EP3309800A1 - Verfahren zur herstellung eines schichtaufbaus unter verwendung einer paste auf basis einer widerstandslegierung - Google Patents

Verfahren zur herstellung eines schichtaufbaus unter verwendung einer paste auf basis einer widerstandslegierung Download PDF

Info

Publication number
EP3309800A1
EP3309800A1 EP16193341.1A EP16193341A EP3309800A1 EP 3309800 A1 EP3309800 A1 EP 3309800A1 EP 16193341 A EP16193341 A EP 16193341A EP 3309800 A1 EP3309800 A1 EP 3309800A1
Authority
EP
European Patent Office
Prior art keywords
paste
weight
layer
weight percent
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16193341.1A
Other languages
English (en)
French (fr)
Other versions
EP3309800B1 (de
Inventor
Jochen Langer
Melanie BAWOHL
Christina Modes
Steffen Burk
Jan Marien
Paul Kalemba
Anja Desch
Roland Reul
Jessica Reitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IsabellenHuette Heusler GmbH and Co KG
Heraeus Deutschland GmbH and Co KG
Original Assignee
IsabellenHuette Heusler GmbH and Co KG
Heraeus Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP16193341.1A priority Critical patent/EP3309800B1/de
Application filed by IsabellenHuette Heusler GmbH and Co KG, Heraeus Deutschland GmbH and Co KG filed Critical IsabellenHuette Heusler GmbH and Co KG
Priority to ES16193341T priority patent/ES2730825T3/es
Priority to KR1020197011773A priority patent/KR102298321B1/ko
Priority to US16/340,611 priority patent/US20200051719A1/en
Priority to PCT/EP2017/073421 priority patent/WO2018068989A1/de
Priority to JP2019519641A priority patent/JP2019537838A/ja
Priority to CN201780062982.9A priority patent/CN109906491A/zh
Priority to TW106134416A priority patent/TWI765919B/zh
Publication of EP3309800A1 publication Critical patent/EP3309800A1/de
Application granted granted Critical
Publication of EP3309800B1 publication Critical patent/EP3309800B1/de
Priority to US17/388,676 priority patent/US20220051834A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06553Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of a combination of metals and oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06526Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06593Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the temporary binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors

Definitions

  • the invention relates to a method for producing a layer structure on a substrate using a resistor alloy based paste, as well as the resulting layer structure and its use.
  • alloys with a low temperature coefficient of electrical resistance are used.
  • Such alloys with a low TCR value are referred to as resistance alloys in the context of the invention.
  • a typical resistance alloy with a low TCR value is, for example, ISOTAN® (also known as CuNi44, material No. 2.0842).
  • ISOTAN® also known as CuNi44, material No. 2.0842.
  • the alloy layers are applied to a substrate having a surface of a glass or ceramic material.
  • resistance alloys in the form of films or sheets, by roll-bonding or lamination are combined with substrate materials customary in electrical engineering.
  • resistance alloys as a paste to substrate materials by means of simple printing techniques, in particular screen printing or stencil printing, since this makes possible more flexible layer geometries.
  • Such pastes consist at least of a powder of the relevant resistance alloy and an organic medium. By firing, the constituents of the organic medium volatilize and the fused alloy of the resistance alloy remains.
  • organic media available, in which powder of these resistance alloys can be formulated and which basically guarantee a printability.
  • pastes, which consist only of resistance alloy powder and organic medium show only a slight adhesion to the ceramic substrates used after firing.
  • Improved adhesion of printed resistor alloys to glass or ceramic surfaces can basically be achieved by adding a glass frit to a resistance alloy paste.
  • Layer structures of a ceramic substrate and a glass-containing resistance alloy paste, or the resulting layer structures after baking, are known in the art.
  • the EP0829886A2 teaches, for example, a glass frit containing resistance alloy paste deposited on an Al 2 O 3 substrate is applied.
  • a glass frit is added to resistance alloy paste, it has the disadvantage that the TCR value of the post-baked layer may differ from the TCR value of the bulk resistive alloy, so that the advantageous electrical properties of the resistance alloy in the composite thus formed can not come to fruition.
  • the object underlying the present invention is to provide a method for producing layers of resistance alloys on glass or ceramic surfaces, in which resistance alloys can be applied by printing a paste and allow strong adhesion of the resistance alloys on the ceramic substrate, without impairing the electrical properties of the resistance alloys in the layer structure produced. It is also an object to provide a layer structure in which the resistance alloy is mechanically stably connected to the glass or ceramic surface of a substrate after firing.
  • a substrate with a glass or ceramic surface is provided.
  • the substrate thus has a surface comprising a ceramic or a glass, wherein the ceramic material of the surface may preferably be selected from the group consisting of oxide ceramics, nitride ceramics and carbide ceramics.
  • suitable ceramics are forsterite, mullite, steatite, alumina, aluminum nitride, silicon carbide and hard porcelain.
  • the ceramic surface contains alumina or consists of alumina.
  • the glass of the glass surface is preferably a silicate glass.
  • a paste A is applied to at least a part of the glass or ceramic surface of the substrate.
  • the application can be effected for example by screen printing, stencil printing, knife coating or spraying.
  • a layer of paste A is obtained.
  • Paste A contains at least a glass frit and an organic medium or consists of at least one glass frit and an organic medium.
  • paste A contains 50-90% by weight of glass frit and 10-50% by weight of organic medium, based on the total weight of paste A.
  • the glass frit of the paste A contains at least two mutually different elements as oxides. These elements may be selected from the group consisting of Li, Na, K, Ca, Mg, Sr, Ba, B, Al, Si, Sn, Pb, P, Sb, Bi, Te, La, Ti, Zr, V, Nb, Mn, Fe, Co, Ni, Cu, Ag, Zn, and Cd.
  • the glass frit may be made of oxides, fluorides or other salts (eg, carbonates, nitrates, phosphates) of these elements.
  • Examples of starting compounds for preparing the glass frit may be selected from the group consisting of B 2 O 3 , H 3 BO 3 , Al 2 O 3 , SiO 2 , PbO, P 2 O 5 , Pb 3 O 4 , PbF 2 , MgO, MgCO 3 , CaO, CaCO 3 , SrO, SrCO 3 , BaO, BaCOs, Ba (NO 3 ) 2 , Na 2 B 4 O 7 , ZnO, ZnF 2 , Bi 2 O 3 , Li 2 O, Li 2 CO 3 , Na 2 O, NaCO 3 , NaF, K 2 O, K 2 CO 3 , KF, TiO 2 , Nb 2 O 5 , Fe 2 O 3 , ZrO 2 CuO, Cu 2 O, MnO, MnO 2 , Mn 3 O 4 , CdO, SnO 2 , TeO 2 , Sb 2 O 3 , Co 3 O 4 , Co 2 O 3 , CoO, La 2
  • the transformation temperature T g of the glass frit of the paste A is in the range of 600-750 ° C., in particular in the range of 690-740 ° C.
  • the transformation temperature T g can be determined for the purposes of the invention according to DIN ISO 7884-8: 1998-02.
  • the glass frit contained in paste A preferably comprises silicon, aluminum, boron and at least one alkaline earth metal in each case as an oxide.
  • the alkaline earth metal is particularly preferably calcium.
  • the organic medium may contain at least one organic solvent and at least one binder.
  • the organic solvent may be selected from the group consisting of texanol, terpineol and other high boiling point organic solvents having a boiling point of at least 140 ° C.
  • the binder may be selected from acrylate resins, ethylcelluloses and other polymers such as e.g. Butyralen.
  • the organic medium of paste A may contain other ingredients which may be selected from the group consisting of thixotropic agents, stabilizers and emulsifiers. By adding these ingredients, e.g. the printability or storage stability of pastes can be improved.
  • step c) a drying step and optionally firing of the layer of paste A is carried out.
  • the drying can be carried out at temperatures in the range of 20-180 ° C, in particular in the range of 120-180 ° C, e.g. in a dry bar.
  • the layer of paste A can be fixed on the substrate.
  • the dried layer of paste A can already be so mechanically robust that a layer of paste B can be applied directly.
  • the layer of paste A may optionally be fired after drying.
  • the firing can take place at temperatures in the range of 750-950 ° C.
  • the layer of paste A is fired so that the organic medium is substantially removed and the glass frit sinters together as homogeneously as possible.
  • the fired layer of paste A has at least one glass or consists of a glass.
  • the fired layer of paste A may also be called layer A.
  • the firing can be carried out either under atmospheric conditions or under inert gas conditions (eg N 2 atmosphere).
  • the layer of paste A is first dried in step c) and then fired. If the layer of paste A is already fired in step c), in the subsequent step d. Paste B may possibly be better applied.
  • paste B is added to at least a portion of the layer of step c to obtain a layer of paste B.
  • the paste B of the present invention contains at least a powder of a resistance alloy and an organic medium.
  • paste B may additionally contain a glass frit.
  • a glass-free paste B may have the advantage that the electrical properties of the resistance alloy, in particular the TCR value, are not adversely affected by the presence of glass.
  • paste B may also be preferred for paste B to contain a glass frit.
  • paste B does not contain more than 15% by weight, preferably not more than 12% by weight of glass frit, based on the total weight of paste B.
  • T. -Shock storage the bond strength of the layer structure can be varied with frequent temperature changes (T. -Shock storage) can be improved.
  • paste B contains at least 3% by weight Glass frit, in particular at least 5 weight percent based on the total weight of paste B.
  • the content of resistance alloy in paste B may preferably be in the range of 60-98% by weight and the content of organic medium may be in the range of 2-40% by weight, in particular in the range of 2-37% by weight, based in each case on the total weight of paste B.
  • the resistance alloys usable for the powder have a temperature coefficient of electrical resistance of less than 150 ppm / K, preferably less than 100 ppm / K and more preferably less than 50 ppm / K.
  • the temperature coefficient of the electrical resistance specified in the context of the invention relates to the measurement of the bulk alloy and can in the context of the invention on a wire or a film of the corresponding alloy according to the standard DIN EN 60115-1: 2016-03 (with drying method I ).
  • the resistance alloy may include, for example, elements selected from the group consisting of chromium, aluminum, silicon, manganese, iron, nickel and copper.
  • the resistance alloy may preferably be selected from the group consisting of CuNi, CuNiMn, CuSnMn and NiCuAlSiMnFe.
  • the resistance alloy may be selected from the group consisting of the alloys: I. copper 53.0-57.0 weight percent nickel 42.0 - 46.0 weight percent manganese 0.5-1.2 weight percent other elements ⁇ 10,000 ppm by weight II. copper 83.0 - 89.0 weight percent nickel 1-3% by weight manganese 10.0 - 14.0 weight percent other elements ⁇ 10,000 ppm by weight III.
  • the powder of the resistance alloy can be prepared by methods known to those skilled in the art, such as gas atomization under inert gas, water atomization or grinding.
  • the average particle diameter d 50 of the powder of the resistance alloy is preferably 0.2 ⁇ m-15 ⁇ m.
  • paste B contains an organic medium.
  • paste B contains the organic medium in an amount of 2-40% by weight.
  • the organic medium of paste B may contain at least one organic solvent and at least one binder.
  • the organic solvent can be selected from the group consisting of texanol, terpineol, iso-tridecyl alcohol or other high-boiling organic solvents having a boiling point of at least 140 ° C.
  • the binder may be selected from acrylate resins, ethylcelluloses or other polymers.
  • the organic medium of paste B may contain other ingredients which may be selected from the group consisting of thixotropic agents, stabilizers and emulsifiers. By adding these ingredients, e.g. the printability or storage stability of the paste can be improved.
  • the optionally contained glass frit of paste B contains at least two mutually different elements as oxides.
  • the elements can be selected from the group consisting of Li, Na, K, Ca, Mg, Sr, Ba, B, Al, Si, Sn, Pb, P, Sb, Bi, Te, La, Ti, Zr, V, Nb, Mn, Fe, Co, Ni, Cu, Ag, Zn, and Cd.
  • the glass frit can be prepared from oxides, fluorides or other salts (eg carbonates, nitrates, phosphates) of these elements.
  • Examples of starting compounds for the glass frit may be selected from the group consisting of B 2 O 3 , H 3 BO 3 , Al 2 O 3 , SiO 2 , PbO, P 2 O 5 , Pb 3 O 4 , PbF 2 , MgO, MnCO 3 , CaO, CaCO 3 , SrO, SrCO 3 , BaO, BaCO 3 , Ba (NO 3 ) 2 , Na 2 B 4 O 7 , ZnO, ZnF 2 , Bi 2 O 3 , Li 2 O, Li 2 CO 3 , Na 2 O, NaCO 3 , NaF, K 2 O, K 2 CO 3 , KF,, TiO 2 , Nb 2 O 5 , Fe 2 O 3 , ZrO 2 CuO, MnO, Mn 3 O 4 , MnO 2 , CdO, SnO 2 , TeO 2 , Sb 2 O 3 , Co 3 O 4 , Co 2 O 3 , CoO, La 2 O 3 ,
  • the glass frit of paste B may contain silicon, aluminum, boron and at least one alkaline earth metal, each as oxide.
  • the glass frit of the paste B may be the same as the glass frit of the paste A or different.
  • the glass frit of paste B may contain at least two elements as oxides contained in the glass frit of paste A.
  • the glass frits of the pastes A and B are the same, as this can improve the compatibility of the layers A and B with each other.
  • the layer of paste B is accordingly applied to layer A.
  • a so-called precursor (dt. Precursor structure) is prepared.
  • the precursor thus contains a substrate on which a layer of paste A is applied, which may optionally already be fired (then also called layer A).
  • the precursor contains a layer of paste B on the layer of paste A, wherein the layer of paste B is not fired.
  • the paste B is applied to an already in step c. fired layer A applied.
  • the precursor may be configured so that the layer of paste B completely covers the layer of paste A.
  • step e) the precursor is fired, thereby obtaining the layer structure according to the invention.
  • the firing may be preceded by a drying step.
  • the drying can be carried out at a temperature in the range of 20-180 ° C., in particular in the range of 120-180 ° C., for example in a dry bar or an infrared belt dryer.
  • the burning of the precursor is preferably carried out at a temperature in the range of 700-1000 ° C, in particular in the range of 850-900 ° C.
  • the precursor is preferably fired in such a way that the constituents of the organic medium in the precursor volatilize and the powder of the resistance alloy and the glass frit sinter together.
  • the firing may take place either under atmospheric conditions in the presence of O 2 or under inert gas conditions (eg N 2 atmosphere).
  • the layer of paste A as explained above, the layer A is obtained, and by firing the layer of paste B, layer B is obtained.
  • the layers of paste A and paste B are burned simultaneously by the firing of the precursor .
  • the layer A is forcibly refired when the layer of paste B is fired.
  • Layer A which at least partially covers the glass or ceramic surface of the substrate, comprises the glass obtained by firing the glass frit from paste A.
  • the glass in layer A contains the sintered glass frit of paste A.
  • this glass frit is homogeneously sintered to the glass over the entire extent of layer A and has no non-sintered regions.
  • layer B has the resistance alloy of paste B and is mechanically firmly connected to layer A.
  • the mechanical strength of adhesion can be determined by various tests.
  • Layer B of the layer structure may have a TCR value substantially equal to the bulk value of the resistance alloy.
  • the adhesion can be checked by the following tests: A strip of adhesive tape of the brand Scotch®-Magic (3M Germany GmbH) is glued to the fired layer structure and, for example, firmly brushed with a fingernail. Subsequently, the adhesive film is removed again. Resistant alloy layers with low adhesion to the glass or ceramic surface of the substrate adhere to the adhesive film. Layered structures with a medium adhesive strength remain partly on the adhesive film and layer structures with a high adhesive strength are not detached from the adhesive film.
  • layer A can act as a bonding agent between the glass or ceramic surface of the substrate and the layer B containing the resistance alloy.
  • the present invention can provide a layer of resistance alloy mechanically stably bonded to the substrate surface.
  • the layer B contains the resistance alloy in the amount originally used in paste B.
  • layer B additionally has a glass made from the glass frit of paste B
  • the adhesion of layer B to layer A can be further improved.
  • the glass content of layer B is determined by the amount of glass frit used in paste B.
  • layer B comprises not more than 20% by weight of glass, in particular not more than 15% by weight of glass, based on the total weight of layer B.
  • the layer structure following step e) can be provided with a seal (also called protective glaze , or overglaze ).
  • a seal also called protective glaze , or overglaze .
  • this seal is made of a glass. This seal is used in particular to protect the layer structure from environmental influences, such as moisture.
  • the layer structure according to the invention can be used inter alia to produce precision resistors.
  • Paste A was prepared by mixing 22% by weight of organic medium (85% by weight of Texanol, 15% by weight of ethylcellulose (75% N7, 25% N50)) and 78% by weight of a glass frit according to Table 1. The pastes were homogenized by means of a three-roll chair.
  • a powder of the resistance alloy isotan (average particle diameter d 50 : 8 microns, prepared by gas atomizing a melt under N 2 atmosphere), an organic medium (65 wt.% Texanol and 35 wt.% Acrylate binder) and, if necessary, a glass frit combined in the specified amounts and homogenized using a three-roll chair.
  • the pastes produced have a viscosity of about 30-90 Pas at 20-25 ° C. ⁇ b> Table 2 ⁇ / b> % By weight Glass frit 7 Isotanpulver Organic medium Paste B1 6 84 10
  • the glass pastes A containing the glass frits from Table 1 were applied by screen printing on Al 2 O 3 substrates having a size of 101.6 ⁇ 101.6 mm and a thickness of 0.63 mm (Rubalit 708 S, CeramTec). For this purpose, a sieve from Koenen GmbH, Germany was used with an EKRA Microtronic II printer (type M2H). The emulsion thickness was about 50 ⁇ m (sieving parameter: 80 mesh and 65 ⁇ m wire diameter (stainless steel)). Printing parameters: 63 N squeegee pressure, squeegee speed 100 mm / s and a jump of 1.0 mm. The layer thickness after printing (wet) was about 90 ⁇ m.
  • the samples were placed in an infrared belt dryer (BTU international, type HHG-2) for 20 min dried at 150 ° C.
  • the layer thickness after drying was about 60 microns.
  • the printed glass layers were fired in a nitrogen atmosphere (N 2 5.0) in an oven (ATV Technologie GmbH, type PEO 603). The temperature was increased from 25 ° C to 850 ° C, held at 850 ° C for 10 and then cooled to 25 ° C within 20 min. (Total throughput time 82 min)
  • the layer thickness after firing was about 50 ⁇ m.
  • the resistance alloy paste B was applied to the previously prepared layer by screen printing. For this purpose, a sieve made by Koenen GmbH, Germany was used with an EKRA Microtronic II printer (type M2H).
  • the emulsion thickness was about 50 ⁇ m, screen parameters: 80 mesh and 65 ⁇ m wire diameter (stainless steel).
  • the printed resistance alloy pastes (including the precursor ) were fired in a nitrogen atmosphere (N 2 5.0) in an oven (ATV Technology GmbH, type PEO 603). The temperature was increased from 25 ° C to 900 ° C, held for 10 min at 900 ° C and cooled within 20 min to 25 ° C (total flow time 82 min). The layer thickness after firing was about 50 ⁇ m.
  • Glass frit 7 Isotanpulver Organic medium Paste B2 0 90 10 Paste B3 3 87 10 Paste B4 6 84 10 Paste B5 9 81 10 layer structure substratum Glass layer (layer A) Alloy layer (layer B) Liability before T-shock storage Replacement after T-Shock storage 9 Al 2 O 3 Paste A made of glass 7 Paste B2 Good 20 cycles 10 Paste B3 Good 100 cycles 11 Paste B4 Good > 500 cycles 12 Paste B5 Good > 500 cycles
  • the prepared layer structures were each stored for 15 minutes in a chamber with a temperature of -40 ° C and + 150 ° C, respectively.
  • the transition from one chamber to another was automated and lasted about 4s.
  • One cycle contains storage at -40 ° C and one at + 150 ° C.
  • the adhesion was checked after various numbers of cycles with an adhesive strip as described above.
  • the TCR values were measured in the temperature range 20-60 ° C. according to the standard DIN EN 60115-1: 2016-03 (drying method I): ⁇ b> Table 6 ⁇ / b> layer structure Quantity of glass frit in paste B TCR 9 0% by weight -25 to -14 ppm / K 12 9% by weight -37 to -21 ppm / K
  • TCR bulk value for isotan (as a wire) ranges from -80 to +40 ppm / K.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Conductive Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Schichtaufbau aufweisend: ein Substrat mit einer Glas-oder Keramikoberfläche, eine Schicht A, die die Glas- oder Keramikoberfläche des Substrats wenigstens teilweise bedeckt, wobei Schicht A ein Glas aufweist, in dem wenigstens zwei voneinander verschiedene Elemente als Oxide enthalten sind und eine Schicht B, die Schicht A wenigstens teilweise bedeckt. Schicht B weist folgende Bestandteile auf: eine Widerstandslegierung mit einem Temperaturkoeffizienten der elektrischen Widerstandes weniger als 150 ppm/K, und optional ein Glas, das wenigstens zwei voneinander verschiedene Elemente als Oxide enthält. Schicht B enthält nicht mehr als 20 Gewichtsprozent Glas, bezogen auf das Gesamtgewicht der Schicht B.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Schichtaufbaus auf einem Substrat unter Verwendung einer Paste auf Basis einer Widerstandslegierung, sowie den erhaltenen Schichtaufbau und dessen Verwendung.
  • Insbesondere für die Herstellung von Präzisionswiderständen werden Legierungen mit einem niedrigen Temperaturkoeffizient des elektrischen Widerstandes (TCR) eingesetzt. Solche Legierungen mit einem niedrigen TCR-Wert werden im Rahmen der Erfindung als Widerstandslegierungen bezeichnet. Eine typische Widerstandslegierung mit einem niedrigen TCR-Wert ist z.B. ISOTAN® (auch bekannt als CuNi44, Werkstoffnr. 2.0842). Zur Herstellung von Präzisionswiderständen werden die Legierungsschichten auf ein Substrat mit einer Oberfläche aus einem gläsernen oder keramischen Material aufgetragen. Meistens werden Widerstandslegierungen in Form von Folien oder Blechen, durch Walzplattieren oder Laminieren mit in der Elektrotechnik üblichen Substratmaterialien verbunden. Es besteht der Bedarf, Widerstandslegierungen als Paste mittels einfacher Drucktechniken, insbesondere Siebdruck oder Schablonendruck, auf Substratmaterialien aufzubringen, da dadurch flexiblere Schichtgeometrien ermöglicht werden. Dazu ist es erforderlich, Widerstandslegierungen in Form von druckbaren Pasten bereitzustellen, die nach dem Aufbringen auf das Substrat eingebrannt werden können. Solche Pasten bestehen zumindest aus einem Pulver der betreffenden Widerstandslegierung und einem organischen Medium. Durch das Brennen verflüchtigen sich die Bestandteile des organischen Mediums und das zusammengeschmolzene oder zusammengesinterte Pulver der Widerstandslegierung bleibt zurück. Es steht eine große Auswahl an organischen Medien zur Verfügung, in die Pulver dieser Widerstandslegierungen formuliert werden können und die grundsätzlich eine Verdruckbarkeit gewährleisten. Allerdings hat sich herausgestellt, dass Pasten, die nur aus Widerstandslegierungspulver und organischem Medium bestehen, auf den verwendeten Keramiksubstraten nach dem Einbrennen nur eine geringe Haftung zeigen. Eine verbesserte Haftung von gedruckten Widerstandslegierungen auf Glas- oder Keramikoberflächen kann grundsätzlich dadurch erreicht werden, dass einer Widerstandslegierungspaste eine Glasfritte zugesetzt wird. Schichtaufbauten aus einem Keramiksubstrat und einer glashaltigen Widerstandslegierungspaste, beziehungsweise die daraus resultierenden Schichtaufbauten nach dem Einbrennen, sind im Stand der Technik bekannt. Die EP0829886A2 lehrt beispielsweise eine Glasfritte enthaltende Widerstandslegierungspaste, die auf ein Al2O3-Substrat aufgebracht wird. Wenn Widerstandslegierungspaste jedoch eine Glasfritte zugesetzt wird, so hat dies den Nachteil, dass der TCR-Wert der nach dem Einbrennen gebildeten Schicht von dem TCR-Wert der Bulk-Widerstandslegierung abweichen kann, so dass die vorteilhaften elektrischen Eigenschaften der Widerstandslegierung in dem so gebildeten Verbund nicht zum Tragen kommen können.
  • Die Aufgabe, die der vorliegenden Erfindung zu Grunde liegt, besteht darin, ein Verfahren zum Herstellen von Schichten von Widerstandslegierungen auf Glas- oder Keramikoberflächen bereitzustellen, bei dem Widerstandslegierungen durch Drucken einer Paste aufgetragen werden können und eine starke Haftung der Widerstandslegierungen auf dem Keramiksubstrat ermöglichen, ohne dass die elektrischen Eigenschaften der Widerstandslegierungen im erzeugten Schichtaufbau beeinträchtigt werden. Ferner besteht die Aufgabe, einen Schichtaufbau bereitzustellen, in dem die Widerstandslegierung nach dem Einbrennen mechanisch stabil mit der Glas- oder Keramikoberfläche eines Substrats verbunden ist.
  • Diese Aufgaben werden gelöst durch ein Verfahren zur Herstellung eines Schichtaufbaus umfassend die aufeinanderfolgenden Schritte:
    1. a. Bereitstellung eines Substrats mit einer Glas - oder Keramikoberfläche,
    2. b. Aufbringen einer Paste A auf wenigstens einen Teil der Glas-oder Keramikoberfläche des Substrats unter Erhalt einer Schicht aus Paste A, wobei Paste A folgende Bestandteile enthält:
      1. I. eine Glasfritte, die wenigstens zwei voneinander verschiedene Elemente als Oxide enthält und eine Transformationstemperatur Tg im Bereich von 600 bis 750°C aufweist und
      2. II. ein organisches Medium,
    3. c. Trocknen und gegebenenfalls Brennen der Schicht aus Paste A
    4. d. Aufbringen einer Paste B auf wenigstens einen Teil der Schicht aus Schritt c. unter Erhalt eines Schicht aus Paste B, wobei Paste B folgende Bestandteile enthält:
      1. I. Ein Pulver einer Widerstandslegierung mit einem Temperaturkoeffizienten des elektrischen Widerstandes von weniger als 150 ppm/K
      2. II. ein organisches Medium,
      3. III. 0 - 15 Gewichtsprozent Glasfritte, bezogen auf das Gesamtgewicht von Paste B, und
    5. e. Brennen und optional vor dem Brennen Trocknen der Schichten aus Paste B.
  • Dem Fachmann ist anhand der vorangegangenen Formulierung klar, dass die Abfolge der Schritte eingehalten werden muss, wobei nicht ausgeschlossen ist, dass optional zwischen den genannten Schritten jeweils auch weitere Schritte durchgeführt werden können, solange die Reihenfolge nicht geändert wird.
  • Es wurde gefunden, dass mit dem erfindungsgemäßen Verfahren ein Schichtaufbau hergestellt werden kann, der eine verbesserte mechanische Stabilität, insbesondere eine bessere
  • Langzeitstabilität aufweist, ohne dass dadurch der TCR der Widerstandslegierung im Wesentlichen verändert würde.
  • Überraschender Weise wurde gefunden, dass besonders gute Schichtaufbauten hergestellt werden können, wenn vor dem Aufbringen der Paste B auf der Glas- oder Keramikoberfläche eines Substrats eine Paste A aufgebracht wird und gleichzeitig der Gewichtsanteil an Glasfritte in Paste B so eingestellt wird, dass die Paste B nicht mehr als 15 Gewichtsprozent enthält.
  • In Schritt a) wird ein Substrat mit einer Glas- oder Keramikoberfläche bereitgestellt. Das Substrat hat also eine Oberfläche, die eine Keramik oder ein Glas aufweist, wobei das keramische Material der Oberfläche bevorzugt ausgewählt sein kann aus der Gruppe bestehend aus Oxidkeramiken, Nitridkeramiken und Carbidkeramiken. Bespiele für geeignete Keramiken sind Forsterit, Mullit, Steatit, Aluminiumoxid, Aluminiumnitrid, Siliziumcarbid und Hartporzellan. Insbesondere enthält die Keramikoberfläche Aluminiumoxid oder besteht aus Aluminiumoxid. Das Glas der Glasoberfläche ist bevorzugt ein Silikatglas.
  • In Schritt b) wird eine Paste A auf wenigstens einen Teil der Glas- oder Keramikoberfläche des Substrats aufgebracht. Das Aufbringen kann beispielsweise durch Siebdruck, Schablonendruck, Rakeln oder Aufspritzen erfolgen. Durch das Aufbringen wird eine Schicht aus Paste A erhalten. Paste A enthält mindestens eine Glasfritte und ein organisches Medium oder besteht aus mindestens einer Glasfritte und einem organischen Medium. Bevorzugt enthält Paste A 50 - 90 Gewichtsprozent Glasfritte und 10 - 50 Gewichtsprozent organisches Medium, bezogen auf das Gesamtgewicht von Paste A.
  • Die Glasfritte der Paste A enthält wenigstens zwei voneinander verschiedene Elemente als Oxide. Diese Elemente können ausgewählt sein aus der Gruppe bestehend aus Li, Na, K, Ca, Mg, Sr, Ba, B, Al, Si, Sn, Pb, P, Sb, Bi, Te, La, Ti, Zr, V, Nb, Mn, Fe, Co, Ni, Cu, Ag, Zn, und Cd. Die Glasfritte kann hergestellt sein aus Oxiden, Fluoriden oder sonstigen Salzen (z.B. Carbonaten, Nitraten, Phosphaten) dieser Elemente. Beispiele für Ausgangsverbindungen zur Herstellung der Glasfritte können ausgewählt sein aus der Gruppe bestehend aus B2O3, H3BO3, Al2O3, SiO2, PbO, P2O5, Pb3O4, PbF2, MgO, MgCO3, CaO, CaCO3, SrO, SrCO3, BaO, BaCOs, Ba(NO3)2, Na2B4O7, ZnO, ZnF2, Bi2O3, Li2O, Li2CO3, Na2O, NaCO3, NaF, K2O, K2CO3, KF, TiO2, Nb2O5, Fe2O3, ZrO2 CuO,Cu2O, MnO, MnO2, Mn3O4, CdO, SnO2, TeO2, Sb2O3, Co3O4, Co2O3, CoO, La2O3, Ag2O, NiO, V2O5, Li3PO4, Na3PO4, K3PO4, Ca3(PO4)2, Mg3(PO4)2, Sr3(PO4)2, Ba3(PO4)2 und komplexen Mineralien, wie z.B. Colemanit und Dolomit.
  • Die Transformationstemperatur Tg der Glasfritte der Paste A liegt im Bereich von 600 - 750°C, insbesondere im Bereich von 690 - 740°C. Die Transformationstemperatur Tg kann für die Zwecke der Erfindung gemäß DIN ISO 7884-8:1998-02 bestimmt werden.
  • Bevorzugt umfasst die in Paste A enthaltene Glasfritte Silizium, Aluminium, Bor und mindestens ein Erdalkalimetall jeweils als Oxid auf. Besonders bevorzugt ist das Erdalkalimetall Calcium.
  • Um eine besonders gute Haftung zu erzielen, kann die Glasfritte in einer bevorzugten Ausführungsform hergestellt sein aus:
    1. a. 25 - 55 Gewichtsprozent Siliziumoxid,
    2. b. 20 - 45 Gewichtsprozent Calciumcarbonat,
    3. c. 10 - 30 Gewichtsprozent Aluminiumoxid und
    4. d. 1 - 10 Gewichtsprozent Boroxid.
  • Das organische Medium kann mindestens ein organisches Lösungsmittel und mindestens einen Binder enthalten. Das organische Lösungsmittel kann ausgewählt sein aus der Gruppe bestehend aus Texanol, Terpineol und anderen hochsiedenden organischen Lösungsmitteln mit einem Siedepunkt von mindesten 140°C. Der Binder kann ausgewählt sein aus Acrylatharzen, Ethylcellulosen und anderen Polymeren wie z.B. Butyralen. Optional kann das organische Medium der Paste A weitere Bestandteile enthalten, die ausgewählt sein können aus der Gruppe bestehend aus Thixotropiemitteln, Stabilisatoren und Emulgatoren. Durch Zugabe dieser Bestandteile können z.B. die Verdruckbarkeit oder Lagerstabilität von Pasten verbessert werden.
  • In Schritt c) erfolgen ein Trocknungsschritt und gegebenenfalls ein Brennen der Schicht aus Paste A. Das Trocknen kann bei Temperaturen im Bereich von 20 - 180°C, insbesondere im Bereich von 120-180 °C erfolgen, z.B. in einem Trockenschank. Durch das Trocknen kann die Schicht aus Paste A auf dem Substrat fixiert werden. Die getrocknete Schicht aus Paste A kann bereits so mechanisch robust sein, dass direkt eine Schicht aus Paste B aufgetragen werden kann.
  • Die Schicht aus Paste A kann nach dem Trocknen optional gebrannt werden. Das Brennen kann bei Temperaturen im Bereich von 750 - 950°C erfolgen. Bevorzugt wird die Schicht aus Paste A so gebrannt, dass das organische Medium im Wesentlichen entfernt wird und die Glasfritte möglichst homogen zusammensintert. Die gebrannte Schicht aus Paste A weist mindestens ein Glas auf oder besteht aus einem Glas. Die gebrannte Schicht aus Paste A kann auch Schicht A genannt werden. Das Brennen kann entweder unter Atmosphärenbedingungen oder unter Inertgasbedingungen (z.B. N2-Atmosphäre) erfolgen. In einer bevorzugten Ausführungsform der Erfindung wird die Schicht aus Paste A in Schritt c) zuerst getrocknet und anschließend gebrannt. Wenn die Schicht aus Paste A in Schritt c) schon gebrannt wird, kann im darauf folgenden Schritt d. Paste B möglicher Weise besser aufgetragen werden.
  • In Schritt d) wird Paste B unter Erhalt einer Schicht aus Paste B auf wenigstens einen Teil der Schicht aus Schritt c. aufgebracht. Die Paste B der vorliegenden Erfindung enthält mindestens ein Pulver einer Widerstandslegierung und ein organisches Medium. Optional kann Paste B zusätzlich eine Glasfritte enthalten. Es kann jedoch auch bevorzugt sein, dass Paste B keine Glasfritte enthält. Eine glasfreie Paste B kann den Vorteil haben, dass die elektrischen Eigenschaften der Widerstandslegierung, insbesondere der TCR-Wert, nicht negativ durch die Anwesenheit von Glas beeinflusst werden.
  • Um die Haftung von Schicht B auf Schicht A im fertigen Schichtaufbau weiter zu verbessern, kann es auch bevorzugt sein, dass Paste B eine Glasfritte enthält. Paste B enthält jedoch nicht mehr als 15 Gewichtsprozent, bevorzugt nicht mehr als 12 Gewichtsprozent Glasfritte, bezogen auf das Gesamtgewicht von Paste B. Wie in Tabelle 5 zu erkennen ist, kann durch eine Glasfritte in Paste B die Haftfestigkeit des Schichtaufbaus bei häufigen Temperaturwechseln (T-Shock-Lagerung) verbessert werden. Bevorzugt enthält Paste B mindestens 3 Gewichtsprozent Glasfritte, insbesondere mindestens 5 Gewichtsprozent bezogen auf das Gesamtgewicht von Paste B. Besonders bevorzugt kann Paste B Glasfritte in einer Menge von 3 - 15 Gewichtsprozent, ganze besonders bevorzugt in einer Menge von 5 - 12 Gewichtsprozent, bezogen auf das Gesamtgewicht von Paste B enthalten. Der Gehalt an Widerstandslegierung in Paste B kann bevorzugt im Bereich von 60 - 98 Gewichtsprozent liegen und der Gehalt an organischem Medium kann im Bereich von 2 - 40 Gewichtsprozent, insbesondere im Bereich von 2 - 37 Gewichtsprozent liegen, jeweils bezogen auf das Gesamtgewicht von Paste B.
  • Die für das Pulver verwendbaren Widerstandslegierungen weisen einen Temperaturkoeffizienten des elektrischen Widerstandes von weniger als 150 ppm/K, bevorzugt von weniger als 100 ppm/K und besonders bevorzugt von weniger als 50 ppm/K, auf. Der im Rahmen der Erfindung angegebene Temperaturkoeffizienten des elektrischen Widerstandes bezieht sich auf die Messung der Bulk-Legierung und kann im Rahmen der Erfindung an einem Draht oder einer Folie der entsprechenden Legierung gemäß der Norm DIN EN 60115-1:2016-03 (mit Trocknungsverfahren I) bestimmt werden.
  • Die Widerstandslegierung kann beispielsweise Elemente enthalten, die ausgewählt sind aus der Gruppe bestehend aus Chrom, Aluminium, Silizium, Mangan, Eisen, Nickel und Kupfer. Die Widerstandslegierung kann vorzugsweise ausgewählt sein aus der Gruppe bestehend aus CuNi, CuNiMn, CuSnMn und NiCuAlSiMnFe. In einer besonders bevorzugten Ausführungsform kann die Widerstandslegierung ausgewählt sein aus der Gruppe bestehend aus den Legierungen:
    I.
    Kupfer 53,0 - 57,0 Gewichtsprozent
    Nickel 42,0 - 46,0 Gewichtsprozent
    Mangan 0,5 - 1,2 Gewichtsprozent
    sonstiger Elemente ≤10000 Gew. ppm
    II.
    Kupfer 83,0 - 89,0 Gewichtsprozent
    Nickel 1 - 3 Gewichtsprozent
    Mangan 10,0 - 14,0 Gewichtsprozent
    sonstiger Elemente ≤10000 Gew. ppm
    III.
    Kupfer 88,0 - 93,0 Gewichtsprozent
    Zinn 2 - 3 Gewichtsprozent
    Mangan 5,0 - 9,0 Gewichtsprozent
    sonstiger Elemente ≤10000 Gew. ppm
    IV.
    Kupfer 61,0 - 69,0 Gewichtsprozent
    Nickel 8 - 12 Gewichtsprozent
    Mangan 23,0 - 27,0 Gewichtsprozent
    sonstiger Elemente ≤10000 Gew. ppm
    oder
    V.
    Nickel 70,0 - 78,0 Gewichtsprozent
    Chrom 18,0 - 22,0 Gewichtsprozent
    Aluminium 3 - 4 Gewichtsprozent
    Silizium ,5 - 1,5 Gewichtsprozent
    Mangan 0,2 - 0,8 Gewichtsprozent
    Eisen 0,2 - 0,8 Gewichtsprozent
    sonstiger Elemente ≤10000 Gew. ppm
  • Das Pulver der Widerstandslegierung kann durch dem Fachmann bekannte Verfahren, wie z.B. Gasverdüsen unter Inertgas, Wasserverdüsen oder Mahlen, hergestellt werden. Die mittlere Teilchendurchmesser d50 des Pulvers der Widerstandslegierung beträgt vorzugsweise 0,2 µm-15 µm.
  • Neben dem Pulver der Widerstandslegierung enthält Paste B ein organisches Medium. In einer bevorzugten Ausführungsform enthält Paste B das organische Medium in einer Menge von 2 - 40 Gewichtsprozent. Das organische Medium der Paste B kann mindestens ein organisches Lösungsmittel und mindestens einen Binder enthalten. Das organische Lösungsmittel kann ausgewählt sein aus der Gruppe bestehend aus Texanol, Terpineol, iso-Tridecylalkohol oder anderen hochsiedenden organischen Lösungsmitteln mit einem Siedepunkt von mindestens 140°C. Der Binder kann ausgewählt sein aus Acrylatharzen, Ethylcellulosen oder anderen Polymeren. Optional kann das organische Medium der Paste B weitere Bestandteile enthalten, die ausgewählt sein können aus der Gruppe bestehend aus Thixotropiemitteln, Stabilisatoren und Emulgatoren. Durch Zugabe dieser Bestandteile können z.B. die Verdruckbarkeit oder Lagerstabilität der Paste verbessert werden.
  • Die optional enthaltene Glasfritte der Paste B enthält wenigstens zwei voneinander verschiedene Elemente als Oxide. Die Elemente können ausgewählt sein aus der Gruppe bestehend aus Li, Na, K, Ca, Mg, Sr, Ba, B, Al, Si, Sn, Pb, P, Sb, Bi, Te, La, Ti, Zr, V, Nb, Mn, Fe, Co, Ni, Cu, Ag, Zn, und Cd. Die Glasfritte kann hergestellt werden aus Oxiden, Fluoriden oder sonstigen Salzen (z.B. Carbonaten, Nitraten, Phosphaten) dieser Elemente. Beispiele für Ausgangsverbindungen für die Glasfritte können ausgewählt sein aus der Gruppe bestehend aus B2O3, H3BO3, Al2O3, SiO2, PbO, P2O5, Pb3O4, PbF2, MgO, MnCO3, CaO, CaCO3, SrO, SrCO3, BaO, BaCO3, Ba(NO3)2, Na2B4O7, ZnO, ZnF2, Bi2O3, Li2O, Li2CO3, Na2O, NaCO3, NaF, K2O, K2CO3, KF, , TiO2, Nb2O5, Fe2O3, ZrO2 CuO, MnO, Mn3O4, MnO2, CdO, SnO2, TeO2, Sb2O3, Co3O4, Co2O3, CoO, La2O3, Ag2O, NiO, V2O5, Li3PO4, Na3PO4, K3PO4, Ca3(PO4)2, Mg3(PO4)2, Sr3(PO4)2, Ba3(PO4)2. und komplexen Mineralien, wie z.B. Colemanit und Dolomit.
  • In einer bevorzugten Ausführungsform kann die Glasfritte der Paste B Silizium, Aluminium, Bor und mindestens einem Erdalkalimetall jeweils als Oxid enthalten. Die Glasfritte der Paste B kann gleich sein mit der Glasfritte der Paste A oder verschieden. Die Glasfritte von Paste B kann wenigstens zwei Elemente als Oxide enthalten, die in der Glasfritte von Paste A enthalten sind. In einer bevorzugten Ausführungsform sind die Glasfritten der Pasten A und B gleich, da dies die Kompatibilität der Schichten A und B miteinander verbessern kann.
  • Für den Fall, das die Schicht aus Paste A in Schritt c) schon zur Schicht A gebrannt wurde, wird die Schicht aus Paste B demgemäß auf Schicht A aufgebracht. Durch das Aufbringen der Paste B auf die Schicht aus Schritt c) wird ein sogenannter Precursor (dt. Vorläuferstruktur) hergestellt. Der Precursor enthält somit ein Substrat, auf dem eine Schicht aus Paste A aufgebracht ist, die optional bereits gebrannt sein kann (dann auch Schicht A genannt). Weiterhin enthält der Precursor eine Schicht aus Paste B auf der Schicht aus Paste A, wobei die Schicht aus Paste B nicht gebrannt ist. In einer bevorzugten Ausführungsform wird die Paste B auf eine bereits in Schritt c. gebrannte Schicht A aufgebracht. In einer Ausführungsform kann der Precursor so ausgeführt sein, dass die Schicht aus Paste B die Schicht aus Paste A vollständig bedeckt.
  • In Schritt e) wird der Precursor gebrannt und dadurch der erfindungsgemäße Schichtaufbau erhalten. Optional kann dem Brennen ein Trockenschritt vorgelagert sein. Das Trocknen kann bei einer Temperatur im Bereich von 20 - 180°C, insbesondere im Bereich von 120-180°C erfolgen, z.B. in einem Trockenschank oder einem Infrarot-Bandtrockner.
  • Das Brennen des Precursors geschieht bevorzugt bei einer Temperatur im Bereich von 700-1000°C, insbesondere im Bereich von 850 - 900°C. Der Precursor wird vorzugsweise so gebrannt, dass sich die im Precursor befindlichen Bestandteile des organischen Mediums verflüchtigen und das Pulver der Widerstandslegierung sowie die Glasfritte zusammensintern. Das Brennen kann entweder unter Atmosphärenbedingungen in Anwesenheit von O2 oder unter Inertgasbedingungen (z.B. N2-Atmosphäre) erfolgen. Durch das Brennen der Schicht aus Paste A wird, wie weiter oben erläutert, die Schicht A erhalten und durch das Brennen der Schicht aus Paste B wird Schicht B erhalten. Für den Fall, dass die Schicht aus Paste A nicht bereits in Schritt c) gebrannt wurde, werden durch das Brennen des Precursors gleichzeitig die Schichten aus Paste A und Paste B gebrannt. Für den Fall, dass in Schritt c) die Schicht aus Paste A schon gebrannt wurde, wird die Schicht A beim Brennen der Schicht aus Paste B zwangsläufig erneut gebrannt.
  • Der erfindungsgemäße Schichtaufbau, der nach Schritt e) vorliegt, enthält:
    1. a. ein Substrat mit einer Glas- oder Keramikoberfläche,
    2. b. eine Schicht A, die die Glas- oder Keramikoberfläche des Substrats wenigstens teilweise bedeckt, wobei Schicht A ein Glas aufweist, in dem wenigstens zwei voneinander verschiedene Elemente als Oxide enthalten sind und eine Transformationstemperatur Tg im Bereich von 600 bis 750°C aufweist,
    3. c. eine Schicht B, die Schicht A wenigstens teilweise bedeckt, wobei Schicht B folgende Bestandteile aufweist:
      1. I. eine Widerstandslegierung mit einem Temperaturkoeffizienten der elektrischen Widerstandes weniger als 150 ppm/K, und
      2. II. optional ein Glas, das wenigstens zwei voneinander verschiedene Elemente als Oxide enthält,
      wobei Schicht B nicht mehr als 20 Gewichtsprozent Glas bezogen auf das Gesamtgewicht der Schicht B enthält.
  • Schicht A, die die Glas- oder Keramikoberfläche des Substrats wenigstens teilweise bedeckt, weist das Glas auf, dass durch Brennen der Glasfritte aus Paste A erhalten wird. Typischer Weise enthält das Glas in Schicht A die zusammengesinterte Glasfritte aus Paste A. Bevorzugt ist diese Glasfritte über die gesamte Ausdehnung der Schicht A homogen zum Glas zusammengesintert und weist keine nicht-gesinterten Bereiche auf.
  • Im Schichtaufbau weist Schicht B die Widerstandslegierung aus Paste B auf und ist mechanisch fest mit Schicht A verbunden. Die mechanische Festigkeit der Haftung kann mittels verschiedener Tests bestimmt werden. Schicht B kann des Schichtaufbaus kann einen TCR-Wert aufweisen, der dem Bulk-Wert der Widerstandslegierung im Wesentlichen entspricht.
  • Die Haftfestigkeit kann durch folgende Tests überprüft werden: Auf den gebrannten Schichtaufbau wird ein Streifen Klebefilm der Marke Scotch®- Magic (3M Deutschland GmbH) aufgeklebt und zum Beispiel mit dem Fingernagel fest aufgestrichen. Anschließend wird der Klebefilm wieder abgezogen. Widerstandslegierungsschichten mit geringer Haftfestigkeit zur Glas- oder Keramikoberfläche des Substrats haften am Klebefilm. Schichtaufbauten mit einer mittleren Haftfestigkeit verbleiben teilweise am Klebefilm und Schichtaufbauten mit einer hohen Haftfestigkeit werden nicht vom Klebefilm abgelöst.
  • In dem Schichtaufbau kann Schicht A als Haftvermittler zwischen der Glas- oder Keramikoberfläche des Substrats und der, die Widerstandslegierung enthaltenden, Schicht B wirken. Durch die vorliegende Erfindung kann somit eine Schicht einer Widerstandslegierung erhalten werden, die mechanisch stabil mit der Substratoberfläche verbunden ist. Die Schicht B enthält, die Widerstandslegierung in der ursprünglich in Paste B eingesetzten Menge.
  • Für den optionalen Fall, dass Schicht B zusätzlich ein Glas aufweist, dass aus der Glasfritte der Paste B hergestellt wurde, kann die Haftung der Schicht B auf der Schicht A weiter verbessert werden. Der Glasgehalt der Schicht B bestimmt sich nach der eingesetzten Menge an Glasfritte in Paste B. In einer bevorzugten Ausführungsform weist die Schicht B nicht mehr als 20 Gewichtsprozent Glas, insbesondere nicht mehr als 15 Gewichtsprozent Glas auf, bezogen auf das Gesamtgewicht der Schicht B.
  • Optional kann der Schichtaufbau im Anschluss an Schritt e) mit einer Versiegelung (auch Schutzglasur, oder Overglaze genannt) versehen werden. Typischer Weise besteht diese Versiegelung aus einem Glas. Diese Versiegelung dient insbesondere dazu, den Schichtaufbau vor Umwelteinflüssen, wie z.B. Feuchtigkeit, zu schützen.
  • Der erfindungsgemäße Schichtaufbau kann unter anderem dazu verwendet werden, Präzisionswiderstände herzustellen.
  • Beispiele Allgemeine Herstellung der Paste A
  • Pasten A wurde durch Mischen von 22 Gew.% organischem Medium (85 Gew.% Texanol, 15 Gew.% Ethylcellulose (75% N7, 25% N50)) und 78 Gew.% einer Glasfritte gemäß Tabelle 1 hergestellt. Die Pasten wurden mittels einem Drei-Walzen-Stuhl homogenisiert. Tabelle 1: Verwendete Gläser
    Glasfritte 1 Glasfritte 2 Glasfritte 3 Glasfritte 4 Glasfritte 5 Glasfritte 6 Glasfritte 7
    Gew% Gew% Gew% Gew% Gew% Gew% Gew%
    SiO2 43,0 50,0 48,0 16,8 43,0 57,0 42,0
    Al2O3 9,0 10,0 10,0 9,0 12,0 18,0
    MgO 3,0 2,0 3,0
    CaO 6,0 10,0 8,0 6,0 9,0 35,0
    SrO 5,0 22,0 5,0
    BaO 30,0 9,0 5,0 47,8 30,0
    Na2O 1,0
    K2O 2,0 4,0 2,0 2,0 5,0
    B2O3 2,0 15,0 4,0 35,5 2,0 17,0 5,0
    Summe 100,0 100 100,0 100,0 100 100 100,0
  • Allgemeine Herstellung Pasten B
  • Ein Pulver der Widerstandslegierung Isotan (mittlerer Teilchendurchmesser d50: 8 µm, hergestellt durch Gasverdüsen einer Schmelze unter N2-Atmosphäre), ein organisches Medium (65 Gew.% Texanol und 35 Gew.% Acrylat-Binder) und ggfs. eine Glasfritte wurden in den spezifizierten Mengen zusammengegeben und mittels einem Drei-Walzen-Stuhl homogenisiert. Die hergestellten Pasten weisen eine Viskosität von etwa 30-90 Pas bei 20-25°C auf. Tabelle 2
    Gew. % Glasfritte 7 Isotanpulver Organisches Medium
    Paste B1 6 84 10
  • Herstellung des Schichtaufbaus
  • Die Glaspasten A, enthaltend die Glasfritten aus Tabelle 1, wurden durch Siebdruck auf Al2O3 Substraten mit einer Größe von 101,6 x 101,6 mm und einer Dicke von 0,63 mm (Rubalit 708 S, CeramTec) aufgebracht. Dafür wurde ein Sieb der Firma Koenen GmbH, Deutschland mit einem EKRA Microtronic II Drucker (type M2H) verwendet. Die Emulsionsdicke betrug etwa 50 µm (Siebparameter: 80 mesh und 65 µm Drahtdurchmesser (Edelstahl)). Druckparameter: 63 N Rakeldruck, Rakelgeschwindigkeit 100 mm/s und einem Absprung von 1.0 mm. Die Schichtdicke nach dem Drucken (nass) betrug etwa 90 µm. 10 Minuten nach dem Drucken wurden die Proben in einem Infrarot-Bandtrockner (BTU international, Type HHG-2) für 20 min bei 150°C getrocknet. Die Schichtdicke nach dem Trocknen betrug etwa 60 µm. Die gedruckten Glasschichten wurden unter Stickstoffatmosphäre (N2 5.0) in einem Ofen gebrannt (ATV Technologie GmbH, Typ PEO 603). Die Temperatur wurde von 25°C auf 850°C erhöht, für 10 bei 850°C gehalten und anschließend innerhalb von 20 min auf 25°C abgekühlt. (Gesamtdurchlaufzeit 82 min) Die Schichtdicke nach dem Brennen betrug etwa 50 µm. Die Widerstandslegierungspaste B wurden mittels Siebdruck auf die zuvor hergestellte Schicht aufgebracht. Dafür wurde ein Sieb der Firma Koenen GmbH, Deutschland mit einem EKRA Microtronic II Drucker (Typ M2H) verwendet. Die Emulsionsdicke betrug etwa 50 µm, Siebparameter: 80 mesh und 65 µm Drahtdurchmesser (Edelstahl).
  • Die gedruckten Widerstandslegierungspasten (also auch der Precursor) wurden unter Stickstoffatmosphäre (N2 5.0) in einem Ofen gebrannt (ATV Technologie GmbH, Typ PEO 603). Die Temperatur wurde von 25°C auf 900°C erhöht, für 10 min bei 900°C gehalten und innerhalb von 20 min auf 25°C abgekühlt (Gesamtdurchlaufzeit 82 min). Die Schichtdicke nach dem Brennen betrug etwa 50 µm.
  • Beispiel 1
  • Tabelle 3: Haftungsversuche mit Glaspasten (Paste A) mit unterschiedlichen Glasfritten
    Schichtaufbau Substrat Glasfritte (Paste A) Isotan-Paste Haftung Isotan auf Substrat
    + = gut; o = mäßig; - = schlecht
    1 1 +
    2 2 +
    3 3 +
    4 Al2O3 4 Paste B1 (6% Glas 7) +
    5 5 +
    6 6 +
    7 7 +
    8 kein Glas -
  • Beispiel 2
  • Haftung Schichtaufbau in Abhängigkeit der Glasmenge in Paste B Tabelle 4 Widerstandslegierungspasten (Paste B) mit unterschiedlichem Gehalt an Glasfritte
    [Gew.%] Glassfritte 7 Isotanpulver Organisches Medium
    Paste B2 0 90 10
    Paste B3 3 87 10
    Paste B4 6 84 10
    Paste B5 9 81 10
    Tabelle 5 Haftung Schichtaufbau in Abhängigkeit der Glasmenge in Paste B vor und nach T-Shock Lagerung
    Schichtaufbau Substrat Glasschicht (Schicht A) Legierungsschicht (Schicht B) Haftung vor T-Shock Lagerung Ablösung nach T-Shock Lagerung
    9 Al2O3 Paste A aus Glas 7 Paste B2 gut 20 Zyklen
    10 Paste B3 gut 100 Zyklen
    11 Paste B4 gut >500 Zyklen
    12 Paste B5 gut >500 Zyklen
  • T-Shock-Lagerung:
  • Die Hergestellten Schichtaufbauten wurden jeweils 15 min in einer Kammer mit einer Temperatur von -40°C bzw. +150°C gelagert. Der Übergang von einer Kammer zur anderen erfolgte automatisiert und dauerte ca. 4s. Ein Zyklus beinhaltet jeweils eine Lagerung bei -40°C und eine bei +150°C. Die Haftung wurde nach verschiedenen Anzahlen von Zyklen mit einem Klebestreifen, wie oben beschrieben, überprüft.
  • Für Schichtaufbau 9 und Schichtaufbau 12 wurden die TCR-Werte im Temperaturbereich 20-60°C gemäß der Norm DIN EN 60115-1:2016-03 (Trocknungsverfahren I) gemessen: Tabelle 6
    Schichtaufbau Menge Glasfritte in Paste B TCR
    9 0 Gew.% -25 bis -14 ppm/K
    12 9 Gew.% -37 bis -21 ppm/K
  • Zum Vergleich Der TCR Bulk-Wert für Isotan (als Draht) liegt im Bereich von -80 bis +40 ppm/K.

Claims (14)

  1. Verfahren zur Herstellung eines Schichtaufbaus umfassend die aufeinander folgenden Schritte:
    a. Bereitstellung eines Substrats mit einer Glas - oder Keramikoberfläche,
    b. Aufbringen einer Paste A auf wenigstens einen Teil der Glas-oder Keramikoberfläche des Substrats unter Erhalt einer Schicht aus Paste A, wobei Paste A folgende Bestandteile enthält:
    I. eine Glasfritte, die wenigstens zwei voneinander verschiedene Elemente als Oxide enthält und eine Transformationstemperatur Tg im Bereich von 600 bis 750°C aufweist und
    II. ein organisches Medium,
    c. Trocknen und gegebenenfalls Brennen der Schicht aus Paste A
    d. Aufbringen einer Paste B auf wenigstens einen Teil der Schicht aus Schritt c. unter Erhalt eines Schicht aus Paste B, wobei Paste B folgende Bestandteile enthält:
    I. Ein Pulver einer Widerstandslegierung mit einem Temperaturkoeffizienten des elektrischen Widerstandes von weniger als 150 ppm/K
    II. ein organisches Medium,
    III. 0 - 15 Gewichtsprozent Glasfritte, bezogen auf das Gesamtgewicht von Paste B, und
    e. Brennen und optional vor dem Brennen Trocknen der Schichten aus Paste B.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Paste B eine Glasfritte enthält, die wenigstens zwei voneinander verschiedene Elemente als Oxide enthält.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass Paste B nicht mehr als 12 Gewichtsprozent und vorzugsweise 5 - 12 Gewichtsprozent, Glasfritte, bezogen auf das Gesamtgewicht von Paste B enthält.
  4. Verfahren nach einem der Ansprüche 1 - 3, wobei die Widerstandslegierung der Paste B einen Temperaturkoeffizienten der elektrischen Widerstandes von weniger als 50 ppm/K aufweist.
  5. Verfahren nach einem der Ansprüche 1 - 4, wobei die Widerstandslegierung der Paste B ausgewählt ist aus der Gruppe bestehend aus :
    Legierung I.
    a. 53,0 - 57,0 Gewichtsprozent Kupfer,
    b. 42,0 - 46,0 Gewichtsprozent Nickel,
    c. 0,5 - 1,2 Gewichtsprozent Mangan und
    d. Nicht mehr als 10000 Gew. ppm sonstiger Elemente.
    Legierung II.
    a. 83,0 - 89,0 Gewichtsprozent Kupfer,
    b. 10,0 - 14,0 Gewichtsprozent Mangan,
    c. 1 - 3 Gewichtsprozent Nickel und
    d. Nicht mehr als 10000 Gew. ppm sonstiger Elemente.
    Legierung III.
    a. 88,0 - 93,0 Gewichtsprozent Kupfer,
    b. 5,0 - 9,0 Gewichtsprozent Mangan,
    c. 2 - 3 Gewichtsprozent Zinn und
    d. Nicht mehr als 10000 Gew. ppm sonstiger Elemente.
    Legierung IV.
    a. 61,0 - 69,0 Gewichtsprozent Kupfer,
    b. 23,0 - 27,0 Gewichtsprozent Mangan,
    c. 8 - 12 Gewichtsprozent Nickel und
    d. Nicht mehr als 10000 Gew. ppm sonstiger Elemente.
    und
    Legierung V.
    a. 70,0 - 78,0 Gewichtsprozent Nickel,
    b. 18,0 - 22,0 Gewichtsprozent Chrom,
    c. 3 - 4 Gewichtsprozent Aluminium,
    d. 0,5 - 1,5 Gewichtsprozent Silicium,
    e. 0,2 - 0,8 Gewichtsprozent Mangan,
    f. 0,2 - 0,8 Gewichtsprozent Eisen,
    g. Nicht mehr als 10000 Gew. ppm sonstiger Elemente.
  6. Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass Paste A 50 - 90 Gewichtsprozent Glasfritte und 10 - 50 Gewichtsprozent organisches Medium, bezogen auf das Gesamtgewicht von Glasfritte und organischem Medium, enthält.
  7. Verfahren nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass die Glasfritten von Paste A und/oder Paste B Silizium, Bor, Aluminium und ein Erdalkalimetall jeweils als Oxid enthalten.
  8. Verfahren nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass die Glasfritte von Paste B wenigstens zwei Elemente als Oxide enthält, die in der Glasfritte von Paste A enthalten sind.
  9. Verfahren nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, dass Paste B 60 - 95 Gewichtsprozent der Widerstandslegierung, 3 - 15 Gewichtsprozent Glasfritte und 2 - 37 Gewichtsprozent organisches Medium, bezogen auf das Gesamtgewicht von Paste B, enthält.
  10. Schichtaufbau aufweisend:
    a. ein Substrat mit einer Glas-oder Keramikoberfläche,
    b. eine Schicht A, die die Glas- oder Keramikoberfläche des Substrats wenigstens teilweise bedeckt, wobei Schicht A ein Glas aufweist, in dem wenigstens zwei voneinander verschiedene Elemente als Oxide enthalten sind und das eine Transformationstemperatur Tg im Bereich von 600 bis 750°C aufweist,
    c. eine Schicht B, die Schicht A wenigstens teilweise bedeckt, wobei Schicht B folgende Bestandteile aufweist:
    I. eine Widerstandslegierung mit einem Temperaturkoeffizienten der elektrischen Widerstandes weniger als 150 ppm/K, und
    II. optional ein Glas, das wenigstens zwei voneinander verschiedene Elemente als Oxide enthält,
    wobei Schicht B nicht mehr als 20 Gewichtsprozent Glas, bezogen auf das Gesamtgewicht der Schicht B enthält.
  11. Paste aufweisend
    a. Ein Pulver einer Widerstandslegierung mit einem Temperaturkoeffizienten der elektrischen Widerstandes weniger als 150 ppm/K
    b. eine Glasfritte aufweisend Silizium, Bor, Aluminium und ein Erdalkalimetall jeweils als Oxid,
    c. ein organisches Medium.
  12. Paste nach Anspruch 11, dadurch gekennzeichnet, dass das Erdalkalimetall Calcium ist.
  13. Paste nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass die Glasfritte hergestellt ist aus
    a. 25 - 55 Gewichtsprozent Siliziumoxid,
    b. 20 - 45 Gewichtsprozent Calciumcarbonat,
    c. 10 - 30 Gewichtsprozent Aluminiumoxid und
    d. 1 - 10 Gewichtsprozent Boroxid.
  14. Verwendung des Schichtaufbaus gemäß Anspruch 10, zur Herstellung von Präzisionswiderständen.
EP16193341.1A 2016-10-11 2016-10-11 Verfahren zur herstellung eines schichtaufbaus unter verwendung einer paste auf basis einer widerstandslegierung Active EP3309800B1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES16193341T ES2730825T3 (es) 2016-10-11 2016-10-11 Procedimiento para producir una estructura en capas utilizando una pasta a base de una aleación de resistencia
EP16193341.1A EP3309800B1 (de) 2016-10-11 2016-10-11 Verfahren zur herstellung eines schichtaufbaus unter verwendung einer paste auf basis einer widerstandslegierung
US16/340,611 US20200051719A1 (en) 2016-10-11 2017-09-18 Method for producing a layer structure using a paste on the basis ofa resistive alloy
PCT/EP2017/073421 WO2018068989A1 (de) 2016-10-11 2017-09-18 Verfahren zur herstellung eines schichtaufbaus unter verwendung einer paste auf basis einer widerstandslegierung
KR1020197011773A KR102298321B1 (ko) 2016-10-11 2017-09-18 저항 합금 함유 페이스트를 이용한 층 구조 제조 방법
JP2019519641A JP2019537838A (ja) 2016-10-11 2017-09-18 抵抗合金を基材とするペーストを使用して層構造体を製造する方法
CN201780062982.9A CN109906491A (zh) 2016-10-11 2017-09-18 使用基于电阻合金的糊料用以生产层状结构的方法
TW106134416A TWI765919B (zh) 2016-10-11 2017-10-05 使用基於電阻合金的糊料用以生產層狀結構的方法及層狀結構
US17/388,676 US20220051834A1 (en) 2016-10-11 2021-07-29 Method for producing a layer structure using a paste on the basis ofa resistive alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16193341.1A EP3309800B1 (de) 2016-10-11 2016-10-11 Verfahren zur herstellung eines schichtaufbaus unter verwendung einer paste auf basis einer widerstandslegierung

Publications (2)

Publication Number Publication Date
EP3309800A1 true EP3309800A1 (de) 2018-04-18
EP3309800B1 EP3309800B1 (de) 2019-03-20

Family

ID=57137869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16193341.1A Active EP3309800B1 (de) 2016-10-11 2016-10-11 Verfahren zur herstellung eines schichtaufbaus unter verwendung einer paste auf basis einer widerstandslegierung

Country Status (8)

Country Link
US (2) US20200051719A1 (de)
EP (1) EP3309800B1 (de)
JP (1) JP2019537838A (de)
KR (1) KR102298321B1 (de)
CN (1) CN109906491A (de)
ES (1) ES2730825T3 (de)
TW (1) TWI765919B (de)
WO (1) WO2018068989A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020048726A1 (de) * 2018-09-07 2020-03-12 Isabellenhütte Heusler Gmbh & Co. Kg Herstellungsverfahren für ein elektrisches widerstandselement und entsprechendes widerstandselement
CN113073219A (zh) * 2021-03-24 2021-07-06 山东银山电气有限公司 一种应用于仪器仪表的精密电阻材料的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680092A (en) * 1993-11-11 1997-10-21 Matsushita Electric Industrial Co., Ltd. Chip resistor and method for producing the same
EP0829886A2 (de) 1996-09-11 1998-03-18 Matsushita Electric Industrial Co., Ltd. Chip-Widerstand und Verfahren zu dessen Herstellung
JP2008016645A (ja) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd 抵抗器の製造方法
DE102011004543A1 (de) * 2011-02-22 2012-08-23 Würth Elektronik FLATcomp Systems GmbH & Co. KG Impulswiderstand, Leiterplatte und elektrisches oder elektronisches Gerät
US20130154790A1 (en) * 2011-12-19 2013-06-20 Samsung Electro-Mechanics Co., Ltd. Chip resistor and method of manufacturing the same
CN103680787B (zh) * 2013-12-12 2016-10-05 苏州智权电子科技有限公司 一种柔性精密电阻器及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647900A (en) * 1985-08-16 1987-03-03 Rca Corporation High power thick film resistor
JPS62216301A (ja) * 1986-03-18 1987-09-22 昭栄化学工業株式会社 抵抗組成物
JP2605875B2 (ja) * 1989-07-10 1997-04-30 富士ゼロックス株式会社 抵抗体膜およびその形成方法
JP3409807B2 (ja) * 1993-06-30 2003-05-26 日本電気硝子株式会社 グレーズ組成物
JP3803025B2 (ja) * 2000-12-05 2006-08-02 富士電機ホールディングス株式会社 抵抗器
JP3826046B2 (ja) * 2002-02-08 2006-09-27 コーア株式会社 抵抗器およびその製造方法
JP2004119561A (ja) * 2002-09-25 2004-04-15 Koa Corp 抵抗体ペーストおよび抵抗器
JP2004119692A (ja) * 2002-09-26 2004-04-15 Koa Corp 抵抗体組成物および抵抗器
TWI266568B (en) * 2004-03-08 2006-11-11 Brain Power Co Method for manufacturing embedded thin film resistor on printed circuit board
JP5045804B2 (ja) * 2009-10-29 2012-10-10 住友金属鉱山株式会社 抵抗薄膜形成用スパッタリングターゲット、抵抗薄膜、薄膜抵抗器、およびこれらの製造方法
CN103183508A (zh) * 2013-03-12 2013-07-03 上海工程技术大学 Ntc热敏电阻材料及制备方法和在电子器件中的应用
CN103714926A (zh) * 2013-12-31 2014-04-09 中航电测仪器股份有限公司 一种箔式精密电阻及其制造方法
JP6471494B2 (ja) * 2014-09-29 2019-02-20 日立金属株式会社 Cu合金材およびその製造方法
CN205080952U (zh) * 2015-10-12 2016-03-09 陕西凯瑞宏星电器有限公司 一种高压设备用玻璃釉膜分压器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680092A (en) * 1993-11-11 1997-10-21 Matsushita Electric Industrial Co., Ltd. Chip resistor and method for producing the same
EP0829886A2 (de) 1996-09-11 1998-03-18 Matsushita Electric Industrial Co., Ltd. Chip-Widerstand und Verfahren zu dessen Herstellung
JP2008016645A (ja) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd 抵抗器の製造方法
DE102011004543A1 (de) * 2011-02-22 2012-08-23 Würth Elektronik FLATcomp Systems GmbH & Co. KG Impulswiderstand, Leiterplatte und elektrisches oder elektronisches Gerät
US20130154790A1 (en) * 2011-12-19 2013-06-20 Samsung Electro-Mechanics Co., Ltd. Chip resistor and method of manufacturing the same
CN103680787B (zh) * 2013-12-12 2016-10-05 苏州智权电子科技有限公司 一种柔性精密电阻器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIN EN 60115-1, March 2016 (2016-03-01)
DIN ISO 7884-8, February 1998 (1998-02-01)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020048726A1 (de) * 2018-09-07 2020-03-12 Isabellenhütte Heusler Gmbh & Co. Kg Herstellungsverfahren für ein elektrisches widerstandselement und entsprechendes widerstandselement
CN112262445A (zh) * 2018-09-07 2021-01-22 伊莎贝尔努特霍伊斯勒有限两合公司 电阻元件的制造方法及相应的电阻元件
US11373787B2 (en) 2018-09-07 2022-06-28 Isabellenhuette Heusler Gmbh & Co. Kg Production method for an electrical resistance element and corresponding resistance element
CN113073219A (zh) * 2021-03-24 2021-07-06 山东银山电气有限公司 一种应用于仪器仪表的精密电阻材料的制造方法
CN113073219B (zh) * 2021-03-24 2022-04-22 山东银山电气有限公司 一种应用于仪器仪表的精密电阻材料的制造方法

Also Published As

Publication number Publication date
TWI765919B (zh) 2022-06-01
EP3309800B1 (de) 2019-03-20
JP2019537838A (ja) 2019-12-26
CN109906491A (zh) 2019-06-18
KR102298321B1 (ko) 2021-09-08
US20200051719A1 (en) 2020-02-13
US20220051834A1 (en) 2022-02-17
ES2730825T3 (es) 2019-11-12
WO2018068989A1 (de) 2018-04-19
TW201841174A (zh) 2018-11-16
KR20190060795A (ko) 2019-06-03

Similar Documents

Publication Publication Date Title
DE3111808C2 (de) Elektrisch leitende Paste, ihr Herstellungsverfahren und ihre Verwendung
KR100828892B1 (ko) 오버코트용 유리 페이스트 및 후막 저항소자
DE3026200C2 (de) Nichtlinearer Widerstand
DE112014002826B4 (de) Keramikelektronikkomponente und Verfahren zur Herstellung derselben
DE102014014322B4 (de) Tellurat-Fügeglas mit Verarbeitungstemperaturen ≦ 400 °C
EP0000864B1 (de) Verfahren zur Herstellung von Dickfilm-Varistoren
DE3621667C2 (de)
DE3317963A1 (de) Keramikkondensator mit schichtaufbau
DE10157443A1 (de) Glas-Keramikzusammensetzung für ein elektronisches Keramikbauteil, elektronisches Keramikbauteil und Verfahren zur Herstellung eines elektronischen Vielschicht-Keramikbauteils
DE2946753C2 (de)
EP1087646B1 (de) Verfahren zur Herstellung einer leitfähigen Beschichtung auf Glas oder emailliertem Stahl und hiernach beschichtete Substrate
DE1596851A1 (de) Widerstandsmaterial und aus diesem Widerstandsmaterial hergestellter Widerstand
DE602005001305T2 (de) Dickschichtwiderstandspaste und ein Dickschichtwiderstand
EP3414209B1 (de) Niedertemperatur-telluritglasmischungen für vakuumverdichtung bei temperaturen bis zu 450 °c
DE2610303C2 (de) Siebdruckpaste für dicke, elektrisch leitende, Leiterbahnen bildende Schichten auf einem keramischen Substrat
EP3309800B1 (de) Verfahren zur herstellung eines schichtaufbaus unter verwendung einer paste auf basis einer widerstandslegierung
DE102004005664B4 (de) Elektrisches Bauelement und Verfahren zu dessen Herstellung
DE2324327C2 (de) Keramisches Material für den Gebrauch in Widerstandspasten zur Herstellung von Dickschichtwiderständen und Verfahren zur Herstellung dieses Materials
DE102004048678A1 (de) Keramiksubstrat für ein elektronisches Dünnschicht-Bauelement, Herstellungsverfahren hierfür und elektronisches Dünnschicht-Bauelement unter Verwendung desselben
DE602005001242T2 (de) Eine Dickschicht-Widerstandspaste, ein Dickschicht-Widerstand hergestellt unter Verwendung der Dickschicht-Widerstandspaste und eine elektronische Vorrichtung umfassend den Dickschicht-Widerstand
DE2635699A1 (de) Elektrischer widerstand und verfahren zur herstellung desselben
DE2946679A1 (de) Widerstandsmaterial, elektrischer widerstand und verfahren zur herstellung desselben
EP0432353A2 (de) Widerstandsmasse und ihre Verwendung
DE2629021A1 (de) Paste und verfahren zur herstellung eines schichtwiderstands
DE3140968C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

17Q First examination report despatched

Effective date: 20180912

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20181024

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MODES, CHRISTINA

Inventor name: DESCH, ANJA

Inventor name: MARIEN, JAN

Inventor name: BURK, STEFFEN

Inventor name: BAWOHL, MELANIE

Inventor name: KALEMBA, PAUL

Inventor name: LANGER, JOCHEN

Inventor name: REITZ, JESSICA

Inventor name: REUL, ROLAND

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG

Owner name: ISABELLENHUETTE HEUSLER GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016003800

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1111333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190621

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2730825

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016003800

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

26N No opposition filed

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200528 AND 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016003800

Country of ref document: DE

Representative=s name: V. BEZOLD & PARTNER PATENTANWAELTE - PARTG MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016003800

Country of ref document: DE

Owner name: ISABELLENHUETTE HEUSLER GMBH & CO. KG, DE

Free format text: FORMER OWNERS: HERAEUS DEUTSCHLAND GMBH & CO. KG, 63450 HANAU, DE; ISABELLENHUETTE HEUSLER GMBH & CO. KG, 35683 DILLENBURG, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1111333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211011

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 8

Ref country code: FR

Payment date: 20231023

Year of fee payment: 8

Ref country code: DE

Payment date: 20230926

Year of fee payment: 8