliares tales como desoxicolato de sodio, taurocolato de sodio, glicolato de sodio y fusidato de sodio; agentes quelantes incluyendo EDTA, ácido cítrico y salicilatos; ácidos grasos (por ejemplo, ácido oleico, ácido láurico, acilcarnitinas, mono y diglicéridos). Otros potenciadores de la absorción oral incluyen cloruro de benzalconio, cloruro de bencetonio, CHAPS (3-(3-colamidopropil)-dimetilamonio1-propanosulfonato), Big-CHAPS (N,N-bis(3-D-gluconamidapropil)-colamida), clorobutanol, octoxinol-9, alcohol bencílico, fenoles, cresoles y alcoholes alquílicos. Un potenciador de la absorción oral especialmente preferido para la presente invención es laurilsulfato de sodio.
Alternativamente, el compuesto puede administrarse en liposomas o microesferas (o micropartículas). Los expertos en la técnica conocen bien métodos para preparar liposomas y microesferas para su administración a un paciente. La patente estadounidense n.º 4.789.734 describe métodos para encapsular materiales biológicos en liposomas. Esencialmente, el material se disuelve en una disolución acuosa, se añaden los fosfolípidos y lípidos apropiados, junto con tensioactivos si se requiere, y el material se somete a diálisis o sonicación, según sea necesario. Se proporciona una revisión de métodos conocidos por G. Gregoriadis, capítulo 14, “Liposomes,” Drug Carriers in Biology and Medicine, págs. 287-341 (Academic Press, 1979).
Los expertos en la técnica conocen bien microesferas formadas por polímeros o proteínas, y pueden adaptarse para el paso a través del tracto gastrointestinal directamente al torrente sanguíneo. Alternativamente, el compuesto puede incorporarse y las microesferas, o el material compuesto de microesferas, implantarse para su liberación lenta a lo largo de un periodo de tiempo que oscila desde días hasta meses. Véanse, por ejemplo, las patentes estadounidenses n.os 4.906.474, 4.925.673 y 3.625.214, y Jein, TIPS 19:155-157 (1998).
En una realización, el inhibidor de tirosina cinasa de la presente invención puede formularse en un liposoma o una micropartícula que se dimensiona de manera adecuada para depositarse en lechos capilares tras la administración intravenosa. Cuando el liposoma o la micropartícula se deposita en los lechos capilares que rodean el tejido isquémico, los agentes pueden administrarse localmente al sitio en el que pueden ser más eficaces. Liposomas adecuados para seleccionar como diana tejido isquémico tienen generalmente menos de aproximadamente 200 nanómetros y son también normalmente vesículas unilamelares, tal como se da a conocer, por ejemplo, en la patente estadounidense n.º 5.593.688 concedida a Baldeschweiler, titulada “Liposomal targeting of ischemic tissue”.
Micropartículas preferidas son las preparadas a partir de polímeros biodegradables, tales como poliglicolida, polilactida y copolímeros de las mismas. Los expertos en la técnica pueden determinar fácilmente un sistema portador apropiado dependiendo de diversos factores, incluyendo la tasa de liberación de fármaco deseada y la dosificación deseada.
En una realización, las formulaciones se administran por medio de un catéter directamente al interior de los vasos sanguíneos. La administración puede producirse, por ejemplo, a través de orificios en el catéter. En las realizaciones en las que los compuestos activos tienen una semivida relativamente larga (del orden de 1 día a una semana o más) las formulaciones pueden incluirse en hidrogeles poliméricos biodegradables, tales como los dados a conocer en la patente estadounidense n.º 5.410.016 concedida a Hubbell et al. Estos hidrogeles poliméricos pueden administrarse al interior de la luz de un tejido y liberarse los compuestos activos a lo largo del tiempo a medida que el polímero se degrada. Si se desea, los hidrogeles poliméricos pueden tener micropartículas o liposomas que incluyen el compuesto activo dispersado en los mismos, proporcionando otro mecanismo para la liberación controlada de los compuestos activos.
Las formulaciones pueden presentarse convenientemente en forma farmacéutica unitaria y pueden prepararse mediante cualquiera de los métodos bien conocidos en la técnica de farmacia. Todos los métodos incluyen la etapa de poner el compuesto activo en asociación con un portador que constituye uno o más componentes accesorios. En general, las formulaciones se preparan poniendo uniforme e íntimamente el compuesto activo en asociación con un portador líquido o un portador sólido finamente dividido y entonces, si es necesario, conformando el producto para dar la forma farmacéutica unitaria deseada.
Las formulaciones pueden incluir además uno o más componente(s) accesorio(s) opcional(es) utilizado(s) en la técnica de formulaciones farmacéuticas, por ejemplo, diluyentes, tampones, agentes aromatizantes, aglutinantes, agentes tensioactivos, espesantes, lubricantes, agentes de suspensión, conservantes (incluyendo antioxidantes) y similares.
Los compuestos de los presentes métodos (es decir, inhibidores irreversibles de EGFR) pueden presentarse para su administración al tracto respiratorio como un rapé o un aerosol o una disolución para un nebulizador, o como un polvo microfino para insuflación, solo o en combinación con un portador inerte tal como lactosa. En un caso de este tipo, las partículas del compuesto activo tienen adecuadamente diámetros de menos de 50 micras, preferiblemente menos de 10 micras, más preferiblemente entre 2 y 5 micras.
Generalmente para la administración nasal se preferirá un pH ligeramente ácido. Preferiblemente, las composiciones de la invención tiene un pH de desde aproximadamente 3 hasta 5, más preferiblemente desde aproximadamente 3,5 hasta aproximadamente 3,9 y lo más preferiblemente 3,7. El ajuste del pH se logra mediante la adición de un ácido apropiado, tal como ácido clorhídrico.
La preparación de una composición farmacológica que contiene principios activos disueltos o dispersados en la misma se entiende bien en la técnica y no necesita limitarse basándose en la formulación. Normalmente, se preparan tales composiciones como preparaciones inyectables o bien como disoluciones líquidas o bien suspensiones, sin embargo, también pueden prepararse formas sólidas adecuadas para disolución, o suspensiones, en líquido antes de su uso. La preparación también puede emulsionarse.
El principio activo puede mezclarse con excipientes que son farmacéuticamente aceptables y compatibles con el principio activo y en cantidades adecuadas para su uso en los métodos terapéuticos descritos en el presente documento. Excipientes adecuados son, por ejemplo, agua, solución salina, dextrosa, glicerol, etanol o similares y combinaciones de los mismos. Además, si se desea, la composición puede contener cantidades minoritarias de sustancias auxiliares tales como agentes humectantes o emulsionantes, agentes de tamponamiento del pH y similares que potencian la eficacia del principio activo.
Los inhibidores irreversibles de cinasa de la presente invención pueden incluir sales farmacéuticamente aceptables de los componentes de los mismos. Las sales farmacéuticamente aceptables incluyen las sales de adición de ácido (formadas con los grupos amino libres del polipéptido) que se forman con ácidos inorgánicos tales como, por ejemplo, ácidos clorhídrico o fosfórico, o ácidos orgánicos tales como acético, tartárico, mandélico y similares. También pueden derivarse sales formadas con los grupos carboxilo libres a partir de bases inorgánicas tales como, por ejemplo, hidróxidos de sodio, potasio, amonio, calcio o hierro, y bases orgánicas tales como isopropilamina, trimetilamina, 2-etilamino-etanol, histidina, procaína y similares.
Se conocen bien en la técnica portadores fisiológicamente tolerables. Portadores líquidos a modo de ejemplo son disoluciones acuosas estériles que no contienen materiales además de los principios activos y agua, o contienen un tampón tal como fosfato de sodio a un valor de pH fisiológico, solución salina fisiológica o ambos, tal como solución salina tamponada con fosfato. Todavía adicionalmente, los portadores acuosos pueden contener más de una sal de tampón, así como sales tales como cloruros de sodio y potasio, dextrosa, polietilenglicol y otros solutos.
Las composiciones líquidas también pueden contener fases líquidas además de y la exclusión de agua. Ejemplos de tales fases líquidas adicionales son glicerina, aceites vegetales tales como aceite de semilla de algodón y emulsiones de agua-aceite.
Definiciones:
Las expresiones “ErbB 1”, “receptor del factor de crecimiento epidérmico” y “EGFR” se usan de manera intercambiable en el presente documento y hacen referencia a la secuencia nativa de EGFR tal como se da a conocer, por ejemplo, en Carpenter et al. Ann. Rev. Biochem. 56:881-914 (1987), incluyendo variantes de la misma (por ejemplo un mutante de deleción de EGFR como en Humphrey et al. PNAS (USA) 87:4207-4211 (1990)). erbB1 se refiere al gen que codifica para el producto proteico de EGFR. Tal como se usa en el presente documento, la proteína EGFR se da a conocer como el n.º de registro de GenBank NP_005219 (SEQ ID NO: 1) que está codificada por el gen erbB1, n.º de registro de GenBank NM_005228 (SEQ ID NO: 2). Las secuencias de nucleótidos y aminoácidos de erbB1/EGFR pueden encontrarse en la figura 5.
La expresión “varianza de ácidos nucleicos que aumenta la actividad cinasa” tal como se usa en el presente documento se refiere a una varianza (es decir, mutación) en la secuencia de nucleótidos de un gen que da como resultado un aumento de la actividad cinasa. El aumento de la actividad cinasa es un resultado directo de la varianza en el ácido nucleico y está asociada con la proteína para la que el gen codifica.
El término “fármaco” o “compuesto” tal como se usa en el presente documento se refiere a una entidad química o producto biológico, o combinación de entidades químicas o productos biológicos, administrados a una persona para tratar o prevenir o controlar una enfermedad o un estado. La entidad química o producto biológico es preferiblemente, pero no necesariamente un compuesto de bajo peso molecular, pero también puede ser un compuesto más grande, por ejemplo, un oligómero de ácidos nucleicos, aminoácidos o hidratos de carbono incluyendo sin limitación proteínas, oligonucleótidos, ribozimas, ADNzimas, glicoproteínas, ARNip, lipoproteínas, aptámeros, y modificaciones y combinaciones de los mismos.
Tal como se usa en el presente documento, los términos “eficaz” y “eficacia” incluyen tanto eficacia farmacológica como seguridad fisiológica. La eficacia farmacológica se refiere a la capacidad del tratamiento para dar como resultado un efecto biológico deseado en el paciente. La seguridad fisiológica se refiere al nivel de toxicidad, u otros efectos fisiológicos adversos a nivel celular, orgánico y/o de organismo (a menudo denominados efectos secundarios) que resultan de la administración del tratamiento. “Menos eficaz” significa que el tratamiento da como resultado un nivel terapéuticamente significativo inferior de eficacia farmacológica y/o un nivel terapéuticamente mayor de efectos fisiológicos adversos.
Pueden aislarse moléculas de ácido nucleico a partir de una muestra biológica particular usando cualquiera de varios procedimientos, que se conocen bien en la técnica, siendo el procedimiento de aislamiento particular elegido apropiado para la muestra biológica particular. Por ejemplo, pueden ser útiles procedimientos de lisis alcalina y congelación-descongelación para obtener moléculas de ácido nucleico de materiales sólidos; pueden ser útiles procedimientos de lisis alcalina y calor para obtener moléculas de ácido nucleico de orina, y puede usarse extracción con proteinasa k para obtener ácido nucleico de sangre (Rolff, A et al. PCR: Clinical Diagnostics and Research, Springer (1994)).
Tal como se usa en el presente documento, un “cáncer” en un sujeto o paciente se refiere a la presencia de células que tienen características típicas de células que provocan cáncer, tales como proliferación no controlada, inmortalidad, potencial metastásico, tasa de proliferación y crecimiento rápida, y determinadas características morfológicas características. En algunas circunstancias, las células cancerosas estarán en forma de un tumor, o tales células pueden existir localmente dentro de un animal, o circular en el torrente sanguíneo como células independientes.
EJEMPLOS
Compuestos. Compuestos usados en el presente documento, incluyendo EKB-569, HK1-357 y HK1-272 tal como se describe en la patente estadounidense n.º 6.002.008; Greenberger et al., Proc. 11ª NCI EORTC-AACR Symposium on New Drugs in Cancer Therapy, Clinical Cancer Res. Suplemento vol. 6, noviembre de 2000, ISSN 1078-0432; en Rabindran et al., Cancer Res. 64: 3958-3965 (2004); Holbro y Hynes, Ann. Rev. Pharm. Tox. 44:195-217 (2004); y Tejpar et al., J. Clin. Oncol. ASCO Annual Meeting Proc. vol. 22, n.º 14S: 3579 (2004).
Análisis de CPCNP recurrente y generación de células NCI-H1650 resistentes a gefitinib. Se obtuvieron muestras clínicas de CPCNP recurrente en autopsia tras el consentimiento apropiado. Se secuenció el dominio cinasa completo de EGFR tras el análisis de productos de PCR no clonados. Se secuenciaron múltiples clones del exón 20 para examinar el codón 790. Se realizó análisis mutacional de EGFR (exones 1-28), ERBB2 (exones 1-24), PTEN (exones 1-9), Kras (codones 12, 13 y 61) y p53 (exones 5-8) en clones resistentes a gefitinib así como la línea celular NCI-H1650 original mediante la secuenciación automática de exones individuales y la secuencia intrónica flanqueantes (condiciones de PCR disponibles a petición) con secuenciación bidireccional usando química de terminador de tinte (BIGDYE versión 1.1, Applied Biosystems). Se ejecutaron las reacciones de secuenciación en un secuenciador ABI3100 (Applied Biosystems) y se analizaron los electroferogramas usando el software SEQUENCE NAVIGATOR y FACTURA (Applied Biosystems).
Para generar subclones resistentes de células NCI-H1650, éstas se trataron con metanosulfonato de etilo (EMS; 600 g/ml), se dejaron recuperar durante 72 h y entonces se sembraron a una densidad de 6 x 104 células por placa de 10 cm2 en gefitinib 20 M. Se logró la resistencia relativa de estas células a gefitinib, en comparación con los inhibidores irreversibles, sembrando 5 x 104 células en placas de seis pocillos en FCS al 5% y EGF 100 ng/ml (Sigma), en presencia de concentraciones variables de fármacos, seguido tras 72 h por fijación de las células con formaldehído al 4%, tinción con cristal violeta al 0,1% y cuantificación de la masa celular usando el sistema de obtención de imágenes infrarrojas Odyssey (LI-COR Biosciences, Lincoln, NE). Para experimentos de silenciamiento génico con ARN de interferencia pequeño (ARNip), se transfectaron las células con oligonucleótidos de ARN bicatenario que seleccionan como diana EGFR, ERBB2 (ambos SMARTpool de Dharmacon, Lafayette, CO), o control no específico (LRT1B), usando el reactivo de transfección X-treme GENE (Roche Applied Science). Tras 72 h, se tiñeron las células con cristal violeta y se analizaron en el escáner infrarrojo Odyssey.
Inmunotransferencia y estudios de señalización. Se determinó la inhibición de la señalización de EGFR mediante concentraciones crecientes de gefitinib o los inhibidores irreversibles sembrando 9 x 104 células en placas de 24 pocillos, añadiendo los fármacos a medio que contiene FCS al 5% durante 15 min., seguido por un pulso de 2 h con EGF 100 ng/ml, y recogiendo los lisados. Se prepararon los lisados en tampón de carga de gel 2x, se sometieron a sonicación, a ebullición y entonces se separaron mediante SDS/PAGE al 10%, seguido por electrotransferencia a membranas de poli(fluoruro de vinilideno) (PVDF), e inmunotransferencia. Los anticuerpos usados fueron fosfo-EGFR Y1068 y fosfo-proteína cinasa activada por mitógeno (MAPK) (Cell Signaling Technology, Beverly, MA), fosfo-AKT (BioSource International, Camarillo, CA), y EGFR, MAPK, AKT totales, y tubulina (Santa Cruz Biotechnology).
Análisis de la internalización de EGFR. Para demostrar la internalización de EGFR mediante microscopía de fluorescencia, se hicieron crecer células sobre cubreobjetos y se incubaron con EGF humano recombinante (hr) 1 ng/ml (Molecular Probes, Eugene, OR) para diversos intervalos antes de fijar en paraformaldehído al 4% durante 10 min. Se lavaron los cubreobjetos en PBS y se montaron en reactivo de montante de fluroescencia ProLong Gold (Molecular Probes). Para cuantificar la internalización de EGFR mediante biotinilación de la superficie celular, se hicieron crecer las células hasta la confluencia, se trataron previamente con ciclohexamida, se incubaron en hielo durante 1 h con sulfosuccinimidil-2-(biotinamido)etil-1,3-ditiopropionato 1,5 mg/ml (sulfo-NHS-SS-biotina; Pierce) y se lavaron con tampón de bloqueo (NH4Cl 50 nM/MgCl2 1 mM/CaCl2 0,1 mM en PBS) hasta extinguir la sulfo-NHSSS-biotina libre, seguido por varios lavados adicionales con PBS. Entonces, se incubaron las células en el medio de cultivo a 37ºC para diversos intervalos para permitir la internalización de las moléculas biotiniladas, se lavaron dos veces durante 20 min. en una disolución de glutatión (glutatión 50 mM/NaCl 75 mM/NaOH 75 mM/BSA al 1%) en hielo para separar todos los grupos biotinilo de la superficie celular, y entonces se rasparon y se lisaron en tampón de ensayo de radioinmunoprecipitación (RIPA) 500 M (Tris·HCl 25 mM, pH 7,4, con NaCl 150 mM/SDS al 0,1%/Triton X-100 al 1%) complementado con NaF, ortovanadato de Na e inhibidores de proteasas. Se centrifugaron los extractos celulares y se incubaron los sobrenadantes con perlas de estreptavidina (Sigma) para recoger las proteínas biotiniladas, que entonces se analizaron mediante SDS/PAGE e inmunotransferencia con anticuerpo anti-EGFR (SC-03, Santa Cruz Biotechnology) o anticuerpo contra el receptor de transferrina (Santa Cruz Biotechnology).
Resultados y discusión
Análisis de cánceres de pulmón recurrentes con resistencia a gefitinib adquirida. CPCNP resistente a gefitinib recurrente desarrollado en dos pacientes cuyos tumores habían albergado una mutación activante de la EGFR cinasa en el momento del diagnóstico y quienes habían mostrado una respuesta clínica inicial drástica al fármaco (1). En ambos casos, la enfermedad mestastásica progresiva en el hígado condujo al fallecimiento de los pacientes, 1-2 años tras la iniciación del tratamiento. En el caso 1, el análisis de la metástasis de hígado principal obtenida en el momento de la autopsia indicó la persistencia de la mutación de EGFR sensibilizante (L858R), así como la presencia de una mutación T790M recién adquirida (figura 1A). De manera interesante, el análisis de productos de PCR no clonados mostró que la mutación L858R inicial estaba presente en una abundancia consecuente con una mutación heterocigota que está presente en todas las células tumorales, mientras que se observó la mutación T790M secundaria a aproximadamente un quinto de la abundancia del alelo de tipo natural correspondiente. Por tanto, esta mutación asociada a resistencia parece estar presente en sólo una fracción de células dentro del tumor recurrente.
El caso 2 implicó ocho metástasis recurrentes distintas en el hígado tras el fracaso de la terapia con gefitinib. En todas estas lesiones independientes, estaba presente la mutación sensibilizante L861Q de EGFR a la razón esperada para una mutación heterocigota. No pudo detectarse ninguna mutación de EGFR secundaria mediante el análisis de productos de PCR no clonados a partir de cualquiera de estas metástasis. Sin embargo, tras la subclonación de los productos de PCR, se descubrió que la mutación T790M estaba presente a muy baja frecuencia en dos de los cuatro tumores metastásicos analizados (T790M, 2 de 50 clones secuenciados de la lesión 1 y 1 de 56 de la lesión 2), pero no a partir de otras dos metástasis recurrentes (0 de 55 clones de la lesión 3 y 0 de 59 de la lesión 4), o el tumor primario (0 de 75 clones) (figura 1B y tabla 1). En conjunto, estos resultados concuerdan con informes anteriores de que la mutación T790M está presente en algunos, pero no todos, los casos de resistencia a gefitinib adquirida (tres de siete tumores; véanse las referencias 17, 18 y 21). Además, tal como se indicó anteriormente (18), incluso en algunos casos con esta mutación asociada a resistencia, parece estar presente en sólo una pequeña fracción de células tumorales dentro de una lesión recurrente. Estas observaciones sugieren que están implicados mecanismos adicionales de resistencia en casos sin una mutación de EGFR secundaria y que tales mecanismos coexisten con la mutación T790M en otros casos.
Generación de líneas celulares resistentes a gefitinib con susceptibilidad a inhibidores irreversibles. Dada la excelente correlación entre la receptividad clínica de CPCNP con mutante de EGFR y la sensibilidad a gefitinib potenciada de líneas celulares de CPCNP con estas mutaciones (2, 6, 22, 23), y la disponibilidad limitada de muestras clínicas de pacientes con recidiva, se modeló la resistencia a gefitinib in vitro. Se cultivó la línea celular de cáncer broncoalveolar NCI-H1650, que tiene una deleción en marco de la EGFR cinasa (delE746-A750), en gefitinib 20 M, o bien con o bien sin exposición previa al mutágeno metanosulfonato de etilo. Esta línea celular muestra un aumento de sensibilidad de 100 veces a gefitinib, en comparación con algunas líneas de CPCNP que expresan EGFR de tipo natural (6). Mientras que la gran mayoría de estas células se destruyen de manera eficaz mediante gefitinib 20 M, se observaron fácilmente colonias resistentes a fármaco a una frecuencia de 10-5, independientemente del tratamiento con mutágeno. Se aislaron cuarenta y nueve clones resistentes a fármaco independientes, mostrando una disminución promedio de 50 veces en la sensibilidad a gefitinib (figura 2A). Todos estos mostraron persistencia de la mutación sensibilizante sin expresión alterada de EGFR, y ninguno había adquirido una mutación de EGFR secundaria o nuevas mutaciones en ERBB2, p53, Kras o PTEN. Los clones resistentes a gefitinib demostraron una resistencia comparable a inhibidores relacionados de la clase de anilinoquinazolina. Notablemente, sin embargo, presentaron sensibilidad persistente a tres inhibidores de la familia de ERBB (figura 2A): HKI-272 (24) y HKI-357 (compuesto 7f en la referencia 25), que son inhibidores duales de EGFR y ERBB2 (valores de CI50 de 92 y 34 nM, respectivamente, para EGFR y 59 y 33 nM, respectivamente, para ERBB2), y EKB-569 (26), un inhibidor selectivo de EGFR (valores CI50 de 39 nM para EGFR y 1,3 M para ERBB2) (Wyeth) (figura 2B). Los tres fármacos son inhibidores irreversibles, lo más probablemente por medio de un enlace covalente con el residuo cys773 dentro del dominio catalítico de EGFR o la cys805 de ERBB2. Como gefitinib, estos compuestos demostraron aumento de la destrucción de células de CPCNP que albergan una mutación de EGFR, en comparación con células que expresan el receptor de tipo natural (figura 2A). Sin embargo, a diferencia de gefitinib, contra el que se generan fácilmente clones resistentes, incluso a altas concentraciones de fármaco, no se pudo establecer clones de células que fuesen resistentes a los inhibidores irreversibles a concentraciones por encima de 10 M, incluso tras mutagénesis con metanosulfonato de etilo (figura 2C).
Dependencia de células resistentes a gefitinib de la expresión de EGFR y ERBB2. Para llegar a comprender bien los mecanismos que subyacen a la adquisición de resistencia a gefitinib y la sensibilidad persistente a los inhibidores irreversibles, en primer lugar se determinó si las líneas celulares resistentes siguen siendo dependientes de EGFR para su viabilidad. Se ha mostrado anteriormente que el silenciamiento génico mediado por ARNip de EGFR desencadena la apoptosis en células que albergan EGFR mutantes, pero no en aquéllas con alelos de tipo natural (6). Significativamente, las células NCI-H1650 originales así como sus derivados resistentes a gefitinib mostraron una reducción comparable en la viabilidad celular tras la transfección con ARNip que selecciona como diana EGFR (figura 3A). Por tanto, la adquisición de resistencia a gefitinib no implica activación independiente de EGFR de efectores aguas abajo. Debido a que HKI-272 y HKI-357 seleccionan ambos como diana EGFR y ERBB2, también se sometió a prueba la supresión de este receptor relacionado. El silenciamiento génico de ERBB2 en NCIH1650 y sus derivados resistentes a gefitinib también provocó pérdida de viabilidad (figura 3A), lo que sugiere un papel para los heterodímeros EGFR-ERBB2 en la traducción de señales de supervivencia esenciales en células tumorales que albergan mutaciones de EGFR. La inhibición de EGFR solo mediante un inhibidor irreversible parece ser suficiente para inducir la apoptosis en células resistentes a gefitinib, tal como se demuestra mediante la eficacia de EKB-569, que selecciona como diana principalmente EGFR (26). Sin embargo, dados los efectos posiblemente complementarios de la selección como diana tanto de EGFR como de ERBB2 usando ARNip y la disponibilidad de inhibidores irreversibles que seleccionan como diana ambos miembros de esta familia, el posible beneficio de la inhibición dual justifica su consideración.
Se comparó la capacidad de gefitinib e inhibidores irreversibles de la familia de ERBB para suprimir la señalización mediante efectores aguas abajo de EGFR que median sus rutas proliferativas y de supervivencia. HKI-357 fue 10 veces más eficaz que gefitinib en la supresión de la autofosforilación de EGFR (medida en el residuo Y1068), y la fosforilación de AKT y MAPK en células NCI-H1650 originales que albergan la mutación de EGFR de1E746-A750 (figura 3B). En un derivado resistente a gefitinib, NCI-H 1650 (G7), gefitinib mostró una eficacia considerablemente reducida en la supresión de la fosforilación de AKT, un efector de la señalización de EGFR clave vinculado a la receptividad a gefitinib (6), mientras que HKI-357 demostró actividad persistente (figura 3B).
Internalización de EGFR alterada en clones resistentes a gefitinib. Dada la ausencia de mutaciones secundarias en EGFR y la susceptibilidad persistente de células resistentes a gefitinib a supresión mediada por ARNip de EGFR, se sometió a prueba si el mecanismo que subyace a la inhibición diferencial de la señalización de EGFR en células resistentes a gefitinib mediante inhibidores reversibles y irreversibles podría estar correlacionada con alteraciones en el tráfico de receptores, un modulador bien documentado de la señalización dependiente de EGFR (20). De hecho, el análisis del tráfico de EGFR en células resistentes derivadas de NCI-H1650 demostró un aumento constante de la internalización de EGFR, en comparación con las células sensibles a fármaco originales, tal como se midió tanto mediante la internalización de EGF marcado con fluoresceína (figura 3C) como la cuantificación de EGFR biotinilado citoplásmatico (figura 3D). No se observó ningún efecto de este tipo con el receptor de transferrina, lo que sugiere que esto no resultaba de una alteración generalizada en todo el procesamiento de receptores. Aunque se requiere trabajo adicional para definir el mecanismo preciso para esta alteración en el tráfico de EGFR, un proceso complejo en el que se han implicado numerosas proteínas reguladoras, estos resultados sugieren que la capacidad de gefitinib para inhibir la activación de EGFR está comprometida en estas células, mientras que la acción de los inhibidores irreversibles no está afectada de manera detectable.
Inhibición de la señalización de EGFR T790M y destrucción celular potenciada mediante inhibidores irreversibles. La supresión potenciada de la señalización de EGFR mediante inhibidores irreversibles de ERBB produjo la posibilidad de que estos fármacos también puedan mostrar actividad persistente en el contexto de células que albergan la mutación secundaria T790M en EGFR. Por tanto, se sometió a prueba el efecto de estos inhibidores sobre la línea celular de cáncer broncoalveolar NCI-H1975, que alberga tanto las mutaciones L858R como T790M en EGFR (18). Significativamente, esta línea celular se derivaba de un paciente que no se había tratado con un inhibidor de EGFR, lo que indica que esta mutación no está asociada únicamente con la resistencia a fármacos adquirida. Tanto HKI-357 como HKI-272 eran considerablemente más eficaces que gefitinib en la supresión de la autofosforilación de EGFR inducida por ligando y su señalización aguas abajo, tal como se determina mediante la fosforilación de AKT y MAPK (figura 4A). De manera similar, los tres inhibidores irreversibles suprimieron la proliferación en esta línea celular en condiciones en las que es resistente a gefitinib (figura 4B). Por tanto, los inhibidores irreversibles de ERBB parecen ser eficaces en las células que albergan el EGFR T790M así como en células con tráfico alterado del receptor de tipo natural.
Los resultados confirman el informe de las mutaciones T790M en EGFR como mutaciones secundarias que surgen en CPCNP previamente sensibles que albergan una mutación activante, asociada con la aparición de resistencia adquirida (17, 18). Sin embargo, esta mutación está presente sólo en un subconjunto de casos, e incluso tumores que albergan la mutación T790M pueden contener sólo una pequeña fracción de células con esta mutación. Estas observaciones implican que pueden coexistir múltiples mecanismos de resistencia en tumores recientes tras una respuesta inicial a gefitinib o inhibidores reversibles de EGFR similares. Además, estos hallazgos sugieren que los mecanismos de resistencia independientes de T790M puedan ser igualmente, si no más, eficaces que la propia sustitución T790M para conferir resistencia a fármacos y puedan explicar porqué tumores recurrentes raras veces muestran clonalidad para T790M (17, 18). Los mecanismos in vitro de resistencia a gefitinib adquirida no implican mutaciones de EGFR secundarias a una frecuencia significativa, pero en cambio se correlacionan con tráfico de receptores alterado. Sin embargo, debe observarse que no se examinó el tráfico de EGFR en todos los clones resistentes que se establecieron in vitro, y sigue siendo posible que mecanismos adicionales puedan contribuir a la resistencia a gefitinib en algunos de los clones. No obstante, prácticamente todos los clones resistentes a gefitinib mostraron sensibilidad comparable con los inhibidores irreversibles de ERBB.
Los resultados indican diferencias sorprendentes entre inhibidores competitivos de EGFR tales como gefitinib, cuya eficacia está limitada por el rápido desarrollo de resistencia a fármacos in vitro; e inhibidores irreversibles, para los que la resistencia adquirida parece ser rara (figura 2C). Se especula que el aumento de la internalización de EGFR unido a ligando en células resistentes pueden estar vinculado con la disociación del complejo gefitinib-EGFR al pH bajo de las vesículas intracelulares. Por el contrario, la reticulación irreversible del receptor no se vería afectada por tales alteraciones en el tráfico del receptor. La resistencia adquirida a gefitinib se mantiene de manera estable tras el pase de células durante hasta 20 generaciones en ausencia del fármaco, lo que sugiere que las alteraciones genéticas o epigenéticas en los genes que modulan el recambio de EGFR pueden subyacer a este fenómeno. Debido a que el tráfico del receptor no puede estudiarse fácilmente usando muestras clínicas disponibles, puede requerirse la identificación de tales alteraciones genómicas antes de que sean posibles las correlaciones clínicas. No obstante, un mecanismo de este tipo puede contribuir a la resistencia a gefitinib adquirida in vivo en pacientes con enfermedad recurrente que no tienen mutaciones secundarias en EGFR.
Los inhibidores irreversibles de ERBB también parecen ser eficaces en la superación de la resistencia a gefitinib mediada por la mutación T790M, un efecto que presumiblemente resulta de la conservación de la unión al inhibidor a pesar de la alteración de este residuo crítico. Mientras este trabajo estuvo en curso, se mostró que otro inhibidor irreversible de EGFR [CL-387.785, Calbiochem (27)] inhibía la actividad cinasa de los mutantes de EGFR T790M (17). Se propuso que la eficacia de CL-387.785 en el contexto de T790M resultaba de la ausencia de un cloruro en la posición 3 del grupo anilina, que está presente en gefitinib y se postuló que interfería de manera estérica con la unión a la metionina mutante en el codón 790. Sin embargo, EKB-569, HKI-272 y HKI-357 tienen todos restos cloruro en esa posición en el anillo de anilina, lo que sugiere que su capacidad compartida para unirse de manera irreversible a EGFR es probable que explique su eficacia, en vez de la ausencia de una interacción estérica específica con T790M (24-26). Por tanto, puede probarse que estos inhibidores irreversibles son ampliamente eficaces en sortear una variedad de mecanismos de resistencia, además de la mutación T790M.
Tabla 1: Presencia de la mutación T790M de EGFR a muy baja frecuencia en tumores recurrentes del caso 2 N.º de clones
Tumor Mutante T790M Tipo natural
Primario 0 75 Recurrente 1 2 48 Recurrente 2 1 55 Recurrente 3 0 55 Recurrente 4 0 59
La secuenciación de grandes números de productos de PCR clonados reveló que una minoría de alelos dentro de 5 dos o cuatro lesiones de hígado contienen la mutación T790M.
BIBLIOGRAFÍA
1. Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small
cell lung cancer. N Engl J Med 2002; 346:92-98. 10
2. Druker BJ, Talpaz M, Resta DJ et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in Chronic Myeloid Leukemia. N Engl J Med 2001;344:1031-1037.
3.
Arteaga CL. ErbB-targeted therapeutic approaches in human cancer. Exp Cell Res. 2003; 284:122-30. 15
4. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signaling. Exp Cell Res 2003;284:31-53
5.
Luetteke NC, Phillips HK, Qui TH, Copeland NG, Earp HS, Jenkins NA, Lee DC. The mouse waved-2 phenotype 20 results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 1994;8:399-413.
6. Nicholson RI, Gee JMW, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37:S9-15
7. Wong AJ, Ruppert JM, Bigner SH, et al. Structural alterations of the epidermal growth factor receptor gene in 25 human gliomas. Proc Natl Acad Sci. 1992; 89:2965-2969.
8. Ciesielski MJ, Genstermaker RA. Oncogenic epidermal growth factor receptor mutants with tandem duplication: gene structure and effects on receptor function Oncogene 2000; 19:810-820.
30 9. Frederick L, Wang W-Y, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 2000; 60:13 83-13 87.
10. Huang H-JS, Nagane M. Klingbeil CK, et al. The enhanced tumorigenic activity of a mutant epidermal growth
factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phophorylation and 35 unattenuated signaling. J Biol Chem 1997; 272:2927-2935.
11. Pegram MD, Konecny G, Slamon DJ. The molecular and cellular biology of HER2/neu gene amplification/ overexpression and the clinical development of herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res 2000; 103:57-75.
40
12. Ciardiello F, Tortora G. A novel approach in the treatment of cancer targeting the epidermal growth factor receptor. Clin Cancer Res. 2001;7:2958-2970
13. Wakeling AE, Guy SP, Woodburn JR et al. ZD1839 (Iressa): An orally active inhibitor of Epidermal Growth Factor 45 signaling with potential for cancer therapy. Cancer Res 2002;62:5749-5754.
14. Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 2001;61:8887-8895.
50
15.
Moasser MM, Basso A, Averbuch SD, Rosen N. The tyrosine kinase inhibitor ZD1839 (“Iressa“) inhibits HER2driven signaling and suppresses the growth of HER-2 overexpressing tumor cells. Cancer Res 2001;61:7184-7188.
16.
Ranson M, Hammond LA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine
55 kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol. 2002; 20: 2240-2250.
17.
Herbst RS, Maddox A-M, Rothernberg ML, et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well tolerated and has activity in non-small cell lung cancer and other solid tumors:
results of a phase I trial. J Clin Oncol. 2002; 20:3815-3825.
18.
Baselga J, Rischin JB, Ranson M, et al. Phase I safety, pharmacokinetic and pharmacodynamic trial of ZD1839, a selective oral Epidermal Growth Factor Receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Onc 2002;20:4292-4302.
19.
Albanell J, Rojo F, Averbuch S, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol. 2001; 20:110-124.
20.
Kris MG, Natale RB, Herbst RS, et al. Efficacy of Gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA 2003;290: 21492158.
21.
Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003;21:2237-2246.
22.
Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: A phase III trial-INTACT 1. J Clin Oncol 2004;22:777-784.
23.
Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: A phase III trial - INTACT 2. J Clin Oncol 2004;22:785-794.
24.
Rich JN, Reardon DA, Peery T, et al. Phase II Trial of Gefitinib in recurrent glioblastoma. J Clin Oncol 2004;22: 133-142
25.
Cohen MH, Williams GA, Sridhara R, et al. United States Food and Drug Administration Drug Approval Summary: Gefitinib (ZD1839; Iressa) Tablets. Clin Cancer Res. 2004;10:1212-1218.
26.
Cappuzzo F, Gregorc V, Rossi E, et al. Gefitinib in pretreated non-small-cell lung cancer (NSCLC): Analysis of efficacy and correlation with HER2 and epidermal growth factor receptor expression in locally advanced or Metastatic NSCLC. J Clin Oncol. 2003;21:2658-2663.
27.
Fitch KR, McGowan KA, van Raamsdonk CD, et al. Genetics of Dark Skin in mice. Genes & Dev 2003;17:214
228.
28.
Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK. Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA 2003;100:9330-5.
29.
Burgess AW, Cho H, Eigenbrot C, et al. An open-and-shut case? Recent insights into the activation of EGF/ ErbB receptors. Mol Cell 2003;12:541-552.
30.
Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002;277:46265-46272.
31.
Lorenzato A, Olivero M, Patrane S, et al. Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. Cancer Res 2002; 62:7025-30.
32.
Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:906-7.
33.
Bardelli A, Parsons DW, Silliman N, et al. Mutational analysis of the tyrosine kinome in colorectal cancers. Science 2003; 300:949.
34.
Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990;247:824-30.
35.
Heinrich, MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003;21:4342-4349.
36.
Li B, Chang C, Yuan M, McKenna WG, Shu HG. Resistance to small molecule inhibitors of epidermal growth factor receptor in malignant gliomas. Cancer Res 2003; 63:7443-7450.
LISTA DE SECUENCIAS
<110> THE GENERAL HOSPITAL CORPORATION WYETH
<120> MÉTODO PARA TRATAR CÁNCER RESISTENTE A GEFITINIB
<130> Documento 030258-57642-PCT
<140> Documento PCT/US06/003717
<141> 02-02-2006
<150> Documento 60/649.483
<151> 03-02-2005
<150> Documento 60/671.989
<151> 15-04-2005
<160> 5
<170> PatentIn Ver. 3.3
<210> 1
<211> 3878
<212> ADN
<213> Homo sapiens
<220>
<221> CDS
<222> (246)..(3875)
<400> 1
imagen1
imagen1
imagen1
imagen1
imagen1
imagen1
<210> 2 5 <211> 1210
<212> PRT
<213> Homo sapiens
10
<400> 2
imagen1
imagen1
imagen1
imagen1
imagen1
<210> 3
<211> 16
<212> ADN
<213> Secuencia artificial
<220>
<223> Descripción de secuencia artificial: oligonucleótido sintético
<400> 3
imagen1
<210> 4
<211> 16
<212> ADN
<213> Secuencia artificial
<220>
<223> Descripción de secuencia artificial: oligonucleótido sintético
<400> 4 <210> 5
imagen1
<211> 16
5
<212> ADN
<213> Secuencia artificial 10 <220>
<223> Descripción de secuencia artificial: oligonucleótido sintético
<400> 5
15
imagen1

Claims (29)

  1. REIVINDICACIONES
    1. Composición farmacéutica que comprende un inhibidor irreversible del receptor de factor de crecimiento epidérmico (EGFR) para su uso en el tratamiento de cáncer resistente a gefitinib y/o erlotinib mediante un método, que comprende las etapas de:
    a.
    monitorizar la evolución de un cáncer en un sujeto en un punto de tiempo tras haber iniciado el sujeto tratamiento con gefitinib y/o erlotinib, en el que la evolución del cáncer es indicativa de cáncer que es resistente al tratamiento con gefitinib y/o erlotinib; y
    b.
    administrar la composición farmacéutica al sujeto que tiene un cáncer que es resistente al tratamiento con gefitinib y/o erlotinib.
  2. 2.
    Composición farmacéutica para su uso según la reivindicación 1, en la que el inhibidor irreversible de EGFR se selecciona del grupo que consiste en EKB-569, HKI-272 y HKI-357.
  3. 3.
    Composición farmacéutica para su uso según la reivindicación 1, en la que el inhibidor irreversible de EGFR se une a la cisteína 773 de EGFR.
  4. 4.
    Composición farmacéutica para su uso según la reivindicación 1, en la que la evolución del cáncer se monitoriza mediante inspección visual del cáncer.
  5. 5.
    Composición farmacéutica para su uso según la reivindicación 4, en la que la inspección visual del cáncer es por medio de rayos X, tomografía computerizada o IRM.
  6. 6.
    Composición farmacéutica para su uso según la reivindicación 1, en la que la evolución del cáncer se monitoriza mediante detección de biomarcadores tumorales.
  7. 7.
    Composición farmacéutica para su uso según la reivindicación 1, en la que la monitorización de la evolución de un cáncer comprende comparar el cáncer en un segundo punto de tiempo con el cáncer en un primer punto de tiempo, en la que el segundo punto de tiempo está después del primer punto de tiempo, en la que el primer punto de tiempo es antes o después de la iniciación del tratamiento con gefitinib y/o erlotinib, en la que el aumento del crecimiento del cáncer indica evolución del cáncer.
  8. 8.
    Composición farmacéutica para su uso según la reivindicación 7, en la que en puntos de tiempo adicionales se compara el cáncer con puntos de tiempo anteriores.
  9. 9.
    Composición farmacéutica para su uso según la reivindicación 1, en la que el cáncer es cáncer de células epiteliales.
  10. 10.
    Composición farmacéutica para su uso según la reivindicación 1, en la que el cáncer es cáncer gastrointestinal, cáncer de próstata, cáncer de ovarios, cáncer de mama, cáncer de cabeza y cuello, cáncer de esófago, cáncer de pulmón, cáncer de pulmón de células no pequeñas, cáncer del sistema nervioso, cáncer de riñón, cáncer de retina, cáncer de piel, cáncer de hígado, cáncer pancreático, cáncer genitourinario y cáncer de vejiga.
  11. 11.
    Inhibidor irreversible de EGFR para su uso en el tratamiento de cáncer resistente a gefitinib y/o erlotinib, mediante un método que comprende las etapas de:
    a.
    administrar gefitinib y/o erlotinib a un sujeto con cáncer;
    b.
    monitorizar la evolución del cáncer del sujeto; y
    c.
    administrar al sujeto el inhibidor irreversible de EGFR tras la indicación de evolución del cáncer.
  12. 12.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 11, seleccionándose el inhibidor irreversible de EGFR del grupo que consiste en EKB-569, HKI-272 y HKI-357.
  13. 13.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 11, uniéndose el inhibidor irreversible de EGFR a la cisteína 773 de EGFR.
  14. 14.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 11, en el que la evolución del cáncer se monitoriza mediante inspección visual del cáncer.
  15. 15.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 14, en el que la inspección visual del cáncer es por medio de rayos X, tomografía computerizada o IRM.
  16. 16.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 11, en el que la evolución del cáncer se monitoriza mediante detección de biomarcadores tumorales.
  17. 17.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 11, en el que la monitorización de la evolución de un cáncer comprende comparar el cáncer en un segundo punto de tiempo con el cáncer en un primer punto de tiempo, en el que el segundo punto de tiempo es después del primer punto de tiempo, en el que el primer punto de tiempo es antes o después de la iniciación del tratamiento con gefitinib y/o erlotinib, en el que el aumento del crecimiento del cáncer indica evolución del cáncer.
  18. 18.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 17, en el que se compara el cáncer en puntos de tiempo adicionales con puntos de tiempo anteriores.
  19. 19.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 11, en el que el cáncer es cáncer de células epiteliales.
  20. 20.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 11, en el que el cáncer es cáncer gastrointestinal, cáncer de próstata, cáncer de ovarios, cáncer de mama, cáncer de cabeza y cuello, cáncer de esófago, cáncer de pulmón, cáncer de pulmón de células no pequeñas, cáncer del sistema nervioso, cáncer de riñón, cáncer de retina, cáncer de piel, cáncer de hígado, cáncer pancreático, cáncer genitourinario y cáncer de vejiga.
  21. 21.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 11, administrándose el inhibidor irreversible de EGFR simultáneamente con un inhibidor reversible de EGFR.
  22. 22.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 21, siendo el inhibidor reversible de EGFR gefitinib o erlotinib.
  23. 23.
    Composición farmacéutica para su uso en el tratamiento del cáncer en un sujeto con un cáncer que tiene una mutación en EGFR (SEQ ID NO: 1), en la que la mutación es la sustitución de una treonina por una metionina en la posición 790; y comprendiendo la composición farmacéutica un inhibidor irreversible de EGFR.
  24. 24.
    Composición farmacéutica para su uso según la reivindicación 23, en la que el inhibidor de EGFR se selecciona del grupo que consiste en EKB-569, HKI-272 y HKI-357.
  25. 25.
    Composición farmacéutica para su uso según la reivindicación 23, en la que el inhibidor irreversible de EGFR se une a la cisteína 773.
  26. 26.
    Composición farmacéutica para su uso según la reivindicación 23, en la que el cáncer es cáncer de células epiteliales.
  27. 27.
    Composición farmacéutica para su uso según la reivindicación 23, en la que el cáncer es cáncer gastrointestinal, cáncer de próstata, cáncer de ovarios, cáncer de mama, cáncer de cabeza y cuello, cáncer de esófago, cáncer de pulmón, cáncer de pulmón de células no pequeñas, cáncer del sistema nervioso, cáncer de riñón, cáncer de retina, cáncer de piel, cáncer de hígado, cáncer pancreático, cáncer genitourinario y cáncer de vejiga.
  28. 28.
    Composición farmacéutica para su uso según la reivindicación 2 ó 24, en la que el inhibidor de EGFR comprende HKI-272.
  29. 29.
    Inhibidor irreversible de EGFR para su uso según la reivindicación 12, comprendiendo el inhibidor irreversible de EGFR HKI-272.
ES06720163T 2005-02-03 2006-02-02 Método para tratar cáncer resistente a gefitinib. Active ES2364495T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US64948305P 2005-02-03 2005-02-03
US649483P 2005-02-03
US67198905P 2005-04-15 2005-04-15
US671989P 2005-04-15

Publications (1)

Publication Number Publication Date
ES2364495T3 true ES2364495T3 (es) 2011-09-05

Family

ID=36777922

Family Applications (1)

Application Number Title Priority Date Filing Date
ES06720163T Active ES2364495T3 (es) 2005-02-03 2006-02-02 Método para tratar cáncer resistente a gefitinib.

Country Status (27)

Country Link
US (3) US10603314B2 (es)
EP (1) EP1848414B1 (es)
JP (1) JP2008528695A (es)
KR (1) KR101313702B1 (es)
CN (7) CN113975393A (es)
AT (1) ATE504299T1 (es)
AU (1) AU2006210572B2 (es)
CA (1) CA2596714C (es)
CY (2) CY1111676T1 (es)
DE (1) DE602006021142D1 (es)
DK (1) DK1848414T3 (es)
ES (1) ES2364495T3 (es)
FR (1) FR16C1004I1 (es)
HK (1) HK1105285A1 (es)
HU (1) HUS1600033I1 (es)
IL (3) IL184791A (es)
LU (1) LU93160I2 (es)
MX (1) MX2007009317A (es)
NI (1) NI200700185A (es)
NO (1) NO20074366L (es)
NZ (1) NZ556673A (es)
PL (1) PL1848414T3 (es)
PT (1) PT1848414E (es)
RU (2) RU2405566C2 (es)
SI (1) SI1848414T1 (es)
WO (1) WO2006084058A2 (es)
ZA (1) ZA200706804B (es)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006021142D1 (de) 2005-02-03 2011-05-19 Gen Hospital Corp Verfahren zur behandlung von gefitinib-resistentem krebs
CA2597673C (en) 2005-02-11 2014-07-08 Harold Varmus Methods and compositions for detecting a drug resistant egfr mutant
CA2646257A1 (en) * 2005-04-14 2006-10-26 Wyeth Use of an epidermal growth factor receptor kinase inhibitor (egfr) in gefitinib resistant patients
CN103110948A (zh) 2005-11-04 2013-05-22 惠氏公司 mTOR抑制剂、赫赛汀和/或HKI-272的抗肿瘤组合
SI1948180T1 (sl) * 2005-11-11 2013-06-28 Boehringer Ingelheim International Gmbh Kombinacijsko zdravljenje raka, ki obsega EGFR/HER2 inhibitorje
CA2833706C (en) 2005-11-11 2014-10-21 Boehringer Ingelheim International Gmbh Quinazoline derivatives for the treatment of cancer diseases
CN101516376A (zh) * 2006-09-18 2009-08-26 贝林格尔.英格海姆国际有限公司 用于治疗携带egfr突变的癌症的方法
MX2009002710A (es) 2006-09-18 2009-03-25 Boehringer Ingelheim Int Metodos para tratar canceres que portan mutaciones de egfr.
WO2008121467A2 (en) * 2007-02-28 2008-10-09 Dana-Farber Cancer Institute, Inc. Combination therapy for treating cancer
EP2121923A1 (en) * 2007-03-02 2009-11-25 MDRNA, Inc. Nucleic acid compounds for inhibiting erbb family gene expression and uses thereof
JP5926487B2 (ja) * 2007-04-13 2016-05-25 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド ErbB療法に耐性である癌を治療するための方法
AU2013203111B2 (en) * 2007-04-13 2015-10-08 Beth Israel Deaconess Medical Center, Inc. Methods for treating cancer resistant to erbb therapeutics
US8022216B2 (en) 2007-10-17 2011-09-20 Wyeth Llc Maleate salts of (E)-N-{4-[3-chloro-4-(2-pyridinylmethoxy)anilino]-3-cyano-7-ethoxy-6-quinolinyl}-4-(dimethylamino)-2-butenamide and crystalline forms thereof
DK2656844T3 (en) 2008-06-17 2015-03-02 Wyeth Llc ANTINEOPLASTIC COMBINATIONS CONTAINING HKI-272 AND VINORELBINE
EP3311818A3 (en) 2008-07-16 2018-07-18 Pharmacyclics, LLC Inhibitors of bruton's tyrosine kinase for the treatment of solid tumors
CN105963313A (zh) 2008-08-04 2016-09-28 惠氏有限责任公司 4-苯胺基-3-氰基喹啉和卡培他滨的抗肿瘤组合
AU2010234968B2 (en) 2009-04-06 2015-05-14 Wyeth Llc Treatment regimen utilizing neratinib for breast cancer
CN102482277B (zh) 2009-05-05 2017-09-19 达纳-法伯癌症研究所有限公司 表皮生长因子受体抑制剂及治疗障碍的方法
SI2451445T1 (sl) 2009-07-06 2019-07-31 Boehringer Ingelheim International Gmbh Postopek za sušenje BIBW2992, njegovih soli in trdnih farmacevtskih formulacij, ki obsegajo to aktivno sestavino
RU2012114902A (ru) 2009-09-16 2013-10-27 Авила Терапьютикс, Инк. Конъюгаты и ингибиторы протеинкиназы
JP2013512882A (ja) 2009-12-07 2013-04-18 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング トリプルネガティブ乳癌の治療に使用するbibw2992
US20110207736A1 (en) 2009-12-23 2011-08-25 Gatekeeper Pharmaceuticals, Inc. Compounds that modulate egfr activity and methods for treating or preventing conditions therewith
CA2785738A1 (en) 2009-12-30 2011-07-07 Avila Therapeutics, Inc. Ligand-directed covalent modification of protein
WO2011153514A2 (en) 2010-06-03 2011-12-08 Pharmacyclics, Inc. The use of inhibitors of bruton's tyrosine kinase (btk)
WO2013010136A2 (en) 2011-07-13 2013-01-17 Pharmacyclics, Inc. Inhibitors of bruton's tyrosine kinase
CA2881993C (en) 2011-07-27 2017-05-09 Astrazeneca Ab Substituted 4-methoxy-n3-(pyrimidin-2-yl)benzene-1,3-diamine compounds, and salts thereof
JP6297490B2 (ja) * 2011-08-31 2018-03-20 ジェネンテック, インコーポレイテッド 診断マーカー
US20150064200A1 (en) * 2012-04-04 2015-03-05 Beth Israel Deaconess Medical Center, Inc. Methods and compositions for 6-phosphogluconate dehydrogenase (6-pgd) as a target for lung cancer therapy
JP6575950B2 (ja) 2012-07-24 2019-09-18 ファーマサイクリックス エルエルシー Bruton型チロシンキナーゼ(Btk)阻害剤に対する耐性を伴う変異
US20140308274A1 (en) * 2013-03-15 2014-10-16 Mirna Therapeutics, Inc. Combination cancer treatments utilizing synthetic oligonucleotides and egfr-tki inhibitors
KR101384686B1 (ko) 2013-05-28 2014-04-21 주식회사 바이오인프라 Egfr 표적 치료제에 대한 폐암의 치료 반응성을 예측하는 방법
CA2920534A1 (en) 2013-08-12 2015-02-19 Pharmacyclics Llc Methods for the treatment of her2 amplified cancer
US9242965B2 (en) 2013-12-31 2016-01-26 Boehringer Ingelheim International Gmbh Process for the manufacture of (E)-4-N,N-dialkylamino crotonic acid in HX salt form and use thereof for synthesis of EGFR tyrosine kinase inhibitors
US9885086B2 (en) 2014-03-20 2018-02-06 Pharmacyclics Llc Phospholipase C gamma 2 and resistance associated mutations
KR101751371B1 (ko) 2014-06-25 2017-06-27 연세대학교 원주산학협력단 3,4,5-트리하이드록시벤조산, 이의 유도체 또는 이의 염을 유효성분으로 포함하는 수용체 티로신 키나아제 저해제 내성 항암제 조성물
WO2016029175A1 (en) * 2014-08-21 2016-02-25 Pharmacyclics Llc Methods for treating egfr mutant disorders
CN111170998B (zh) 2014-11-05 2023-04-11 益方生物科技(上海)股份有限公司 嘧啶或吡啶类化合物、其制备方法和医药用途
US9364469B1 (en) * 2015-08-26 2016-06-14 Macau University Of Science And Technology Identification of a new AMPK activator for treatment of lung cancer
GB201516905D0 (en) * 2015-09-24 2015-11-11 Stratified Medical Ltd Treatment of Neurodegenerative diseases
US20190016703A1 (en) * 2015-12-30 2019-01-17 Dana-Farber Cancer Institute, Inc. Bifunctional compounds for her3 degradation and methods of use
US10449195B2 (en) 2016-03-29 2019-10-22 Shenzhen Pharmacin Co., Ltd. Pharmaceutical formulation of palbociclib and a preparation method thereof
WO2018157032A1 (en) * 2017-02-26 2018-08-30 Institute For Cancer Research D/B/A The Research Institute Of Fox Chase Cancer Center Frequent egfr and ntrk somatic mutations in colorectal cancer (crc) with microsatellite instability (msi)
WO2019178239A1 (en) * 2018-03-13 2019-09-19 Board Of Regents, The University Of Texas System Methods for treatment of cancers with egfr activating mutations
US20210190761A1 (en) * 2019-12-19 2021-06-24 Johnson & Johnson Consumer Inc. Method for Evaluating the Efficacy of a Composition in Reducing the Effects of Cancer Therapeutics on Skin
TWI776584B (zh) * 2020-07-10 2022-09-01 長庚醫療財團法人林口長庚紀念醫院 β-1腎上腺素受體拮抗劑用於製備減少表皮生長因子受體抑制劑誘導的上皮細胞損傷以及抑制癌細胞的組合物之用途
CN114306245A (zh) 2020-09-29 2022-04-12 深圳市药欣生物科技有限公司 无定形固体分散体的药物组合物及其制备方法
CN113234832B (zh) * 2021-06-30 2022-06-03 深圳市狂风生命科技有限公司 人类egfr基因错义突变分子标志物及其在预测靶向抑制剂抗药性中的应用
CN114569617B (zh) * 2022-05-06 2022-07-29 中国农业大学 甲基硒酸作为吉非替尼治疗吉非替尼耐药的非小细胞肺癌增敏剂的新用途

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1327358C (en) 1987-11-17 1994-03-01 Morio Fujiu Fluoro cytidine derivatives
WO1989006692A1 (en) * 1988-01-12 1989-07-27 Genentech, Inc. Method of treating tumor cells by inhibiting growth factor receptor function
CA2045231A1 (en) * 1990-07-19 1992-01-20 Victor Ling Cell membrane glycoprotein correlated with resistance to platinum-containing antineoplastic agents
ES2206447T3 (es) 1991-06-14 2004-05-16 Genentech, Inc. Anticuerpo humanizado para heregulina.
TW254946B (es) 1992-12-18 1995-08-21 Hoffmann La Roche
AU671491B2 (en) 1992-12-18 1996-08-29 F. Hoffmann-La Roche Ag N-oxycarbonyl substituted 5'-deoxy-5-fluorcytidines
US5362718A (en) 1994-04-18 1994-11-08 American Home Products Corporation Rapamycin hydroxyesters
NZ272608A (en) 1994-07-22 2000-05-26 Lilly Co Eli Inhibiting bone loss by administering a bisphosphonate and a second compound selected from various compounds, including 2-phenyl-3-aroylbenzothienes; bisphosphonate combination salts
US5476932A (en) 1994-08-26 1995-12-19 Hoffmann-La Roche Inc. Process for producing N4-acyl-5'-deoxy-5-fluorocytidine derivatives
GB9508565D0 (en) 1995-04-27 1995-06-14 Zeneca Ltd Quiazoline derivative
GB9508538D0 (en) 1995-04-27 1995-06-14 Zeneca Ltd Quinazoline derivatives
US6267958B1 (en) * 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
JP3437685B2 (ja) * 1995-09-12 2003-08-18 株式会社東芝 交直変換装置の制御保護システム
WO1997017329A1 (fr) 1995-11-07 1997-05-15 Kirin Beer Kabushiki Kaisha Derives de quinoline et derives de quinazoline inhibant l'autophosphorylation d'un recepteur de facteur de croissance originaire de plaquettes, et compositions pharmaceutiques les contenant
US5760041A (en) 1996-02-05 1998-06-02 American Cyanamid Company 4-aminoquinazoline EGFR Inhibitors
UA73073C2 (uk) 1997-04-03 2005-06-15 Уайт Холдінгз Корпорейшн Заміщені 3-ціанохіноліни, спосіб їх одержання та фармацевтична композиція
US6002008A (en) * 1997-04-03 1999-12-14 American Cyanamid Company Substituted 3-cyano quinolines
US6426383B1 (en) * 1997-05-28 2002-07-30 Nalco Chemical Company Preparation of water soluble polymer dispersions from vinylamide monomers
US6251912B1 (en) 1997-08-01 2001-06-26 American Cyanamid Company Substituted quinazoline derivatives
SE9704545D0 (sv) * 1997-12-05 1997-12-05 Astra Pharma Prod Novel compounds
BR9914167B1 (pt) 1998-09-29 2011-03-09 compostos e composições farmacêuticas compreendendo 3-ciano quinolinas substituìdas.
US6297258B1 (en) * 1998-09-29 2001-10-02 American Cyanamid Company Substituted 3-cyanoquinolines
US6288082B1 (en) * 1998-09-29 2001-09-11 American Cyanamid Company Substituted 3-cyanoquinolines
US6432979B1 (en) * 1999-08-12 2002-08-13 American Cyanamid Company Method of treating or inhibiting colonic polyps and colorectal cancer
US6277983B1 (en) * 2000-09-27 2001-08-21 American Home Products Corporation Regioselective synthesis of rapamycin derivatives
TWI256395B (en) 1999-09-29 2006-06-11 Wyeth Corp Regioselective synthesis of rapamycin derivatives
WO2001051919A2 (en) 2000-01-07 2001-07-19 Transform Pharmaceuticals, Inc. High-throughput formation, identification, and analysis of diverse solid-forms
US6384051B1 (en) 2000-03-13 2002-05-07 American Cyanamid Company Method of treating or inhibiting colonic polyps
TWI310684B (en) * 2000-03-27 2009-06-11 Bristol Myers Squibb Co Synergistic pharmaceutical kits for treating cancer
GB0008368D0 (en) * 2000-04-06 2000-05-24 Astrazeneca Ab Combination product
US7306801B2 (en) * 2000-05-15 2007-12-11 Health Research, Inc. Methods of therapy for cancers characterized by overexpression of the HER2 receptor protein
AU2001283139A1 (en) * 2000-08-11 2002-02-25 Wyeth Method of treating estrogen receptor positive carcinoma
TWI286074B (en) * 2000-11-15 2007-09-01 Wyeth Corp Pharmaceutical composition containing CCI-779 as an antineoplastic agent
AR042586A1 (es) * 2001-02-15 2005-06-29 Sugen Inc 3-(4-amidopirrol-2-ilmetiliden)-2-indolinona como inhibidores de la protein quinasa; sus composiciones farmaceuticas; un metodo para la modulacion de la actividad catalitica de la proteinquinasa; un metodo para tratar o prevenir una afeccion relacionada con la proteinquinasa
SG152906A1 (en) 2001-04-06 2009-06-29 Wyeth Corp Antineoplastic combinations such as rapamycin together with gemcitabine or fluorouracil
TWI296196B (en) * 2001-04-06 2008-05-01 Wyeth Corp Antineoplastic combinations
TWI233359B (en) * 2001-04-06 2005-06-01 Wyeth Corp Pharmaceutical composition for treating neoplasm
SG153647A1 (en) 2001-06-01 2009-07-29 Wyeth Corp Antineoplastic combinations
US20020198137A1 (en) * 2001-06-01 2002-12-26 Wyeth Antineoplastic combinations
WO2002102976A2 (en) 2001-06-14 2002-12-27 The Regents Of The University Of California Mutations in the bcr-abl tyrosine kinase associated with resistance to sti-571
UA77200C2 (en) * 2001-08-07 2006-11-15 Wyeth Corp Antineoplastic combination of cci-779 and bkb-569
PL370137A1 (en) 2001-11-27 2005-05-16 Wyeth Holdings Corporation 3-cyanoquinolines as inhibitors of egf-r and her2 kinases
AU2003210787B2 (en) * 2002-02-01 2009-04-23 Medinol Ltd. Phosphorus-containing compounds & uses thereof
TWI275390B (en) 2002-04-30 2007-03-11 Wyeth Corp Process for the preparation of 7-substituted-3- quinolinecarbonitriles
AU2003247483A1 (en) * 2002-05-30 2003-12-31 The Children's Hospital Of Philadelphia Methods for treatment of acute lymphocytic leukemia
AU2003238871B2 (en) * 2002-06-05 2009-04-23 Cedars-Sinai Medical Center Method of treating cancer using kinase inhibitors
AU2003248813A1 (en) * 2002-07-05 2004-01-23 Beth Israel Deaconess Medical Center Combination of mtor inhibitor and a tyrosine kinase inhibitor for the treatment of neoplasms
WO2004010937A2 (en) * 2002-07-26 2004-02-05 Advanced Research & Technology Institute At Indiana University Method of treating cancer
US20040096436A1 (en) * 2002-08-02 2004-05-20 Regents Of The University Of California Methods for inhibiting protein kinases in cancer cells
US20040209930A1 (en) * 2002-10-02 2004-10-21 Carboni Joan M. Synergistic methods and compositions for treating cancer
CL2004000016A1 (es) 2003-01-21 2005-04-15 Wyeth Corp Compuesto derivado de cloruro de 4-amino-2-butenoilo o una sal farmaceuticamente aceptable del mismo; procedimiento para preparar dicho compuesto, util como intermediario en la sintesis de compuestos inhibidores de proteina quinasa tirosina.
KR20050122199A (ko) * 2003-01-23 2005-12-28 티.케이. 시그널 리미티드 표피성장인자 수용체 티로신 키나제의 비가역성 억제제 및 그의 용도
CN1437942A (zh) 2003-02-08 2003-08-27 杭州华卫制药技术开发有限公司 注射用长春瑞滨粉针剂及制备方法
UA83484C2 (uk) * 2003-03-05 2008-07-25 Уайт Спосіб лікування раку грудей комбінацією похідного рапаміцину і інгібітора ароматази - летрозолу, фармацевтична композиція
MXPA05010582A (es) * 2003-04-22 2005-11-23 Wyeth Corp Combinaciones antineoplasicas.
US20050043233A1 (en) 2003-04-29 2005-02-24 Boehringer Ingelheim International Gmbh Combinations for the treatment of diseases involving cell proliferation, migration or apoptosis of myeloma cells or angiogenesis
UA84156C2 (ru) 2003-07-23 2008-09-25 Байер Фармасьютикалс Корпорейшн Фторозамещённая омега-карбоксиарилдифенилмочевина для лечения и профилактики болезней и состояний
US20050025825A1 (en) 2003-07-31 2005-02-03 Xanodyne Pharmacal, Inc. Tranexamic acid formulations with reduced adverse effects
MXPA06001110A (es) 2003-08-01 2006-04-11 Wyeth Corp Uso de una combinacion de un inhibidor de la cinasa del receptor del factor de crecimiento epidermico y agentes citotoxicos para el tratamiento e inhibicion del cancer.
KR20060066733A (ko) 2003-08-19 2006-06-16 와이어쓰 홀딩스 코포레이션 4-아미노-3-퀴놀린카보니트릴의 제조방법
WO2005034955A1 (en) 2003-09-15 2005-04-21 Wyeth Substituted quinolines as protein tyrosine kinase enzyme inhibitors
US7399865B2 (en) * 2003-09-15 2008-07-15 Wyeth Protein tyrosine kinase enzyme inhibitors
TWI372066B (en) 2003-10-01 2012-09-11 Wyeth Corp Pantoprazole multiparticulate formulations
US20050142192A1 (en) 2003-10-15 2005-06-30 Wyeth Oral administration of [2-(8,9-dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)alkyl] phosphonic acid and derivatives
WO2005049021A1 (en) 2003-11-03 2005-06-02 Oy Helsinki Transplantation R & D Ltd Materials and methods for inhibiting neointimal hyperplasia
WO2005044091A2 (en) 2003-11-05 2005-05-19 Board Of Regents, The University Of Texas System Diagnostic and therapeutic methods and compositions involving pten and breast cancer
TW200526684A (en) 2003-11-21 2005-08-16 Schering Corp Anti-IGFR1 antibody therapeutic combinations
WO2005055943A2 (en) * 2003-12-04 2005-06-23 Amr Technology, Inc. Vinorelbine derivatives
US9016221B2 (en) 2004-02-17 2015-04-28 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
AR047988A1 (es) 2004-03-11 2006-03-15 Wyeth Corp Combinaciones antineoplásicas de cci-779 y rituximab
KR101347613B1 (ko) * 2004-03-31 2014-01-06 다나-파버 캔서 인스티튜트 인크. 암에 걸린 인간 환자의 표피성장인자 수용체 표적 치료의 유효 가능성 결정 방법, 키트, 핵산 프로브 및 프라이머쌍
PT1748998E (pt) 2004-05-28 2010-03-24 Hetero Drugs Ltd Novo processo de síntese estereoselectiva de sulfóxidos de benzimidazol
EP2592155B2 (en) * 2004-06-04 2019-09-11 Genentech, Inc. EGFR mutations
WO2006008526A2 (en) 2004-07-23 2006-01-26 Astrazeneca Ab Method of predicting the responsiveness oa a tumor to erbb receptor drugs
US20060058311A1 (en) 2004-08-14 2006-03-16 Boehringer Ingelheim International Gmbh Combinations for the treatment of diseases involving cell proliferation
TW200616612A (en) 2004-10-08 2006-06-01 Wyeth Corp Method for the teatment of polycystic kidney disease field of invention
WO2006044453A1 (en) 2004-10-13 2006-04-27 Wyeth Analogs of 17-hydroxywortmannin as pi3k inhibitors
US20080254497A1 (en) 2004-10-15 2008-10-16 Monogram Biosciences, Inc. Response Predictors for Erbb Pathway-Specific Drugs
US20060084666A1 (en) * 2004-10-18 2006-04-20 Harari Paul M Combined treatment with radiation and an epidermal growth factor receptor kinase inhibitor
WO2006085168A2 (en) 2005-01-07 2006-08-17 Ranbaxy Laboratories Limited Solid oral dosage forms of ziprasidone containing colloidal silicone dioxide
GB0501999D0 (en) 2005-02-01 2005-03-09 Sentinel Oncology Ltd Pharmaceutical compounds
DE602006021142D1 (de) * 2005-02-03 2011-05-19 Gen Hospital Corp Verfahren zur behandlung von gefitinib-resistentem krebs
WO2006081985A1 (en) 2005-02-04 2006-08-10 F. Hoffmann-La Roche Ag Combined treatment with an n4-(substituted-oxycarbonyl)-5’-deoxy-5-fluorocytidine derivative and an epidermal growth factor receptor kinase inhibitor
MX2007009963A (es) 2005-02-24 2007-09-26 Amgen Inc Mutaciones del receptor del factor de crecimiento epidermico.
PL1859793T3 (pl) 2005-02-28 2011-09-30 Eisai R&D Man Co Ltd Nowe połączone zastosowanie związku sulfonamidowego w leczeniu choroby nowotworowej
CA2610343A1 (en) 2005-03-03 2006-09-08 Takeda Pharmaceutical Company Limited Release-control composition
CA2599445C (en) 2005-03-09 2022-05-03 Abbott Laboratories Diagnostics method for identifying candidate patients for the treatment with trastuzumab
GB0504994D0 (en) 2005-03-11 2005-04-20 Biotica Tech Ltd Novel compounds
US20060235006A1 (en) 2005-04-13 2006-10-19 Lee Francis Y Combinations, methods and compositions for treating cancer
CA2646257A1 (en) 2005-04-14 2006-10-26 Wyeth Use of an epidermal growth factor receptor kinase inhibitor (egfr) in gefitinib resistant patients
WO2006116016A2 (en) 2005-04-21 2006-11-02 The Regents Of The University Of California Molecular determinants of egfr kinase inhibitor response in glioblastoma
DK1896034T3 (da) 2005-04-28 2010-05-17 Wyeth Corp Mikroniserede tanaproget-sammensætninger og fremgangsmåder til fremstilling af disse
WO2006120557A1 (en) 2005-05-12 2006-11-16 Pfizer Inc. Anticancer combination therapy using sunitinib malate
JP2008542267A (ja) 2005-05-25 2008-11-27 ワイス 3−シアノ−キノリンと、それにより製造される中間体とを調製する方法
CN101203494A (zh) * 2005-05-25 2008-06-18 惠氏公司 合成经取代3-氰基喹啉和其中间物的方法
DE102005053679A1 (de) 2005-06-24 2006-12-28 Bayer Healthcare Ag Therapeutischer Einsatz von Moxifloxacin zur Rekonstruktion von Funktionsstörungen des Immunsystems
WO2007011619A2 (en) 2005-07-15 2007-01-25 Wyeth Highly bioavailable oral delayed release dosage forms of o-desmethylvenlafaxine succinate
US20100105031A1 (en) 2005-08-01 2010-04-29 Esai R & D Management Co., Ltd. Method for prediction of the efficacy of vascularization inhibitor
WO2007015578A1 (ja) 2005-08-02 2007-02-08 Eisai R & D Management Co., Ltd. 血管新生阻害物質の効果を検定する方法
EP1931798A1 (en) 2005-10-05 2008-06-18 AstraZeneca UK Limited Method to predict or monitor the response of a patient to an erbb receptor drug
WO2007050495A2 (en) 2005-10-26 2007-05-03 Children's Medical Center Corporation Method to prognose response to anti-egfr therapeutics
AR058505A1 (es) * 2005-11-04 2008-02-06 Wyeth Corp Combinaciones antineoplasicas de temsirolimus y malato de sunitinib
CN103110948A (zh) 2005-11-04 2013-05-22 惠氏公司 mTOR抑制剂、赫赛汀和/或HKI-272的抗肿瘤组合
SI1948180T1 (sl) 2005-11-11 2013-06-28 Boehringer Ingelheim International Gmbh Kombinacijsko zdravljenje raka, ki obsega EGFR/HER2 inhibitorje
PL1951274T3 (pl) 2005-11-24 2010-05-31 Aicuris Gmbh & Co Kg Parapoksywirusy w kombinacji z klasycznymi cytotoksycznymi środkami chemioterapeutycznymi jako biochemioterapia do leczenia raka
JP2007145745A (ja) 2005-11-25 2007-06-14 Osaka Univ 変異型EGFR下流シグナルを抑制するSrcファミリーチロシンキナーゼ阻害剤を含む肺癌治療剤およびその利用
EP1965770A2 (en) 2005-12-22 2008-09-10 Wyeth a Corporation of the State of Delaware Oral formulations comprising tigecycline
WO2007095038A2 (en) 2006-02-09 2007-08-23 Novartis Ag Mutations and polymorphisms of erbb2
CA2644841C (en) 2006-04-07 2013-07-16 Novartis Ag Use of c-src inhibitors in combination with a pyrimidylaminobenzamide compound for the treatment of leukemia
TW200806282A (en) 2006-05-05 2008-02-01 Wyeth Corp Solid dosage formulations
IL282783B2 (en) 2006-05-18 2023-09-01 Caris Mpi Inc A system and method for determining a personalized medical intervention for a disease stage
TW200808728A (en) 2006-05-23 2008-02-16 Wyeth Corp Method of preparing 4-halogenated quinoline intermediates
EP2032989B2 (en) 2006-06-30 2015-10-28 Merck Sharp & Dohme Corp. Igfbp2 biomarker
MX2009002710A (es) 2006-09-18 2009-03-25 Boehringer Ingelheim Int Metodos para tratar canceres que portan mutaciones de egfr.
WO2008042216A2 (en) 2006-09-28 2008-04-10 Follica, Inc. Methods, kits, and compositions for generating new hair follicles and growing hair
WO2008043576A1 (en) 2006-10-13 2008-04-17 Medigene Ag Use of oncolytic viruses and antiangiogenic agents in the treatment of cancer
MX2009006466A (es) 2006-12-13 2009-06-26 Schering Corp Metodos de tratamiento de cancer con inhibidores del receptor del factor 1 de crecimiento similar a la insulina.
US20100143340A1 (en) 2006-12-13 2010-06-10 Schering Corporation Methods and compositions for treating cancer
CA2671982C (en) 2006-12-14 2016-01-26 Exelixis, Inc. Methods of using mek inhibitors
WO2008076143A1 (en) 2006-12-18 2008-06-26 Osi Pharmaceuticals, Inc. Combination of igfr inhibitor and anti-cancer agent
EP2815750A1 (en) 2006-12-21 2014-12-24 Vertex Pharmaceuticals Incorporated 5-cyano-4-(pyrrolo [2,3b] pyridine-3-yl)-pyrimidine derivatives useful as protein kinase inhibitors
AU2008206476A1 (en) 2007-01-12 2008-07-24 Wyeth Tablet-in-tablet compositions
US9090693B2 (en) 2007-01-25 2015-07-28 Dana-Farber Cancer Institute Use of anti-EGFR antibodies in treatment of EGFR mutant mediated disease
EP2124901B1 (en) 2007-02-01 2017-07-19 Takeda Pharmaceutical Company Limited Tablet preparation without causing a tableting trouble
WO2008121467A2 (en) 2007-02-28 2008-10-09 Dana-Farber Cancer Institute, Inc. Combination therapy for treating cancer
GB0706633D0 (en) 2007-04-04 2007-05-16 Cyclacel Ltd Combination
EP1978106A1 (en) 2007-04-07 2008-10-08 Universitätsklinikum Hamburg-Eppendorf Detection of ESR1 amplification in endometrium cancer and ovary cancer
JP5926487B2 (ja) 2007-04-13 2016-05-25 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド ErbB療法に耐性である癌を治療するための方法
MX2009011228A (es) 2007-04-19 2009-11-02 Wellstat Biologics Corp Deteccion de niveles elevados de la proteina her-2/neu de celulas cancerosas circulantes no aisladas y tratamiento.
WO2008136838A1 (en) 2007-05-04 2008-11-13 Trustees Of Dartmouth College Novel amide derivatives of cddo and methods of use thereof
WO2009005673A1 (en) 2007-06-28 2009-01-08 Schering Corporation Anti-igf1r
WO2009036059A2 (en) 2007-09-10 2009-03-19 Boston Biomedical, Inc. Novel stat3 pathway inhibitors and cancer stem cell inhibitors
WO2009042613A1 (en) 2007-09-24 2009-04-02 Tragara Pharmaceuticals, Inc. Combination therapy for the treatment of cancer using cox-2 inhibitors and dual inhibitors of egfr [erbb1] and her-2 [erbb2]
US8022216B2 (en) * 2007-10-17 2011-09-20 Wyeth Llc Maleate salts of (E)-N-{4-[3-chloro-4-(2-pyridinylmethoxy)anilino]-3-cyano-7-ethoxy-6-quinolinyl}-4-(dimethylamino)-2-butenamide and crystalline forms thereof
CN101918579A (zh) 2007-10-22 2010-12-15 先灵公司 完全人抗-vegf抗体和使用方法
AU2008325219A1 (en) 2007-11-05 2009-05-14 Puretech Ventures Methods, kits, and compositions for administering pharmaceutical compounds
CN101185633A (zh) 2007-12-14 2008-05-28 山东蓝金生物工程有限公司 一种治疗实体肿瘤的尼拉替尼缓释植入剂
EP2247757A2 (en) 2007-12-18 2010-11-10 Schering Corporation Biomarkers for sensitivity to anti-igf1r therapy
US20100297118A1 (en) 2007-12-27 2010-11-25 Macdougall John Therapeutic Cancer Treatments
US20090203709A1 (en) 2008-02-07 2009-08-13 Abbott Laboratories Pharmaceutical Dosage Form For Oral Administration Of Tyrosine Kinase Inhibitor
WO2009105234A2 (en) 2008-02-19 2009-08-27 Combinatorx, Incorporated Methods and compositions for the treatment of disorders associated with defects of the cystic fibrosis transmembrane conductance regulator gene or protein
CA2923248A1 (en) 2008-02-25 2009-09-03 Nestec S.A. Methods for detecting truncated receptors
WO2009111073A2 (en) 2008-03-06 2009-09-11 Odyssey Thera, Inc. High-content and high throughput assays for identification of lipid-regulating pathways, and novel therapeutic agents for lipid disorders
US20110104256A1 (en) 2008-03-25 2011-05-05 Yaolin Wang Methods for treating or preventing colorectal cancer
WO2009121031A1 (en) 2008-03-27 2009-10-01 Vascular Biosciences, Inc. Methods of novel therapeutic candidate identification through gene expression analysis in vascular-related diseases
US20090246198A1 (en) 2008-03-31 2009-10-01 Takeda Pharmaceutical Company Limited Mapk/erk kinase inhibitors and methods of use thereof
WO2009126662A1 (en) 2008-04-08 2009-10-15 Syndax Pharmaceuticals, Inc. Administration of an inhibitor of hdac, an inhibitor of her-2, and a selective estrogen receptor modulator
HUE041221T2 (hu) 2008-04-18 2019-05-28 Reata Pharmaceuticals Inc Antioxidáns gyulladás modulátorok: a C-17 atomon amino- és más módosításokkal rendelkezõ oleanolsav-származékok
BRPI0911105B1 (pt) 2008-04-18 2022-11-08 Reata Pharmaceuticals, Inc Compostos contendo um farmacóforo anti-inflamatório, composição farmacêutica, bem como seus usos
WO2009146216A2 (en) 2008-04-18 2009-12-03 Reata Pharmaceuticals. Inc. Antioxidant inflammation modulators: novel derivatives of oleanolic acid
JP5588966B2 (ja) 2008-04-18 2014-09-10 リアタ ファーマシューティカルズ インコーポレイテッド 抗酸化炎症モジュレーター:c−17同族体化オレアノール酸誘導体
BRPI0911208B1 (pt) 2008-04-18 2021-05-25 Reata Pharmaceuticals, Inc Compostos moduladores inflamatórios antioxidantes, seu uso, e composição farmacêutica
WO2009137378A2 (en) 2008-05-05 2009-11-12 Schering Corporation Sequential administration of chemotherapeutic agents for treatment of cancer
WO2009151910A2 (en) 2008-05-25 2009-12-17 Wyeth Combination product of receptor tyrosine kinase inhibitor and fatty acid synthase inhibitor for treating cancer
DK2656844T3 (en) 2008-06-17 2015-03-02 Wyeth Llc ANTINEOPLASTIC COMBINATIONS CONTAINING HKI-272 AND VINORELBINE
EP2309860B1 (en) 2008-07-22 2014-01-08 Trustees of Dartmouth College Monocyclic cyanoenones and methods of use thereof
CN105963313A (zh) 2008-08-04 2016-09-28 惠氏有限责任公司 4-苯胺基-3-氰基喹啉和卡培他滨的抗肿瘤组合
US20100069340A1 (en) 2008-09-11 2010-03-18 Wyeth Pharmaceutical compositions of an src kinase inhibitor and an aromatase inhibitor
CN106153918A (zh) 2008-10-14 2016-11-23 卡里斯Mpi公司 描绘肿瘤类型生物标志模式和特征集的基因靶和基因表达的蛋白靶
WO2010048477A2 (en) 2008-10-24 2010-04-29 Wyeth Llc Improved process for preparation of coupled products from 4-amino-3-cyanoquinolines using stabilized intermediates
CN102223886A (zh) 2008-11-07 2011-10-19 安龙制药公司 Erbb-3(her3)选择性组合疗法
WO2010085845A1 (en) 2009-01-28 2010-08-05 The University Of Queensland Cancer therapy and/or diagnosis
TW201032796A (en) 2009-02-04 2010-09-16 Bipar Sciences Inc Treatment of lung cancer with a PARP inhibitor in combination with a growth factor inhibitor
WO2010098627A2 (ko) 2009-02-27 2010-09-02 한올바이오파마주식회사 약제학적 제제
MX2011009034A (es) 2009-03-11 2011-09-22 Auckland Uniservices Ltd Formas de profarmaco de inhibidores de cinasa y su uso en la terapia.
AU2010234968B2 (en) 2009-04-06 2015-05-14 Wyeth Llc Treatment regimen utilizing neratinib for breast cancer
AR076053A1 (es) 2009-04-14 2011-05-18 Schering Corp Derivados de pirazolo[1,5-a]pirimidina como inhibidores de mtor
WO2010124009A2 (en) 2009-04-21 2010-10-28 Schering Corporation Fully human anti-vegf antibodies and methods of using
CN102482277B (zh) 2009-05-05 2017-09-19 达纳-法伯癌症研究所有限公司 表皮生长因子受体抑制剂及治疗障碍的方法
AU2010266342A1 (en) 2009-07-02 2012-01-19 Wyeth Llc 3-cyanoquinoline tablet formulations and uses thereof
US20120135952A1 (en) 2009-07-17 2012-05-31 Hanall Biopharma Co., Ltd. Butyric acid salt of n,n-dimethyl imidocarbon imidic diamide, method of preparing same, and pharmaceutical compositions and combinations containing same
WO2011008053A2 (ko) 2009-07-17 2011-01-20 한올바이오파마주식회사 N,n-디메틸 이미도디카르본이미딕 디아미드의 프로피온산염, 이의 제조방법, 이를 포함하는 약제학적 조성물 및 이를 포함하는 복합제제
WO2011025267A2 (ko) 2009-08-25 2011-03-03 한올바이오파마주식회사 메트포르민 메탄설폰산염, 그의 제조방법, 그를 포함하는 약학 조성물 및 그를 포함하는 복합제제
KR101190953B1 (ko) 2009-08-25 2012-10-12 한올바이오파마주식회사 메트포르민 타우린염, 그의 제조방법, 그를 포함하는 약학 조성물 및 그를 포함하는 복합제제
KR101211227B1 (ko) 2009-08-25 2012-12-11 한올바이오파마주식회사 메트포르민 아스코르브산염, 그의 제조방법, 그를 포함하는 약학 조성물 및 그를 포함하는 복합제제
US20110055838A1 (en) 2009-08-28 2011-03-03 Moyes William A Optimized thread scheduling via hardware performance monitoring
WO2011038467A1 (en) 2009-10-01 2011-04-07 Csl Limited Method of treatment of philadelphia chromosome positive leukaemia
CN106074445B (zh) 2009-11-09 2018-12-21 惠氏有限责任公司 包衣药物球状体及其制备消除或减少病症的药物的用途
RS59599B2 (sr) 2009-11-09 2023-03-31 Wyeth Llc Formulacije tableta neratinib maleata
HUE035605T2 (en) 2009-11-13 2018-05-28 Daiichi Sankyo Europe Gmbh Materials and Methods for the Treatment or Prevention of HER-3-Related Diseases
JP2013512882A (ja) 2009-12-07 2013-04-18 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング トリプルネガティブ乳癌の治療に使用するbibw2992
EP2510121A1 (en) 2009-12-11 2012-10-17 Wyeth LLC Phosphatidylinositol-3-kinase pathway biomarkers
CA2787048C (en) 2010-01-13 2021-06-22 Wyeth Llc A cut-point in pten protein expression that accurately identifies tumors and is predictive of drug response to a pan-erbb inhibitor

Also Published As

Publication number Publication date
NZ556673A (en) 2010-03-26
EP1848414B1 (en) 2011-04-06
CY2016026I2 (el) 2017-04-05
FR16C1004I1 (fr) 2016-09-23
US20100087482A1 (en) 2010-04-08
RU2405566C2 (ru) 2010-12-10
CN113975393A (zh) 2022-01-28
AU2006210572A1 (en) 2006-08-10
AU2006210572B2 (en) 2011-08-04
CN113952338A (zh) 2022-01-21
DE602006021142D1 (de) 2011-05-19
CN108421044A (zh) 2018-08-21
RU2405566C9 (ru) 2012-04-27
KR20070107693A (ko) 2007-11-07
EP1848414A4 (en) 2008-11-26
CY1111676T1 (el) 2015-10-07
RU2007132902A (ru) 2009-03-10
HK1105285A1 (en) 2008-02-06
EP1848414A2 (en) 2007-10-31
WO2006084058A2 (en) 2006-08-10
IL259741A (en) 2018-07-31
SI1848414T1 (sl) 2011-08-31
US20160310482A1 (en) 2016-10-27
CN113952459A (zh) 2022-01-21
CN108743588A (zh) 2018-11-06
HUS1600033I1 (hu) 2016-09-28
NI200700185A (es) 2008-05-06
CN102886045A (zh) 2013-01-23
US10603314B2 (en) 2020-03-31
US10596162B2 (en) 2020-03-24
KR101313702B1 (ko) 2013-10-04
PL1848414T3 (pl) 2011-10-31
AU2006210572A2 (en) 2006-08-10
BRPI0606839A2 (pt) 2010-03-09
WO2006084058A3 (en) 2006-12-14
NO20074366L (no) 2007-11-05
ATE504299T1 (de) 2011-04-15
LU93160I2 (en) 2016-09-26
US20230226039A1 (en) 2023-07-20
IL184791A (en) 2017-05-29
IL184791A0 (en) 2008-12-29
CN101155579B (zh) 2012-10-31
DK1848414T3 (da) 2011-07-25
CA2596714C (en) 2014-06-17
CN101155579A (zh) 2008-04-02
JP2008528695A (ja) 2008-07-31
CY2016026I1 (el) 2017-04-05
MX2007009317A (es) 2008-01-30
ZA200706804B (en) 2008-10-29
IL247165A0 (en) 2016-09-29
PT1848414E (pt) 2011-05-25
CA2596714A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
ES2364495T3 (es) Método para tratar cáncer resistente a gefitinib.
US20220370423A1 (en) Use of 1-[4-bromo-5-[1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl]-2-fluorophenyl]-3-phenylurea and analogs for the treatment of cancers associated with genetic abnormalities in platelet derived growth factor receptor alpha
KR102641827B1 (ko) 병용 요법
US20140135370A1 (en) Treating cancer with an hsp90 inhibitory compound
Al Olayan et al. The roles of epidermal growth factor receptor (EGFR) inhibitors in the management of lung cancer
WO2012125904A1 (en) Mutation mimicking compounds that bind to the kinase domain of egfr
Horn et al. Continued use of afatinib with the addition of cetuximab after progression on afatinib in patients with EGFR mutation-positive non-small-cell lung cancer and acquired resistance to gefitinib or erlotinib
Halder et al. Targeting the EGFR signaling pathway in cancer therapy: What’s new in 2023?
Sgambato et al. The c-Met inhibitors: a new class of drugs in the battle against advanced nonsmall-cell lung cancer
Rehman et al. MET inhibition in non-small cell lung cancer
EP2928488A1 (en) Combinations of a pi3k/akt inhibitor compound with an her3/egfr inhibitor compound and use thereof in the treatment of a hyperproliferative disorder
BRPI0606839B1 (pt) Uso de uma composição farmacêutica compreendendo um inibidor irreversível de receptor de fator de crescimento epidérmico (egfr)
WO2023078408A1 (zh) 含met受体酪氨酸激酶抑制剂的药物组合及应用
Gridelli et al. New insights in drug development for the non-small cell lung cancer therapy
Bernardo et al. MDM2 stabilization of Notch intracellular domain upon DNA damage plays a major role in non-small cell lung carcinoma response to platinum chemotherapy
JP2015503568A (ja) トラスツズマブに不応性の乳癌の治療方法
CN116867492A (zh) 使用4-氨基-n-[4-(甲氧基甲基)苯基]-7-(1-甲基环丙基)-6-(3-吗啉代丙-1-炔-1-基)-7h-吡咯并[2,3-d]嘧啶-5-羧酰胺治疗肿瘤的方法
WO2012019192A2 (en) Cell-permeable molecules as growth factor receptor antagonists