EP3362399B2 - Anordnung aus einer steuerung und einem mobilen steuerungsmodul - Google Patents

Anordnung aus einer steuerung und einem mobilen steuerungsmodul Download PDF

Info

Publication number
EP3362399B2
EP3362399B2 EP16794921.3A EP16794921A EP3362399B2 EP 3362399 B2 EP3362399 B2 EP 3362399B2 EP 16794921 A EP16794921 A EP 16794921A EP 3362399 B2 EP3362399 B2 EP 3362399B2
Authority
EP
European Patent Office
Prior art keywords
lifting device
arrangement according
control module
mobile control
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16794921.3A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3362399B1 (de
EP3362399A1 (de
Inventor
Michael HANGÖBL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palfinger AG
Original Assignee
Palfinger AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58516872&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3362399(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Palfinger AG filed Critical Palfinger AG
Priority to PL16794921.3T priority Critical patent/PL3362399T5/pl
Publication of EP3362399A1 publication Critical patent/EP3362399A1/de
Publication of EP3362399B1 publication Critical patent/EP3362399B1/de
Application granted granted Critical
Publication of EP3362399B2 publication Critical patent/EP3362399B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • B66C13/42Hydraulic transmitters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • B66C13/44Electrical transmitters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/06Arrangements or use of warning devices
    • B66C15/065Arrangements or use of warning devices electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/64Jibs
    • B66C23/70Jibs constructed of sections adapted to be assembled to form jibs or various lengths
    • B66C23/701Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic
    • B66C23/705Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic telescoped by hydraulic jacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/03Cranes with arms or jibs; Multiple cranes
    • B66C2700/0392Movement of the crane arm; Coupling of the crane arm with the counterweights; Safety devices for the movement of the arm

Definitions

  • the present invention relates to an arrangement consisting of a control arranged or to be arranged on a hydraulic lifting device and a mobile control module with the features of the preamble of claim 1 and a hydraulic lifting device with such an arrangement.
  • the current lifting load situation is calculated based on the current geometry of the lifting device and the support status of the lifting device in the stationary control. From the data calculated in this way, information is determined which is characteristic of the current lifting load situation and/or the permissibility of work operations on the lifting device given the current lifting load situation. This information is transmitted wirelessly or wired to the mobile control module.
  • the problem is the amount of data to be transmitted within the scope of the real-time requirement, i.e. H. data transmission without time delay. If the delay is too great, the situation displayed on the mobile control module may deviate from the actual situation on the lifting device. For example, a movement on the mobile control module can still be shown as permitted even though the control of the lifting device already prevents this movement.
  • the remote control of the control by the mobile control module is a safety-relevant process, not any electronic hardware can be used in the mobile control module.
  • the WO 2015/145725 A1 shows a non-generic arrangement with a portable device with a display unit, a terminal device arranged in the cabin with a device for generating image information and a crane control arranged on a crane.
  • the EP 2806324 A1 shows a non-generic arrangement consisting of a central computer and at least one mobile terminal, wherein an optimized path for the movement of a load carried by a lifting device can be calculated by the central computer and the result of the calculation can be displayed on a screen of the mobile terminal.
  • a control of the lifting device can be operated via its own control device.
  • the JP 2014 234260 A shows a non-generic arrangement for exchanging information via a crane, wherein operating information can be communicated from a first information processing device attached to the crane to a second information processing device, for example a smartphone.
  • the alien one WO 2015/086912 A1 describes a method for detecting the presence of a mobile device in an environment of a lifting device, wherein information about the device can be displayed on a display of the mobile device.
  • the object of the invention is to provide an arrangement consisting of a controller and a mobile control module, whereby the mobile control module, while ensuring real-time operation, does not require such massive processor power that the operating time of the battery of the mobile control module would be noticeably limited, and a hydraulic lifting device with such an arrangement .
  • control has a mode in which it sends the mobile control module via a transmitting and receiving module the information that is relevant to the current lifting load situation and / or the permissibility of work processes on the lifting device - if necessary at the given current lifting load situation - are characteristic, transmitted to a transmitting and receiving module of the mobile control module and that a processor of the mobile control module calculates graphic data from this information for a display that can be displayed for a user via a display unit.
  • the transmission of the information characteristic of the current lifting load situation and/or the permissibility of work processes on the lifting device to a transmitting and receiving module of the mobile control module can be carried out wirelessly and/or wired.
  • a mobile control or a mobile control module can be understood as an independent (possibly portable) operating unit with which a user can move essentially freely in a certain environment around a crane or a hydraulic lifting device.
  • data or information can be exchanged between such a mobile control module and the crane or the hydraulic lifting device (especially with its control).
  • processors with high computing power can be used without their electrical power consumption having to be taken into account.
  • the sensor data can come, for example, from pressure sensors, rotary encoders, strain gauges, distance measuring devices or switches, which are each arranged on parts of the lifting device, such as hydraulic cylinders, swivel or articulated joints, frame parts or push arms.
  • the information characteristic of the utilization of the lifting device can be transmitted to the mobile control module in a suitable operating mode of the control.
  • graphic data can be calculated for a display in the mobile control module by a suitable processor.
  • This calculation can, for example, include scaling, a selection and/or compilation of symbols or graphics stored in the control module, or an integration of calculated graphic data into stored background graphics. In this way it can be achieved that the display essentially takes place in real time.
  • the display unit can have, for example, a liquid crystal display.
  • the representation of the calculated graphic data which provides information about the current lifting load situation and/or the permissibility of work processes on the lifting device - possibly given the current lifting load situation - can be displayed on the mobile control module in a manner that is easy for a user to understand make possible.
  • a wired transmission of the information can take place, for example, if a user is within a certain radius of the control arranged or to be arranged on a hydraulic lifting device. In the case of particularly safety-relevant control processes, this may also be a requirement for the permissibility of the control commands issued by the user via the mobile control module.
  • the lifting device can be a crane, for example a loading crane that can be arranged on a vehicle, or even an aerial work platform.
  • the mobile control module has activation options for activating the calculation and/or the representation, which can be operated by a user. This allows the calculation and/or the display to be activated, for example by a user, at a desired time or for a desired period of time. In the remaining time, the processing power required for calculation and/or display - and the associated energy expenditure - can be saved. It is also conceivable that, by setting the mobile control module made by a user, the calculation and/or the display is activated automatically when a certain value of the utilization of a lifting device with a control according to the invention is approached or when a lifting load limit is approached.
  • the mobile control module has an energy storage and the calculation and/or the display can only take place at a minimum charge level of the energy storage. This can prevent the mobile control module from becoming inoperable due to a further, accelerated discharge due to the calculation and/or the representation - and the possibly associated increased energy expenditure - for example when the charge level of the energy storage device is already low.
  • the energy storage device can also be charged.
  • the characteristic information is transmitted incrementally.
  • the transmission can take place in certain angular increments for, for example, a polar angle of a part carrying a payload, for example a crane arm, a lifting device with a control according to the invention.
  • the characteristic information each contains a value for a lifting load or utilization limit per 5° of 360°.
  • the characteristic information can, for example, each contain a value for a lifting load or utilization limit per 1° of 360°, so transmission can take place in finer increments in certain situations take place.
  • the incremental transmission of the characteristic information for the current lifting load situation only includes the changes to the previous lifting load situation, which can reduce the amount of data to be transmitted.
  • control has a further mode in which it transmits the characteristic information depending on the rate of change of the sensor data. This can ensure that the information processed in the mobile control module and also the graphic data displayed correspond to the current status of the lifting device.
  • a change in sensor data of the lifting device can, for example, trigger a transmission of the characteristic information to the mobile control module. If there are no changes in sensor data from the lifting device, transmission of the characteristic information to the mobile control module can, for example, be suspended.
  • the characteristic information is transmitted at a reduced data rate. For example, when a part of the lifting device carrying a payload moves slowly, the characteristic information can be transmitted less often per second. If the lifting load situation of the lifting device changes more quickly, the characteristic information can be transmitted at an increased data rate. This means that the characteristic information can be displayed essentially in real time with an optimized data transmission rate.
  • the characteristic information is transmitted when there is a change - preferably only when there is a change - in the support situation of the lifting device and/or the position of the center of gravity of the lifting device.
  • a change in the center of gravity can occur, for example, by changing the extension or position of a boom of the lifting device or by changing the position of a part of the lifting device, for example an output winch rope with a certain dead weight.
  • the support situation can change, for example, by changing a support device of the lifting device that is supported on the floor, such as telescopic support legs.
  • the graphic data displayed on the mobile control module always correspond to the actual lifting load situation of the hydraulic lifting device. If the transmission only takes place when the support situation of the lifting device and/or the position of the center of gravity of the lifting device changes, the electrical power consumption of the control or the mobile control module can be optimized.
  • the change in the support situation of the lifting device and/or the position of the center of gravity takes place by changing the size or position of a payload lifted by the lifting device and/or by changing the size or position of a ballast weight that can be arranged on the lifting device.
  • a change in the support situation and/or the center of gravity position can also include picking up or removing a load on or from, for example, a loading area or a loading space of the lifting device with a control according to the invention or of a vehicle on which such a lifting device is arranged. This can advantageously result in a more even load on the lifting device and an optimized utilization of the lifting potential.
  • a more efficient use and loading of the lifting device can also be achieved by changing the outsourcing, position or size of a ballast weight that can be arranged on the lifting device.
  • the display includes a display of the current utilization of the lifting device in a coordinate system with Cartesian coordinates or polar coordinates.
  • a display of the current utilization of the lifting device in a coordinate system with Cartesian coordinates or polar coordinates.
  • the representation includes a display of the current utilization of the lifting device in the form of a point on a line or another geometric shape in a coordinate system, the point, the line or the other geometric shape corresponding to the current utilization of the lifting device Coloring or grayscale.
  • the display can show the absolute possible range of a load lifted by, for example, an arm of the lifting device before a certain load limit is reached. This can be done, for example, in the form of a point or any other graphic symbol in a Cartesian coordinate system, in which a rotatable column of the lifting device lies at the origin of the coordinate system.
  • the representation of the current utilization in the form of a line is suitable, for example, for a representation in polar coordinates, in which the length of the line or the radius can correspond to the current absolute outsourcing or the current relative, for example percentage, utilization.
  • the polar angle can represent the angular position of an arm carrying a payload relative to a predefined axis, for example the longitudinal axis of the vehicle in the case of a vehicle crane.
  • the point, line or other geometric shape can also be colored, for example according to the color of a traffic light system, or with a gray level depending on the current utilization of the lifting device.
  • the representation includes information about the current overload and/or switch-off values for the lifting device, preferably in the form of a polygon.
  • the information about the current overload and/or shutdown values can, for example, reflect the maximum possible absolute range in terms of stability or utilization. It is also conceivable that the information about the current overload and/or shutdown values provides information about the increase in utilization in one direction.
  • the representation can be carried out in a coordinate system using a polygon, which can be obtained, for example, by interpolation between support points with calculated limit values, whereby the current lifting load situation can be represented and assessed particularly well.
  • the wireless transmission of the characteristic information used for the display takes place via a separate parallel second transmission channel.
  • the transmission channel is encrypted. This can prevent or make it more difficult to intercept or influence the transmission of the characteristic information.
  • the encryption requirements can differ from those of the transmission channel for the control commands.
  • Protection is also sought after for a hydraulic lifting device, in particular a loading crane for a vehicle - particularly preferably an articulated boom crane - or aerial work platform, with an arrangement as described above.
  • the crane control 1 receives sensor data regarding the crane geometry, the support situation and, if necessary, the lifting load via signal inputs 6, 7. In a processor 8, the crane control 1 calculates information from this data and stored crane-specific data that is characteristic of the current lifting load situation and/or the permissibility of work processes on the crane - possibly given the current lifting load situation.
  • the controller 1 has a memory 30 in which data specific to the lifting device can be stored. This can include information about the equipment, functions and limits of operating parameters of the lifting device. The calculation of the information which is characteristic of the current lifting load situation and/or the permissibility of work processes on the lifting device - possibly given the current lifting load situation - can advantageously be carried out taking into account the data stored in the memory 30.
  • the information which is characteristic of the current lifting load situation and/or the permissibility of work processes on the crane - possibly given the current lifting load situation - is transmitted via a wireless connection 10 or a cable connection 11 to a transmitting and Receiving module 5 of the mobile control module 2 transmitted.
  • a combination of transmission with a wireless connection 10 and a cable connection 11 is also conceivable.
  • the wireless connection 10 can send and receive data over multiple channels and in multiple frequency bands, even in parallel.
  • the mobile control module 2 has a memory 31 in which the transmitted information and also calculated graphic data can be stored for display.
  • the mobile control module 2 has an energy storage device 29, for example in the form of a rechargeable battery.
  • the control 1 can be supplied with energy via a unit of the lifting device, not shown.
  • FIG. 2 an embodiment of a lifting device arranged on a vehicle 12 and a controller 1 arranged thereon is shown.
  • the vehicle 12 has a loading area 13 for receiving or transporting a payload or a ballast weight 32.
  • a lifting device in the form of a crane 14 is connected to the vehicle 12 via the crane base 15.
  • a crane column 16 which can be rotated about a vertical axis is mounted on the crane base 15.
  • a lifting arm 17 which can be pivoted about a horizontal axis by means of a hydraulic cylinder 22 is arranged on the crane column 16.
  • On the lifting arm 17 there is in turn a crane arm extension 18 which can be pivoted about a horizontal axis by means of a hydraulic cylinder 23 and has at least one telescopic crane push arm 19.
  • a crane arm extension 18 which can be pivoted about a horizontal axis by means of a hydraulic cylinder 23 and has at least one telescopic crane push arm 19.
  • an attachment arm 20 which can also be pivoted about a horizontal axis by means of a hydraulic cylinder 24, can be arranged on the crane arm extension 18.
  • the attachment arm 20 can have at least one telescopic crane push arm 21.
  • a support device in the form of the booms 26, 27, which can have extendable, telescopic support legs, is provided.
  • Fig. 3 shows a schematic representation of an exemplary embodiment of a lifting device and an arrangement according to the invention consisting of a controller 1 and a mobile control module 2.
  • the lifting device in the form of a crane 14 has, in addition to the previously mentioned components, various sensors for detecting the current position of the crane 14.
  • switches S3, S4 are provided for detecting the support status of the boom 26 on the ground.
  • such a sensor system can be provided for the boom 27, not shown here, which can be arranged on a frame part of the vehicle 12. It is also conceivable that the extended position of the arms 26, 27 is detected via a distance measuring device, not shown here.
  • a rotary encoder DG1 is provided to detect the angle of rotation of the crane column 16 relative to the crane base 15. The angle of rotation of the crane column 16 about a vertical axis detected by the rotary encoder DG1 would correspond to the polar angle in a polar representation.
  • a further rotary encoder DG2 is provided to detect the bending angle in a vertical plane between the crane column 16 and the lifting arm 17. The one for crane utilization
  • a pressure sensor DS1 is provided for the characteristic hydraulic pressure in the hydraulic cylinder 22 of the lifting arm 17.
  • a rotary encoder DG3 is provided to detect the bending angle between the lifting arm 17 and the crane arm extension 18 in a vertical plane.
  • a pressure sensor DS2 is provided to detect the hydraulic pressure in the hydraulic cylinder 23 of the crane arm extension 18.
  • a switch S1 is provided to detect the retracted state of a crane push arm 19 of the crane arm extension 18. Furthermore, a rotary encoder DG4 is provided to detect the bending angle between the crane arm extension 18 and the attachment arm 20 in a vertical plane. A pressure sensor DS3 is provided to detect the hydraulic pressure of the hydraulic cylinder 24 of the attachment arm 20. A switch S2 is provided to detect the retracted state of a crane push arm 21 of the attachment arm 20. In principle, it should not be ruled out that the thrust position of the individual crane push arms is detected via a thrust position sensor with, for example, a distance measuring device.
  • the sensor data are supplied to the controller 1 via signal inputs, of which, for example, the signal inputs 6, 7 of the switches S1, S2 which detect the retracted position of the crane arm extension 18 and the attachment arm 20 are designated.
  • information is then calculated from these sensor data and from data stored in a memory 30, in this example specific to the crane 14, which is characteristic of the current lifting load situation and/or the permissibility of work processes on the crane 14.
  • This information can then be transmitted via a transmitting and receiving module 4 of the controller 1 via a wireless connection 10 and/or a wired connection 11 to a transmitting and receiving module 5 of a mobile control module 2.
  • graphic data can be calculated for a display in the mobile control module 2 and displayed for a user via a display unit 3.
  • the display can optionally be activated via an activation option 28 that can be activated by a user, for example in the form of a switch or a button.
  • various operating elements 25 are provided on the mobile control module 2.
  • a schematic representation of graphic data calculated from the transmitted information is shown on a display unit 3.
  • the display unit 3 can be formed, for example, by a graphics-capable liquid crystal display 33, which is attached or attachable in or on the mobile control module 2.
  • the representation on the representation unit 3 includes a schematic representation embedded in a coordinate system 36 as in Figure 2 vehicle 12 shown with a lifting device in a top view, the rotatably mounted crane column 16 advantageously being located at the origin of the coordinate system 36.
  • the representation can take place in a Cartesian coordinate system with coordinate axes designated X and Y or in a coordinate system with polar coordinates.
  • the current utilization of the lifting device is displayed in the form of a point P entered in the coordinate system 36.
  • the polyline K represents the nominal maximum permissible utilization of the lifting device. As shown, the lifting device is currently close to a maximum permissible utilization, which is easy and intuitive for a user due to the proximity of the point P to the utilization limit represented by the polygon K is recognizable.
  • the display on the display unit 3 can also include a menu bar 35, via which settings, information or alternative functions can be accessed, and a title bar 34 with, for example, a status display 37, which provides information about the charge status of the energy storage device 29 or also the type and quality of the data connection can give, include.
  • the coordinate lines can also have a label 38 with information about the current scaling of the representation.
  • Fig. 4b a schematic representation of graphic data calculated from characteristic information and displayed via a display unit 3 is shown, the current utilization of the lifting device being displayed in the form of a line in a coordinate system with polar coordinates.
  • the polar angle of the line L essentially corresponds to the angle of rotation of the crane column 16 relative to the crane base 15 detected with the rotary encoder DG1
  • the in Fig. 4b Vehicle 12 shown schematically in plan view is oriented along its imaginary longitudinal axis in the coordinate system 36.
  • the nominally permissible utilization limit is shown in the coordinate system 36 by the polynomial train K.
  • the illustrated utilization of the lifting device in the form of the line L is represented by the length of the line L, whereby, as shown, the utilization of the lifting device exceeds the nominally permissible utilization limit. This makes it easy for a user to see that the lifting device is in an impermissible utilization range.
  • FIG. 4c Another version of a graphical representation of the utilization of the lifting device is shown.
  • the representation again takes place with a line L entered in a coordinate system 36, the polar angle of the line L again corresponding to the angle of rotation of the lifting device.
  • the utilization of the lifting device is shown by a gray level corresponding to the current utilization. A larger load can be displayed with a darker gray level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Jib Cranes (AREA)
  • Forklifts And Lifting Vehicles (AREA)
EP16794921.3A 2015-10-16 2016-10-14 Anordnung aus einer steuerung und einem mobilen steuerungsmodul Active EP3362399B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16794921.3T PL3362399T5 (pl) 2015-10-16 2016-10-14 Układ urządzenia sterującego i mobilnego modułu sterowania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT3032015 2015-10-16
PCT/AT2016/060077 WO2017063014A1 (de) 2015-10-16 2016-10-14 Anordnung aus einer steuerung und einem mobilen steuerungsmodul

Publications (3)

Publication Number Publication Date
EP3362399A1 EP3362399A1 (de) 2018-08-22
EP3362399B1 EP3362399B1 (de) 2019-08-21
EP3362399B2 true EP3362399B2 (de) 2024-02-14

Family

ID=58516872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16794921.3A Active EP3362399B2 (de) 2015-10-16 2016-10-14 Anordnung aus einer steuerung und einem mobilen steuerungsmodul

Country Status (11)

Country Link
US (1) US10961087B2 (pt)
EP (1) EP3362399B2 (pt)
JP (1) JP7003043B2 (pt)
CN (1) CN108290722B (pt)
BR (1) BR112018007406B8 (pt)
DE (1) DE202016008565U1 (pt)
DK (1) DK3362399T4 (pt)
ES (1) ES2758128T3 (pt)
PL (1) PL3362399T5 (pt)
SG (1) SG11201803124YA (pt)
WO (1) WO2017063014A1 (pt)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6620798B2 (ja) * 2017-08-08 2019-12-18 株式会社タダノ 過負荷防止装置
JP7029724B2 (ja) * 2017-12-29 2022-03-04 ユニパルス株式会社 荷役助力装置
DE102018110462A1 (de) * 2018-05-02 2019-11-07 Voith Patent Gmbh Überwachungssystem für ein Kuppel- und/oder Dämpfungselement eines Fahrzeugs, insbesondere Schienenfahrzeugs
AT16885U1 (de) * 2019-03-28 2020-11-15 Palfinger Ag Kran mit Kransteuerung
CN111170156A (zh) * 2019-12-31 2020-05-19 博睿斯重工股份有限公司 一种洁净环境下的在线监测系统及监测方法
US11524879B2 (en) * 2021-04-19 2022-12-13 Oshkosh Corporation Remote control system for a crane
US20230399205A1 (en) * 2022-06-12 2023-12-14 Xingjian JING Disturbance Employment-Based Sliding Mode Control (DESMC) Method For 4-DOF Tower Crane Systems
CN115676634B (zh) * 2022-12-29 2023-03-07 博鼎精工智能科技(山东)有限公司 一种工程机械用液压控制系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614845A2 (en) 1988-12-27 1994-09-14 Kato Works Co., Ltd. Crane safety apparatus
JPH08127490A (ja) 1994-10-28 1996-05-21 Komatsu Ltd 無線データ伝送式荷重測定装置
JPH11278789A (ja) 1998-03-30 1999-10-12 Tadano Ltd クレーン車の遠隔操作装置
US20080154395A1 (en) 2004-09-28 2008-06-26 Olsbergs Hydraulics Ab Device
EP2489625B1 (en) 2011-02-21 2014-02-12 Reedijk Hydrauliek B.V. Mobile crane and method of operating a mobile crane.
EP1490288B1 (en) 2001-11-28 2015-02-25 Hojbjerg Maskinfabrik A/S Load control system, preferably for boom cranes
US20170008739A1 (en) 2015-07-08 2017-01-12 General Electric Company System and method for lifting with spreader bar
EP2684379B1 (en) 2011-03-08 2017-11-01 Magnetek Inc. System for control of mobile hydraulic equipment
EP3134344B1 (de) 2014-04-22 2018-09-12 Terex Global GmbH Verfahren und vorrichtung zum betreiben eines mobilkrans sowie mobilkran

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT14237B (pt) 1903-02-21 1903-11-25 Peter Wolters Mechanische Krat
US5730305A (en) * 1988-12-27 1998-03-24 Kato Works Co., Ltd. Crane safety apparatus
JPH0373795A (ja) * 1989-08-11 1991-03-28 Tadano Ltd 自走式クレーンの稼動状態表示装置
JP3245283B2 (ja) * 1993-11-05 2002-01-07 鹿島建設株式会社 運転状態表示装置を備えたクレーン制御装置
EP0857687A4 (en) * 1995-03-03 1999-12-29 Komatsu Mfg Co Ltd DEVICE FOR INDICATING THE MOBILITY RANGE OF A MOBILE CRANE VEHICLE
US6744372B1 (en) * 1997-02-27 2004-06-01 Jack B. Shaw Crane safety devices and methods
JP4242951B2 (ja) * 1998-08-20 2009-03-25 株式会社タダノ クレーン車の遠隔操作装置
DE19958691A1 (de) * 1999-12-06 2001-06-07 Koeck Elke Fahrwerk für eine weitausladende Arbeitsvorrichtung, insbesondere für einen Bauhochkran
DE10155006B4 (de) * 2001-11-06 2004-12-16 Terex-Demag Gmbh & Co. Kg Fahrzeugkran mit Superlifteinrichtung
CN1610841A (zh) * 2001-12-28 2005-04-27 皇家飞利浦电子股份有限公司 具有处理超声图像序列以执行身体器官中流体定量估计的装置的观测系统
JP2004001987A (ja) * 2002-03-25 2004-01-08 Hitachi Constr Mach Co Ltd 操作支援装置
DE202005020462U1 (de) 2005-12-08 2007-04-19 Liebherr-Werk Ehingen Gmbh Kran
US7656459B2 (en) * 2006-04-20 2010-02-02 Pacific Systems Solution Llc Crane hook and trolley camera system
DE102006027202A1 (de) * 2006-06-12 2007-12-13 Liebherr-Werk Nenzing Gmbh, Nenzing Kraneinsatzplaner
US20090098914A1 (en) * 2007-10-15 2009-04-16 Research In Motion Limited Method and system for enabling or disabling features based on a battery level threshold
CN201240780Y (zh) * 2008-01-22 2009-05-20 张勇 塔吊无线监控系统
US8392075B2 (en) * 2008-02-25 2013-03-05 Clark Equipment Company Carrier and backhoe control system and method
JP5381106B2 (ja) * 2009-01-07 2014-01-08 コベルコクレーン株式会社 クレーンの運転評価装置
US8190939B2 (en) * 2009-06-26 2012-05-29 Microsoft Corporation Reducing power consumption of computing devices by forecasting computing performance needs
CN201667015U (zh) * 2010-03-04 2010-12-08 常州益利亚重工机械科技有限公司 一种船用起重机监控系统
CN101833287B (zh) 2010-03-30 2012-02-22 三一重工股份有限公司 工程机械及其稳定性控制系统
JP2012041132A (ja) * 2010-08-19 2012-03-01 Mitsubishi Heavy Ind Ltd 遠隔操作システム用の操作パネル
DE202010014309U1 (de) 2010-10-14 2012-01-18 Liebherr-Werk Ehingen Gmbh Kran, insbesondere Raupen- oder Mobilkran
FR2967857B1 (fr) * 2010-11-19 2014-08-22 Eads Defence & Security Sys Procede de gestion du niveau de charge d'une batterie d'un terminal mobile, systeme de gestion et programme d'ordinateur correspondants
JP5863414B2 (ja) * 2011-11-25 2016-02-16 株式会社ダイヘン 操作装置および可動機械制御システム
US9041595B2 (en) * 2011-12-19 2015-05-26 Trimble Navigation Limited Determining the location of a load for a tower crane
JP5855469B2 (ja) 2012-01-16 2016-02-09 株式会社日立製作所 搬入経路計画システム
EP2674384B1 (de) * 2012-06-13 2021-01-27 Liebherr-Werk Ehingen GmbH Verfahren zur Überwachung der Kransicherheit sowie Kran
US9816370B2 (en) * 2012-09-19 2017-11-14 Honeywell International Inc. System and method for optimizing an operation of a sensor used with wellbore equipment
JP2014173244A (ja) * 2013-03-06 2014-09-22 Tadano Ltd 作業機の表示システム
DK201370130A (en) * 2013-03-07 2014-09-08 Tca Lift As Interactive directional remote control
JP2014174020A (ja) * 2013-03-08 2014-09-22 Mitsui Eng & Shipbuild Co Ltd 吊荷の重心計測装置及び吊荷の重心計測方法
JP6013974B2 (ja) * 2013-05-31 2016-10-25 株式会社キトー クレーン装置管理システムおよび情報処理方法
IN2013MU02109A (pt) * 2013-06-22 2015-06-05 Tata Consultancy Services Ltd
FI127437B (en) 2013-12-13 2018-06-15 Konecranes Global Corp Wireless communication with the load handler
AT14237U1 (de) 2014-01-31 2015-06-15 Palfinger Ag Kransteuerung
CN105189327B (zh) 2014-03-28 2017-03-15 住友重机械搬运系统工程株式会社 信息提示装置、起重机系统及信息提示方法
US20150284231A1 (en) * 2014-04-05 2015-10-08 RF Identity, Inc. Systems and methods for validation of personal protection equipment on aerial work platforms
US20150316921A1 (en) * 2014-05-05 2015-11-05 The Crosby Group LLC System and method of measurement, identification and analysis of material lifting products using remote monitoring
KR101523197B1 (ko) * 2014-09-01 2015-05-29 주식회사 광림 블루투스를 이용하는 크레인의 안전정보 제공시스템
CN104627840A (zh) * 2015-01-09 2015-05-20 深圳市正弦电气股份有限公司 一种起重机力反馈系统
BR112017025504A2 (pt) * 2015-07-17 2018-08-07 Crown Equipment Corporation dispositivo de processamento tendo uma interface gráfica de usuário.
JP6306552B2 (ja) * 2015-10-13 2018-04-04 株式会社タダノ 遠隔操作装置、及び案内システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614845A2 (en) 1988-12-27 1994-09-14 Kato Works Co., Ltd. Crane safety apparatus
EP0614845B2 (en) 1988-12-27 2004-05-12 Kato Works Co., Ltd. Crane safety apparatus
JPH08127490A (ja) 1994-10-28 1996-05-21 Komatsu Ltd 無線データ伝送式荷重測定装置
JPH11278789A (ja) 1998-03-30 1999-10-12 Tadano Ltd クレーン車の遠隔操作装置
EP1490288B1 (en) 2001-11-28 2015-02-25 Hojbjerg Maskinfabrik A/S Load control system, preferably for boom cranes
US20080154395A1 (en) 2004-09-28 2008-06-26 Olsbergs Hydraulics Ab Device
EP2489625B1 (en) 2011-02-21 2014-02-12 Reedijk Hydrauliek B.V. Mobile crane and method of operating a mobile crane.
EP2684379B1 (en) 2011-03-08 2017-11-01 Magnetek Inc. System for control of mobile hydraulic equipment
EP3134344B1 (de) 2014-04-22 2018-09-12 Terex Global GmbH Verfahren und vorrichtung zum betreiben eines mobilkrans sowie mobilkran
US20170008739A1 (en) 2015-07-08 2017-01-12 General Electric Company System and method for lifting with spreader bar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Cranes- Loader Cranes", NORME EUROPEENNE, no. 12999:2011, June 2012 (2012-06-01), pages 1 - 87

Also Published As

Publication number Publication date
US10961087B2 (en) 2021-03-30
CN108290722A (zh) 2018-07-17
EP3362399B1 (de) 2019-08-21
PL3362399T3 (pl) 2020-02-28
JP2018530493A (ja) 2018-10-18
WO2017063014A1 (de) 2017-04-20
CN108290722B (zh) 2021-07-09
ES2758128T3 (es) 2020-05-04
BR112018007406B1 (pt) 2023-01-24
BR112018007406A2 (pt) 2018-10-23
JP7003043B2 (ja) 2022-01-20
SG11201803124YA (en) 2018-05-30
BR112018007406B8 (pt) 2023-04-04
US20180229979A1 (en) 2018-08-16
DK3362399T4 (da) 2024-04-15
EP3362399A1 (de) 2018-08-22
PL3362399T5 (pl) 2024-05-13
DK3362399T3 (da) 2019-11-18
DE202016008565U1 (de) 2018-06-26

Similar Documents

Publication Publication Date Title
EP3362399B2 (de) Anordnung aus einer steuerung und einem mobilen steuerungsmodul
EP3134344B2 (de) Verfahren und vorrichtung zum betreiben eines mobilkrans sowie mobilkran
EP3362400B1 (de) Anordnung aus einer steuerung und einem mobilen steuerungsmodul
EP3901872B1 (de) Verfahren und vorrichtung zum steuern des betriebs einer baumaschine
DE102014009165B4 (de) Fahrbarer Großmanipulator
EP3303732B1 (de) Grossmanipulator mit schnell ein- und ausfaltbarem knickmast
EP2139803B1 (de) Verfahren zum steuern einer lastbewegungsvorrichtung und steuerung einer lastbewegungsvorrichtung
EP1444162A1 (de) Fahrzeugkran mit superlifteinrichtung
WO2014166580A1 (de) Ferngesteuerter kran
DE102009016366A1 (de) Kran sowie Verfahren und System zum Betreiben eines Krans mit Hilfe von GPS
EP3202700A1 (de) Steuerungssystem für einen kran
EP2113481A1 (de) Mobilkran mit einer Kranüberwachungseinrichtung
EP3411321B1 (de) Verfahren zur überwachung wenigstens eines krans
EP3625783B1 (de) Steuerschalter, steuersystem und verfahren zur bedienung eines krans
DE102012221909A1 (de) Kabelbruchdiagnose bei einem Kran
DE112011104025T5 (de) Hubarm-und Werkzeugsteuersystem
EP3853167B1 (de) Kran mit einer antikollisionseinrichtung sowie verfahren zum einrichten einer solchen antikollisionseinrichtung
EP3770105A1 (de) Verfahren zum positionieren von tragarmen einer fahrzeughebebühne
EP3153348B2 (de) Lastentransportfahrzeug mit überwachungsmitteln zur gesicherten handhabung eines wechselbehälters
EP3368462B1 (de) Verfahren zum betreiben von mindestens zwei hebezeugen in einem gruppen-betrieb und anordnung mit mindestens zwei hebezeugen
EP3631587B1 (de) Verfahren zum betreiben einer fertigungsanlage und fertigungsanlage
DE102012025111A1 (de) Kran
WO2023151967A1 (de) Kran
DE102012001185A1 (de) Verfahren zum Betrieb eines ortsveränderbaren Arbeitsgerätes, sowie ein Arbeitsgerät zur Ausführung des Verfahrens
WO2014173609A1 (de) Sensorbasierte überwachung von windrichtung und wärmeeinstrahlung für ein mobiles arbeitsgerät

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B66C 13/42 20060101ALI20190305BHEP

Ipc: B66C 23/70 20060101ALI20190305BHEP

Ipc: B66C 15/00 20060101ALI20190305BHEP

Ipc: B66C 13/40 20060101AFI20190305BHEP

Ipc: B66C 15/06 20060101ALI20190305BHEP

Ipc: B66C 13/44 20060101ALI20190305BHEP

INTG Intention to grant announced

Effective date: 20190321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006239

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1169523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20191114

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191223

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016006239

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HIAB AB

Effective date: 20200316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2758128

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191014

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161014

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230928

Year of fee payment: 8

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231110

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231023

Year of fee payment: 8

Ref country code: IT

Payment date: 20231024

Year of fee payment: 8

Ref country code: FR

Payment date: 20231026

Year of fee payment: 8

Ref country code: DK

Payment date: 20231023

Year of fee payment: 8

Ref country code: DE

Payment date: 20231027

Year of fee payment: 8

Ref country code: AT

Payment date: 20231025

Year of fee payment: 8

27A Patent maintained in amended form

Effective date: 20240214

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502016006239

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231002

Year of fee payment: 8

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

Effective date: 20240409