ES2204042T3 - Material laminar ceramico. - Google Patents

Material laminar ceramico.

Info

Publication number
ES2204042T3
ES2204042T3 ES99118665T ES99118665T ES2204042T3 ES 2204042 T3 ES2204042 T3 ES 2204042T3 ES 99118665 T ES99118665 T ES 99118665T ES 99118665 T ES99118665 T ES 99118665T ES 2204042 T3 ES2204042 T3 ES 2204042T3
Authority
ES
Spain
Prior art keywords
leq
perovskite
dense
layer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES99118665T
Other languages
English (en)
Inventor
Niels Christiansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Application granted granted Critical
Publication of ES2204042T3 publication Critical patent/ES2204042T3/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0025Compositions or ingredients of the compositions characterised by the crystal structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • C04B2111/00801Membranes; Diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

material cerámico laminado que comprende al menos una capa densa de un material perouskita y al menos una capa de un material de no perouskita y/o al menos una capa de un material perouskita denso superestructural.

Description

Material laminar cerámico.
La presente invención se refiere a un material laminar cerámico o un material cerámico de composición graduada para utilizar en la producción de productos cerámicos conductores de iones y/o electrones.
Los materiales cerámicos de perovskita en membranas de separación de oxígeno tienen la fórmula general:
A_{x} A'_{x'} A''_{x''} By B'_{y'} B''_{y''} O_{3-\delta}
donde
x + x' + x'' = 1, y
y + y' + y'' = 1, y
\delta es un número que hace neutra la carga de la composición.
Estos materiales son conocidos por la patente U.S. Núm. 5.240.473.
Las membranas cerámicas densas que comprenden un material que no tiene perovskita representados por la fórmula:
(Sr_{1-y}M_{y}) \alpha(Fe_{2-x} Co_{x}) \alpha+ 8 O\delta
que tienen conductividad de electrones y conductividad de iones de oxígeno son conocidos por la patente U.S. Núm. 5.580.497.
En la literatura científica se ha informado sobre la elevada conductividad de iones de oxígeno de materiales cerámicos que comprenden una forma superestructural de la estructura cúbica de la perovskita, con la fórmula química general:
A_{x} A'_{x'} B_{y}B'_{y'}O_{2,5}
En Proceedings of the Electrochemical Society, Vol. 93, núm. 4, 1993, páginas 598-612, Chen y otros han estudiado las interacciones cátodo/electrólito y su impacto esperado sobre los parámetros SOFC. Aquí se describen materiales de perovskita combinados con materiales que se considera que representan materiales que no tienen perovskita. Estos materiales YSZ y CSO consisten en óxidos sinterizados combinados de los metales individuales.
Sahibzada y otros han descrito en Catalysis Today, Vol. 38, Núm. 4, 1997, páginas 459-466 una película densa de material que no tiene perovskita. Este material, Ce_{0,9}Gd_{0,1}O_{1,95}, consta exclusivamente de metales lantánidos.
Se ha observado que los materiales de perovskita con elevada conductividad del oxígeno presentan una pobre estabilidad estructural y una elevada expansión térmica con presiones parciales de oxígeno bajas, lo que conduce a limitaciones cuando se utilizan esos materiales en la separación del oxígeno. En la práctica, debe aceptarse un compromiso entre la elevada conductividad del oxígeno o la elevada estabilidad (ver "Dimensional Instability of Doped Lanthanum Chromites in an Oxygen Pressure Gradient", P.V. Hendriksen, J.D. Carter y M. Mogensen, en las Actas del Cuarto Simposio Internacional sobre Células de Combustible Sólido de Óxido, Ed. por M. Dokiya, O. Yamamoto, H. Tagawa y S.C. Singhal, The Electrochemical Society Prod. Vol. 95-1, (1995) 934;
"Dimensional Instability and effect chemistry of doped lanthanum chromites", P.H. Larsen, P.V. Hendriksen y M. Mogensen, Journal of Thermal Analysis, Vol. 49, (1997), 1263; y
"Lattice Expansion induced strains in solid oxide fuel cell stacks and their significance for stack integrity", P.V. Hendriksen y O. Joergensen, en "High Temperature Electrochemistry: Ceramics and Metals". Actas del 17 Simposio Internacional sobre Ciencia de Materiales de Risoe (1996), 263).
En conformidad con estas observaciones y hallazgos, esta información proporciona un material laminar cerámico denso que comprende por lo menos una capa densa de material de perovskita y por lo menos una capa de un material denso que no tiene perovskita y por lo menos una capa de un material de perovskita superestructural denso.
\newpage
El material de perovskita para utilizar en la invención se representa mediante la fórmula química:
A_{x} A'_{x'} A''_{x''} By B'_{y'} B''_{y''} O_{3-\delta}
siendo
x + x' + x'' \leq 1, e y + y' + y'' \leq 1, y \delta es un número que hace neutra la carga de la composición.
Cada A, A' y A'' es uno o más metales seleccionados del grupo de metales lantánidos y/o un metal divalente, preferentemente del grupo IIA de la Tabla Periódica.
Cada B, B' y B'' es un metal seleccionado del grupo de metales de transición, grupo IIIA y metales nobles del grupo VIII de la Tabla Periódica.
El material que no tiene perovskita se representa mediante la fórmula química:
(A_{x} A'_{x'} A''_{x''})_{a} (By B'_{y'} B''_{y''})_{b} O_{3-\delta}
donde
x + x' + x'' \leq 1, e y + y' + y'' \leq 1
y
a es un número en la gama de 1 a 4
b es un número en la gama de 1 a 10
y
\delta es un número que hace neutra la carga de la composición, y
A, A', A'', B, B' y B'' son los definidos anteriormente.
El material de perovskita superestructural tiene una estructura de brownmillerita con la fórmula química general:
A_{x} A'_{x'} A''_{x''} By B'_{y'} B''_{y''} O_{2,5}
o con estructura de pirocloro que tiene la fórmula química general:
A_{x} A'_{x'} A''_{x''} By B'_{y'} B''_{y''} O_{3,5}
siendo
x + x' + x'' \leq 1, e y + y' + y'' \leq 1
Cada capa del material laminar cerámico se selecciona de tal manera que se obtiene una mejor estabilidad estructural y química en comparación con cada capa individual cuando se expone a un gas rico en oxígeno por un lado y a un gas pobre en oxígeno por el otro lado. El material de brownmillerita contiene un gran número de huecos de oxígeno intrínsecos ordenados, que se desordenan por encima de una determinada temperatura de transición que depende de la composición química, lo que conduce finalmente a una fuerte conductividad intrínseca de iones de oxígeno. En correspondencia, los materiales de pirocloro pueden ser sustituidos en la posición de A y en la posición de B en la fórmula química lo que conduce a una fuerte conductividad intrínseca de iones de oxígeno.
Al contrario de las clásicas perovskitas que conducen los iones de oxígeno, el material de brownmillerita puede clasificarse como una perovskita cúbica superestructural con una elevada concentración fija de huecos de iones de oxígeno. Por consiguiente, el material de brownmillerita presenta una estabilidad dimensional y mecánica más alta que los materiales de perovskita durante la reducción a presiones parciales bajas.
En una configuración de acuerdo con la invención, se aplica una fina capa de brownmillerita densa con un espesor de 0,5 \mum a 5000 \mum sobre una fina capa de perovskita densa con un espesor de 0,5 \mum a 5000 \mum y se coloca sobre el lado de la membrana pobre en oxígeno para proteger la capa de perovskita del entorno reductor. Ambas capas poseen una elevada conductividad de iones de oxígeno o una elevada conductividad mixta de electrones y de iones de oxígeno.
En otra configuración de acuerdo con la presente invención, la brownmillerita densa se aplica sobre la perovskita densa en el lado de la membrana rico en oxígeno para asegurar un elevado flujo de iones de oxígeno a través de la membrana cuando se selecciona la perovskita para que tenga una estabilidad dimensional y mecánica máxima.
De acuerdo con realizaciones específicas de la invención, la membrana consta de capas de brownmillerita y pirocloro, y de capas recubiertas o laminadas con materiales que no tienen perovskita en uno o ambos lados de una capa de perovskita o varias capas de diferente composición pertenecientes a los tipos de perovskitas, brownmillerita o pirocloro o materiales que no tienen perovskita antes mencionados.
Ejemplo 1
Este ejemplo es un ejemplo comparativo útil para entender la invención.
Utilizando un procedimiento de pirólisis de goteo se obtuvo un polvo cerámico. Se mezclaron soluciones acuosas de nitratos, acetatos o carbonatos metálicos en las proporciones requeridas de acuerdo con la fórmula química propuesta. Después, se añadió a la solución anterior un combustible como glucosa o glicina con el fin de obtener mezclas ricas en combustible. Las soluciones madres preparadas se pirolizaron con goteo en un horno giratorio. Por un análisis XRD se encontró que los polvos tenían una estructura de perovskita.
El material tiene la fórmula química:
(La_{0,7}Sr_{0,3})_{0,9} Fe_{0,8}CO_{0,2}O_{3-\delta} o
(La_{0,7}Sr_{0,3})_{0,9} Ga_{0,8}MnO_{0,2}O_{3-\delta}
y puede ser utilizado para aplicaciones tales como: cátodo SOFC, membranas conductoras mixtas de electrones/iones, catalizador y sensor de oxidación. El compuesto de perovskita deficiente en la posición A tiene una estabilidad química mejor respecto a otros materiales cerámicos tales como circona estabilizada con itria en comparación con perovskita con A/B = 1.
Después de mezclar el polvo de perovskita de grano fino con agua y un ligante adecuado como metilcelulosa, a la mezcla se le puede dar la forma de tubos por extrusión seguida de secado y sinterización basándose en métodos de fabricación de cerámica bien conocidos. Los tubos sinterizados pueden revestirse por el interior o por el exterior y por ambos lados con una pasta cerámica consistente en un polvo cerámico con estructura de brownmillerita sintetizada por la técnica de manera análoga a lo antes mencionado.
El material de brownmillerita empleado en este ejemplo tiene la fórmula química:
Sr_{2}Fe_{1,6}CO_{0,4}O_{5} \ o \ Sr_{2}Ga_{1,6}Mn_{0,4}O_{5}
Después de la sinterización del tubo de perovskita recubierto de brownmillerita, se obtiene una membrana de varias capas tubular y densa, conductora mixta de electrones y iones de oxígeno.
Como pueden existir muchas estructuras relacionadas entre las perovskitas y las estructuras de brownmillerita dependiendo de las condiciones de sinterización, se obtiene una membrana graduada funcionalmente, que puede ser utilizada para la separación de oxígeno y reactores de membrana.

Claims (1)

1. Material laminar cerámico que comprende por lo menos una capa densa de un material de perovskita, por lo menos una capa de un material denso que no tiene perovskita y por lo menos una capa de un material de perovskita superestructural denso,
en el que el material de perovskita se representa mediante la fórmula química:
A_{x} A'_{x'} A''_{x''} By B'_{y'} B''_{y''} O_{3-\delta}
donde
x + x' + x'' \leq 1, y
y + y' + y'' \leq 1
\delta es un número que hace neutra la carga de la composición,
cada A, A' y A'' es uno o más metales seleccionados del grupo de metales lantánicos y/o un metal divalente, preferentemente del grupo IIA de la Tabla Periódica,
cada B, B' y B'' es un metal seleccionado del grupo de metales de transición, grupo IIIA y metales nobles del grupo VIII de la Tabla Periódica,
y el material que no tiene perovskita se representa mediante la fórmula química:
(A_{x} A'_{x'} A'' {x''})_{a} (By B'_{ y'} B'' {y''})_{b} O_{3-\delta}
donde
x + x' + x'' \leq 1,
y + y' + y'' \leq 1,
1 < a \leq 4
1 < b \leq 10
\delta es un número que hace neutra la carga de la composición
y A, A', A'', B, B' y B'' son los definidos anteriormente,
y el material de perovskita superestructural se representa por la estructura de brownmillerita que tiene la fórmula química general:
A_{x} A'_{x'} A''_{x''} B_{y} B'_{y'} B''_{y''} O_{2,5}
o por la estructura de pirocloro que tiene la fórmula química general:
A_{x} A'_{x'} A''_{x''} B_{y} B'_{y'} B''_{y''} O_{3,5}
\newpage
donde
x + x' + x'' \leq 1
y + y' + y'' \leq 1
y A, A', A'', B, B', B'' son los definidos anteriormente.
ES99118665T 1998-10-07 1999-09-22 Material laminar ceramico. Expired - Lifetime ES2204042T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10332798P 1998-10-07 1998-10-07
US103327P 1998-10-07

Publications (1)

Publication Number Publication Date
ES2204042T3 true ES2204042T3 (es) 2004-04-16

Family

ID=22294590

Family Applications (1)

Application Number Title Priority Date Filing Date
ES99118665T Expired - Lifetime ES2204042T3 (es) 1998-10-07 1999-09-22 Material laminar ceramico.

Country Status (6)

Country Link
US (1) US6251533B1 (es)
EP (1) EP0994083B1 (es)
JP (1) JP2000108245A (es)
AT (1) ATE245614T1 (es)
DE (1) DE69909701T2 (es)
ES (1) ES2204042T3 (es)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL360437A1 (en) * 2000-08-07 2004-09-06 Energieonderzoek Centrum Nederland Mixed oxide material, electrode and method of manufacturing the electrode and electrochemical cell comprising it
JP3598956B2 (ja) 2000-08-28 2004-12-08 日産自動車株式会社 ガレート複合酸化物固体電解質材料とその製造方法
AU2002246908B2 (en) * 2000-11-09 2006-06-29 Trustees Of The University Of Pennsylvania The use of sulfur-containing fuels for direct oxidation fuel cells
US8007954B2 (en) * 2000-11-09 2011-08-30 The Trustees Of The University Of Pennsylvania Use of sulfur-containing fuels for direct oxidation fuel cells
US6811741B2 (en) * 2001-03-08 2004-11-02 The Regents Of The University Of California Method for making thick and/or thin film
US6632554B2 (en) * 2001-04-10 2003-10-14 Hybrid Power Generation Systems, Llc High performance cathodes for solid oxide fuel cells
DE10208883A1 (de) * 2002-03-01 2003-09-18 Forschungszentrum Juelich Gmbh Sauerstoffmembran für den Einsatz bei hohen Temperaturen
KR20050084337A (ko) * 2002-12-16 2005-08-26 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 고성능 세라믹 음극 및 이의 제조 방법
US7736599B2 (en) 2004-11-12 2010-06-15 Applied Materials, Inc. Reactor design to reduce particle deposition during process abatement
JP5102217B2 (ja) 2005-10-31 2012-12-19 アプライド マテリアルズ インコーポレイテッド プロセス削減反応器
US20130216800A1 (en) * 2010-01-21 2013-08-22 Joel D. Brock Perovskite to brownmillerite complex oxide crystal structure transformation induced by oxygen deficient getter layer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620624B2 (ja) * 1987-06-08 1997-06-18 株式会社豊田中央研究所 排気ガス浄化用触媒
JPS6431312A (en) * 1987-07-27 1989-02-01 Furukawa Electric Co Ltd Manufacture of ceramic superconducting wire material
JPH0670258U (ja) * 1993-03-15 1994-09-30 セイコー電子工業株式会社 圧電体素子
US5580497A (en) * 1993-04-16 1996-12-03 Amoco Corporation Oxygen ion-conducting dense ceramic
US6033632A (en) * 1993-12-08 2000-03-07 Eltron Research, Inc. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
JP3419974B2 (ja) * 1995-11-14 2003-06-23 ソニー株式会社 強誘電体キャパシタの製造方法
JPH11207888A (ja) * 1998-01-22 1999-08-03 Nitto Denko Corp 複合多孔質体
EP0947484A1 (en) * 1998-04-01 1999-10-06 Haldor Topsoe A/S Ceramic material for use in the separation of oxygen from gas mixture

Also Published As

Publication number Publication date
EP0994083A3 (en) 2000-09-06
ATE245614T1 (de) 2003-08-15
US6251533B1 (en) 2001-06-26
DE69909701D1 (de) 2003-08-28
DE69909701T2 (de) 2004-06-03
JP2000108245A (ja) 2000-04-18
EP0994083B1 (en) 2003-07-23
EP0994083A2 (en) 2000-04-19

Similar Documents

Publication Publication Date Title
US4562124A (en) Air electrode material for high temperature electrochemical cells
EP2183043B1 (en) Membrane with a stable nanosized microstructure and method for producing same
EP0885466B1 (en) Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells
US5273628A (en) Mixed ionic-electronic conductors for oxygen separation and electrocatalysis
EP0497542A1 (en) Method for producing lanthanum chromite film and method for producing interconnector for solid electrolyte type fuel cells
JP4302981B2 (ja) 少なくとも2つの相を含む伝導性材料
KR101475392B1 (ko) 고체 산화물 연료전지를 위한 티타네이트 및 금속 상호연결부
JP2004513867A5 (es)
ES2204042T3 (es) Material laminar ceramico.
JP2014510014A (ja) 低pO2雰囲気中で得られるセラミックデバイスのための焼結添加剤
JP2009035447A (ja) セラミックス粉体及びその焼結体とそれを利用した固体酸化物型燃料電池用空気極
US5672437A (en) Solid electrolyte for a fuel cell
US9115032B2 (en) Sintering aids for lanthanide ceramics
EP2030668A1 (en) Robust mixed conducting membrane structure
JP4828104B2 (ja) 燃料電池セル
JPH09180731A (ja) 固体電解質型燃料電池セル
JP6749064B1 (ja) セル、セルスタック装置、モジュール、及びモジュール収納装置
KR20220139612A (ko) 고투과성 산소 투과 분리막 및 이의 제조방법
JP3342541B2 (ja) 固体電解質型燃料電池セル
JP4480377B2 (ja) 燃料電池セル及び燃料電池
JP3389407B2 (ja) 導電性セラミックス及び燃料電池セル
JPH08130029A (ja) 固体電解質型燃料電池セルおよびその製造方法
JP3220320B2 (ja) 燃料電池セルおよび導電性セラミックスの製造方法
JP3346668B2 (ja) 固体電解質型燃料電池セル
JP3398213B2 (ja) 固体電解質型燃料電池セル