EP3234225A1 - Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung - Google Patents
Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertungInfo
- Publication number
- EP3234225A1 EP3234225A1 EP16704413.0A EP16704413A EP3234225A1 EP 3234225 A1 EP3234225 A1 EP 3234225A1 EP 16704413 A EP16704413 A EP 16704413A EP 3234225 A1 EP3234225 A1 EP 3234225A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cathode
- carbon dioxide
- electrolysis system
- reduction
- complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 146
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 73
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 72
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 42
- 230000009467 reduction Effects 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 64
- 238000006722 reduction reaction Methods 0.000 claims abstract description 31
- 238000012546 transfer Methods 0.000 claims abstract description 28
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 16
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 4
- 239000003792 electrolyte Substances 0.000 claims description 45
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 238000011946 reduction process Methods 0.000 claims description 15
- 239000010410 layer Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 150000003624 transition metals Chemical class 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052723 transition metal Inorganic materials 0.000 claims description 8
- 239000011241 protective layer Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 150000004696 coordination complex Chemical class 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000003586 protic polar solvent Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical class O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 235000019256 formaldehyde Nutrition 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 239000000376 reactant Substances 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 210000003608 fece Anatomy 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 239000002243 precursor Substances 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 abstract description 25
- 125000001145 hydrido group Chemical group *[H] 0.000 abstract description 9
- 239000003426 co-catalyst Substances 0.000 abstract description 5
- 230000001737 promoting effect Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 16
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 239000012528 membrane Substances 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 241000894007 species Species 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 229910052702 rhenium Inorganic materials 0.000 description 6
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- NBBILGZMKRYCTO-UHFFFAOYSA-N 2-pyridin-2-ylpyridine;rhenium Chemical compound [Re].N1=CC=CC=C1C1=CC=CC=N1 NBBILGZMKRYCTO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 description 2
- 239000011736 potassium bicarbonate Substances 0.000 description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- -1 Carbon water compound Chemical class 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 241001026509 Kata Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000012014 frustrated Lewis pair Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Chemical class 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003282 rhenium compounds Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/50—Processes
- C25B1/55—Photoelectrolysis
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/077—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- the present invention relates to a method and an electrolysis system for electrochemical carbon dioxide utilization. Carbon dioxide is introduced into an electrolytic cell and reduced at a cathode.
- Electrochemical CO 2 reduction on metal electrodes from Y Electrochemical CO 2 reduction on metal electrodes from Y.
- the table shows Faraday efficiencies [%] of products produced by carbon dioxide reduction on various metal electrodes. The values given apply to a 0.1 M potassium bicarbonate solution as electrolyte.
- a complex generally composed of a central atom and one or more ligands, can pass through different oxidation states, giving cations, electrons, OH or CO groups in solution, or taking them up again.
- An example of a catalytic reduction of carbon dioxide to carbon monoxide by means of a rhenium complex is also disclosed in the publication "Elucidation of the Selectivity of Proton-Dependent Electrocatalytic CO 2 Reduction by fac-Re (bpy) (CO) 3 Cl" by J ,
- carbon dioxide is passed through a cathode space and brought into contact with a cathode, at least one first Ma ⁇ material provided in the cathode space or in this leads ⁇ , by means of which a reduction reaction of carbon dioxide to at least one Carbon water compound or to carbon monoxide is catalyzable and introduced at least one of the first material different second material in the cathode space, by means of which the reduction reaction is cocatalyzed, in which it promotes a charge transfer from the cathode to the first material.
- the cathode compartment of an electrolytic cell thus serves as the reaction space for the carbon dioxide reduction, the cathode acting as the electron source.
- an electrolyte solution in the system may further be.
- the electrolyte used in ⁇ play a salt-containing aqueous electric ⁇ lyt, a salt-containing organic solvent, an ioni ⁇ specific liquid and it is also supercritical carbon dioxide ⁇ used as the electrolyte.
- readily soluble salts of other cations can be used.
- the first material is either dissolved in the electrolyte and accordingly conducted in the electrolyte circulation or introduced separately from the electrolyte for the reaction in the cathode compartment, or preferably directly provided in the cathode chamber, wherein ⁇ game example immobilized on an inner surface of the cathode compartment or in particular on the electrode that is the Katho ⁇ denober Design.
- the second material may be introduced into the cathode compartment together with the electrolyte or an educt-electrolyte mixture, or separately from this into the cathode compartment
- the method described has the advantage of ⁇ to ensure a high current density and correspondingly high yield in the carbon dioxide reduction, as well as low energy and thus to be competitive with other energy storage for volatile energy sources.
- the first material is, for example, a complex, typically ⁇ , a metal complex in a low oxidation state to which a hydrogen atom can be coordinated as a ligand.
- Complexes are preferably used which coordinate the water ⁇ material by protonation. This coordinated hydrogen then often has a hydridic character and can ago reduction reactions go.
- the proton source represents the second material of the reduction system:
- a protic solvent is used as the second material in the reduction process.
- a protic solvent is when, if molecules can easily be split off from protons, these are called
- Proton donors act.
- Examples of protic solvents are water, alcohols, especially methanol and ethanol, mineral acids or carboxylic acids, and primary and secondary amines.
- the resulting hydrides of the first material are co-catalysts in the sense of the invention.
- the second material e.g. one
- the first material used in the reduction process is in particular a metal complex.
- a complex is to be understood as meaning a chemical compound which is composed of one or more central particles and one or more ligands.
- a metal complex is used with a lower oxidation state preferable for the described Re ⁇ dutechnischs vide as the first material, which means that it has an electron-rich center, such as at ver ⁇ various transition metal complexes, for example with iron or cobalt as the central atom.
- Particularly preferred are transition metal complexes with a heavy transition metal as the central atom, such as molybdenum or rhenium. From a heavy transition metal one speaks between an atomic number of between 42 and 104.
- a metal carbonyl or metal carbonylate can also be used as the first material for reduction catalysis.
- Metal carbonyls are complexes of transition metals with at least one ⁇ Kohlenstoffmonoxidliganden.
- second and first material are chosen so that they react in-situ with each other as a precursor and form within the electrolysis system, respectively the cathode compartment, hydrido-metal complexes or metal carbonyl hydrides.
- first and second materials which are stable even in an aqueous environment. These are, for example, many rhenium compounds, such as ReH 3 (OH) 3 (H 2 O) - , ReHg 2- , or those which form in situ.
- stable it is meant that first and second materials do not break down into undesirable byproducts of the electrochemical reaction of carbon dioxide, or, for example, the stability of the electrode system Cincinnatiwir ⁇ ken or damage.
- ions can be released from the surface of the electrode or it can even be destroyed over a large area by a corrosion attack in its morphology.
- Undesirable by-products may be e.g. deposited on the cathode and thereby enforce this so that the charge exchange would be hindered.
- the electrolysis system for carbon dioxide utilization comprises an electrolysis cell with an anode in an anode compartment and with a cathode in a cathode compartment.
- the cathode compartment is designed such that carbon dioxide can be added ⁇ and brought into contact with the cathode.
- the cathode compartment in this case has a first material, by means of which a reduction reaction of carbon dioxide oxide to at least one hydrocarbon compound or is catalysable to carbon monoxide.
- the cathode space has a material access with a dosage unit, via which at least one second material different from the first material can be introduced into the cathode space.
- the reduction reaction is co-catalyzable in that it promotes charge transfer from the cathode to the first material.
- the cathode compartment has a second material access with a metering unit for the first material, or this is flowed into the cathode compartment together with the electrolyte or an educt-electrolyte mixture.
- This electrolysis system has the advantage that it contains a catalyst and a precisely metered co-catalyst.
- Catalyst can be worked, whereby a high current density and accordingly high yield from the carbon dioxide reduction process can be achieved.
- the described Elektrolysesys ⁇ system for carbon dioxide recovery is characterized in that the cathode surface has a work function whose Ener ⁇ giemony leaves a charge transfer to the first material supplied and is particularly favorable for this charge transfer.
- the cathode surface chemical properties accordingly be ⁇ low a charge transfer.
- the first material is present, for example, in the cathode space in dissolved form, for example in the electrolyte, or it is immobilized on the cathode surface or another inner surface of the cathode space.
- Particular preference is given to using electrodes which contain platinum, copper, zinc, nickel, iron, titanium, zirconium, molybdenum, tungsten or alloys thereof.
- the charge transfer can also be interpreted as semiconductor technology or chemically.
- the cathode may for example be oriented ⁇ staltet as a photocathode, bringing a photo-electrochemical process Reduktionspro- advertising operated for the recovery of carbon dioxide could be the, so-called Photoassisted C0 2 -Electrolysis.
- this system can also work purely photocatalytically.
- a surface protective layer is meant that a relatively thin compared to the Elektrodenge- berichtdicke layer separates the cathode from the cathode compartment.
- the surface protection layer may for this purpose comprise a metal, a semiconductor or an organic material.
- Particularly preferred according to the invention is a Titandio ⁇ oxide protective coating.
- the protective effect is aimed primarily as meaning that the electrode is not attacked by the electrolyte or dissolved in Elect ⁇ rolyten reactants, products or catalysts and their dissociated ions and it comes, for example, to a triggering of ions from the electrode.
- a suitable surface protective layer is of great importance for the Langle ⁇ bigkeit function and stability of the electrode in the process. Be ⁇ already by small changes in morphology, including onsangriffe by corrosion, can the overvoltages of hydrogen gas or carbon monoxide gas CO 2 H are influenced in aqueous electrolyte or water having electrolyte systems.
- the cathode has a charge transfer layer whose surface has a work function whose energy level allows a charge transfer to the first material. That is, the cathode can resort to any other suitable material to ⁇ in their predominant composition and a customized with its work function of the first material charge transfer layer forms a ge ⁇ One suitable interface between cathode and electrolyte system with catalyst material. The focus is insbesonde ⁇ re on the charge transfer to hydrido complexes.
- La ⁇ tion transfer layer from the cathode into the electrolyte or to the complex systems for example, thin precious metal coatings, semiconductor injection layers or organic injection layers are suitable.
- the functions of the charge transfer layer and the surface protective layer are preferably integrated in a single layer. That is, the charge transfer layer is equally responsible for the surface protection of the cathode or the surface protective layer is chosen so that the charge transfer is not hindered by these or even favored.
- FIG. 1 shows a schematic representation of an electrolysis system 10, shows a schematic representation of a two-chamber structure of an electrolytic cell, shows a schematic representation of an electrolytic cell with a gas diffusion electrode and shows a schematic representation of a PEM structure of an electrolytic cell
- Figure 5 is a catalytic cycle for the Kohlenstoffdio- xidredulement to carbon monoxide by means of a complex catalyst
- Figure 6 shows an example of the addition of methanol as per ⁇ diagram species to the catalyst of rhenium-bipyridine
- FIG. 7 shows proton transfer using the example of the catalyst rhenium bipyridine.
- Figure 8 shows the re-release of water as a source of hydrogen
- Figure 9 shows the final reaction to return to the starting complex state.
- FIG. 10 schematically shows the charge transfer from the cathode to a catalyst complex.
- FIG. 11 shows a current-voltage diagram of an exemplary electrolysis system with different electrode surfaces.
- Figure 12 shows another current-voltage diagram of an exemplary electrolysis system and the Auswir ⁇ effect of adding a protic species
- Figure 13 shows a diagram in which the current density over the
- Light intensity is plotted for a photoelectrochemical electrolysis system.
- the electrolysis system 10 shown schematically in FIG. 1 initially has, as a central element, an electrolysis cell 1, which is shown here in a two-chamber design.
- An anode A is arranged in an anode space AR, a cathode K in a cathode space KR.
- Anode space AR and cathode space KR are separated by a membrane M.
- the anode compartment AR is with its electrolyte inlet and outlet connected to an anolyte circuit AK.
- the Katho ⁇ denraum KR is connected to its electrolytic and Elektrolyseedukteinlass and its electrolyte and Elektrolyse slaughterauslass to a catholyte KK.
- Both circuits AK, KK WEI sen each case at least one pump 11, which optionally promote the electric ⁇ LYTEN and dissolved therein or mixed therewith reactants and products through the electrolytic cell.
- this example includes an electrolyte container 130 with a Kohlenstoffdioxideinlass 131 and a Kohlenstoffdi- oxidreservoir 132. By means of this structure ensures Kohlenstoffdioxidsafft Trent of the electrolyte. Alterna tively ⁇ the carbon dioxide via a Gasdiffusionselekt ⁇ rode GDE is introduced into the electrolyte circulation.
- the electrolyte flow directions are shown in both circuits AK, KK by means of arrows.
- a further pump 11 is in the catholyte KK preferably comprises transpor- ted the gesnostitig ⁇ th electrolysis products with electrolyte in a container for gas separation 140th
- a product gas container 141 and, correspondingly, a product gas outlet 142 is connected.
- a container for gas separation 160 is integrated into the anolyte circuit AK, via which, for example, oxygen gas O 2 or chloride-containing electrolyte chlorine gas is separated from the electrolyte and can be removed from the system via a product gas container 161 and the product gas outlet 162 connected thereto.
- the electrolysis system 10 may have an electrolysis cell structure, as shown in one of the FIGS. 2 to 4 described below.
- the structure of the electrolysis system 10 with a gas diffusion electrode GDE, as shown in FIG. 3, is preferred.
- GDE gas diffusion electrode
- each embodiment of the electrolysis cells 2, 3, 4 shown schematically in FIGS. 2 to 4 comprises at least one anode A in an anode space AR and ei ⁇ ne Cathode K in a cathode compartment KR.
- the anode space AR and the cathode space KR are separated from each other by at least one membrane M.
- the membrane may be an ion-conducting membrane, for example an anion-conducting membrane or a cation-conducting membrane. It may be the membrane is a porous layer or a slide ⁇ phragma.
- the membrane can also be understood to mean a spatial ion-conducting separator which separates electrolytes into anode and cathode chambers AR, KR.
- Anode A and cathode K are each elekt ⁇ risch connected to a power supply E.
- each anode chamber AR shown comprises a electrolyte outlet 23, 33, 43 via the electrolysis byproducts of the electrolyte and to the anode formed, for example, sour gas O2 ⁇ material can flow out of the anode space AR.
- the respective cathode chambers KR each have at least one electrolyte and product outlet 24, 34, 44.
- the total electrolytic product can be composed of a variety of electrolysis ⁇ products.
- the electrodes While in the two-chamber structure 2 anode A and cathode K are separated by the anode space AR and cathode space KR of the membrane M, the electrodes are in a so-called polymer electrolyte structure (PEM) 4 with porous electrodes directly to the membrane M. As shown in FIG. 4, it is then a porous anode A and a porous cathode K.
- PEM polymer electrolyte structure
- the electric field lyt and the carbon dioxide CO 2 is preferably introduced via a ge ⁇ common Edukteinlass 22, 42 into the cathode compartment KR.
- the porous cathode K is designed as a gas diffusion electrode GDE.
- a gas diffusion electrode GDE is because ⁇ characterized by that a liquid component, such as an electrolyte, and a gaseous component, such as a Elektrolyseedukt, can be brought together in a pore system of the electrode, for example, the cathode K in contact.
- the pore system of the electrode is designed so that the liquid and the gaseous phase can equally penetrate into the pore system and can be present in it at the same time.
- a reaction catalyst is designed to be porous and takes over the electrode function, or a porous electrode has catalytically active components.
- the gas diffusion electrode GDE comprises a carbon dioxide inlet 320.
- FIG. 5 shows a reaction cycle known from the prior art:
- a complex 51 composed of central atom M and one or more ligands L, can pass through different oxidation states 52, thereby giving a cation K + or anion in solution or resume it or arrange it at another location of the complex 53.
- carbon dioxide CO 2 shown in the Fi gur ⁇ 5 by an arrow injected, can pass from this an oxygen molecule to the catalyst complex 56th
- water H2O is then released before the complex 510 is released as a carbon atom by the release of its CO group.
- lenstoffmonoxid CO is in the original state 53 back ⁇ can be by means of the carbon dioxide CO2 then again converted ⁇ sets.
- the proton uptake H + at the one point or another in the circulation as well as the release of water H2O can be made according to the described reduction process advantageous for the Carbon Reduction to the Use ⁇ .
- M may be the central atom of the complex, which is in particular a Me ⁇ tall or transition metal atom and L represents a ligand, which, for example, a bipyridine ligand as shown in Figures 6 to 9 ,
- L represents a ligand, which, for example, a bipyridine ligand as shown in Figures 6 to 9 ,
- the complex in state 53 reacts to complex 56 or 54 depends, for example, on external conditions, such as the environment in which the complex is located: the pH of the environment determines whether the hydrogen binds or dissociates to the complex before ⁇ lies.
- a complex 55 tends to be more likely in a Conversely ⁇ bung having an acid constant pK s to 43 before, a complex 59 more in an environment of an acidity constant pK s for the 28, ie in water practically never.
- FIGs 6 to 9 are various chemical Reaktio ⁇ NEN, which play a role in the described recycling process is illustrated.
- a first catalyst material is a rhenium-bipyridine complex overall showing Re (tBu-bipy) (CO) 3 CL, which at the beginning of the recovery process in the electrolytic cell 1, as must be available starting material accordingly from ⁇ or this must be introduced.
- the first reaction step 60 is the hydrogenation of this complex, ie the addition of hydrogen: In this example, methanol CH 3 OH is added as the protic species.
- the hydrido complexes shown on the right in FIG. 6 are formed, which can merge into one another via an equilibrium reaction and thus can both be present in the electrolysis system 10.
- the abbreviation Re could be replaced by any metal, preferably as an alternative to shown bipyridine ligands could also be used alternative ligands.
- Rhenium central atom is again a suitable example, but could again be replaced by any metal atom M, preferably another transition metal atom.
- the catalyst material is not consumed at this point, but is guided in a reaction cycle, ie it returns to the original form of the hydrido complex 6 back.
- Is shown on the left in the figure 8 is a Gleichingsre ⁇ action between two oxidation states of the complex 80.
- a reduction reaction 80 a water group is formed, the ge ⁇ shows in a further step 81, right in the figure 8, as water H 2 O are cleaved can. As shown in FIG. 9, this already leads to the starting hydrido complex 6.
- the step of dehydration 81 thus provides a renewable source of hydrogen in the system.
- the reaction speed of the Carbon Reduction can be increased, because the water H 2 O can be connected to the cathode K to hydrogen H +, H 2 Reverse ⁇ sets become.
- the hydrogen H +, H 2 need not forced ⁇ provisionally as hydrogen gas H 2 present in the system, but may be physisorbed or chemisorbed on a surface present in the electrolysis cell. 1 This allows, for example, a carbon dioxide reduction process in non-aqueous electrolytes, which only so low Water or hydrogen content is added that hydrido complexes arise, the ben ⁇ the carbon dioxide catalysis.
- FIG. 10 shows by way of example and schematically an off ⁇ cut of an electrolytic cell 1, namely the cathode compartment KR with the cathode K and the connected power supply E. Further, greatly simplified by looking into the cathode compartment KR in and out pointing arrows of Kohlenstoffdio- xideinlass and Kohlenstoffmonoxidauslass displayed, these are usually together with the electrolyte inlet and outlet.
- the carbon dioxide CO 2 of an education could here again in accordance with the guide shape, as shown in Figure 3, be inserted through a Gasdiffusi ⁇ onselektrode GDE into the cathode compartment KR.
- the cathode surface When an operating voltage E is applied to the electrodes K, A of the electrolysis cell 1, the cathode surface provides electrons e ⁇ to the reaction space.
- the transfer of charge from the cathode K to the catalyst complex 110 is indicated by an arrow 60, which likewise stands for the hydrogenation reaction 60, as is shown in FIG. This is intended to make it clear that the transfer of charge from the cathode K to the catalyst complex 110 can only be achieved effectively with the aid of the addition of a protic species 60.
- the protic species 60 may be present together with the catalyst complex 110 in the electrolytic cell 1, be conveyed through the electrolyte circuit through it or be added specifically, for example via a separate dosage unit, in the cathode compartment.
- the catalyst complex 110 may be dissolved in the electrolyte in the cathode space KR or in particular immobilized on the cathode surface.
- Diagrams are not shown with measuring resulting ⁇ Nissen in Figures 11 to 13, which are by way of example illustrate the effect of the described method.
- FIGS. 11 and 12 each show current-voltage diagrams of a linear sweep Voltammetry measurement shown in which a current density i
- FIG. 13 shows a further example in which a photoelectrode is used for the carbon dioxide reaction. production is used.
- the measured current density is accordingly i depending on the incorporated radiating ⁇ th light intensity I h revealed v.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Catalysts (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015202258.7A DE102015202258A1 (de) | 2015-02-09 | 2015-02-09 | Reduktionsverfahren und Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung |
PCT/EP2016/052516 WO2016128323A1 (de) | 2015-02-09 | 2016-02-05 | Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3234225A1 true EP3234225A1 (de) | 2017-10-25 |
Family
ID=55357968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16704413.0A Withdrawn EP3234225A1 (de) | 2015-02-09 | 2016-02-05 | Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung |
Country Status (7)
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12286714B2 (en) * | 2015-10-09 | 2025-04-29 | Rutgers, The State University Of New Jersey | Nickel phosphide catalysts for direct electrochemical CO2 reduction to hydrocarbons |
US20170268118A1 (en) * | 2016-03-18 | 2017-09-21 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
JP2018090838A (ja) * | 2016-11-30 | 2018-06-14 | 昭和シェル石油株式会社 | 二酸化炭素還元装置 |
DE102017005681A1 (de) | 2017-06-14 | 2018-12-20 | Linde Aktiengesellschaft | Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts |
DE102017005680A1 (de) | 2017-06-14 | 2018-12-20 | Linde Aktiengesellschaft | Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts |
DE102017005678A1 (de) | 2017-06-14 | 2018-12-20 | Linde Aktiengesellschaft | Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts |
DE102017219974A1 (de) * | 2017-11-09 | 2019-05-09 | Siemens Aktiengesellschaft | Herstellung und Abtrennung von Phosgen durch kombinierte CO2 und Chlorid-Elektrolyse |
DE102018212409A1 (de) * | 2017-11-16 | 2019-05-16 | Siemens Aktiengesellschaft | Kohlenwasserstoff-selektive Elektrode |
DE102018201287A1 (de) * | 2018-01-29 | 2019-08-01 | Siemens Aktiengesellschaft | Poröse Elektrode zur elektrochemischen Umsetzung organischer Verbindungen in zwei nicht mischbaren Phasen in einem elektrochemischen Flussreaktor |
DE102018000672A1 (de) * | 2018-01-29 | 2019-08-14 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Verfahren zur Übertragung eines Zielstoffs zwischen zwei flüssigen Phasen |
DE102018202344A1 (de) | 2018-02-15 | 2019-08-22 | Siemens Aktiengesellschaft | Elektrochemische Herstellung von Kohlenstoffmonoxid und/oder Synthesegas |
DE102018202337A1 (de) | 2018-02-15 | 2019-08-22 | Linde Aktiengesellschaft | Elektrochemische Herstellung eines Gases umfassend CO mit Zwischenkühlung des Elektrolytstroms |
JP6822998B2 (ja) * | 2018-03-20 | 2021-01-27 | 株式会社東芝 | 電気化学反応装置 |
WO2020005482A1 (en) * | 2018-06-29 | 2020-01-02 | Illinois Institute Of Technology | Transition metal mxene catalysts for conversion of carbon dioxide to hydrocarbons |
US12214337B2 (en) | 2018-06-29 | 2025-02-04 | Illinois Institute Of Technology | Transition metal MXene catalysts for conversion of carbon dioxide to hydrocarbons |
JP7262739B2 (ja) * | 2018-11-29 | 2023-04-24 | グローバル・リンク株式会社 | 電気分解装置の陽極及び陰極の製造方法 |
US10590548B1 (en) * | 2018-12-18 | 2020-03-17 | Prometheus Fuels, Inc | Methods and systems for fuel production |
NO20190144A1 (en) | 2019-01-31 | 2020-08-03 | Norsk Hydro As | A process for production of aluminium |
CN110344071B (zh) * | 2019-08-14 | 2020-11-17 | 碳能科技(北京)有限公司 | 电还原co2装置和方法 |
DE102019007265A1 (de) | 2019-10-18 | 2021-04-22 | Linde Gmbh | Verfahren und Anlage zur Herstellung eines an Kohlenstoffmonoxid reichen Gasprodukts |
CN110983357A (zh) * | 2019-12-04 | 2020-04-10 | 昆明理工大学 | 一种电解二氧化碳制一氧化碳同时副产氯气、碳酸氢盐的三室隔膜电解方法 |
US11001549B1 (en) * | 2019-12-06 | 2021-05-11 | Saudi Arabian Oil Company | Electrochemical reduction of carbon dioxide to upgrade hydrocarbon feedstocks |
US20230002919A1 (en) * | 2019-12-11 | 2023-01-05 | Nippon Telegraph And Telephone Corporation | Carbon Dioxide Gas Phase Reduction Apparatus and Method |
CN111575732A (zh) * | 2020-05-28 | 2020-08-25 | 昆明理工大学 | 一种光气合成原料的电化学制备方法 |
DE102020004630A1 (de) | 2020-07-30 | 2022-02-03 | Linde Gmbh | Druckhaltung in einer Elektrolyseanlage |
DE102020005254A1 (de) | 2020-08-27 | 2022-03-03 | Linde Gmbh | Verfahren und Anlage zur Herstellung von Kohlenstoffmonoxid |
EP4050126A1 (de) | 2021-02-25 | 2022-08-31 | Linde GmbH | Co2-elektrolyse mit edukt-befeuchtung |
JP7459848B2 (ja) * | 2021-07-26 | 2024-04-02 | 株式会社豊田中央研究所 | ガス拡散型電解フローセル用のカソード電極、及びガス拡散型電解フローセル |
JP7730500B2 (ja) * | 2021-08-26 | 2025-08-28 | 三菱重工業株式会社 | 二酸化炭素吸収還元溶液、二酸化炭素吸収還元装置、及び二酸化炭素吸収還元方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61134331A (ja) * | 1984-12-03 | 1986-06-21 | Kotaro Ogura | 二酸化炭素のアセトアルデヒドによる還元固定法 |
JPS62120489A (ja) * | 1985-11-18 | 1987-06-01 | Kotaro Ogura | 常温・常圧における二酸化炭素の間接電気化学的還元 |
US4668349A (en) * | 1986-10-24 | 1987-05-26 | The Standard Oil Company | Acid promoted electrocatalytic reduction of carbon dioxide by square planar transition metal complexes |
JPH01205088A (ja) * | 1988-02-10 | 1989-08-17 | Tanaka Kikinzoku Kogyo Kk | 二酸化炭素の電解還元方法 |
JP5707773B2 (ja) * | 2009-09-14 | 2015-04-30 | 株式会社豊田中央研究所 | 複合光電極および光電気化学反応システム |
JP2013253270A (ja) * | 2012-06-05 | 2013-12-19 | Sharp Corp | 二酸化炭素還元装置 |
-
2015
- 2015-02-09 DE DE102015202258.7A patent/DE102015202258A1/de not_active Withdrawn
-
2016
- 2016-02-05 US US15/549,778 patent/US20180023198A1/en not_active Abandoned
- 2016-02-05 JP JP2017541254A patent/JP2018510262A/ja active Pending
- 2016-02-05 WO PCT/EP2016/052516 patent/WO2016128323A1/de active Application Filing
- 2016-02-05 EP EP16704413.0A patent/EP3234225A1/de not_active Withdrawn
- 2016-02-05 CN CN201680009432.6A patent/CN107208284A/zh active Pending
-
2017
- 2017-08-03 ZA ZA2017/05252A patent/ZA201705252B/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN107208284A (zh) | 2017-09-26 |
DE102015202258A1 (de) | 2016-08-25 |
US20180023198A1 (en) | 2018-01-25 |
JP2018510262A (ja) | 2018-04-12 |
ZA201705252B (en) | 2019-06-26 |
WO2016128323A1 (de) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016128323A1 (de) | Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung | |
WO2016124300A1 (de) | Verfahren und elektrolysesystem zur kohlenstoffdioxid-verwertung | |
EP3317435B1 (de) | Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung | |
DE102015203245A1 (de) | Abscheidung eines kupferhaltigen, Kohlenwasserstoffe entwickelnden Elektrokatalysators auf Nicht-Kupfer-Substraten | |
DE102015201132A1 (de) | Verfahren und Elektrolysesystem zur Kohlenstoffdioxid-Verwertung | |
EP3408429A1 (de) | Verfahren und vorrichtung zur elektrochemischen nutzung von kohlenstoffdioxid | |
EP3280834A1 (de) | Elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung mit protonenspender-einheit und reduktionsverfahren | |
EP3478878B1 (de) | Anordnung und verfahren für die kohlendioxid-elektrolyse | |
DE2851225A1 (de) | Verfahren zum speichern von sonnenenergie | |
EP3405602A1 (de) | Verfahren und vorrichtung zur elektrochemischen herstellung von synthesegas | |
EP3478879A1 (de) | Anordnung und verfahren für die kohlendioxid-elektrolyse | |
WO2016083193A1 (de) | Elektrolyseur und verfahren zur kohlenstoffdioxid-verwertung | |
WO2020143970A1 (de) | Elektrolyseverfahren zur kohlenstoffdioxid-reduktion | |
DE102013226357A1 (de) | Pulsierende Elektrolytzufuhr in den Reaktionsraum einer Elektrolysezelle mit gasentwickelnden Elektroden | |
WO2020001851A1 (de) | Elektrochemische niedertemperatur reverse-watergas-shift reaktion | |
WO2020212139A1 (de) | Verfahren und vorrichtung zur elektrochemischen nutzung von kohlenstoffdioxid | |
EP3783131A1 (de) | Elektrolyseur und verfahren zum aufspalten von wasser | |
WO2018162156A1 (de) | Elektroden umfassend in festkörperelektrolyten eingebrachtes metall | |
DE102020207186A1 (de) | CO2 Elektrolyse mit Gasdiffusionselektrode und Salzbildungsvermeidung durch Elektrolytwahl | |
WO2015078784A1 (de) | Elektrolysezelle und verfahren zur erzeugung chemischer produkte mittels einer elektrolysezelle | |
DE102019129071A1 (de) | Elektrolyseur und Verfahren zum Aufspalten von Wasser | |
WO2020156734A1 (de) | Verfahren zur energieeffizienten herstellung von co | |
DE102007029168A1 (de) | Vorrichtung zum Erzeugen von Wasserstoff und diesen verwendendes Brennstoffzellensystem | |
WO2018065339A1 (de) | Verfahren zur herstellung eines in der wasseroxidation einsetzbaren elektrokatalysators | |
DE102008002108A1 (de) | Elektrolytlösung für Wasserstofferzeugungsvorrichtung und Wasserstofferzeugungsvorrichtung mit derselben |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20170720 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
PUAG | Search results despatched under rule 164(2) epc together with communication from examining division |
Free format text: ORIGINAL CODE: 0009017 |
|
17Q | First examination report despatched |
Effective date: 20180712 |
|
B565 | Issuance of search results under rule 164(2) epc |
Effective date: 20180712 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25B 1/00 20060101AFI20180704BHEP Ipc: C25B 3/04 20060101ALI20180704BHEP Ipc: C25B 11/04 20060101ALI20180704BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190123 |