EP3200775A2 - Polythérapies - Google Patents

Polythérapies

Info

Publication number
EP3200775A2
EP3200775A2 EP15782164.6A EP15782164A EP3200775A2 EP 3200775 A2 EP3200775 A2 EP 3200775A2 EP 15782164 A EP15782164 A EP 15782164A EP 3200775 A2 EP3200775 A2 EP 3200775A2
Authority
EP
European Patent Office
Prior art keywords
cancer
inhibitor
alkyl
combination
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15782164.6A
Other languages
German (de)
English (en)
Other versions
EP3200775B1 (fr
Inventor
Zhu Alexander CAO
Xianhui RONG
Maria Consuelo PINZON-ORTIZ
Tyler LONGMIRE
Benjamin Hyun LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis AG filed Critical Novartis AG
Priority to EP19206634.8A priority Critical patent/EP3662903A3/fr
Publication of EP3200775A2 publication Critical patent/EP3200775A2/fr
Application granted granted Critical
Publication of EP3200775B1 publication Critical patent/EP3200775B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39541Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against normal tissues, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3015Breast
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3023Lung
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3038Kidney, bladder
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3046Stomach, Intestines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3053Skin, nerves, brain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3069Reproductive system, e.g. ovaria, uterus, testes, prostate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • T cells The ability of T cells to mediate an immune response against an antigen requires two distinct signaling interactions (Viglietta, V. et al. (2007) Neurotherapeutics 4:666-675; Korman, A. J. et al. (2007) Adv. Immunol. 90:297-339).
  • APC antigen-presenting cells
  • TCR T cell receptor
  • the immune system is tightly controlled by a network of costimulatory and co-inhibitory ligands and receptors. These molecules provide the second signal for T cell activation and provide a balanced network of positive and negative signals to maximize immune responses against infection, while limiting immunity to self (Wang, L. et al. (Epub Mar. 7, 2011) J. Exp. Med. 208(3):577-92; Lepenies, B. et al. (2008) Endocrine, Metabolic & Immune Disorders- Drug Targets 8:279-288).
  • costimulatory signals include the binding between the B7.1 (CD80) and B7.2 (CD86) ligands of the APC and the CD28 and CTLA-4 receptors of the CD4 + T-lymphocyte (Sharpe, A. H. et al. (2002) Nature Rev. Immunol. 2:116-126; Lindley, P. S. et al. (2009) Immunol. Rev. 229:307-321). Binding of B7.1 or B7.2 to CD28 stimulates T cell activation, whereas binding of B7.1 or B7.2 to CTLA-4 inhibits such activation (Dong, C. et al. (2003) Immunolog. Res.28(1):39-48; Greenwald, R. J. et al. (2005) Ann. Rev. Immunol.23:515- 548). CD28 is constitutively expressed on the surface of T cells (Gross, J., et al. (1992) J.
  • B7 Superfamily a group of related B7 molecules, also known as the "B7 Superfamily" (Coyle, A. J. et al. (2001) Nature Immunol.2(3):203-209; Sharpe, A. H. et al. (2002) Nature Rev. Immunol.2:116-126; Collins, M. et al. (2005) Genome Biol.6:223.1- 223.7; Korman, A. J. et al. (2007) Adv. Immunol.90:297-339).
  • B7 Superfamily Several members of the B7 Superfamily are known, including B7.1 (CD80), B7.2 (CD86), the inducible co-stimulator ligand (ICOS-L), the programmed death-1 ligand (PD-L1; B7-H1), the programmed death-2 ligand (PD-L2; B7-DC), B7-H3, B7-H4 and B7-H6 (Collins, M. et al. (2005) Genome Biol.6:223.1- 223.7).
  • B7.1 CD80
  • B7.2 the inducible co-stimulator ligand
  • PD-L1 programmed death-1 ligand
  • PD-L2 programmed death-2 ligand
  • B7-DC B7-H3, B7-H4 and B7-H6
  • the Programmed Death 1 (PD-1) protein is an inhibitory member of the extended CD28/CTLA-4 family of T cell regulators (Okazaki et al. (2002) Curr Opin Immunol 14:
  • CD28 CD28
  • CTLA-4 CTLA-4
  • ICOS BTLA
  • PD-1 is suggested to exist as a monomer, lacking the unpaired cysteine residue characteristic of other CD28 family members. PD-1 is expressed on activated B cells, T cells, and monocytes.
  • the PD-1 gene encodes a 55 kDa type I transmembrane protein (Agata et al. (1996) Int Immunol.8:765-72). Although structurally similar to CTLA-4, PD-1 lacks the MYPPY motif (SEQ ID NO: 1) that is important for B7-1 and B7-2 binding.
  • SEQ ID NO: 1 Two ligands for PD-1 have been identified, PD-L1 (B7-H1) and PD-L2 (B7-DC), that have been shown to downregulate T cell activation upon binding to PD-1 (Freeman et al. (2000) J. Exp. Med.192:1027-34; Carter et al. (2002) Eur. J. Immunol.32:634-43).
  • Both PD-L1 and PD-L2 are B7 homologs that bind to PD- 1, but do not bind to other CD28 family members.
  • PD-L1 is abundant in a variety of human cancers (Dong et al. (2002) Nat. Med.8:787-9).
  • PD-1 is known as an immunoinhibitory protein that negatively regulates TCR signals (Ishida, Y. et al. (1992) EMBO J.11:3887-3895; Blank, C. et al. (Epub 2006 Dec.29) Immunol. Immunother.56(5):739-745).
  • the interaction between PD-1 and PD-L1 can act as an immune checkpoint, which can lead to, e.g., a decrease in tumor infiltrating lymphocytes, a decrease in T- cell receptor mediated proliferation, and/or immune evasion by cancerous cells (Dong et al. (2003) J. Mol. Med.81:281-7; Blank et al. (2005) Cancer Immunol.
  • the present invention provides, at least in part, methods and compositions comprising an immunomodulator (e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule) in combination with a second therapeutic agent chosen from one or more of the agents listed in Table 1.
  • an immunomodulator e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule
  • an inhibitor of an immune checkpoint molecule e.g., one or more inhibitors of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3, and/or -5) or CTLA-4) can be combined with a second therapeutic agent chosen from one or more agents listed in Table 1 (e.g., one or more of: 1) an IAP inhibitor; 2) a TOR kinase inhibitor; 3) a HDM2 ligase inhibitor; 4) a PIM kinase inhibitor; 5) a HER3 kinase inhibitor; 6) a Histone Deacetylase (HDAC) inhibitor; 7) a Janus kinase inhibitor; 8) an FGF receptor inhibitor; 9) an EGF receptor inhibitor; 10) a c-MET inhibitor; 11) an ALK inhibitor; 12) a CDK4/6-inhibitor; 13) a PI3K inhibitor; 14) a BRAF inhibitor; 15)
  • the combinations described herein can provide a beneficial effect, e.g., in the treatment of a cancer, such as an enhanced anti-cancer effect, reduced toxicity and/or reduced side effects.
  • the immunomodulator, the second therapeutic agent, or both can be administered at a lower dosage than would be required to achieve the same therapeutic effect compared to a monotherapy dose.
  • compositions and methods for treating proliferative disorders, including cancer, using the aforesaid combination therapies are disclosed.
  • the invention features a method of treating (e.g., inhibiting, reducing, ameliorating, or preventing) a proliferative condition or disorder (e.g., a cancer) in a subject.
  • the method includes administering to the subject an immunomodulator (e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule) and a second therapeutic agent, e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1, thereby treating the proliferative condition or disorder (e.g., the cancer).
  • the immunomodulator is an inhibitor of an immune checkpoint molecule (e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3, and/or -5) or CTLA-4, or any combination thereof).
  • the second therapeutic agent is chosen from one or more of the agents listed in Table 1, e.g., one or more of: 1) an IAP inhibitor; 2) a TOR kinase inhibitor; 3) a HDM2 ligase inhibitor; 4) a PIM kinase inhibitor; 5) a HER3 kinase inhibitor; 6) a Histone Deacetylase (HDAC) inhibitor; 7) a Janus kinase inhibitor; 8) an FGF receptor inhibitor); 9) an EGF receptor inhibitor; 10) a c-MET inhibitor; 11) an ALK inhibitor; 12) a CDK4/6-inhibitor; 13) a PI3K inhibitor; 14) a BRAF inhibitor; 15) a CAR T cell (e.g., a CAR T cell targeting CD19); 16) a MEK inhibitor, or 17) a BCR-ABL inhibitor).
  • HDAC Histone Deacetylase
  • the combination of the immunomodulator and the second agent can be administered together in a single composition or administered separately in two or more different compositions, e.g., one or more compositions or dosage forms as described herein.
  • the administration of the immunomodulator and the second agent can be in any order.
  • the immunomodulator can be administered concurrently with, prior to, or subsequent to, the second agent.
  • the invention features a method of reducing an activity (e.g., growth, survival, or viability, or all), of a proliferative (e.g., a cancer) cell.
  • the method includes contacting the cell with an immunomodulator (e.g., one or more of: an activator of a
  • the immunomodulator is an inhibitor of an immune checkpoint molecule (e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3, and/or -5) or CTLA-4, or any combination thereof).
  • an immune checkpoint molecule e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3, and/or -5) or CTLA-4, or any combination thereof.
  • the second therapeutic agent is chosen from one or more of the agents listed in Table 1, e.g., one or more: 1) an IAP inhibitor; 2) a TOR kinase inhibitor; 3) a HDM2 ligase inhibitor; 4) a PIM kinase inhibitor; 5) a HER3 kinase inhibitor; 6) a Histone Deacetylase (HDAC) inhibitor; 7) a Janus kinase inhibitor; 8) an FGF receptor inhibitor); 9) an EGF receptor inhibitor; 10) a c-MET inhibitor; 11) an ALK inhibitor; 12) a CDK4/6-inhibitor; 13) a PI3K inhibitor; 14) a BRAF inhibitor; 15) a CAR T cell (e.g., a CAR T cell targeting CD19); 16) a MEK inhibitor, or 17) a BCR-ABL inhibitor).
  • HDAC Histone Deacetylase
  • the methods described herein can be used in vitro.
  • in vitro hPBMC-based assays can be used to screen for combination signals of
  • the methods described herein can be used in vivo, e.g., in an animal subject or model or as part of a therapeutic protocol.
  • the contacting of the cell with the immunomodulator and the second agent can be in any order.
  • the cell is contacted with the immunomodulator concurrently, prior to, or subsequent to, the second agent.
  • the method described herein is used to measure tumor lymphocyte infiltration (TLI) in vitro or in vivo, as disclosed, e.g., in Frederick, D.T. et al. (2013) Clinical Cancer Research 19:1225-31.
  • TLI tumor lymphocyte infiltration
  • the method includes contacting the cell with an immunomodulator (e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule) and/or a second therapeutic agent, e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1, in an animal model.
  • an immunomodulator e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule
  • a second therapeutic agent e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1
  • the animal model has a mutation that inhibits or activates IAP, EGF receptor, cMET, ALK, CDK4/6, PI3K, BRAF, FGF receptor, MEK, and/or BCR-ABL.
  • an animal model is a mouse model implanted with MC38 murine colon carcinoma.
  • an animal model is a mouse model with an inactivated p110 ⁇ isoform of PI3 kinase (e.g., p110 ⁇ D910A ) as disclosed, e.g., in Ali, K., et al., (2014) Nature 510:407-411.
  • PI3 kinase e.g., p110 ⁇ D910A
  • an immune phenotype is determined by measuring one or more of expression, activation, signalling, flow cytometry, mRNA analysis, cytokine levels and/or immunohistochemisty. In some embodiments, the immune phenotype is determined
  • the immune phenotype is determined in situ, e.g, in tumor cells.
  • one or more of the following parameters is characterized to determine an immune phenotype: checkpoint induction; level of M1
  • the invention features a composition (e.g., one or more compositions, formulations or dosage formulations) or a pharmaceutical combination, comprising an immunomodulator (e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule) and a second therapeutic agent, e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1.
  • an immunomodulator e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule
  • a second therapeutic agent e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1.
  • the immunomodulator is an inhibitor of an immune checkpoint molecule (e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA-4, or any combination thereof).
  • an immune checkpoint molecule e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA-4, or any combination thereof.
  • the second therapeutic agent is chosen from one or more of the agents listed in Table 1, e.g., one or more of: 1) an IAP inhibitor; 2) a TOR kinase inhibitor; 3) a HDM2 ligase inhibitor; 4) a PIM kinase inhibitor; 5) a HER3 kinase inhibitor; 6) a Histone Deacetylase (HDAC) inhibitor; 7) a Janus kinase inhibitor; 8) an FGF receptor inhibitor); 9) an EGF receptor inhibitor; 10) a c-MET inhibitor; 11) an ALK inhibitor; 12) a CDK4/6-inhibitor; 13) a PI3K inhibitor; 14) a BRAF inhibitor; 15) a CAR T cell (e.g., a CAR T cell targeting CD19); 16) a MEK inhibitor, or 17) a BCR-ABL inhibitor).
  • the composition comprises a pharmaceutically acceptable carrier.
  • the immunomodulator and the second agent can be present
  • compositions comprising the immunomodulator and the second agent can be administered via the same administration route or via different administration routes.
  • the immunomodulator and the second agent can be administered via the same administration route or via different administration routes.
  • pharmaceutical combination comprises the immunomodulator and the second agent separately or together.
  • the composition, formulation or pharmaceutical combination is for use as a medicine, e.g., for the treatment of a proliferative disease (e.g., a cancer as described herein).
  • a proliferative disease e.g., a cancer as described herein.
  • the immunomodulator and the second agent are administered concurrently, e.g., independently at the same time or within an overlapping time interval, or separately within time intervals. In certain embodiment, the time interval allows the
  • the immunomodulator and the second agent to be jointly active.
  • the second agent to be jointly active.
  • composition, formulation or pharmaceutical combination includes an amount which is jointly therapeutically effective for the treatment of a proliferative disease, e.g., a cancer as described herein.
  • the invention features a use of a composition (e.g., one or more compositions, formulations or dosage formulations) or a pharmaceutical combination, comprising an immunomodulator (e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule) and a second therapeutic agent, e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1, for the manufacture of a medicament for treating a proliferative disease, e.g., a cancer.
  • an immunomodulator e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule
  • a second therapeutic agent e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1, for the manufacture of a medicament for treating
  • the immunomodulator is an inhibitor of an immune checkpoint molecule (e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA-4, or any combination thereof).
  • an immune checkpoint molecule e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA-4, or any combination thereof.
  • the second therapeutic agent is chosen from one or more of the agents listed in Table 1, e.g., one or more of: 1) an IAP inhibitor; 2) a TOR kinase inhibitor; 3) a HDM2 ligase inhibitor; 4) a PIM kinase inhibitor; 5) a HER3 kinase inhibitor; 6) a Histone Deacetylase (HDAC) inhibitor; 7) a Janus kinase inhibitor; 8) an FGF receptor inhibitor); 9) an EGF receptor inhibitor; 10) a c-MET inhibitor; 11) an ALK inhibitor; 12) a CDK4/6-inhibitor; 13) a PI3K inhibitor; 14) a BRAF inhibitor; 15) a CAR T cell (e.g., a CAR T cell targeting CD19); 16) a MEK inhibitor, or 17) a BCR-ABL inhibitor).
  • HDAC Histone Deacetylase
  • Kits e.g., therapeutic kits, that include the immunomodulator (e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule as described herein) and the second therapeutic agent, e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1, and instructions for use, are also disclosed. Additional features or embodiments of the methods, compositions, dosage formulations, and kits described herein include one or more of the following: In certain embodiments, the immunomodulator is an activator of a costimulatory molecule.
  • the agonist of the costimulatory molecule is chosen from an agonist (e.g., an agonistic antibody or antigen-binding fragment thereof, or a soluble fusion) of OX40, CD2, CD27, CDS, ICAM-1, LFA-1 (CD11a/CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD30, CD40, BAFFR, HVEM, CD7, LIGHT, NKG2C, SLAMF7, NKp80, CD160, B7- H3 or CD83 ligand, or any combination thereof.
  • an agonist e.g., an agonistic antibody or antigen-binding fragment thereof, or a soluble fusion
  • OX40 e.g., an agonistic antibody or antigen-binding fragment thereof, or a soluble fusion
  • CD2 e.g., an agonistic antibody or antigen-binding fragment thereof, or a soluble fusion
  • ICAM-1 e.g., I
  • the immunomodulator is an inhibitor of an immune checkpoint molecule.
  • the immunomodulator is an inhibitor of PD-1, PD-L1, PD-L2, CTLA-4, TIM-3, LAG-3, CEACAM (e.g., CEACAM-1, -3 and/or -5), VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and/or TGFR beta.
  • the inhibitor of an immune checkpoint molecule inhibits PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA-4, or any combination thereof.
  • Inhibition of an inhibitory molecule can be performed at the DNA, RNA or protein level.
  • an inhibitory nucleic acid e.g., a dsRNA, siRNA or shRNA
  • the inhibitor of an inhibitory signal is, a polypeptide e.g., a soluble ligand (e.g., PD-1-Ig or CTLA-4 Ig).
  • the inhibitor of the inhibitory signal is an antibody or antigen-binding fragment thereof, that binds to the inhibitory molecule; e.g., an antibody or fragment thereof (also referred to herein as“an antibody molecule”) that binds to PD-1, PD-L1, PD-L2, CTLA-4, TIM-3, LAG- 3, CEACAM (e.g., CEACAM-1, -3 and/or -5), VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and/or TGFR beta, or a combination thereof.
  • an antibody or fragment thereof also referred to herein as“an antibody molecule”
  • CEACAM e.g., CEACAM-1, -3 and/or -5
  • VISTA e.g., CEACAM-1, -3 and/or -5
  • BTLA TIGIT
  • LAIR1 CD160
  • 2B4 and/or TGFR beta
  • the antibody molecule is a full antibody or fragment thereof (e.g., a Fab, F(ab') 2 , Fv, or a single chain Fv fragment (scFv)).
  • the antibody molecule has a heavy chain constant region (Fc) chosen from, e.g., the heavy chain constant regions of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, and IgE; particularly, chosen from, e.g., the heavy chain constant regions of IgG1, IgG2, IgG3, and IgG4, more particularly, the heavy chain constant region of IgG1 or IgG4 (e.g., human IgG1 or IgG4).
  • Fc heavy chain constant region
  • the heavy chain constant region is human IgG1 or human IgG4.
  • the constant region is altered, e.g., mutated, to modify the properties of the antibody molecule (e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, or complement function).
  • the antibody molecule is in the form of a bispecific or multispecific antibody molecule.
  • the bispecific antibody molecule has a first binding specificity to PD-1 or PD-L1 and a second binding specifity, e.g., a second binding specificity to TIM-3, LAG-3, or PD-L2.
  • the bispecific antibody molecule binds to PD-1 or PD-L1 and TIM-3.
  • the bispecific antibody molecule binds to PD-1 or PD-L1 and LAG-3.
  • the bispecific antibody molecule binds to PD-1 or PD-L1 and CEACAM (e.g., CEACAM-1, -3 and/or -5).
  • CEACAM e.g., CEACAM-1, -3 and/or -5
  • the bispecific antibody molecule binds to PD-1 or PD-L1 and CEACAM-1. In still another embodiment, the bispecific antibody molecule binds to PD-1 or PD-L1 and CEACAM-3. In yet another embodiment, the bispecific antibody molecule binds to PD-1 or PD-L1 and CEACAM-1. In another embodiment, the bispecific antibody molecule binds to PD-1 or PD- L1. In yet another embodiment, the bispecific antibody molecule binds to PD-1 and PD-L2. In another embodiment, the bispecific antibody molecule binds to TIM-3 and LAG-3.
  • the bispecific antibody molecule binds to CEACAM (e.g., CEACAM-1, -3 and/or - 5) and LAG-3. In another embodiment, the bispecific antibody molecule binds to CEACAM (e.g., CEACAM-1, -3 and/or -5) and TIM-3. Any combination of the aforesaid molecules can be made in a multispecific antibody molecule, e.g., a trispecific antibody that includes a first binding specificity to PD-1 or PD-1, and a second and third binding specifities to two or more of: TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5), LAG-3, or PD-L2.
  • a multispecific antibody molecule e.g., a trispecific antibody that includes a first binding specificity to PD-1 or PD-1, and a second and third binding specifities to two or more of: TIM-3, CEACAM (e.g., CEACAM-1,
  • the immunomodulator is an inhibitor of PD-1, e.g., human PD-1.
  • the immunomodulator is an inhibitor of PD-L1, e.g., human PD-L1.
  • the inhibitor of PD-1 or PD-L1 is an antibody molecule to PD-1 or PD-L1.
  • the PD-1 or PD-L1 inhibitor can be administered alone, or in combination with other immunomodulators, e.g., in combination with an inhibitor of LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA-4.
  • the inhibitor of PD-1 or PD-L1, e.g., the anti-PD-1 or PD-L1 antibody molecule is administered in combination with a LAG-3 inhibitor, e.g., an anti-LAG-3 antibody molecule.
  • the inhibitor of PD-1 or PD-L1, e.g., the anti-PD-1 or PD-L1 antibody molecule is administered in combination with a TIM-3 inhibitor, e.g., an anti-TIM-3 antibody molecule.
  • the inhibitor of PD-1 or PD-L1, e.g., the anti-PD-1 antibody molecule is administered in combination with a LAG-3 inhibitor, e.g., an anti-LAG-3 antibody molecule, and a TIM-3 inhibitor, e.g., an anti-TIM-3 antibody molecule.
  • the inhibitor of PD-1 or PD-L1, e.g., the anti-PD-1 or PD-L1 antibody molecule is administered in combination with a CEACAM (e.g., CEACAM-1, -3 and/or -5) inhibitor, e.g., an anti-CEACAM antibody molecule.
  • a CEACAM e.g., CEACAM-1, -3 and/or -5 inhibitor
  • the inhibitor of PD-1 or PD-L1, e.g., the anti-PD-1 or PD-L1 antibody molecule is administered in combination with a CEACAM-1 inhibitor, e.g., an anti-CEACAM-1 antibody molecule.
  • the inhibitor of PD-1 or PD- L1, e.g., the anti-PD-1 or PD-L1 antibody molecule is administered in combination with a CEACAM-3 inhibitor, e.g., an anti-CEACAM-3 antibody molecule.
  • the inhibitor of PD-1 or PD-L1 is administered in combination with a CEACAM-5 inhibitor, e.g., an anti-CEACAM-5 antibody molecule.
  • a CEACAM-5 inhibitor e.g., an anti-CEACAM-5 antibody molecule.
  • Other combinations of immunomodulators with a PD-1 inhibitor e.g., one or more of PD-L2, CTLA-4, TIM-3, LAG-3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and/or TGFR
  • Any of the antibody molecules known in the art or disclosed herein can be used in the aforesaid combinations of inhibitors of checkpoint molecule.
  • the PD-1 inhibitor is an anti-PD-1 antibody chosen from Nivolumab, Pembrolizumab or Pidilizumab.
  • the anti-PD-1 antibody is Nivolumab.
  • Alternative names for Nivolumab include MDX- 1106, MDX-1106-04, ONO-4538, or BMS-936558.
  • the anti-PD-1 antibody is Nivolumab (CAS Registry Number: 946414-94-4).
  • Nivolumab is a fully human IgG4 monoclonal antibody which specifically blocks PD- 1.
  • Nivolumab (clone 5C4) and other human monoclonal antibodies that specifically bind to PD- 1 are disclosed in US 8,008,449 and WO2006/121168.
  • the anti-PD-1 antibody is Pembrolizumab.
  • Pembrolizumab (Trade name KEYTRUDA formerly Lambrolizumab, also known as Merck 3745, MK-3475 or SCH- 900475) is a humanized IgG4 monoclonal antibody that binds to PD-1.
  • Pembrolizumab is disclosed, e.g., in Hamid, O. et al. (2013) New England Journal of Medicine 369 (2): 134–44, WO2009/114335, and US 8,354,509.
  • the anti-PD-1 antibody is Pidilizumab.
  • Pidilizumab CT-011; Cure Tech
  • CT-011 Cure Tech
  • IgG1k monoclonal antibody that binds to PD-1.
  • Pidilizumab and other humanized anti-PD-1 monoclonal antibodies are disclosed in WO2009/101611.
  • Other anti- PD-1 antibodies are disclosed in US 8,609,089, US 2010028330, and/or US
  • anti-PD-1 antibodies include AMP 514 (Amplimmune).
  • the PD-1 inhibitor is an immunoadhesin (e.g., an immunoadhesin comprising an extracellular or PD-1 binding portion of PD-Ll or PD-L2 fused to a constant region (e.g., an Fc region of an immunoglobulin sequence)).
  • the PD-1 inhibitor is AMP-224.
  • the PD-Ll inhibitor is anti-PD-Ll antibody.
  • the anti-PD-Ll inhibitor is chosen from YW243.55.S70, MPDL3280A, MEDI-4736, MSB- 0010718C, or MDX-1105.
  • the PD-L1 inhibitor is MDX-1105.
  • MDX-1105 also known as BMS-936559, is an anti-PD-Ll antibody described in WO2007/005874.
  • the PD-L1 inhibitor is YW243.55.S70.
  • the YW243.55.S70 antibody is an anti-PD-Ll described in WO 2010/077634 (heavy and light chain variable region sequences shown in SEQ ID Nos.20 and 21, respectively, of WO 2010/077634).
  • the PD-L1 inhibitor is MDPL3280A (Genentech / Roche).
  • MDPL3280A is a human Fc optimized IgG1 monoclonal antibody that binds to PD-L1.
  • MDPL3280A and other human monoclonal antibodies to PD-L1 are disclosed in U.S. Patent No.: 7,943,743 and U.S Publication No.: 20120039906.
  • the PD-L2 inhibitor is AMP-224.
  • AMP-224 is a PD-L2 Fc fusion soluble receptor that blocks the interaction between PD-1 and B7-H1 (B7-DCIg; Amplimmune; e.g., disclosed in WO2010/027827 and WO2011/066342).
  • the LAG-3 inhibitor is an anti-LAG-3 antibody molecule. In one embodiment, the LAG-3 inhibitor is BMS-986016, disclosed in more detail herein below.
  • the TIM-3 inhibitor is an anti-TIM-3 antibody molecule, e.g., an anti-TIM-3 antibody molecule as described herein.
  • One or more of the aforesaid inhibitors of immune checkpoint molecules can be used in combination with one or more of the second agents disclosed in Table 1, as more specifically exemplified below.
  • the second agent is chosen from one or more of:
  • anti-HER3 monoclonal antibody or antigen binding fragment thereof that comprises a VH of SEQ ID NO: 141 and VL of SEQ ID NO: 140, as described in U.S.8,735,551;
  • the inhibitor of PD-1 is Nivolumab (CAS Registry No: 946414-94-4) disclosed in e.g., US 8,008,449, and having a sequence disclosed herein, e.g., a heavy chain sequence of SEQ ID NO: 2 and a light chain sequence of SEQ ID NO: 3 (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
  • the inhibitor of PD-1 is Pembrolizumab disclosed in, e.g., US 8,354,509 and WO 2009/114335, and having a sequence disclosed herein, e.g., a heavy cahin sequence of SEQ ID NO: 4 and a light chain sequence of SEQ ID NO: 5 (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
  • the inhibitor of PD-L1 is MSB0010718C (also referred to as A09-246-2) disclosed in, e.g., WO 2013/0179174, and having a sequence disclosed herein, e.g., a heavy cahin sequence of SEQ ID NO: 6 and a light chain sequence of SEQ ID NO: 7 (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., the anti-PD-1 antibody (e.g., the anti-PD-1 antibody).
  • Nivolumab is used in a method or composition described herein.
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C) (alone or in combination with other immunomodulators) is used in combination with one or more of the agents described herein, e.g., listed in Table 1, or disclosed in a publication listed in Table 1, e.g., one or more of: 1) an Inhibitor of Apoptosis (IAP) inhibitor; 2) an inhibitor of a Target of Rapamycin (TOR) kinase; 3) an inhibitor of a human homolog of mouse double minute 2 E3 ubiquitin ligase (HDM2); 4) a PIM kinase inhibitor; 5) an inhibitor of Human epidermal growth factor 3 (HER3) kinase;
  • one or more of the aforesaid combinations is used to treat a disorder, e.g., a disorder described herein (e.g., a disorder disclosed in Table 1).
  • one or more of the aforesaid combinations is used to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the inhibitor of the immune checkpoint molecule is used in combination with an IAP inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • an IAP inhibitor is used in combination with an IAP inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • a cancer described herein e.g., a cancer disclosed in Table 1
  • the IAP inhibitor is disclosed herein, e.g., in Table 1.
  • the IAP inhibitor is LCL161 as disclosed herein, or in a publication recited in Table 1.
  • the IAP inhibitor is disclosed, e.g., in U.S. Patent No.8,546,336.
  • LCL161 has the structure provided in Table 1, or as disclosed in the publication recited in Table 1.
  • the inhibitor of the immune checkpoint molecule (e.g., one of Nivolumab, Pembrolizumab or MSB0010718C) is used in combination with LCL161 to treat a cancer or disorder described herein, e.g., in Table 1, e.g., a solid tumor, e.g., a breast cancer, colon cancer, or a pancreatic cancer; or a hematological malignancy, e.g., multiple myeloma or a hematopoeisis disorder.
  • a cancer or disorder described herein e.g., in Table 1, e.g., a solid tumor, e.g., a breast cancer, colon cancer, or a pancreatic cancer; or a hematological malignancy, e.g., multiple myeloma or a hematopoeisis disorder.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with LCL161, wherein LCL161 is (S)-N-((S)-1-cyclohexyl-2-((S)-2-(4-(4-fluorobenzoyl)thiazol-2-yl)pyrrolidin-1-yl)-2- oxoethyl)-2-(methylamino)propanamide.
  • LCL161 is administered at a dose (e.g., oral dose) of about 10-3000 mg, e.g., about 20-2400 mg, about 50-1800 mg, about 100-1500 mg, about 200-1200 mg, about 300-900 mg, e.g., about 600 mg, about 900 mg, about 1200 mg, about 1500 mg, about 1800 mg, about 2100 mg, or about 2400 mg.
  • LCL161 is administered once a week or once every two weeks.
  • LCL161 is administered prior to administration of the immune checkpoint inhibitor (e.g., the anti-PD-1 antibody).
  • the immune checkpoint inhibitor e.g., the anti-PD-1 antibody
  • LCL161 can be administered one, two, three, four or five days or more before the anti-PD-1 antibody is administered.
  • LCL161 is administred concurrently or substantially concurrently (e.g., on the same day) with the anti-PD-1 antibody.
  • LCL161 is administered after administration of the immune checkpoint inhibitor (e.g., the anti- PD-1 antibody).
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a TOR kinase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the TOR kinase inhibitor is disclosed herein, e.g., in Table 1.
  • the TOR kinase inhibitor is Rad-001 as disclosed herein, or in a publication recited in Table 1. In certain embodiments, the TOR kinase inhibitor is disclosed, e.g., in International Patent Publication No.2014/085318. In one embodiment, Rad-001 has the structure provided in Table 1, or as disclosed in the publication recited in Table 1.
  • the inhibitor of the immune checkpoint molecule (e.g., one of Nivolumab, Pembrolizumab or MSB0010718C) is used in combination with Rad-001 to treat a cancer or disorder described herein, e.g., in Table 1, e.g., a solid tumor, e.g., a sarcoma, a lung cancer (e.g., a non-small cell lung cancer (NSCLC) (e.g., a NSCLC with squamous and/or non-squamous histology)), a melanoma (e.g., an advanced melanoma), a digestive/gastrointestinal cancer, a gastric cancer, a neurologic cancer, a prostate cancer, a bladder cancer, a breast cancer; or a hematological malignancy, e.g., a lymphoma or leukemia.
  • a solid tumor e.g., a sarcoma
  • a lung cancer e
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with Rad-001, wherein Rad- 001 is ((1R, 9S, 12S, 15R, 16E, 18R, 19R, 21R, 23S, 24E, 26E, 28E, 30S, 32S, 35R)-1,18- dihydroxy-12- ⁇ (1R)-2-[(1S, 3R, 4R)-4-(2-hydroxyethoxy)-3-methoxycyclohexyl]-1- methylethyl ⁇ -19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-aza- tricyclo[30.3.1.04,9] hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentaone).
  • the inhibitor of the immune checkpoint molecule is used in combination with a HDM2 ligase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • a cancer e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the HDM2 ligase inhibitor is disclosed herein, e.g., in Table 1.
  • the HDM2 ligase inhibitor is CGM097 as disclosed herein, or in a publication recited in Table 1.
  • the HDM2 ligase inhibitor is disclosed, e.g., in International Patent Publication No.2011/076786.
  • CGM097 has the structure provided herein, e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • the inhibitor of the immune checkpoint molecule e.g., one of Nivolumab, Pembrolizumab or MSB0010718C
  • CGM097 is used in combination with CGM097 to treat a cancer or disorder described herein, e.g., in Table 1, e.g., a solid tumor.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with CGM097, wherein CGM097 is (S)-1-(4-chlorophenyl)-7-isopropoxy-6-methoxy-2-(4- ⁇ methyl-[4-(4-methyl-3-oxo- piperazin-1-yl)-trans-cyclohexylmethyl]-amino ⁇ phenyl)-1,4-dihydro-2H-isoquinolin-3one.
  • the inhibitor of the immune checkpoint molecule is used in combination with a PIM kinase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the PIM kinase inhibitor is LGH447 (also known as PIM447) disclosed herein, e.g., in Table 1.
  • the PIM kinase inhibitor is disclosed in a publication recited in Table 1.
  • the PIM kinase inhibitor is disclosed, e.g., in International Patent Publication No.2010/026124, European Patent Application No. EP2344474, and U.S.
  • the PIM kinase inhibitor has the structure provided in Table 1, or as disclosed in the publication recited in Table 1.
  • the inhibitor of the immune checkpoint molecule e.g., one of Nivolumab,
  • Pembrolizumab or MSB0010718C is used in combination with the PIM kinase inhibitor to treat a cancer or disorder described herein, e.g., in Table 1, e.g., hematological malignancy, e.g., multiple myeloma, myelodysplastic syndrome, myeloid leukemia, or non-Hodgkin's lymphoma.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with LGH447, wherein LGH447 is N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)- 5-fluoropicolinamide.
  • the inhibitor of the immune checkpoint molecule is used in combination with a HER3 kinase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the HER3 kinase inhibitor is disclosed herein, e.g., in Table 1.
  • the HER3 kinase inhibitor is LJM716 as disclosed herein, or in a publication recited in Table 1.
  • the HER3 kinase inhibitor is disclosed, e.g., in International Patent Publication No.2012/022814 and U.S. Patent No.8,735,551.
  • LJM716 has the structure provided in Table 1, or as disclosed in the publication recited in Table 1.
  • the anti-HER3 monoclonal antibody or antigen binding fragment thereof comprises a VH of SEQ ID NO: 141 and VL of SEQ ID NO: 140, as described in U.S.
  • the inhibitor of the immune checkpoint molecule (e.g., one of Nivolumab, Pembrolizumab or MSB0010718C) is used in combination with LJM716 to treat a cancer or disorder described herein, e.g., in Table 1, e.g., a solid tumor, e.g. a gastric cancer, an esophageal cancer, a breast cancer, a head and neck cancer, a stomach cancer, or a
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a HDAC inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • a cancer e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the HDAC inhibitor is disclosed herein, e.g., in Table 1.
  • the HDAC inhibitor is LBH589 as disclosed herein, or in a publication recited in Table 1.
  • the HDAC inhibitor is disclosed, e.g., in International Patent Publication Nos. 2014/072493 and 2002/022577 and European Patent Application No. EP1870399.
  • LBH589 has the structure provided in Table 1, or as disclosed in the publication recited in Table 1.
  • the inhibitor of the immune checkpoint molecule e.g., one of Nivolumab, Pembrolizumab or MSB0010718C
  • a cancer or disorder described herein e.g., in Table 1, e.g., a solid tumor,e.g., a bone cancer, a small cell lung cancer, a respiratory/thoracic cancer a prostate cancer, a non-small cell lung cancer (NSCLC), a nerologic cancer, a gastric cancer, a melanoma, a breast cancer, a pancreatic cancer, a colorectal cancer, a renal cancer, or a head and neck cancer, or a liver cancer; or a hematological malignancy, e.g., multiple myeloma, a hematopoeisis disorder, myelodysplastic syndrome
  • NSCLC non-small cell lung cancer
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with LBH589, wherein LBH589 is (E)-N-hydroxy-3-(4-(((2-(2-methyl-1H-indol-3-yl)ethyl)amino)methyl)phenyl) acrylamide.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a Janus kinase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the Janus kinase inhibitor is disclosed herein, e.g., in Table 1.
  • the Janus kinase inhibitor is INC424 as disclosed herein, or in a publication recited in Table 1.
  • the Janus kinase inhibitor is disclosed, e.g., in International Patent Publication Nos.2007/070514 and 2014/018632, European Patent Application No. EP2474545, and U.S. Patent No.7,598,257.
  • INC424 has the structure provided herein, e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • the inhibitor of the immune checkpoint molecule (e.g., one of Nivolumab, Pembrolizumab or MSB0010718C) is used in combination with INC424 to treat a cancer or disorder described herein, e.g., in Table 1, e.g., a solid tumor,e.g., a prostate cancer, a lung cancer, a breast cancer, a pancreatic cancer, a colorectal cancer; or a hematological malignancy, e.g., multiple myeloma, lymphoma (e.g., non-Hodgkin lymphoma), or leukemia (e.g., myeloid leukemia, lymphocytic leukemia).
  • the cancer has, or is identified as having, a JAK mutation.
  • the JAK mutation is a JAK2 V617F mutation.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with INC424, wherein INC424 is (3R)-3-cyclopentyl-3-[4-(7H-pyrrolo-[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1- yl]propanenitrile.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with an FGF receptor inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the FGF receptor inhibitor is disclosed herein, e.g., in Table 1.
  • the FGF receptor inhibitor is BUW078 or BGJ398 as disclosed herein, or in a publication recited in Table 1.
  • the FGF receptor inhibitor e.g., BUW078 or BGJ398, has the structure (compound or generic structure) provided herein, e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • Pembrolizumab or MSB0010718C is used in combination with BUW078 or BGJ398 to treat a cancer described herein, e.g., in Table 1, e.g., a solid tumor, e.g., a digestive/gastrointestinal cancer; or a hematological cancer.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with BUW078, wherein BUW078 is 8-(2,6-difluoro-3,5-dimethoxy-phenyl)-quinoxaline-5-carboxylic acid (4- dimethylaminomethyl-1H-imidazol-2-yl)-amide.
  • any of the aforesaid combinations can further include one or more of the second agents described herein below, e.g., one or more of the additional compounds shown in Table 1 (e.g., one or more of: an EGF receptor inhibitor, a c-MET inhibitor, an ALK inhibitor, a CDK4/6 inhibitor, a PI3K inhibitor, a BRAF inhibitor, a CAR T cell inhibitor, a MEK inhibitor or a BCR-ABL inhibitor as described herein).
  • the additional compounds shown in Table 1 e.g., one or more of: an EGF receptor inhibitor, a c-MET inhibitor, an ALK inhibitor, a CDK4/6 inhibitor, a PI3K inhibitor, a BRAF inhibitor, a CAR T cell inhibitor, a MEK inhibitor or a BCR-ABL inhibitor as described herein.
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with an EGF receptor inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the EGF receptor inhibitor is disclosed herein, e.g., in Table 1.
  • the EGF receptor inhibitor is EGF816, or as provided herein (e.g., a publication recited in Table 1).
  • the EGF receptor inhibitor e.g., EGF816, has the structure (compound or generic structure) provided herein, e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • Pembrolizumab or MSB0010718C is used in combination with EGF816 to treat a cancer described herein, e.g., in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a lymphoma, or a neuroblastoma.
  • a cancer described herein e.g., in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a lymphoma, or a neuroblastoma.
  • NSCLC non-small cell lung cancer
  • the cancer is NSCLC and is characterized by one or more of:
  • the cancer is NSCLC wherein the NSCLC is characterized by harbouring an EGFR exon 20 insertion, an EGFR exon 19 deletion, EGFR L858R mutation, EGFR T790M, or any combination thereof.
  • the combination is for use in the treatment of NSCLC, wherein the NSCLC is characterized by harboring an EGFR exon 20 insertion, an EGFR exon 19 deletion, EGFR L858R mutation, EGFR T790M, or any combination thereof.
  • the NSCLC is characterized by harboring L858R and T790M mutations of EGFR.
  • the NSCLC is characterized by harboring an EGFR exon 20 insertion and T790M mutations of EGFR.
  • the NSCLC is
  • the NSCLC is characterized by harboring an EGFR exon 19 deletion and T790M mutations of EGFR.
  • the NSCLC is characterized by harboring EGFR mutation selected from the group consisting of an exon 20 insertion, an exon 19 deletion, L858R mutation, T790M mutation, and any combination thereof.
  • the lymphoma e.g., an anaplastic large-cell lymphoma or non- Hodgkin lymphoma
  • the lymphoma has, or is identified as having, an ALK translocation, e.g., an EML4-ALK fusion.
  • EGF816 is administered at an oral dose of about 50 to 500 mg, e.g., about 100 mg to 400 mg, about 150 mg to 350 mg, or about 200 mg to 300 mg, e.g., about 100 mg, 150 mg or 200 mg.
  • the dosing schedule can vary from e.g., every other day to daily, twice or three times a day.
  • EGF816 is administered at an oral dose from about 100 to 200 mg, e.g., about 150 mg, once a day.
  • EGF816 isadministered at a dose of 75, 100, 150, 225, 150, 200, 225, 300 or 350 mg. These doses may be administered once daily.
  • EGF816 may be administered at a dose of 100 or 150 mg once daily.
  • Nivolumab is administered in an amount from about 1 mg/kg to 5 mg/kg, e.g., 3 mg/kg, and may be administered over a period of 60 minutes, ca. once a week to once every 2, 3 or 4 weeks.
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with a c-MET inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the c-MET inhibitor is disclosed herein, e.g., in Table 1.
  • the c-MET inhibitor is INC280 (formerly known as INCB28060) as disclosed herein, or in a publication recited in Table 1.
  • the c-MET inhibitor e.g., INC280, has the structure (compound or generic structure) provided herein, e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with INC280 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), glioblastoma multiforme (GBM), a renal cancer, a liver cancer (e.g., a hepatocellular carcinoma) or a gastric cancer.
  • the cancer has, or is identified as having, a c-MET mutation (e.g., a c-MET mutation or a c-MET amplification).
  • INC280 is administered at an oral dose of about 100 to 1000 mg, e.g., about 200 mg to 900 mg, about 300 mg to 800 mg, or about 400 mg to 700 mg, e.g., about 400 mg, 500 mg or 600 mg.
  • the dosing schedule can vary from e.g., every other day to daily, twice or three times a day.
  • INC280 is administered at an oral dose from about 400 to 600 mg twice a day.
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with an Alk inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the Alk inhibitor is disclosed herein, e.g., in Table 1.
  • the Alk inhibitor is LDK378 (also known as ceritinib (Zykadia®), e.g., as described herein or in a publication recited in Table 1.
  • the Alk inhibitor e.g., LDK378, has the structure (compound or generic structure) provided herein, e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with LDK378 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin lymphoma), an inflammatory myofibroblastic tumor (IMT), or a neuroblastoma.
  • the NSCLC is a stage IIIB or IV NSCLC, or a relapsed locally advanced or metastic NSCLC.
  • the cancer e.g., the lung cancer, lymphoma, inflammatory myofibroblastic tumor, or neuroblastoma
  • the ALK fusion has, or is identified as having, an ALK rearrangement or translocation, e.g., an ALK fusion.
  • the ALK fusion is an EML4-ALK fusion, e.g., an EML4-ALK fusion described herein.
  • the ALK fusion is an ALK-ROS1 fusion.
  • the cancer has progressed on, or is resistant or tolerant to, a ROS1 inhibitor, or an ALK inhibitor, e.g., an ALK inhibitor other than LDK378.
  • the cancer has progressed on, or is resistant or tolerant to, crizotinib.
  • the subject is an ALK-na ⁇ ve patient, e.g., a human patient.
  • the subject is a patient, e.g., a human patient, that has been pre- treated with an ALK inhibitor.
  • the subject is a patient, e.g., a human patient, that has been pretreated with LDK378.
  • LDK378 and Nivolumab are administered to an ALK-na ⁇ ve patient. In another embodiment, LDK378 and Nivolumab are administered to a patient that has been pretreated with an ALK inhibitor. In yet another embodiment, LDK378 and Nivolumab are administered to a patient that has been pretreated with LDK378.
  • LDK378 is administered at an oral dose of about 100 to 1000 mg, e.g., about 150 mg to 900 mg, about 200 mg to 800 mg, about 300 mg to 700 mg, or about 400 mg to 600 mg, e.g., about 150 mg, 300 mg, 450 mg, 600 mg or 750 mg. In certain embodiment, LDK378 is administered at an oral dose of about 750 mg or lower, e.g., about 600 mg or lower, e.g., about 450 mg or lower. In certain embodiments, LDK378 is administered with food. In other embodiments, the dose is under fasting condition. The dosing schedule can vary from e.g., every other day to daily, twice or three times a day. In one embodiment,
  • LDK378 is administered daily. In one embodiment, LDK378 is administered at an oral dose from about 150 mg to 750 mg daily, either with food or in a fasting condition. In one embodiment, LDK378 is administered at an oral dose of about 750 mg daily, in a fasting condition. In one embodiment, LDK378 is administered at an oral dose of about 750 mg daily, via capsule or tablet. In another embodiment, LDK378 is administered at an oral dose of about 600 mg daily, via capsule or tablet. In one embodiment, LDK378 is administered at an oral dose of about 450 mg daily, via capsule or tablet.
  • LDK378 is administered at a dose of about 450 mg and nivolumab is administered at a dose of about 3 mg/kg. In another embodiment, the LDK378 dose is 600 mg and the nivolumab dose is 3 mg/kg. In one embodiment, LDK378 is administered with a low fat meal.
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with a CDK4/6 inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the CDK4/6 inhibitor is disclosed herein, e.g., in Table 1.
  • LEE011 also knows as Ribociclib®, e.g., as described herein or in a publication recited in Table 1.
  • the CDK4/6 inhibitor e.g., LEE011
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with LEE011 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a neurologic cancer, melanoma or a breast cancer, or a hematological malignancy, e.g., lymphoma.
  • a cancer described in Table 1 e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a neurologic cancer, melanoma or a breast cancer, or a hematological malignancy, e.g., lymphoma.
  • NSCLC non-small cell lung cancer
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with a PI3K- inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the PI3K inhibitor is disclosed herein, e.g., in Table 1.
  • the PI3K inhibitor is BKM120 or BYL719, e.g., disclosed herein or in a publication recited in Table 1.
  • the PI3K-inhibitor e.g., BKM120 or BYL719, has the structure
  • Nivolumab compound or generic structure provided herein, e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with BKM120 or BYL719 to treat a cancer or disorder described herein, e.g., in Table 1.
  • the cancer or disorder is chosen from, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a prostate cancer, an endocrine cancer, an ovarian cancer, a melanoma, a bladder cancer, a female reproductive system cancer, a digestive/gastrointestinal cancer, a colorectal cancer, glioblastoma multiforme (GBM), a head and neck cancer, a gastric cancer, a pancreatic cancer or a breast cancer; or a hematological malignancy, e.g., leukemia, non-Hodgkin lymphoma; or a hematopoiesis disorder.
  • a solid tumor e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a prostate cancer, an endocrine cancer, an ovarian cancer, a melanoma, a bladder cancer, a female reproductive system cancer
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with a BRAF inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the BRAF inhibitor is disclosed herein, e.g., in Table 1.
  • the BRAF inhibitor is LGX818, e.g., as described herein or in a publication recited in Table 1.
  • the BRAF inhibitor e.g., LGX818, has the structure (compound or generic structure) provided herein, e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with LGX818 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a melanoma, e.g., advanced melanoma, a thyroid cancer, e.g, papillary thyroid cancer, or a colorectal cancer.
  • a cancer described in Table 1 e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a melanoma, e.g., advanced melanoma, a thyroid cancer, e.g,
  • the cancer has, or is identified as having, a BRAF mutation (e.g., a BRAF V600E mutation), a BRAF wildtype, a KRAS wildtype or an activating KRAS mutation.
  • a BRAF mutation e.g., a BRAF V600E mutation
  • BRAF wildtype e.g., a BRAF V600E mutation
  • KRAS wildtype e.g., a KRAS wildtype
  • an activating KRAS mutation e.g., a BRAF V600E mutation
  • the cancer may be at an early, intermediate or late stage.
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with a CAR T cell targeting CD19 to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the CAR T cell targeting CD19 is disclosed in Table 1, e.g., CTL019, or in a publication recited in Table 1.
  • the CAR T cell targeting CD19 e.g., CTL019
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with CTL019 to treat a cancer described in Table 1, e.g., a solid tumor, or a hematological malignancy, e.g., a lymphocytic leukemia or a non-Hodgkin lymphoma.
  • the CAR T cell targeting CD19 has the USAN designation
  • CTL019 is made by a gene modification of T cells is mediated by stable insertion via transduction with a self-inactivating, replicationdeficient Lentiviral (LV) vector containing the CTL019 transgene under the control of the EF-1 alpha promoter.
  • LV Lentiviral
  • CTL019 is a mixture of transgene positive and negative T cells that are delivered to the subject on the basis of percent transgene positive T cells.
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with a MEK inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the MEK inhibitor is disclosed herein, e.g., in Table 1.
  • the MEK inhibitor is MEK162, e.g., disclosed herein or in a publication recited in Table 1.
  • the MEK inhibitor e.g., MEK162
  • the structure e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in
  • the cancer or disorder treated with the combination is chosen from a melanoma, a colorectal cancer, a non-small cell lung cancer, an ovarian cancer, a breast cancer, a prostate cancer, a pancreatic cancer, a hematological malignancy or a renal cell carcinoma, a multisystem genetic disorder, a digestive/gastrointestinal cancer, a gastric cancer, or a colorectal cancer; or rheumatoid arthritis.
  • the cancer has, or is identified as having, a KRAS mutation.
  • the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with a BCR- ABL inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the BCR-ABL inhibitor is disclosed herein, e.g., in Table 1.
  • the BCR-ABL inhibitor is AMN-107 (also known as Nilotinib, trade name
  • AMN- 107 has the structure (compound or generic structure) provided herein, e.g., in Table 1, or as disclosed in the publication recited in Table 1.
  • Pembrolizumab or MSB0010718C is used in combination with AMN-107 to treat a cancer or disorder described in Table 1, e.g., a solid tumor, e.g., a neurologic cancer, a melanoma, a digestive/gastrointestinal cancer, a colorectal cancer, a head and neck cancer; or a hematological malignancy, e.g., chronic myelogenous leukemia (CML), a lymphocytic leukemia, a myeloid leukemia; Parkinson's disease; or pulmonary hypertension.
  • CML chronic myelogenous leukemia
  • a lymphocytic leukemia a myeloid leukemia
  • Parkinson's disease or pulmonary hypertension.
  • the proliferative disorder or condition includes but is not limited to, a solid tumor, a soft tissue tumor (e.g., a hematological cancer, leukemia, lymphoma, or myeloma), and a metastatic lesion of any of the aforesaid cancers.
  • the cancer is a solid tumor.
  • solid tumors include malignancies, e.g., sarcomas, adenocarcinomas, and carcinomas, of the various organ systems, such as those affecting the lung, breast, ovarian, lymphoid, gastrointestinal (e.g., colon), anal, genitals and genitourinary tract (e.g., renal, urothelial, bladder cells, prostate), pharynx, CNS (e.g., brain, neural or glial cells), head and neck, skin (e.g., melanoma), and pancreas, as well as adenocarcinomas which include
  • malignancies such as colon cancers, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell lung cancer, cancer of the small intestine and cancer of the esophagus.
  • the cancer may be at an early, intermediate, late stage or metastatic cancer.
  • the cancer is chosen from a cancer disclosed in Table 1.
  • the cancer can be chosen from a solid tumor, e.g., a lung cancer (e.g., a non-small cell lung cancer (NSCLC) (e.g., a NSCLC with squamous and/or non-squamous histology)), a colorectal cancer, a melanoma (e.g., an advanced melanoma), a head and neck cancer (e.g., head and neck squamous cell carcinoma (HNSCC), a digestive/gastrointestinal cancer, a gastric cancer, a neurologic cancer, a glioblastoma (e.g., glioblastoma multiforme), an ovarian cancer, a renal cancer, a liver cancer, a pancreatic cancer, a prostate cancer, a liver cancer; a breast cancer, an anal cancer, a gastro-esophageal cancer, a thyroid cancer, a cervical cancer;
  • hematological cancer e.g., chosen from a Hogdkin lymphoma, a non-Hodgkin lymphoma, a lymphocytic leukemia, or a myeloid leukemia.
  • the cancer is a colon cancer, e.g., a colon cancer that expresses an IAP, e.g., a human IAP.
  • the human IAP family includes, e.g., NAIP, XIAP, cIAP1, cIAP2, ILP2, BRUCE, surviving, and livin.
  • the cancer is a non-small cell lung cancer (NSCLC), e.g., an ALK+ NSCLC.
  • NSCLC non-small cell lung cancer
  • the term“ALK+ non-small cell lung cancer” or“ALK+ NSCLC” refers to an NSCLC that has an activated (e.g., constitutively activated) anaplastic lymphoma kinase activity or has a rearrangement or translocation of an Anaplastic Lymphoma Kinase (ALK) gene.
  • ALK Anaplastic Lymphoma Kinase
  • patients with ALK+ NSCLC are generally younger, have light (e.g., ⁇ 10 pack years) or no smoking history, present with lower Eastern Cooperative Oncology Group performance status, or may have more aggressive disease and, therefore, experience earlier disease progression (Shaw et al. J Clin Oncol.2009; 27(26):4247-4253; Sasaki et al. Eur J Cancer.2010; 46(10):1773-1780; Shaw et al. N Engl J Med.2013;368(25):2385-2394; Socinski et al. J Clin Oncol.2012; 30(17):2055- 2062 ; Yang et al. J Thorac Oncol.2012;7(1):90–97).
  • the cancer e.g., an NSCLC
  • the rearrangement or translocation of the ALK gene leads to a fusion (e.g., fusion upstream of the ALK promoter region).
  • the fusion results in constitutive activation of the kinase activity.
  • the fusion is an EML4-ALK fusion.
  • EML4-ALK fusion proteins include, but are not limited to, E13;A20 (V1), E20;A20 (V2), E6a/b;A20 (V3a/b), E14;A20 (V4), E2a/b;A20 (V5a/b), E13b;A20 (V6), E14;A20(V7), E15;A20(“V4”), or E18;A20 (V5) (Choi et al. Cancer Res.2008; 68(13):4971-6; Horn et al. J Clin Oncol.2009; 27(26):4232- 5; Koivunen et al. Clin Cancer Res.2008; 14(13):4275-83; Soda et al. Nature.2007;
  • the ALK gene is fused to a non-EML4 partner.
  • the fusion is a KIF5B-ALK fusion.
  • the fusion is a TFG- ALK fusion. Exemplary KIF5B-ALK and TFG-ALK fusions are described, e.g., in Takeuchi et al. Clin Cancer Res.2009; 15(9):3143-9, Rikova et al. Cell.2007; 131(6):1190-203.
  • ALK gene rearrangements or translocations, or cancer cells that has an ALK gene rearrangement or translocation can be detected, e.g., using fluorescence in situ hybridization (FISH), e.g., with an ALK break apart probe.
  • FISH fluorescence in situ hybridization
  • the subject is a mammal, e.g., a primate, preferably a higher primate, e.g., a human (e.g., a patient having, or at risk of having, a disorder described herein).
  • the subject is in need of enhancing an immune response.
  • the subject has, or is at risk of, having a disorder described herein, e.g., a cancer as described herein.
  • the subject is, or is at risk of being,
  • the subject is undergoing or has undergone a
  • chemotherapeutic treatment and/or radiation therapy Alternatively, or in combination, the subject is, or is at risk of being, immunocompromised as a result of an infection.
  • the subject e.g., a subject having a lung cancer (e.g., a non-small cell lung cancer), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin lymphoma), an inflammatory myofibroblastic tumor, or a neuroblastoma) is being treated, or has been treated, with another ALK inhibitor and/or a ROS1 inhibitor, e.g., crizotinib.
  • crizotinib can be administered at a daily oral dose of 750 mg or lower, e.g., 600 mg or lower, e.g., 450 mg or lower.
  • the subject or cancer e.g., a lung cancer (e.g., a non-small cell lung cancer), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin lymphoma), an inflammatory myofibroblastic tumor, or a neuroblastoma) has progressed on, or is resistant or tolerant to, another ALK inhibitor and/or a ROS1 inhibitor, e.g., crizotinib.
  • a lung cancer e.g., a non-small cell lung cancer
  • a lymphoma e.g., an anaplastic large-cell lymphoma or non-Hodgkin lymphoma
  • an inflammatory myofibroblastic tumor e.g., a neuroblastoma
  • a neuroblastoma e.g., crizotinib.
  • the subject or cancer e.g., a lung cancer (e.g., a non-small cell lung cancer), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin lymphoma), an inflammatory myofibroblastic tumor, or a neuroblastoma) is at risk of progression on, or developing resistance or tolerance to, another ALK inhibitor and/or a ROS1 inhibitor, e.g., crizotinib.
  • a lung cancer e.g., a non-small cell lung cancer
  • a lymphoma e.g., an anaplastic large-cell lymphoma or non-Hodgkin lymphoma
  • an inflammatory myofibroblastic tumor e.g., a neuroblastoma
  • a neuroblastoma e.g., crizotinib.
  • the subject or cancer is resistant or tolerant, or is at risk of developing resistance or tolerance, to a tyrosine kinase inhibitor (TKI), e.g., an EGFR tyrosine kinase inhibitor.
  • TKI tyrosine kinase inhibitor
  • the subject or cancer has no detectable EGFR mutation, KRAS mutation, or both.
  • the subject has previously been treated with PD-1.
  • the subject has or is identified as having a tumor that has one or more of high PD-L1 level or expression and/or Tumor Infiltrating Lymphocyte (TIL)+.
  • TIL Tumor Infiltrating Lymphocyte
  • the subject has or is identified as having a tumor that has high PD-L1 level or expression and TIL+.
  • the methods described herein further describe identifying a subject based on having a tumor that has one or more of high PD-L1 level or expression and/or TIL+.
  • the methods described herein further describe identifying a subject based on having a tumor that has high PD-L1 level or expression and TIL+.
  • tumors that are TIL+ are positive for CD8 and IFN ⁇ .
  • the subject has or is identified as having a high percentage of cells that are positive for one or more of PD-L1, CD8, and/or IFN ⁇ . In certain embodiments, the subject has or is identified as having a high percentage of cells that are positive for all of PD-L1, CD8, and IFN ⁇ .
  • the methods described herein further describe identifying a subject based on having a high percentage of cells that are positive for one or more of PD-L1, CD8, and/or IFN ⁇ . In certain embodiments, the methods described herein further describe identifying a subject based on having a high percentage of cells that are positive for all of PD-L1, CD8, and IFN ⁇ .
  • the subject has or is identified as having one or more of PD-L1, CD8, and/or IFN ⁇ , and one or more of a lung cancer, e.g., squamous cell lung cancer or lung adenocarcinoma; a head and neck cancer; a squamous cell cervical cancer; a stomach cancer; a thyroid cancer; and/or a melanoma.
  • a lung cancer e.g., squamous cell lung cancer or lung adenocarcinoma
  • a head and neck cancer e.g., squamous cell lung cancer or lung adenocarcinoma
  • a head and neck cancer e.g., squamous cell lung cancer or lung adenocarcinoma
  • a head and neck cancer e.g., squamous cell cervical cancer or lung adenocarcinoma
  • a stomach cancer e.g., a squamous cell cervical cancer
  • a thyroid cancer
  • the methods described herein further describe identifying a subject based on having one or more of PD-L1, CD8, and/or IFN ⁇ , and one or more of a lung cancer, e.g., squamous cell lung cancer or lung adenocarcinoma; a head and neck cancer; a squamous cell cervical cancer; a stomach cancer; a thyroid cancer;
  • a lung cancer e.g., squamous cell lung cancer or lung adenocarcinoma
  • a head and neck cancer e.g., squamous cell lung cancer or lung adenocarcinoma
  • a head and neck cancer e.g., squamous cell lung cancer or lung adenocarcinoma
  • a head and neck cancer e.g., squamous cell lung cancer or lung adenocarcinoma
  • a head and neck cancer e.g., squamous cell cervical cancer or adenocarcinoma
  • Dosages and therapeutic regimens of the agents described herein can be determined by a skilled artisan.
  • the anti-PD-1 antibody molecule is administered by injection (e.g., subcutaneously or intravenously) at a dose of about 1 to 30 mg/kg, e.g., about 5 to 25 mg/kg, about 10 to 20 mg/kg, about 1 to 5 mg/kg, or about 3 mg/kg.
  • the dosing schedule can vary from e.g., once a week to once every 2, 3, or 4 weeks.
  • the anti-PD-1 antibody molecule is administered at a dose from about 10 to 20 mg/kg every other week.
  • the anti-PD-1 antibody molecule e.g., Nivolumab
  • the anti-PD-1 antibody molecule e.g., Nivolumab
  • Nivolumab is administered in an amount from about 1 mg/kg to 5 mg/kg, e.g., 3 mg/kg, and may be administered over a period of 60 minutes, ca. once a week to once every 2, 3 or 4 weeks.
  • the combination therapies described herein can be administered to the subject systemically (e.g., orally, parenterally, subcutaneously, intravenously, rectally, intramuscularly, intraperitoneally, intranasally, transdermally, or by inhalation or intracavitary installation), topically, or by application to mucous membranes, such as the nose, throat and bronchial tubes.
  • the anti-PD-1 antibody molecule is administered intravenously.
  • one or more of the agents listed in Table 1, e.g., an IAP inhibitor or LCL161 is administered orally.
  • the anti-PD-1 antibody molecule is administered, e.g., intravenously, at least one, two, three, four, five, six, or seven days, e.g., three days, after an agent listed in Table 1, e.g., an IAP inhibitor or LCL161, is administered, e.g., orally.
  • the anti-PD-1 antibody molecule is administered, e.g., intravenously, at least one, two, three, four, five, six, or seven days, e.g., three days, before an agent listed in Table 1, e.g., an IAP inhibitor or LCL161, is administered, e.g., orally.
  • the anti-PD-1 antibody molecule is administered, e.g., intravenously, on the same day, as the one or more agents listed in Table 1, e.g., an IAP inhibitor or LCL161, is administered, e.g., orally.
  • the administration of the anti-PD-1 antibody molecule and one or more of the agents listed in Table 1, e.g., an IAP inhibitor or LCL161 results in an enhanced reduction of a solid tumor, e.g., colon cancer, , relative to administration of each of these agents as a monotherapy.
  • the concentration of an agent listed in Table 1, e.g., an IAP inhibitor or LCL161, that is required to achieve inhibition, e.g., growth inhibition is lower than the therapeutic dose of the agent as a monotherapy, e.g., 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, or 80-90% lower.
  • the concentration of the anti-PD-1 antibody molecule that is required to achieve inhibition, e.g., growth inhibition, is lower than the therapeutic dose of the anti-PD-1 antibody molecule as a monotherapy, e.g., 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, or 80-90% lower.
  • the methods and compositions described herein can be used in combination with further agents or therapeutic modalities.
  • the combination therapies can be administered simultaneously or sequentially in any order. Any combination and sequence of the anti-PD-1 or PD-L1 antibody molecules and other therapeutic agents, procedures or modalities (e.g., as described herein) can be used.
  • the combination therapies can be administered during periods of active disorder, or during a period of remission or less active disease.
  • the combination therapies can be administered before the other treatment, concurrently with the treatment, post-treatment, or during remission of the disorder.
  • the methods and compositions described herein are administered in combination with one or more of other antibody molecules, chemotherapy, other anti-cancer therapy (e.g., targeted anti-cancer therapies, gene therapy, viral therapy, RNA therapy bone marrow transplantation, nanotherapy, or oncolytic drugs), cytotoxic agents, immune-based therapies (e.g., cytokines or cell-based immune therapies), surgical procedures (e.g., lumpectomy or mastectomy) or radiation procedures, or a combination of any of the foregoing.
  • the additional therapy may be in the form of adjuvant or neoadjuvant therapy.
  • the additional therapy is an enzymatic inhibitor (e.g., a small molecule enzymatic inhibitor) or a metastatic inhibitor.
  • exemplary cytotoxic agents that can be administered in combination with include antimicrotubule agents, topoisomerase inhibitors, anti-metabolites, mitotic inhibitors, alkylating agents, anthracyclines, vinca alkaloids, intercalating agents, agents capable of interfering with a signal transduction pathway, agents that promote apoptosis, proteosome inhibitors, and radiation (e.g., local or whole body irradiation (e.g., gamma irradiation).
  • the additional therapy is surgery or radiation, or a combination thereof.
  • the additional therapy is a therapy targeting an mTOR pathway, an HSP90 inhibitor, or a tubulin inhibitor.
  • the methods and compositions described herein can be administered in combination with one or more of: a vaccine, e.g., a therapeutic cancer vaccine; or other forms of cellular immunotherapy.
  • the combination therapy is used in combination with one, two or all of oxaliplatin, leucovorin or 5-FU (e.g., a FOLFOX co-treatment).
  • combination further includes a VEGF inhibitor (e.g., a VEGF inhibitor as disclosed herein).
  • the cancer treated with the combination is chosen from a melanoma, a colorectal cancer, a non-small cell lung cancer, an ovarian cancer, a breast cancer, a prostate cancer, a pancreatic cancer, a hematological malignancy or a renal cell carcinoma.
  • the cancer may be at an early, intermediate or late stage.
  • the combination therapy is administered with a tyrosine kinase inhibitor (e.g., axitinib) to treat renal cell carcinoma and other solid tumors.
  • a tyrosine kinase inhibitor e.g., axitinib
  • the combination therapy is administered with a 4-1BB receptor targeting agent (e.g., an antibody that stimulates signaling through 4-1BB (CD-137), e.g., PF- 2566).
  • a 4-1BB receptor targeting agent e.g., an antibody that stimulates signaling through 4-1BB (CD-137), e.g., PF- 2566.
  • the combination therapy is administered in combination with a tyrosine kinase inhibitor (e.g., axitinib) and a 4-1BB receptor targeting agent.
  • FIG. 1 shows a graphical representation of flow cytometry of PD-L1 surface expression in EBC-1 cells in vitro with or without INC280 treatment.
  • EBC-1 cells are non-small cell lung cancer cells with a cMET amplification.
  • Figure 2 shows a graphical representation of PD-L1 mRNA expression in Hs.746.T cells in a tumor xenograft model with or without INC280 treatment.
  • Hs.746.T cells are gastric cancer cells with a c-MET amplification and a c-MET mutation.
  • FIG. 3 shows a graphical representation of PD-L1 mRNA expression in H3122 cells in vitro with or without LDK378.
  • H3122 cells are non-small cell lung cancer (NSCLC) cells with an ALK translocation.
  • NSCLC non-small cell lung cancer
  • Figure 4 shows a graphical representation of PD-L1 mRNA expression in LOXIMV1 cells (BRAF mutant melanoma cells) in a tumor xenograft model with or without LGX818 treatment.
  • Figure 5 shows a graphical representation of PD-L1 mRNA expression in HEYA8 cells (KRAS mutant ovarian cancer cells) in a tumor xenograft model with or without MEK162 treatment.
  • Figure 6 shows a graphical representation of PD-L1 mRNA expression in UKE-1 cells (JAK2 V617F mutant myeloproliferative neoplasm cells) in a tumor xenograft model with or without INC424 treatment.
  • Figure 7A shows a graphical representation of IFN- ⁇ production in unstimulated PBMCs or stimulated PBMCs treated with different concentrations of LCL161 or DMSO control.
  • Figure 7B shows a graphical representation of IL-10 production in unstimulated PBMCs or stimulated PBMCs treated with different concentrations of LCL161 or DMSO control.
  • Figure 8A shows a graphical representation of FACS analysis of CD4+ T cells from unstimulated PBMCs or PMBCs stimulated in the presence of different concentrations of LCL161 or DMSO control.
  • Figure 8B shows a graphical representation of FACS analysis of CD8+ T cells from unstimulated PBMCs or PMBCs stimulated in the presence of different concentrations of LCL161 or DMSO control.
  • Figure 9 shows a graphical representation of CyTOF mass cytometry of unstimulated PBMCs or stimulated PBMCs treated with LCL161 or DMSO control.
  • Figure 10A shows a graphical representation of expression signatures related to T cells from mice implanted with MC38 cells. The mice were treated with LCL161, anti-mouse PD-1, or both. In the control group, mice were dosed with vehicle and isotype (mIgG1).
  • Figure 10B shows a graphical representation of expression signatures related to dendritic cells from mice implanted with MC38 cells. The mice were treated with LCL161, anti-mouse PD-1, or both. In the control group, mice were dosed with vehicle and isotype (mIgG1).
  • Figure 10C shows a graphical representation of expression signatures related to macrophages from mice implanted with MC38 cells.
  • the mice were treated with LCL161, anti- mouse PD-1, or both.
  • mice were dosed with vehicle and isotype (mIgG1).
  • Figure 10D shows a graphical representation of chemokine expression signatures from mice implanted with MC38 cells.
  • the mice were treated with LCL161, anti-mouse PD-1, or both.
  • mice were dosed with vehicle and isotype (mIgG1).
  • Figure 11A shows an exemplary treatment schedule and a graphical representation of tumor volumes in mice implanted with MC38 cells.
  • the mice were treated with LCL161, anti- mouse PD-1, or both.
  • anti-mouse PD-1 was administered three days after LCL161 was administered.
  • mice were dosed with vehicle and isotype (mIgG1).
  • Figure 11B shows another exemplary treatment schedule and a graphical representation of tumor volumes in mice implanted with MC38 cells.
  • the mice were treated with LCL161, anti-mouse PD-1, or both.
  • LCL161 and anti-mouse PD-1 were administered concurrently.
  • mice were dosed with vehicle and isotype (mIgG1).
  • Figure 12 is a representation of the sequence of drug administration for patients enrolled in the Phase II trial that will be treated with EGF816 and Nivolumab. BRIEF DESCRIPTION OF THE TABLE
  • Table 1 is a summary of selected therapeutic agents that can be administered in combination with the immunomodulators (e.g., one or more of: an activator of a costimulatory molecule and/or an inhibitor of an immune checkpoint molecule) described herein.
  • Table 1 provides from left to right the following: the Name and/or Designation of the second therapeutic agent, the Compound structure, a Patent publication disclosing the Compound, Exemplary Indications/Uses, and Generic structure.
  • Table 2 shows the trial objectives and related endpoints in a phase II, multicenter, open- label study of EGF816 in combination with nivolumab in adult patients with EGFR mutated non- small cell lung cancer.
  • Table 3 shows the dose and treatment schedule in a phase II, multicenter, open-label study of EGF816 in combination with nivolumab in adult patients with EGFR mutated non-small cell lung cancer.
  • compositions which comprise an immunomodulator (e.g., one or more of: an activator of a costimulatory molecule and/or an inhibitor of an immune checkpoint molecule) in combination with a second therapeutic agent chosen from one or more of the agents listed in Table 1.
  • an immunomodulator e.g., one or more of: an activator of a costimulatory molecule and/or an inhibitor of an immune checkpoint molecule
  • a second therapeutic agent chosen from one or more of the agents listed in Table 1.
  • Immune therapy alone can be effective in a number of indications (e.g., melanoma). However, for most patients, it is not a cure.
  • an inhibitor of an immune checkpoint molecule e.g., one or more of inhibitors to PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA-4) can be combined with a second therapeutic agent chosen from one or more of the agents listed in Table 1 (e.g., chosen from one or more of: 1) an IAP inhibitor; 2) a TOR kinase inhibitor; 3) a HDM2 ligase inhibitor; 4) a PIM kinase inhibitor; 5) a HER3 kinase inhibitor; 6) a Histone Deacetylase (HDAC) inhibitor; 7) a Janus kinase inhibitor; 8) an FGF receptor inhibitor; 9) an EGF receptor inhibitor; 10) a c-MET inhibitor; 11) an ALK inhibitor; 12) a CDK4/6-inhibitor; 13) a PI3K inhibitor; 14) a BRAF
  • the combinations described herein can provide a beneficial effect, e.g., in the treatment of a cancer, such as an enhanced anti-cancer effect, reduced toxicity and/or reduced side effects.
  • the immunomodulator, the second therapeutic agent, or both can be administered at a lower dosage than would be required to achieve the same therapeutic effect compared to a monotherapy dose.
  • inhibitortion includes a reduction in a certain parameter, e.g., an activity, of a given molecule, e.g., an immune checkpoint inhibitor.
  • a certain parameter e.g., an activity, of a given molecule
  • an immune checkpoint inhibitor e.g., an enzyme that catalyzes the production of a protein
  • inhibition of an activity e.g., an activity of, e.g., PD-1, PD-L1, c-MET, ALK, CDK4/6, PI3K, BRAF, FGFR, MET or BCR-ABL, of at least 5%, 10%, 20%, 30%, 40% or more is included by this term.
  • the term“Programmed Death 1” or“PD-1” include isoforms, mammalian, e.g., human PD-1, species homologs of human PD-1, and analogs comprising at least one common epitope with PD-1.
  • the amino acid sequence of PD-1, e.g., human PD-1 is known in the art, e.g., Shinohara T et al. (1994) Genomics 23(3):704-6; Finger LR, et al. Gene (1997) 197(1-2):177-87.
  • or“PD-Ligand 1” or“PD-L1” include isoforms, mammalian, e.g., human PD-1, species homologs of human PD-L1, and analogs comprising at least one common epitope with PD-L1.
  • the amino acid sequence of PD-L1, e.g., human PD-L1 is known in the art
  • “Lymphocyte Activation Gene-3” or“LAG-3” include all isoforms
  • LAG-3 mammalian, e.g., human LAG-3, species homologs of human LAG-3, and analogs comprising at least one common epitope with LAG-3.
  • the amino acid and nucleotide sequences of LAG-3, e.g., human LAG-3, is known in the art, e.g., Triebel et al. (1990) J. Exp. Med.171:1393-1405.
  • TIM-3 refers to a transmembrane receptor protein that is expressed on Th1 (T helper 1) cells. TIM-3 has a role in regulating immunity and tolerance in vivo (see Hastings et al., Eur J Immunol.2009 Sep;39(9):2492-501).
  • CEACAM Carcinoembryonic Antigen-related Cell Adhesion Molecule
  • CEACAM includes all family members (e.g., CEACAM-1, CEACAM-3, or CEACAM-5), isoforms, mammalian, e.g., human CEACAM, species homologs of human CEACAM, and analogs comprising at least one common epitope with CEACAM.
  • CEACAM e.g., human CEACAM
  • the articles “a” and “an” refer to one or to more than one (e.g., to at least one) of the grammatical object of the article.
  • “About” and “approximately” shall generally mean an acceptable degree of error for the quantity measured given the nature or precision of the measurements. Exemplary degrees of error are within 20 percent (%), typically, within 10%, and more typically, within 5% of a given value or range of values.
  • compositions and methods of the present invention encompass polypeptides and nucleic acids having the sequences specified, or sequences substantially identical or similar thereto, e.g., sequences at least 85%, 90%, 95% identical or higher to the sequence specified.
  • substantially identical is used herein to refer to a first amino acid that contains a sufficient or minimum number of amino acid residues that are i) identical to, or ii) conservative substitutions of aligned amino acid residues in a second amino acid sequence such that the first and second amino acid sequences can have a common structural domain and/or common functional activity.
  • amino acid sequences that contain a common structural domain having at least about 85%, 90%.91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to a reference sequence, e.g., a sequence provided herein.
  • nucleotide sequence in the context of nucleotide sequence, the term "substantially identical" is used herein to refer to a first nucleic acid sequence that contains a sufficient or minimum number of nucleotides that are identical to aligned nucleotides in a second nucleic acid sequence such that the first and second nucleotide sequences encode a polypeptide having common functional activity, or encode a common structural polypeptide domain or a common functional polypeptide activity.
  • “functional variant” refers polypeptides that have a substantially identical amino acid sequence to the naturally-occurring sequence, or are encoded by a substantially identical nucleotide sequence, and are capable of having one or more activities of the naturally-occurring sequence.
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes).
  • the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence.
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
  • amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”
  • the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
  • the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol.48:444-453 ) algorithm which has been incorporated into the GAP program in the GCG software package (available at www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
  • the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
  • a particularly preferred set of parameters are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
  • the percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller ((1989) CABIOS, 4:11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
  • nucleic acid and protein sequences described herein can be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and
  • BLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol.215:403-10.
  • Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res.25:3389-3402.
  • the default parameters of the respective programs e.g., XBLAST and
  • NBLAST NBLAST
  • hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions describes conditions for hybridization and washing.
  • Guidance for performing hybridization reactions can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6, which is incorporated by reference. Aqueous and nonaqueous methods are described in that reference and either can be used.
  • Specific hybridization conditions referred to herein are as follows: 1) low stringency hybridization conditions in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by two washes in 0.2X SSC, 0.1% SDS at least at 50°C (the temperature of the washes can be increased to 55°C for low stringency conditions); 2) medium stringency hybridization conditions in 6X SSC at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 60°C; 3) high stringency hybridization conditions in 6X SSC at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 65°C; and preferably 4) very high stringency hybridization conditions are 0.5M sodium phosphate, 7% SDS at 65°C, followed by one or more washes at 0.2X SSC, 1% SDS at 65°C. Very high stringency conditions (4) are the preferred conditions and the ones that should be used unless otherwise specified.
  • molecules of the present invention may have additional conservative or non-essential amino acid substitutions, which do not have a substantial effect on their functions.
  • amino acid is intended to embrace all molecules, whether natural or synthetic, which include both an amino functionality and an acid functionality and capable of being included in a polymer of naturally-occurring amino acids.
  • exemplary amino acids include naturally-occurring amino acids; analogs, derivatives and congeners thereof; amino acid analogs having variant side chains; and all stereoisomers of any of any of the foregoing.
  • amino acid includes both the D- or L- optical isomers and peptidomimetics.
  • a "conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • polymers of amino acids of any length may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non- amino acids.
  • the terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.
  • the polypeptide can be isolated from natural sources, can be a produced by recombinant techniques from a eukaryotic or prokaryotic host, or can be a product of synthetic procedures.
  • nucleic acid refers to any organic acid sequence.
  • nucleotide sequence refers to any organic acid sequence.
  • polynucleotide sequence and “polynucleotide” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof.
  • the polynucleotide may be either single-stranded or double-stranded, and if single-stranded may be the coding strand or non-coding (antisense) strand.
  • a polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs.
  • the sequence of nucleotides may be interrupted by non-nucleotide components.
  • a polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.
  • the nucleic acid may be a recombinant polynucleotide, or a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which either does not occur in nature or is linked to another polynucleotide in a nonnatural arrangement.
  • isolated refers to material that is removed from its original or native environment (e.g., the natural environment if it is naturally occurring).
  • a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated by human intervention from some or all of the co-existing materials in the natural system, is isolated.
  • Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of the environment in which it is found in nature.
  • the antibody molecule binds to a mammalian, e.g., human, checkpoint molecule, e.g., PD-1, PD-L1, LAG-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or TIM-3.
  • checkpoint molecule e.g., PD-1, PD-L1, LAG-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or TIM-3.
  • the antibody molecule binds specifically to an epitope, e.g., linear or conformational epitope, (e.g., an epitope as described herein) on PD-1, PD-L1, LAG-3,
  • CEACAM e.g., CEACAM-1, -3 and/or -5) or TIM-3.
  • antibody molecule refers to a protein comprising at least one immunoglobulin variable domain sequence.
  • the term antibody molecule includes, for example, full-length, mature antibodies and antigen-binding fragments of an antibody.
  • an antibody molecule can include a heavy (H) chain variable domain sequence (abbreviated herein as VH), and a light (L) chain variable domain sequence (abbreviated herein as VL).
  • an antibody molecule in another example, includes two heavy (H) chain variable domain sequences and two light (L) chain variable domain sequence, thereby forming two antigen binding sites, such as Fab, Fab’, F(ab’) 2 , Fc, Fd, Fd’, Fv, single chain antibodies (scFv for example), single variable domain antibodies, diabodies (Dab) (bivalent and bispecific), and chimeric (e.g., humanized) antibodies, which may be produced by the modification of whole antibodies or those synthesized de novo using recombinant DNA technologies. These functional antibody fragments retain the ability to selectively bind with their respective antigen or receptor.
  • Antibodies and antibody fragments can be from any class of antibodies including, but not limited to, IgG, IgA, IgM, IgD, and IgE, and from any subclass (e.g., IgG1, IgG2, IgG3, and IgG4) of antibodies.
  • the antibodies of the present invention can be monoclonal or polyclonal.
  • the antibody can also be a human, humanized, CDR-grafted, or in vitro generated antibody.
  • the antibody can have a heavy chain constant region chosen from, e.g., IgG1, IgG2, IgG3, or IgG4.
  • the antibody can also have a light chain chosen from, e.g., kappa or lambda.
  • antigen-binding fragments include: (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a diabody (dAb) fragment, which consists of a VH domain; (vi) a camelid or camelized variable domain; (vii) a single chain Fv (scFv), see e.g., Bird et al.
  • a Fab fragment a monovalent fragment consisting of the VL, VH, CL and CH1 domains
  • a F(ab')2 fragment a bivalent fragment comprising two Fab fragments linked by a
  • antibody includes intact molecules as well as functional fragments thereof. Constant regions of the antibodies can be altered, e.g., mutated, to modify the properties of the antibody (e.g., to increase or decrease one or more of: Fc receptor binding, antibody
  • glycosylation the number of cysteine residues, effector cell function, or complement function.
  • Antibody molecules can also be single domain antibodies.
  • Single domain antibodies can include antibodies whose complementary determining regions are part of a single domain polypeptide. Examples include, but are not limited to, heavy chain antibodies, antibodies naturally devoid of light chains, single domain antibodies derived from conventional 4-chain antibodies, engineered antibodies and single domain scaffolds other than those derived from antibodies.
  • Single domain antibodies may be any of the art, or any future single domain antibodies.
  • Single domain antibodies may be derived from any species including, but not limited to mouse, human, camel, llama, fish, shark, goat, rabbit, and bovine.
  • a single domain antibody is a naturally occurring single domain antibody known as heavy chain antibody devoid of light chains. Such single domain antibodies are disclosed in WO 9404678, for example.
  • variable domain derived from a heavy chain antibody naturally devoid of light chain is known herein as a VHH or nanobody to distinguish it from the conventional VH of four chain immunoglobulins.
  • a VHH molecule can be derived from antibodies raised in Camelidae species, for example in camel, llama, dromedary, alpaca and guanaco. Other species besides Camelidae may produce heavy chain antibodies naturally devoid of light chain; such VHHs are within the scope of the invention.
  • the VH and VL regions can be subdivided into regions of hypervariability, termed “complementarity determining regions" (CDR), interspersed with regions that are more conserved, termed "framework regions" (FR or FW).
  • CDR complementarity determining regions
  • CDR complementarity determining region
  • HCDR1, HCDR2, HCDR3 three CDRs in each heavy chain variable region
  • LCDR1, LCDR2, LCDR3 three CDRs in each light chain variable region
  • the precise amino acid sequence boundaries of a given CDR can be determined using any of a number of well-known schemes, including those described by Kabat et al. (1991), “Sequences of Proteins of Immunological Interest,” 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (“Kabat” numbering scheme), Al-Lazikani et al., (1997) JMB 273,927-948 (“Chothia” numbering scheme). As used herein, the CDRs defined according the “Chothia” number scheme are also sometimes referred to as“hypervariable loops.”
  • the CDR amino acid residues in the heavy chain variable domain (VH) are numbered 31-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3); and the CDR amino acid residues in the light chain variable domain (VL) are numbered 24-34 (LCDR1), 50-56 (LCDR2), and 89-97 (LCDR3).
  • the CDR amino acids in the VH are numbered 26-32 (HCDR1), 52-56 (HCDR2), and 95-102 (HCDR3); and the amino acid residues in VL are numbered 26-32 (LCDR1), 50-52 (LCDR2), and 91-96 (LCDR3).
  • an“immunoglobulin variable domain sequence” refers to an amino acid sequence which can form the structure of an immunoglobulin variable domain.
  • the sequence may include all or part of the amino acid sequence of a naturally-occurring variable domain.
  • the sequence may or may not include one, two, or more N- or C-terminal amino acids, or may include other alterations that are compatible with formation of the protein structure.
  • antigen-binding site refers to the part of an antibody molecule that comprises determinants that form an interface that binds to the PD-1 polypeptide, or an epitope thereof.
  • the antigen-binding site typically includes one or more loops (of at least four amino acids or amino acid mimics) that form an interface that binds to the PD-1 polypeptide.
  • the antigen-binding site of an antibody molecule includes at least one or two CDRs and/or hypervariable loops, or more typically at least three, four, five or six CDRs and/or hypervariable loops.
  • monoclonal antibody or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of single molecular composition.
  • a monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.
  • a monoclonal antibody can be made by hybridoma technology or by methods that do not use hybridoma technology (e.g., recombinant methods).
  • An“effectively human” protein is a protein that does not evoke a neutralizing antibody response, e.g., the human anti-murine antibody (HAMA) response.
  • HAMA can be problematic in a number of circumstances, e.g., if the antibody molecule is administered repeatedly, e.g., in treatment of a chronic or recurrent disease condition.
  • a HAMA response can make repeated antibody administration potentially ineffective because of an increased antibody clearance from the serum (see, e.g., Saleh et al., Cancer Immunol. Immunother., 32:180-190 (1990)) and also because of potential allergic reactions (see, e.g., LoBuglio et al., Hybridoma, 5:5117-5123 (1986)).
  • the antibody molecule can be a polyclonal or a monoclonal antibody.
  • the antibody can be recombinantly produced, e.g., produced by phage display or by combinatorial methods.
  • Phage display and combinatorial methods for generating antibodies are known in the art (as described in, e.g., Ladner et al. U.S. Patent No.5,223,409; Kang et al. International Publication No. WO 92/18619; Dower et al. International Publication No. WO 91/17271; Winter et al. International Publication WO 92/20791; Markland et al. International Publication No. WO 92/15679; Breitling et al. International Publication WO 93/01288; McCafferty et al.
  • the antibody is a fully human antibody (e.g., an antibody made in a mouse which has been genetically engineered to produce an antibody from a human
  • a non-human antibody e.g., a rodent (mouse or rat), goat, primate (e.g., monkey), camel antibody.
  • the non-human antibody is a rodent (mouse or rat antibody).
  • Human monoclonal antibodies can be generated using transgenic mice carrying the human immunoglobulin genes rather than the mouse system. Splenocytes from these transgenic mice immunized with the antigen of interest are used to produce hybridomas that secrete human mAbs with specific affinities for epitopes from a human protein (see, e.g., Wood et al.
  • An antibody can be one in which the variable region, or a portion thereof, e.g., the CDRs, are generated in a non-human organism, e.g., a rat or mouse. Chimeric, CDR-grafted, and humanized antibodies are within the invention. Antibodies generated in a non-human organism, e.g., a rat or mouse, and then modified, e.g., in the variable framework or constant region, to decrease antigenicity in a human are within the invention.
  • Chimeric antibodies can be produced by recombinant DNA techniques known in the art (see Robinson et al., International Patent Publication PCT/US86/02269; Akira, et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., International Application WO 86/01533; Cabilly et al. U.S. Patent No.4,816,567; Cabilly et al., European Patent Application 125,023; Better et al. (1988 Science 240:1041-1043); Liu et al.
  • a humanized or CDR-grafted antibody will have at least one or two but generally all three recipient CDRs (of heavy and or light immuoglobulin chains) replaced with a donor CDR.
  • the antibody may be replaced with at least a portion of a non-human CDR or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to PD-1.
  • the donor will be a rodent antibody, e.g., a rat or mouse antibody
  • the recipient will be a human framework or a human consensus framework.
  • the immunoglobulin providing the CDRs is called the "donor” and the immunoglobulin providing the framework is called the “acceptor.”
  • the donor immunoglobulin is a non-human (e.g., rodent).
  • the acceptor framework is a naturally-occurring (e.g., a human) framework or a consensus framework, or a sequence about 85% or higher, preferably 90%, 95%, 99% or higher identical thereto.
  • Consensus sequence refers to the sequence formed from the most frequently occurring amino acids (or nucleotides) in a family of related sequences (See e.g., Winnaker, From Genes to Clones (Verlagsgesellschaft, Weinheim, Germany 1987). In a family of proteins, each position in the consensus sequence is occupied by the amino acid occurring most frequently at that position in the family. If two amino acids occur equally frequently, either can be included in the consensus sequence.
  • a “consensus framework” refers to the framework region in the consensus immunoglobulin sequence.
  • An antibody can be humanized by methods known in the art (see e.g., Morrison, S. L., 1985, Science 229:1202-1207, by Oi et al., 1986, BioTechniques 4:214, and by Queen et al. US 5,585,089, US 5,693,761 and US 5,693,762, the contents of all of which are hereby incorporated by reference).
  • Humanized or CDR-grafted antibodies can be produced by CDR-grafting or CDR substitution, wherein one, two, or all CDRs of an immunoglobulin chain can be replaced. See e.g., U.S.
  • Patent 5,225,539 Jones et al.1986 Nature 321:552-525; Verhoeyan et al.1988 Science 239:1534; Beidler et al.1988 J. Immunol.141:4053-4060; Winter US 5,225,539, the contents of all of which are hereby expressly incorporated by reference. Winter describes a CDR-grafting method which may be used to prepare the humanized antibodies of the present invention (UK Patent Application GB 2188638A, filed on March 26, 1987; Winter US
  • humanized antibodies in which specific amino acids have been substituted, deleted or added. Criteria for selecting amino acids from the donor are described in US 5,585,089, e.g., columns 12-16 of US 5,585,089, e.g., columns 12-16 of US 5,585,089, the contents of which are hereby incorporated by reference. Other techniques for humanizing antibodies are described in Padlan et al. EP 519596 A1, published on December 23, 1992.
  • the antibody molecule can be a single chain antibody.
  • a single-chain antibody (scFV) may be engineered (see, for example, Colcher, D. et al. (1999) Ann N Y Acad Sci 880:263-80; and Reiter, Y. (1996) Clin Cancer Res 2:245-52).
  • the single chain antibody can be dimerized or multimerized to generate multivalent antibodies having specificities for different epitopes of the same target protein.
  • the antibody molecule has a heavy chain constant region chosen from, e.g., the heavy chain constant regions of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, and IgE; particularly, chosen from, e.g., the (e.g., human) heavy chain constant regions of IgG1, IgG2, IgG3, and IgG4.
  • the antibody molecule has a light chain constant region chosen from, e.g., the (e.g., human) light chain constant regions of kappa or lambda.
  • the constant region can be altered, e.g., mutated, to modify the properties of the antibody (e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, and/or complement function).
  • the antibody has: effector function; and can fix complement.
  • the antibody does not; recruit effector cells; or fix complement.
  • the antibody has reduced or no ability to bind an Fc receptor. For example, it is a isotype or subtype, fragment or other mutant, which does not support binding to an Fc receptor, e.g., it has a mutagenized or deleted Fc receptor binding region.
  • Antibodies with altered function e.g. altered affinity for an effector ligand, such as FcR on a cell, or the C1 component of complement can be produced by replacing at least one amino acid residue in the constant portion of the antibody with a different residue (see e.g., EP 388,151 A1, U.S. Pat. No. 5,624,821 and U.S. Pat. No.5,648,260, the contents of all of which are hereby incorporated by reference). Similar type of alterations could be described which if applied to the murine, or other species immunoglobulin would reduce or eliminate these functions.
  • an antibody molecule can be derivatized or linked to another functional molecule (e.g., another peptide or protein).
  • a "derivatized" antibody molecule is one that has been modified. Methods of derivatization include but are not limited to the addition of a fluorescent moiety, a radionucleotide, a toxin, an enzyme or an affinity ligand such as biotin. Accordingly, the antibody molecules of the invention are intended to include derivatized and otherwise modified forms of the antibodies described herein, including immunoadhesion molecules.
  • an antibody molecule can be functionally linked (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detectable agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).
  • another antibody e.g., a bispecific antibody or a diabody
  • detectable agent e.g., a detectable agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).
  • One type of derivatized antibody molecule is produced by crosslinking two or more antibodies (of the same type or of different types, e.g., to create bispecific antibodies).
  • Suitable crosslinkers include those that are heterobifunctional, having two distinctly reactive groups separated by an appropriate spacer (e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester) or homobifunctional (e.g., disuccinimidyl suberate).
  • an appropriate spacer e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester
  • homobifunctional e.g., disuccinimidyl suberate
  • An antibody molecules may be conjugated to another molecular entity, typically a label or a therapeutic (e.g., a cytotoxic or cytostatic) agent or moiety.
  • Radioactive isotopes can be used in diagnostic or therapeutic applications. Radioactive isotopes that can be coupled to the anti- PSMA antibodies include, but are not limited to ⁇ -, ⁇ -, or ⁇ -emitters, or ⁇ -and ⁇ -emitters.
  • radioactive isotopes include, but are not limited to iodine ( 131 I or 125 I), yttrium ( 90 Y), lutetium ( 177 Lu), actinium ( 225 Ac), praseodymium, astatine ( 211 At), rhenium ( 186 Re), bismuth ( 212 Bi or 213 Bi), indium ( 111 In), technetium ( 99 mTc), phosphorus ( 32 P), rhodium ( 188 Rh), sulfur ( 35 S) , carbon ( 14 C), tritium ( 3 H), chromium ( 51 Cr), chlorine ( 36 Cl), cobalt ( 57 Co or 58 Co), iron ( 59 Fe), selenium ( 75 Se), or gallium ( 67 Ga).
  • Radioisotopes useful as therapeutic agents include yttrium ( 90 Y), lutetium ( 177 Lu), actinium ( 225 Ac), praseodymium, astatine ( 211 At), rhenium ( 186 Re), bismuth ( 212 Bi or 213 Bi), and rhodium ( 188 Rh).
  • Radioisotopes useful as labels include iodine ( 131 I or 125 I), indium ( 111 In), technetium ( 99 mTc), phosphorus ( 32 P), carbon ( 14 C), and tritium ( 3 H), or one or more of the therapeutic isotopes listed above.
  • the invention provides radiolabeled antibody molecules and methods of labeling the same.
  • a method of labeling an antibody molecule is disclosed. The method includes contacting an antibody molecule, with a chelating agent, to thereby produce a conjugated antibody.
  • the conjugated antibody is radiolabeled with a radioisotope, e.g.,
  • the antibody molecule can be conjugated to a therapeutic agent.
  • therapeutically active radioisotopes have already been mentioned.
  • examples of other therapeutic agents include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, doxorubicin,
  • daunorubicin dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1- dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, maytansinoids, e.g., maytansinol (see U.S. Pat. No.5,208,020), CC-1065 (see U.S. Pat. Nos. 5,475,092, 5,585,499, 5,846, 545) and analogs or homologs thereof.
  • Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, CC-1065, melphalan, carmustine (BSNU) and lomustine (CCNU),
  • antimetabolites e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine
  • alkylating agents e.g., mechlorethamine, thioepa chlorambucil, CC-1065, melphalan, carmustine (BSNU) and lomustine (CCNU)
  • cyclothosphamide busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis- dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclinies (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine, vinblastine, taxol and maytansinoids).
  • DDP dichlorodiamine platinum
  • anthracyclinies e.g., daunorubicin (formerly daunomycin) and doxorubicin
  • antibiotics e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)
  • the combination therapies can include an immunomodulator (e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule) and a second therapeutic agent, e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1.
  • an immunomodulator e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule
  • a second therapeutic agent e.g., a second therapeutic agent chosen from one or more of the agents listed in Table 1.
  • the therapy or the therapeutic agents must be administered at the same time and/or formulated for delivery together (e.g., in the same composition), although these methods and compositions are within the scope described herein.
  • the immunomodulator and the second therapeutic agent can be administered concurrently with, prior to, or subsequent to, one or more other additional therapies or therapeutic agents.
  • the agents in the combination can be administered in any order. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent.
  • the additional therapeutic agent utilized in this combination may be administered together in a single composition or administered separately in different compositions. In general, it is expected that additional therapeutic agents utilized in combination be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
  • a combination includes a formulation of the immunomodulator and the second therapeutic agent, with or without instructions for combined use or to
  • the combined compounds can be manufactured and/or formulated by the same or different manufacturers.
  • the combination partners may thus be entirely separate pharmaceutical dosage forms or pharmaceutical compositions that are also sold independently of each other.
  • instructions for their combined use are provided: (i) prior to release to physicians (e.g. in the case of a“kit of part” comprising the compound of the disclosure and the other therapeutic agent); (ii) by the physicians themselves (or under the guidance of a physician) shortly before administration; (iii) the patient themselves by a physician or medical staff.
  • the combination therapies disclosed herein can include an inhibitor of an inhibitory molecule of an immune checkpoint molecule.
  • immune checkpoints refers to a group of molecules on the cell surface of CD4 and CD8 T cells. These molecules can effectively serve as “brakes” to down-modulate or inhibit an anti-tumor immune response. Inhibition of an inhibitory molecule can be performed by inhibition at the DNA, RNA or protein level.
  • an inhibitory nucleic acid e.g., a dsRNA, siRNA or shRNA
  • the inhibitor of an inhibitory signal is, a polypeptide e.g., a soluble ligand, or an antibody or antigen-binding fragment thereof, that binds to the inhibitory molecule.
  • Immune checkpoint molecules useful in the methods and compositions of the present invention include, but are not limited to, Programmed Death 1 (PD-1), PD-1, PD-L1, PD-L2, Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), TIM-3, CEACAM (e.g., CEACAM-1,
  • CEACAM-3 and/or CEACAM-5 LAG-3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H1, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, TGFR (e.g., TGFR beta).
  • TGFR e.g., TGFR beta
  • the immunomodulator is an inhibitor of an immune checkpoint molecule (e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA- 4, or any combination thereof).
  • an immune checkpoint molecule e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA- 4, or any combination thereof.
  • the PD-1 inhibitor is an anti-PD-1 antibody chosen from
  • Nivolumab Pembrolizumab or Pidilizumab.
  • the anti-PD-1 antibody is Nivolumab.
  • Alternative names for Nivolumab include MDX-1106, MDX-1106-04, ONO-4538, or BMS-936558.
  • the anti-PD-1 antibody is Nivolumab (CAS Registry Number: 946414-94-4).
  • Nivolumab is a fully human IgG4 monoclonal antibody which specifically blocks PD- 1.
  • Nivolumab (clone 5C4) and other human monoclonal antibodies that specifically bind to PD- 1 are disclosed in US 8,008,449 and WO2006/121168.
  • the inhibitor of PD- 1 is Nivolumab, and having a sequence disclosed herein (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
  • the heavy and light chain amino acid sequences of Nivolumab are as follows: Heavy chain (SEQ ID NO: 2)
  • the anti-PD-1 antibody is Pembrolizumab.
  • Pembrolizumab (also referred to as Lambrolizumab, MK-3475, MK03475, SCH-900475 or KEYTRUDA®; Merck) is a humanized IgG4 monoclonal antibody that binds to PD-1. Pembrolizumab and other humanized anti-PD-1 antibodies are disclosed in Hamid, O. et al. (2013) New England Journal of Medicine 369 (2): 134–44, US 8,354,509 and WO2009/114335.
  • the inhibitor of PD-1 is Pembrolizumab disclosed in, e.g., US 8,354,509 and WO 2009/114335, and having a sequence disclosed herein (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
  • the heavy and light chain amino acid sequences of Pembrolizumab are as follows: Heavy chain (SEQ ID NO: 4)
  • RVVSVLTVLH QDWLNGKEYK CKVSNKGLPS SIEKTISKAK GQPREPQVYT 350
  • the anti-PD-1 antibody is Pidilizumab.
  • Pidilizumab (CT-011; Cure Tech) is a humanized IgG1k monoclonal antibody that binds to PD-1.
  • Pidilizumab and other humanized anti-PD-1 monoclonal antibodies are disclosed in WO2009/101611.
  • anti-PD-1 antibodies include AMP 514 (Amplimmune), among others, e.g., anti- PD-1 antibodies disclosed in US 8,609,089, US 2010028330, and/or US 20120114649.
  • exemplary PD-L1 or PD-L2 Inhibitors include AMP 514 (Amplimmune), among others, e.g., anti- PD-1 antibodies disclosed in US 8,609,089, US 2010028330, and/or US 20120114649.
  • the PD-L1 inhibitor is an antibody molecule. In some embodiments, the PD-L1 inhibitor is an antibody molecule.
  • the anti-PD-Ll inhibitor is chosen from YW243.55.S70, MPDL3280A, MEDI- 4736, MSB-0010718C, or MDX-1105.
  • the anti-PD-L1 antibody is MSB0010718C.
  • MSB0010718C also referred to as A09-246-2; Merck Serono
  • A09-246-2 Merck Serono
  • Pembrolizumab and other humanized anti-PD-L1 antibodies are disclosed in
  • the heavy and light chain amino acid sequences of MSB0010718C include at least the following: Heavy chain variable region (SEQ ID NO: 24 as disclosed in WO2013/079174) (SEQ ID NO: 6) EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMWVRQAPGKGLEWVSSIYPSGGITFYADKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIKLGTVTTVDYWGQGTLVTVSS
  • the PD-L1 inhibitor is YW243.55.S70.
  • the YW243.55.S70 antibody is an anti-PD-Ll described in WO 2010/077634 (heavy and light chain variable region sequences shown in SEQ ID Nos.20 and 21, respectively, of WO 2010/077634), and having a sequence disclosed therein (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
  • the PD-L1 inhibitor is MDX-1105.
  • MDX-1105 also known as BMS-936559, is an anti-PD-Ll antibody described in WO2007/005874, and having a sequence disclosed therein (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
  • the PD-L1 inhibitor is MDPL3280A (Genentech / Roche).
  • MDPL3280A is a human Fc optimized IgG1 monoclonal antibody that binds to PD-L1.
  • MDPL3280A and other human monoclonal antibodies to PD-L1 are disclosed in U.S. Patent No.: 7,943,743 and U.S Publication No.: 20120039906.
  • the PD-L2 inhibitor is AMP-224.
  • AMP-224 is a PD-L2 Fc fusion soluble receptor that blocks the interaction between PD-1 and B7-H1 (B7-DCIg; Amplimmune; e.g., disclosed in WO2010/027827 and WO2011/066342).
  • a combination described herein includes a TIM-3 inhibitor.
  • the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor or a hematologic malignancy.
  • Exemplary anti-TIM-3 antibodies are disclosed in U.S. Patent No.: 8,552,156, WO 2011/155607, EP 2581113 and U.S Publication No.: 2014/044728.
  • Exemplary LAG-3 Inhibitors are disclosed in U.S. Patent No.: 8,552,156, WO 2011/155607, EP 2581113 and U.S Publication No.: 2014/044728.
  • Exemplary LAG-3 Inhibitors are disclosed in U.S. Patent No.: 8,552,156, WO 2011/155607, EP 2581113 and U.S Publication No.: 2014/044728.
  • a combination described herein includes a LAG-3 inhibitor.
  • the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor or a hematologic malignancy.
  • the anti-LAG-3 antibody is BMS-986016.
  • BMS-986016 also referred to as BMS986016; Bristol-Myers Squibb
  • BMS-986016 and other humanized anti-LAG-3 antibodies are disclosed in US 2011/0150892, WO2010/019570, and WO2014/008218.
  • a combination described herein includes a CTLA-4 inhibitor.
  • the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor or a hematologic malignancy.
  • Exemplary anti-CTLA-4 antibodies include Tremelimumab (IgG2 monoclonal antibody available from Pfizer, formerly known as ticilimumab, CP-675,206); and Ipilimumab (CTLA-4 antibody, also known as MDX-010, CAS No.477202-00-9).
  • Tremelimumab IgG2 monoclonal antibody available from Pfizer, formerly known as ticilimumab, CP-675,206
  • Ipilimumab CLA-4 antibody, also known as MDX-010, CAS No.477202-00-9
  • the combination includes an anti-PD-1 antibody molecule, e.g., as described herein, and an anti-CTLA-4 antibody, e.g., ipilimumab.
  • an anti-CTLA-4 antibody e.g., ipilimumab.
  • exemplary doses that can be use include a dose of anti-PD-1 antibody molecule of about 1 to 10 mg/kg, e.g., 3 mg/kg, and a dose of an anti-CTLA-4 antibody, e.g., ipilimumab, of about 3 mg/kg.
  • the anti-PD-1 antibody molecule is administered after treatment, e.g., after treatment of a melanoma, with an anti-CTLA-4 antibody (e.g., ipilimumab) with or without a BRAF inhibitor (e.g., vemurafenib or dabrafenib).
  • an anti-CTLA-4 antibody e.g., ipilimumab
  • BRAF inhibitor e.g., vemurafenib or dabrafenib.
  • the inhibitor is a soluble ligand (e.g., a CTLA-4-Ig), or an antibody or antibody fragment that binds to PD-L1, PD-L2 or CTLA-4.
  • a soluble ligand e.g., a CTLA-4-Ig
  • an antibody or antibody fragment that binds to PD-L1, PD-L2 or CTLA-4.
  • the anti-PD-1 antibody molecule can be administered in combination with an anti-CTLA-4 antibody, e.g., ipilimumab, for example, to treat a cancer (e.g., a cancer chosen from: a melanoma, e.g., a metastatic melanoma; a lung cancer, e.g., a non-small cell lung carcinoma; or a prostate cancer).
  • a cancer e.g., a cancer chosen from: a melanoma, e.g., a metastatic melanoma; a lung cancer, e.g., a non-small cell lung carcinoma; or a prostate cancer.
  • the anti-PD-1 molecules described herein are administered in combination with one or more other inhibitors of PD-1, PD-L1 and/or PD-L2, e.g., as described herein.
  • the antagonist may be an antibody, an antigen binding fragment thereof, an
  • immunoadhesin a fusion protein, or oligopeptide.
  • the anti-PD-1 or PD-L1 antibody molecule is administered in combination with an anti-LAG-3 antibody or an antigen-binding fragment thereof. In another embodiment, the anti-PD-1 or PD-L1 antibody molecule is administered in combination with an anti-TIM-3 antibody or antigen-binding fragment thereof. In yet other embodiments, the anti- PD-1 or PD-L1 antibody molecule is administered in combination with an anti-LAG-3 antibody and an anti-TIM-3 antibody, or antigen-binding fragments thereof.
  • the combination of antibodies recited herein can be administered separately, e.g., as separate antibodies, or linked, e.g., as a bispecific or trispecific antibody molecule.
  • a bispecific antibody that includes an anti-PD-1 or PD-L1 antibody molecule and an anti-TIM-3 or anti-LAG-3 antibody, or antigen-binding fragment thereof, is administered.
  • the combination of antibodies recited herein is used to treat a cancer, e.g., a cancer as described herein (e.g., a solid tumor).
  • a cancer e.g., a cancer as described herein (e.g., a solid tumor).
  • the efficacy of the aforesaid combinations can be tested in animal models known in the art. For example, the animal models to test the synergistic effect of anti- PD-1 and anti-LAG-3 are described, e.g., in Woo et al. (2012) Cancer Res.72(4):917-27).
  • the anti-PD-1 or PD-L1 antibody molecule is administered in combination with an inhibitor of CEACAM (e.g., CEACAM-1, -3 and/or -5).
  • an inhibitor of CEACAM e.g., CEACAM-1, -3 and/or -5.
  • the inhibitor of CEACAM is an anti-CEACAM antibody molecule.
  • CEACAM carcinoembryonic antigen cell adhesion molecules
  • CEACAM-1 and CEACAM-5 are believed to mediate, at least in part, inhibition of an anti-tumor immune response (see e.g., Markel et al. J Immunol. 2002 Mar 15;168(6):2803-10; Markel et al. J Immunol.2006 Nov 1;177(9):6062-71; Markel et al. Immunology.2009 Feb;126(2):186-200; Markel et al.
  • CEACAM-1 has been described as a heterophilic ligand for TIM-3 and as playing a role in TIM-3-mediated T cell tolerance and exhaustion (see e.g., WO 2014/022332; Huang, et al. (2014) Nature doi:10.1038/nature13848).
  • co-blockade of CEACAM-1 and TIM-3 has been shown to enhance an anti-tumor immune response in xenograft colorectal cancer models (see e.g., WO 2014/022332; Huang, et al. (2014), supra).
  • co- blockade of CEACAM-1 and PD-1 reduce T cell tolerance as described, e.g., in WO
  • CEACAM inhibitors can be used with the other immunomodulators described herein (e.g., anti-PD-1 and/or anti-TIM-3 inhibitors) to enhance an immune response against a cancer, e.g., a melanoma, a lung cancer (e.g., NSCLC), a bladder cancer, a colon cancer an ovarian cancer, and other cancers as described herein.
  • a cancer e.g., a melanoma
  • a lung cancer e.g., NSCLC
  • bladder cancer e.g., a colon cancer an ovarian cancer
  • other cancers as described herein.
  • the anti-PD-1 antibody molecule is administered in combination with a CEACAM inhibitor (e.g., CEACAM-1, CEACAM-3, and/or CEACAM-5 inhibitor).
  • a CEACAM inhibitor e.g., CEACAM-1, CEACAM-3, and/or CEACAM-5 inhibitor.
  • the inhibitor of CEACAM is an anti-CEACAM antibody molecule.
  • the anti-PD-1 antibody molecule is administered in combination with a CEACAM-1 inhibitor, e.g., an anti- CEACAM-1 antibody molecule.
  • the anti-PD-1 antibody molecule is administered in combination with a CEACAM- 3 inhibitor, e.g., an anti- CEACAM-3 antibody molecule.
  • the anti-PD-1 antibody molecule is administered in combination with a CEACAM-5 inhibitor, e.g., an anti- CEACAM-5 antibody molecule.
  • a CEACAM-5 inhibitor e.g., an anti- CEACAM-5 antibody molecule.
  • Exemplary anti-CEACAM-1 antibodies are described in WO 2010/125571, WO 2013/082366 and WO 2014/022332, e.g., a monoclonal antibody 34B1, 26H7, and 5F4; or a recombinant form thereof, as described in, e.g., US 2004/0047858, US 7,132,255 and WO 99/052552.
  • the anti-CEACAM antibody binds to CEACAM-5 as described in, e.g., Zheng et al. PLoS One.2010 Sep 2;5(9). pii: e12529
  • the combination therapies disclosed herein include a modulator of a costimulatory molecule.
  • the costimulatory modulator, e.g., agonist, of a costimulatory molecule is chosen from an agonist (e.g., an agonistic antibody or antigen-binding fragment thereof, or soluble fusion) of an MHC class I molecule, a TNF receptor protein, an Immunoglobulin-like proteins, a cytokine receptor, an integrin, a signaling lymphocytic activation molecules (SLAM proteins), an activating NK cell receptor, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CD11a/CD18), 4-1BB (CD137), B7-H3, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp
  • CD226 SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM
  • the combination therapies disclosed herein include a costimulatory molecule, e.g., an agonist associated with a positive signal that includes a costimulatory domain of CD28, CD27, ICOS and GITR.
  • a costimulatory molecule e.g., an agonist associated with a positive signal that includes a costimulatory domain of CD28, CD27, ICOS and GITR.
  • a combination described herein includes a GITR agonist.
  • the combination is used to treat a cancer, e.g., a cancer described herein, e.g., a solid tumor or a hematologic malignancy.
  • Exemplary GITR agonists include, e.g., GITR fusion proteins and anti-GITR antibodies (e.g., bivalent anti-GITR antibodies), such as, a GITR fusion protein described in U.S. Patent No.: 6,111,090, European Patent No.: 0920505B1, U.S Patent No.: 8,586,023, PCT Publication Nos.: WO 2010/003118 and 2011/090754, or an anti-GITR antibody described, e.g., in U.S. Patent No.: 7,025,962, European Patent No.: 1947183B1, U.S. Patent No.: 7,812,135, U.S. Patent No.: 8,388,967, U.S.
  • anti-GITR antibodies e.g., bivalent anti-GITR antibodies
  • the GITR agonist is used in combination with a PD-1 inhibitor, e.g., as described in WO2015/026684.
  • the GITR agonist is used in combination with a TLR agonist, e.g., as described in WO2004060319, and International Publication No.: WO2014012479. Additional Combinations
  • the combination therapies include a modified T-cell, e.g., in combination with an adoptive T-cell immunotherapy using chimeric antigen receptor (CAR) T cells (e.g., as described by John LB, et al. (2013) Clin. Cancer Res.19(20): 5636-46).
  • CAR chimeric antigen receptor
  • the combination therapies disclosed herein can also include a cytokine, e.g., interleukin-21 or interleukin-2.
  • a cytokine e.g., interleukin-21 or interleukin-2.
  • the combination described herein is used to treat a cancer, e.g., a cancer as described herein (e.g., a solid tumor or melanoma).
  • immunomodulators that can be used in the combination therapies include, but are not limited to, e.g., afutuzumab (available from Roche®); pegfilgrastim (Neulasta®);
  • lenalidomide CC-5013, Revlimid®
  • Thalomid® thalidomide
  • actimid CC4047
  • cytokines e.g., IL-21 or IRX-2 (mixture of human cytokines including interleukin 1, interleukin 2, and interferon ⁇ , CAS 951209-71-5, available from IRX Therapeutics).
  • the combination therapies can be administered to a subject in conjunction with (e.g., before, simultaneously or following) one or more of: bone marrow transplantation, T cell ablative therapy using chemotherapy agents such as, fludarabine, external- beam radiation therapy (XRT), cyclophosphamide, and/or antibodies such as OKT3 or
  • the anti-PD-1 or PD-L1 antibody molecules are administered following B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan.
  • B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan.
  • subjects may undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation.
  • subjects receive the anti-PD-1 or PD-L1 antibody molecules.
  • the anti-PD-1 or PD-L1 antibody molecules are administered before or following surgery.
  • Another example of a further combination therapy includes decarbazine for the treatment of melanoma.
  • decarbazine for the treatment of melanoma.
  • the combined use of PD-1 blockade and chemotherapy is believed to be facilitated by cell death, that is a consequence of the cytotoxic action of most chemotherapeutic compounds, which can result in increased levels of tumor antigen in the antigen presentation pathway.
  • Other combination therapies that may result in synergy with PD-1 blockade through cell death are radiation, surgery, and hormone deprivation. Each of these protocols creates a source of tumor antigen in the host.
  • Angiogenesis inhibitors may also be combined with PD-1 blockade. Inhibition of angiogenesis leads to tumor cell death which may feed tumor antigen into host antigen presentation pathways.
  • Combination therapies can also be used in combination with bispecific antibodies.
  • Bispecific antibodies can be used to target two separate antigens.
  • anti-Fc receptor/anti tumor antigen e.g., Her-2/neu
  • bispecific antibodies have been used to target macrophages to sites of tumor. This targeting may more effectively activate tumor specific responses.
  • the T cell arm of these responses would by augmented by the use of PD-1 blockade.
  • antigen may be delivered directly to DCs by the use of bispecific antibodies which bind to tumor antigen and a dendritic cell specific cell surface marker.
  • Tumors evade host immune surveillance by a large variety of mechanisms. Many of these mechanisms may be overcome by the inactivation of proteins which are expressed by the tumors and which are immunosuppressive. These include among others TGF-beta (Kehrl, J. et al. (1986) J. Exp. Med.163: 1037-1050), IL-10 (Howard, M. & O'Garra, A. (1992) Immunology Today 13: 198-200), and Fas ligand (Hahne, M. et al. (1996) Science 274: 1363-1365).
  • Antibodies or antigen-binding fragments thereof to each of these entities may be used in combination with anti-PD-1 to counteract the effects of the immunosuppressive agent and favor tumor immune responses by the host.
  • Anti-CD40 antibodies are able to substitute effectively for T cell helper activity (Ridge, J. et al. (1998) Nature 393: 474-478) and can be used in conjunction with PD-1 antibodies (Ito, N. et al. (2000) Immunobiology 201 (5) 527-40).
  • Antibodies to T cell costimulatory molecules such as CTLA-4 (e.g., U.S. Pat. No.5,811,097), OX-40 (Weinberg, A. et al.
  • PD-1 blockade can be combined with other forms of immunotherapy such as cytokine treatment (e.g., interferons, GM-CSF, G-CSF, IL-2, IL-21), or bispecific antibody therapy, which provides for enhanced presentation of tumor antigens (see e.g., Holliger (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak (1994) Structure 2:1121- 1123).
  • cytokine treatment e.g., interferons, GM-CSF, G-CSF, IL-2, IL-21
  • bispecific antibody therapy which provides for enhanced presentation of tumor antigens
  • the combination therapies disclosed herein can be further combined with an immunogenic agent, such as cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), cells, and cells transfected with genes encoding immune stimulating cytokines (He et al. (2004) J. Immunol.173:4919-28).
  • an immunogenic agent such as cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), cells, and cells transfected with genes encoding immune stimulating cytokines (He et al. (2004) J. Immunol.173:4919-28).
  • tumor vaccines include peptides of melanoma antigens, such as peptides of gp100, MAGE antigens, Trp-2, MART1 and/or tyrosinase, or tumor cells transfected to express the cytokine GM-CSF.
  • PD-1 blockade can be combined with a vaccination protocol.
  • Many experimental strategies for vaccination against tumors have been devised (see Rosenberg, S., 2000,
  • a vaccine is prepared using autologous or allogeneic tumor cells. These cellular vaccines have been shown to be most effective when the tumor cells are transduced to express GM-CSF. GM-CSF has been shown to be a potent activator of antigen presentation for tumor vaccination (Dranoff et al.
  • PD-1 blockade can be used in conjunction with a collection of recombinant proteins and/or peptides expressed in a tumor in order to generate an immune response to these proteins.
  • proteins are normally viewed by the immune system as self antigens and are therefore tolerant to them.
  • the tumor antigen may also include the protein telomerase, which is required for the synthesis of telomeres of chromosomes and which is expressed in more than 85% of human cancers and in only a limited number of somatic tissues (Kim, N et al. (1994) Science 266: 2011-2013). (These somatic tissues may be protected from immune attack by various means).
  • Tumor antigen may also be "neo-antigens" expressed in cancer cells because of somatic mutations that alter protein sequence or create fusion proteins between two unrelated sequences (ie. bcr-abl in the Philadelphia chromosome), or idiotype from B cell tumors.
  • tumor vaccines may include the proteins from viruses implicated in human cancers such a Human Papilloma Viruses (HPV), Hepatitis Viruses (HBV and HCV) and Kaposi's Herpes Sarcoma Virus (KHSV).
  • HPV Human Papilloma Viruses
  • HBV Hepatitis Viruses
  • KHSV Kaposi's Herpes Sarcoma Virus
  • Another form of tumor specific antigen which may be used in conjunction with PD-1 blockade is purified heat shock proteins (HSP) isolated from the tumor tissue itself. These heat shock proteins contain fragments of proteins from the tumor cells and these HSPs are highly efficient at delivery to antigen presenting cells for eliciting tumor immunity (Suot, R & Srivastava, P (1995) Science 269:1585-1588; Tamura, Y. et al. (1997) Science 278:117-120).
  • HSP heat shock proteins
  • DC Dendritic cells
  • DC's can be produced ex vivo and loaded with various protein and peptide antigens as well as tumor cell extracts (Nestle, F. et al. (1998) Nature Medicine 4: 328-332). DCs may also be transduced by genetic means to express these tumor antigens as well. DCs have also been fused directly to tumor cells for the purposes of immunization (Kugler, A. et al. (2000) Nature Medicine 6:332-336). As a method of vaccination, DC immunization may be effectively combined with PD-1 blockade to activate more potent anti-tumor responses. Second Therapeutic Agents
  • the second therapeutic agent can be chosen from one or more of: 1) an IAP inhibitor; 2) a TOR kinase inhibitor; 3) a HDM2 ligase inhibitor; 4) a PIM kinase inhibitor; 5) a HER3 kinase inhibitor; 6) a Histone Deacetylase (HDAC) inhibitor; 7) a Janus kinase inhibitor; 8) an FGF receptor inhibitor; 9) an EGF receptor inhibitor; 10) a c-MET inhibitor; 11) an ALK inhibitor; 12) a CDK4/6-inhibitor; 13) a PI3K inhibitor; 14) a BRAF inhibitor; 15) a CAR T cell (e.g., a CAR T cell targeting CD19); 16) a MEK inhibitor; or 17) a BCR-ABL inhibitor; e.g., chosen from one or more of the agents listed in Table 1.
  • an inhibitor of the immune checkpoint molecule is used in a method or composition described herein.
  • an inhibitor of the immune checkpoint molecule described herein e.g., the PD-1 inhibitor, e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-L1 antibody (e.g., MSB0010718C) (alone or in combination with other immunomodulators) is used in combination with one or more of the agents listed in Table 1; e.g., 1) an Inhibitor of Apoptosis (IAP) inhibitor; 2) an inhibitor of a Target of Rapamycin (TOR) kinase; 3) an inhibitor of a human homolog of mouse double minute 2 E3 ubiquitin ligase (HDM2); 4) a PIM kinase inhibitor; 5) an inhibitor of Human epidermal growth factor 3 (HER3) kinas
  • IAP Inhibi
  • one or more of the aforesaid combinations is used to treat a disorder, e.g., a disorder described herein (e.g., a disorder disclosed in Table 1). In one embodiment, one or more of the aforesaid combinations is used to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • one or more of the immunomodulators described herein are used in combination with:
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with an IAP inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • a cancer e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the IAP inhibitor is disclosed in Table 1, e.g., LCL161, or in a publication recited in Table 1, e.g., International Patent Publication No. WO2008/016893 (e.g., Formula (I), Example 1, and Compound A), European Patent No.2051990, and U.S. Patent No.8,546,336.
  • the IAP inhibitor is disclosed, e.g., in International Patent Publication No. WO2008/016893 (e.g., Formula (I), Example 1, and Compound A), European Patent No. 2051990, and U.S. Patent No.8,546,336.
  • the IAP inhibitor e.g., LCL161
  • the structure e.g., LCL161
  • the publication recited in Table 1 e.g., International Patent Publication No. WO2008/016893 (e.g., Formula (I), Example 1, and Compound A), European Patent No.2051990, and U.S. Patent No.8,546,336.
  • the inhibitor of the immune checkpoint molecule (e.g., one of Nivolumab, Pembrolizumab or MSB0010718C) is used in combination with LCL161 to treat a cancer or disorder described in Table 1, e.g., a solid tumor, e.g., a breast cancer or a pancreatic cancer; or a hematological malignancy, e.g., multiple myeloma or a hematopoeisis disorder.
  • a cancer or disorder described in Table 1 e.g., a solid tumor, e.g., a breast cancer or a pancreatic cancer
  • a hematological malignancy e.g., multiple myeloma or a hematopoeisis disorder.
  • R 1 is H, C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl or C 3 -C 10 cycloalkyl, which R 1 may be unsubstituted or substituted;
  • R 2 is H, C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C 3 -C 10 cycloalkyl which R 2 may be unsubstituted or substituted;
  • R 3 is H, CF 3 , C 2 F 6 , C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, CH 2 -Z, or
  • R 2 and R 3 taken together with the nitrogen atom to which they are attached, form a heterocyclic ring, which alkyl, alkenyl, alkynyl or het ring may be unsubstituted or substituted;
  • Z is H, OH, F, Cl, CH 3 , CH 2 CI, CH 2 F or CH 2 OH;
  • R 4 is C 0-10 alkyl, C 0-10 alkenyl, C 0-10 alkynyl, C 3 -C 10 cycloalkyl, wherein the C 0-10 alkyl, or cycloalkyl group is unsubstituted or substituted;
  • A is het, which may be substituted or unsubstituted
  • D is C 1 -C 7 alkylene or C 2 -C 9 alkenylene, C(O), O, NR 7 , S(O)r, C(O)-C 1 -C 10 alkyl, 0-C 1 - C 10 alkyl, S(O)r-C r C 10 alkyl, C (O) C 0 -C 10 arylalkyl, OC 0 -C 10 arylalkyl, or S(O)r C 0 -C 10 arylalkyl, which alkyl and aryl groups may be unsubstituted or substituted;
  • r is O, 1 or 2;
  • a 1 is a substituted or unsubstituted aryl or unsubstituted or substituted het which substituents on aryl and het are halo, alkyl, lower alkoxy, NR 5 R 6 , CN, NO 2 or SR 5 ;
  • each Q is independently H, C 1 -C 10 alkyl, C 1 -C 10 alkoxy, aryl C 1 -C 10 alkoxy, OH, O-C 1 - C 10 alkyl, (CH 2 ) 0 - 6 -C 3 -C 7 cycloalkyl, aryl, aryl C 1 -C 10 alkyl, O-(CH 2 ) 0 - 6 aryl, (CH 2 ) 1 - 6 het, het, O-(CH 2 ) 1-6 het, -OR 11 , C(O)R 11 , -C(O)N(R 11 )(R 12 ), N(R 11 )(R 12 J 1 SR 11 , S(O)R 111 S(O) 2 R 11 , S(O) 2 - N(R 11 )(R 12 ), or NR 11 -S(O) 2 -(R 12 ), wherein alkyl, cycloalkyl and
  • n 0, 1 , 2 or 3, 4, 5, 6 or 7;
  • het is a 5- to 7-membered monocyclic heterocyclic ring containing 1-4 heteroring atoms selected from N, O and S or an 8- to 12-membered fused ring system that includes one 5- to 7- membered monocyclic heterocyclic ring containing 1 , 2 or 3 heteroring atoms selected from N, O and S, which het is unsubstituted or substituted;
  • R 11 and R 12 are independently H, C 1 -C 10 alkyl, (CH 2 ) 0 - 6 -C 3 -C 7 cycloalkyl, (CH 2 ) 0 - 6 - (CH) 0 - 1 (aryl) 1 .
  • alkyl substituents of R 11 and R 12 may be unsubstituted or substituted by one or more substituents selected from C 1 -C 10 alkyl, halogen, OH, O-C 1 -C 6 alkyl, -S-C 1 -C 6 alkyl, CF 3 or NR 11 R 12 ;
  • substituted cycloalkyl substituents of R 11 and R 12 are substituted by one or more substituents selected from a C 2 -C 10 alkene; C 1 -C 6 alkyl; halogen; OH; 0-C 1 - C 6 alkyl; S-C 1 -C 6 alkyl,CF 3 ; or NR 11 R 12 ;
  • substituted het or substituted aryl of R 11 and R 12 are substituted by one or more substituents selected from halogen, hydroxy, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, nitro, CNO-C(O)- C r C 4 alkyl and C(O)-O-C r C 4 -alkyl;
  • R 5 , R 6 and R 7 are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, cycloalkyl, or cycloalkyl lower alkyl, C(O)R 5 ; S(O)R 5 C(O)OR 5 C(O)N R 5 R 6 , and
  • R 1 , R 2 , R 3 , R 4 , Q, and A and A 1 groups are independently halo, hydroxy, lower alkyl, lower alkenyl, lower alkynyl, lower alkanoyl, lower alkoxy, aryl, aryl lower alkyl, amino, amino lower alkyl, diloweralkylamino, lower alkanoyl, amino lower alkoxy, nitro, cyano, cyano lower alkyl, carboxy, lower carbalkoxy, lower alkanoyl, aryloyl, lower arylalkanoyl, carbamoyl, N-mono- or N,N-di lower alkyl carbamoyl, lower alkyl carbamic acid ester, amidino, guanidine, ureido, mercapto, sulfo, lower alkylthio, sulfoamino, sulfonamide, benzosulfonamide,
  • R 8 and R 14 can be the same or different and are independently H or lower alkyl, or R 8 and R 14 , together with the N atom, form a 3- to 8-membered heterocyclic ring containing a nitrogen heteroring atoms and may optionally contain one or two additional heteroring atoms selected from nitrogen, oxygen and sulfur, which heterocyclic ring may be unsubstituted or substituted with lower alkyl, halo, lower alkenyl, lower alkynyl, hydroxy, lower alkoxy, nitro, amino, lower alkyl, amino, diloweralkyl amino, cyano, carboxy, lower carbalkoxy, formyl, lower alkanoyl, oxo, carbarmoyl, ⁇ /-lower or ⁇ /, ⁇ /- dilower alkyl carbamoyl, mercapto, or lower alkylthio; and
  • R 9 , R 10 and R 13 are independently hydrogen, lower alkyl, halogen substituted lower alkyl, aryl, aryl lower alkyl, halogen substituted aryl, halogen substituted aryl lower alkyl.
  • LCL161 has the following structure:
  • LCL161 is (S)-N-((S)-1-cyclohexyl-2-((S)-2-(4-(4- fluorobenzoyl)thiazol-2-yl)pyrrolidin-1-yl)-2-oxoethyl)-2-(methylamino)propanamide.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a TOR kinase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the TOR kinase inhibitor is disclosed in Table 1, e.g., Rad-001, or in a publication recited in Table 1, e.g., in International Patent Publication No. WO 2014/085318 (e.g.,
  • the TOR kinase inhibitor e.g., Rad-001
  • the TOR kinase inhibitor has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1, e.g., International Patent Publication No. WO 2014/085318 (e.g., Compound B).
  • the inhibitor of the immune checkpoint molecule e.g., one of Nivolumab,
  • Pembrolizumab or MSB0010718C is used in combination with Rad-001 to treat a cancer or disorder described in Table 1, e.g., a solid tumor, e.g., a sarcoma, a lung cancer (e.g., a non-small cell lung cancer (NSCLC) (e.g., a NSCLC with squamous and/or non-squamous histology)), a melanoma (e.g., an advanced melanoma), a digestive/gastrointestinal cancer, a gastric cancer, a neurologic cancer, a prostate cancer, a bladder cancer, a breast cancer; or a hematological malignancy, e.g., a lymphoma or leukemia.
  • a solid tumor e.g., a sarcoma
  • a lung cancer e.g., a non-small cell lung cancer (NSCLC) (e.g., a NSCLC with squam
  • Rad-001 has the following structure:
  • Rad-001 is ((1R, 9S, 12S, 15R, 16E, 18R, 19R, 21R, 23S, 24E, 26E, 28E, 30S, 32S, 35R)-1,18-dihydroxy-12- ⁇ (1R)-2-[(1S, 3R, 4R)-4-(2-hydroxyethoxy)-3- methoxycyclohexyl]-1-methylethyl ⁇ -19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36- dioxa-4-aza-tricyclo[30.3.1.04,9] hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentaone).
  • the inhibitor of the immune checkpoint molecule is used in combination with a HDM2 ligase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • a cancer e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the HDM2 ligase inhibitor is disclosed in Table 1, e.g., CGM097, or in a publication recited in Table 1, e.g., International Patent Publication No. WO2011/076786 (e.g., Formula (I) or Example 106).
  • the HDM2 ligase inhibitor is disclosed, e.g., in International Patent Publication No.
  • the HDM2 ligase inhibitor e.g., CGM097
  • the HDM2 ligase inhibitor has the structure provided in Table 1 (compound or generic structure), or as disclosed in the publication recited in Table 1, e.g., International Patent Publication No. WO2011/076786 (e.g., Formula (I) or Example 106).
  • the inhibitor of the immune checkpoint molecule e.g., one of Nivolumab, Pembrolizumab or MSB0010718C
  • the HDM2 ligase inhibitor is a compound of formula (I), or a tautomer or N-oxide or pharmaceutically acceptable salt or solvate thereof,
  • Z is CH 2 or N-R 4 ;
  • X is halogen
  • R 4 is selected from the group consisting of H and C 1 -C 7 -alkyl
  • R 6 is independently selected from the group consisting of H, R'O, and (R') 2 N;
  • R 7 is independently selected from the group consisting of R'O and (R') 2 N;
  • each R' is independently selected from the group consisting of H, C 1 -C 7 -alkyl, C 1 -C 7 - alkenyl, halo- C 1 -C 7 -alkyl, halo-C 1 -C 7 -alkenyl, C 3 -C 12 -cycloalkyl, heterocyclyl, aryl, hydroxy- C 1 -C 7 -alkyl, C 1 -C 7 -alkoxy-C 1 -C 7 alkyl, amino-C 1 -C 7 -alkyl, N- C 1 -C 7 -alkyl-amino- C 1 -C 7 -alkyl, N,N-di- C 1 -C 7 -alkyl-amino- C 1 -C 7 -alkyl, C 3 -C 12 -cycloalkyl- C 1 -C 7 -alkyl, heterocyclyl- C 1 -C 7 - alkyl,
  • heterocyclyl-carbonyl- C 1 -C 7 -alkyl aryl-carbonyl- C 1 -C 7 -alkyl, C 1 -C 7 -alkyl-carbonyl-amino- C 1 - C 7 -alkyl, C 1 -C 7 -alkyl-carbonyl-N- C 1 -C 7 -alkyl-amino- C 1 -C 7 -alkyl, halo- C 1 -C 7 -alkyl–carbonyl- amino- C 1 -C 7 -alkyl, halo- C 1 -C 7 -alkyl-carbonyl-N- C 1 -C 7 -alkyl-amino- C 1 -C 7 -alkyl, wherein aryl, heterocyclyl and C 3 -C 12 -cycloalkyl are unsubstituted or substituted by 1-4 substituents selected from C 1 -C 7 -alky
  • each R 1 is independently selected from the group consisting of halogen, cyano, nitro, C d- alkyl, C 1 -C 7 -alkenyl, halo- C 1 -C 7 -alkyl, hydroxyl, C 1 -C 7 -alkoxy, amino, N- C 1 -C 7 -alkyl-amino, N,N-di- C 1 -C 7 -alkyl-amino, amino-carbonyl-amino, N- C 1 -C 7 -alkyl-amino-carbonyl-amino, N.N-di- C 1 -C 7 -alkyl-amino-carbonyl-amino, C 1 -C 7 -alkyl-carbonyl-amino, amino-carbonyl, N- C 1 -C 7 -alkyl-amino-carbonyl, ⁇ , ⁇ -di- C 1 -C 7 -alkyl-
  • R 2 is selected from
  • phenyl, 2-pyridyl or 3-pyridyl being optionally substituted by 1-2 additional substituents selected from halogen, cyano, C 1 -C 7 -alkyl, halo- C 1 -C 7 -alkyl, hydroxyl, C 1 -C 7 -alkoxy, or hydroxy- C 1 -C 7 -alkyl;
  • Z is a 4-6 membered heterocyclic ring, annulated to phenyl in para and meta position, containing 1-3 heteroatoms selected from N,O, S,which is optionally substituted by 1-2 additional substituents selected from halogen, cyano, C 1 -C 7 -alkyl, halo- C 1 -C 7 -alkyl, hydroxyl, C 1 -C 7 -alkoxy, hydroxyl- C 1 -C 7 -alkyl;
  • each R 3 is independently selected from H, C 1 -C 7 -alkyl, hydroxy- C 1 -C 7 -alkyl, C 3 -C 12 - cycloalkyl, C 1 -C 7 -alkoxy- C 1 -C 7 -alkyl-carbonyl, amino-C 1 -C 7 -alkyl-carbonyl, N- C 1 -C 7 -alkyl- amino- C 1 -C 7 -alkyl-carbonyl, N, N-di-C 1 -C 7 -alkyl-amino- C 1 -C 7 -alkyl-carbonyl, (R 5 ) 2 N-C 3 -C 12 - cycloalkyl, (R 5 ) 2 N- C 1 -C 7 -alkyl, (R 5 ) 2 N-C 3 -C 12 -cycloalkyl-C 1 -C 7 -alkyl, (R 5 ) 2 N-C
  • C 1 -C 7 -alkoxy amino, N- C 1 -C 7 -alkyl-amino, N,N-di- C 1 -C 7 -alkyl-amino, hydroxy-carbonyl, C 1 -C 7 -alkoxy-carbonyl, amino-carbonyl, N- C 1 -C 7 -alkyl-amino-carbonyl, N,N-di- C 1 -C 7 -alkyl-amino-carbonyl, C 1 -C 7 - alkyl-carbonyl, C 1 -C 7 -alkyl-sulphonyl, heterocyclyl, C 1 -C 7 -alkyl-carbonyl-amino, C 1 -C 7 -alkyl- carbonyl-N- C 1 -C 7 -alkyl-amino, and
  • each R 5 is independently selected from H, C 1 -C 7 -alkyl, hydroxy- C 1 -C 7 -alkyl, C 1 -C 7 - alkyl-carbonyl, C 1 -C 7 -alkyl-carbonyl, C 1 -C 7 -alkyl-carbonyl- C 1 -C 7 -alkyl, amino-carbonyl- C 1 - C 7 -alkyl, N- C 1 -C 7 -alkyl-amino-carbonyl- C 1 -C 7 -alkyl, N,N-di- C 1 -C 7 -alkyl-amino-carbonyl- C 1 - C 7 -alkyl, C 1 -C 7 -alkyl-sulfonyl, amino-sulfonyl, N- C 1 -C 7 -alkyl-amino-sulfonyl, N,N-di- C 1 -C 7
  • R 1 is ortho-chloro
  • R 2 is selected from para- C 1 -C 7 -alkyl-phenyl, para-(halo- C 1 -C 7 -alkyl)-phenyl, para- C 1 -C 7 -alkoxy- phenyl, para-halo-phenyl, para-nitro-phenyl, para-(C 1 -C 7 -alkoxy-carbonyl)-phenyl, para- (hydroxy-carbonyl)-phenyl, wherein the phenyl is optionally substituted by 1-2 additional substituents, said substituents being independently selected from halo and methyl,
  • R 6 and R 7 are not both ethoxy or methoxy.
  • CGM097 has the following structure:
  • CGM097 is (S)-1-(4-chlorophenyl)-7-isopropoxy-6-methoxy-2-(4- ⁇ methyl-[4-(4-methyl-3-oxo-piperazin-1-yl)-trans-cyclohexylmethyl]-amino ⁇ phenyl)-1,4- dihydro-2H-isoquinolin-3one.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a PIM kinase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the PIM kinase inhibitor is disclosed in Table 1, or in a publication recited in Table 1, e.g., International Patent Publication No. WO2010/026124 (e.g., Formula I or Example 70), European Patent Application No. EP2344474, and U.S. Patent Publication No.2010/0056576.
  • the PIM kinase inhibitor is disclosed, e.g., in International Patent Publication No. WO2010/026124 (e.g., Formula I or Example 70), European Patent Application No. EP2344474, and U.S. Patent Publication No.2010/0056576.
  • the PIM kinase inhibitor e.g., LGH447, has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1, e.g.. International Patent
  • the inhibitor of the immune checkpoint molecule e.g., one of Nivolumab, Pembrolizumab or MSB0010718C
  • the PIM kinase inhibitor is used in combination with the PIM kinase inhibitor to treat a cancer or disorder described in Table 1, e.g., hematological malignancy, e.g., multiple myeloma, myelodysplastic syndrome, myeloid leukemia, or non-Hodgkin lymphoma.
  • the PIM kinase inhibitor is a compound of formula (I),
  • X l , X 2 , X 3 and X 4 are independently selected from CR2 and N; provided that at least one but not more than two of X 1 , X 2 , X 3 and X 4 are N;
  • Y is selected from a group consisting of cycloalkyl, partially unsaturated cycloalkyl, andiieterocycloalkyl, wherein each member of said group may be substituted with up to four substituents;
  • Z 2 and Z 3 are independently selected from CR 12 and N; provided that not more than one of Z 2 and Z 3 can be N;
  • R 1 is selected from the group consisting of hydrogen, -NHR 3 halo, hydroxyl, alkyl, cyano, and nitro;
  • R 2 and R 12 independently at each occurrence are selected from the group consisting of hydrogen, halo, hydroxyl, nitro, cyano, SO 3 H and substituted or unsubstituted alkyl, alkenyl, alkynyl, alkoxy, amino, cycloalkyl, hetero cycloalkyl, and partially saturated cycloalkyl;
  • R 3 is selected from the group consisting of hydrogen, -CO-R 4 and substituted or unsubstituted alkyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl;
  • R 4 is selected from the group consisting of alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, and alkylamino; and R 5 represents a group selected from substituted or unsubstituted aryl, C 3 -C 7 cycloalkyl, heteroaryl, partially unsaturated cycloalkyl and alkyl, wherein each said substituted R 5 group may be substituted with up to four substituents selected from halo, cyano, amino, C 1-4 alkyl, C 3-6 cycloalkyl, alkoxy, nitro, carboxy, carbonyl, carboalkoxy, aminocarboxy, substituted
  • aminocarbonyl aminosulfonyl, substituted aminosulfonyl and alkoxy alkyl.
  • LGH447 has the following structure:
  • LGH447 is N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridine- 3-yl)-6-(2,6-difluorophenyl)-3-fluoropicolinamide.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a HER3 kinase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the HER3 kinase inhibitor is disclosed in Table 1, e.g., LJM716, or in a publication recited in Table 1.
  • the HER3 kinase inhibitor is disclosed, e.g., in International Patent Publication No.2012/022814 and U.S. Patent No.8,735,551.
  • LJM716 is a monoclonal antibody provided in Table 1, or as disclosed in the publication recited in Table 1.
  • the inhibitor of the immune checkpoint molecule e.g., one of Nivolumab, Pembrolizumab or MSB0010718C
  • a cancer or disorder described in Table 1 e.g., a solid tumor, e.g. a gastric cancer, an esophageal cancer, a breast cancer, a head and neck cancer, a stomach cancer, or a digestive/gastrointestinal cancer therapy.
  • the HER3 kinase inhibitor e.g., LJM716, is an anti-HER3 monoclonal antibody or antigen binding fragment thereof, that comprises a VH of SEQ ID NO: 141 and VL of SEQ ID NO: 140, as described in U.S.8,735,551.
  • the HER3 kinase inhibitor, e.g., LJM716, is an anti-HER3 monoclonal antibody or antigen binding fragment thereof, that comprises a heavy chain variable region CDR1 of SEQ ID NO: 128;
  • the HER3 kinase inhibitor e.g., LJM716, is an anti-HER3 monoclonal antibody or antigen binding fragment thereof, that recognizes a conformational epitope of a HER3 receptor, e.g., the conformational epitope comprises amino acid residues 265-277, and 315 within domain 2 and amino acid residues 571, 582-584, 596-597, 600-602, and 609-615 within domain 4 of the HER3 receptor of SEQ ID NO: 1 of U.S.
  • the amino acid sequences of the heavy and light chain variable regions of LJM716 include at least the following: Heavy chain variable region (SEQ ID NO: 141 as disclosed in U.S.8,735,551) (SEQ ID NO: 8) EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAINSQGKSTYYADSV KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARWGDEGFDIWGQGTLVTVSS Light chain variable region (SEQ ID NO: 140 as disclosed in U.S.8,735,551) (SEQ ID NO: 9) DIQMTQSPSSLSASVGDRVTITCRASQGISNWLAWYQQKPGKAPKLLIYGASSLQSGVPSRFSG SGSGTDFTLTISSLQPEDFATYYCQQYSSFPTTFGQGTKVEIK
  • the inhibitor of the immune checkpoint molecule is used in combination with a
  • the HDAC inhibitor is disclosed in Table 1, e.g., LBH589, or in a publication recited in Table 1, e.g., in International Patent Publication Nos.2014/072493 and 2002/022577 (e.g., formula (I) and Example 200) and European Patent Application No. EP1870399.
  • the HDAC inhibitor is disclosed, e.g., in International Patent Publication Nos. 2014/072493 and 2002/022577 (e.g., formula (I) and Example 200) and European Patent Application No. EP1870399.
  • LBH589 has the structure (compound or generic) provided in Table 1, or as disclosed in the publication recited in Table 1, e.g., in
  • the inhibitor of the immune checkpoint molecule (e.g., one of Nivolumab, Pembrolizumab or MSB0010718C) is used in combination with LBH589 to treat a cancer or disorder described in Table 1, e.g., a solid tumor,e.g., a bone cancer, a small cell lung cancer, a respiratory/thoracic cancer a prostate cancer, a non-small cell lung cancer (NSCLC), a nerologic cancer, a gastric cancer, a melanoma, a breast cancer, a pancreatic cancer, a colorectal cancer, a renal cancer, or a head and neck cancer, or a liver cancer; or a hematological malignancy, e.g., multiple myeloma, a hematopoeisis disorder,
  • a solid tumor e.g., a bone cancer, a small cell lung cancer, a respiratory/thoracic cancer a prostate cancer, a non-small cell lung cancer (
  • the HDAC inhibitor is a compound of formula (I):
  • R 1 is H, halo, or a straight chain C 1 -C 6 alkyl (especially methyl, ethyl or n-propyl, which methyl, ethyl and n-propyl substituents are unsubstituted or substituted by one or more substituents described below for alkyl substituents);
  • R 2 is selected from H, C 1 -C 10 alkyl, (e.g. methyl, ethyl or -CH 2 CH 2 -OH), C 4 - C 9 cycloalkyl, C 4 -C 9 heterocycloalkyl, C 4 -C 9 heterocycloalkylalkyl, cycloalkylalkyl (e.g., cyclopropylmethyl), aryl, heteroaryl, arylalkyl (e.g. benzyl), heteroarylalkyl (e.g.
  • R 5 is selected from H, C 1 -C 6 alkyl, C 4 -C 9 cycloalkyl, C 4 -C 9 heterocycloalkyl, acyl, aryl, heteroaryl, arylalkyl (e.g., benzyl), heteroarylalkyl (e.g., pyridylmethyl), aromatic polycycles, non
  • n, n 1 , n 2 , and n 3 are the same or different and independently selected from 0 - 6, when n1 is 1-6, each carbon atom can be optionally and independently substituted with R 3 and/or R 4 ;
  • X and Y are the same or different and independently selected from H, halo, C 1 -C 4 alkyl, such as CH 3 and CF 3, NO 2 , C(O)R 1 , OR 9 , SR 9 , CN, and NR 10 R 11 ;
  • R 6 is selected from H, C 1 -C 6 alkyl, C 4 - C 9 cycloalkyl, C 4 - C 9 heterocycloalkyl, cycloalkylalkyl (e.g., cyclopropylmethyl), aryl, heteroaryl, arylalkyl (e.g., benzyl, 2- phenylethenyl), heteroarylalkyl (e.g., pyridylmethyl), OR 12 , and NR 13 R 14 ;
  • R 7 is selected from OR 15 , SR ⁇ 5 , S(O)R 16 , SO 2 R 17 , NR 13 R ⁇ 4 , and NR 12 SO 2 R 6 ;
  • R 8 is selected from H, OR 15 , NR 13 R 14 , C 1 -C 6 alkyl, C 4 - C 9 cycloalkyl, C 4 -C 9
  • heterocycloalkyl aryl, heteroaryl, arylalkyl (e.g., benzyl), and heteroarylalkyl (e.g.,
  • R 9 is selected from C 1 -C 6 alkyl, for example, CH 3 and CF 3 , C(O)-alkyl, for example C(O)CH 3 , and C(O)CF 3 ;
  • R 10 and R 11 are the same or different and independently selected from H, C 1 -C 4 alkyl, and -C(O)-alkyl;
  • R 12 is selected from H, C 1 -C 6 alkyl, C 4 - C 9 cycloalkyl, C 4 - C 9 heterocycloalkyl, C 4 - C 9 heterocycloalkylalkyl, aryl, mixed aryl and non-aryl polycycle, heteroaryl, arylalkyl (e.g., benzyl), and heteroarylalkyl (e.g., pyridylmethyl);
  • R 13 and R 14 are the same or different and independently selected from H, C 1 -C 6 alkyl, C 4 -C 9 cycloalkyl, C 4 - C 9 heterocycloalkyl, aryl, heteroaryl, arylalkyl (e.g., benzyl), heteroarylalkyl (e.g., pyridylmethyl), amino acyl, or R 13 and R 14 together with the nitrogen to which they are bound are C 4 - C 9 heterocycloalkyl, heteroaryl, polyheteroaryl, non-aromatic polyheterocycle or mixed aryl and non-aryl polyheterocycle;
  • R 15 is selected from H, Ci-Ce alkyl, C 4 - C 9 cycloalkyl, C 4 - C 9 heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH 2 ) m ZR 12 ;
  • R 16 is selected from C 1 -C 6 alkyl, C 4 -C 9 cycloalkyl, C 4 -C 9 heterocycloalkyl, aryl, heteroaryl, polyheteroaryl, arylalkyl, heteroarylalkyl and (CH 2 ) m ZR ⁇ 2 ;
  • R 17 is selected from C 1 -C 6 alkyl, C 4 - C 9 cycloalkyl, C 4 - C 9 heterocycloalkyl, aryl, aromatic polycycles, heteroaryl, arylalkyl, heteroarylalkyl, polyheteroaryl and
  • n is an integer selected from 0 to 6;
  • LBH589 has the following structure:
  • LBH589 is (E)-N-hydroxy-3-(4-(((2-(2-methyl-1H-indol-3- yl)ethyl)amino)methyl)phenyl)acrylamide.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a Janus kinase inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the Janus kinase inhibitor is disclosed in Table 1, e.g., INC424, or in a publication recited in Table 1, e.g., in International Patent Publication Nos.
  • WO2007/070514 e.g., Formula (I) or Example 67
  • WO2014/018632 European Patent Application No. EP2474545, and U.S. Patent No.7,598,257
  • the Janus kinase inhibitor is disclosed, e.g., in International Patent Publication Nos.2007/070514 (e.g., Formula (I) or Example 67) and 2014/018632, European Patent Application No. EP2474545, and U.S. Patent No.7,598,257.
  • the Janus kinase inhibitor e.g., INC424, has the structure (compound or generic) provided in Table 1, or as disclosed in the publication recited in Table 1, e.g., in
  • the inhibitor of the immune checkpoint molecule (e.g., one of Nivolumab, Pembrolizumab or MSB0010718C) is used in combination with INC424 to treat a cancer or disorder described in Table 1, e.g., a solid tumor,e.g., a prostate cancer, a lung cancer, a breast cancer, a pancreatic cancer, a colorectal cancer; or a hematological malignancy, e.g., multiple myeloma, lymphoma (e.g., non-Hodgkin's lymphoma), or leukemia (e.g., myeloid leukemia, lymphocytic leukemia).
  • the cancer has, or is identified as having, a JAK mutation.
  • the JAK mutation is a JAK2 V617F mutation.
  • the Janus kinase inhibitor is a compound of Formula (I):
  • a 1 and A 2 are independently selected from C and N;
  • T, U, and V are independently selected from O, S, N, CR 5 , and NR 6 ; wherein the 5- membered ring formed by A 1 , A 2 , U, T, and V is aromatic;
  • X is N or CR 4 ;
  • Y is C 1-8 alkylene, C 2-8 alkenylene, C 2-8 alkynylene, (CR 11 R 12 )p-(C 3-10 cycloalkylene)- (CR 11 R I2 ) q , (CR l I R 12 ) p -(arylene)-(CR 11 R 12 ) q , (CR 11 R 12 ) p -(C 1-10 heterocycloalkylene)-(CR 11 R 12 ) q , (CR 11 R 12 )p-(heteroarylene)-(CR 11 'R 12 ) q , (CR 11 R 12 )pO(CR 11 R 12 ), (CR 11 R 12 ) p S(CR 11 R 12 ), (CR 11 R 12 ) p C(O)(CR 11 R 12 ) q , (CR 1 (CR 1 I R 12 ) p C(O)NR c (CR I 1 R 12 ) q , (CR 11 R I2 ) p C(
  • W is C 1-8 alkylenyl, C 2-8 alkenylenyl, C 2-8 alkynylenyl, O, S , C(O), C(O)NR c' , C(O)O, OC(O), OC(O)NR c’ , NR c’ , NR c’ C(O)NR d’ , S(O), S(O)NR c' , S(O) 2 , or S(O) 2 NR c" ;
  • Q is H, halo, CN, NO 2 , Ci -8 alkyl, C 2- S alkenyl, C 2-8 alkynyl, d. 8 haloalkyl, halosulfanyl, aryl, cycloalkyl, heteroaryl, or heterocycloalkyl, wherein said C 1-8 alkyl, C 2-8 alkenyl, C 2-8 alkynyl, Ci -8 haloalkyl, aryl, cycloalkyl, heteroaryl, or heterocycloalkyl is optionally substituted with 1, 2, 3 or 4 substituents independently selected from halo, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 haloalkyl, halosulfanyl, C 1-4 hydroxyalkyl, C 1-4 cyanoalkyl, Cy 2 , CN, NO 2 , OR 3' , SR a' , C(O)R b" , C
  • Cy 1 and Cy 2 are independently selected from aryl, heteroaryl, cycloalkyl, and
  • heterocycloalkyl each optionally substituted by 1, 2, 3, 4 or 5 substituents independently selected from halo, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 haloalkyl, halosulfanyl, C 1-4 hydroxyalkyl, C 1-4 cyanoalkyl, CN, NO 2 , 0R a" , SR a" , C(O)R b" , C(O)NR c" R d" , C(O)OR 3" ,
  • R 1 , R 2 , R 3 , and R 4 are independently selected from H, halo, C 1-6 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-6 haloalkyl, halosulfanyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, CN, NO 2 , OR 7 , SR 7 , C(O)R 8 , C(O)NR 9 R 10 , C(O)OR 7 OC(O)R 8 , OC(O)NR 9 R 10 , NR 9 R 10 , NR 9 C(O)R 8 , NR 0 C(O)OR 7 , S(O)R 8 , S(O)NR 9 R 10 , S(O) 2 R 8 , NR 9 S(O) 2 R 8 , and S(O) 2 NR 9 R 10 ;
  • R 5 is H, halo, C )-4 alkyl, C 2-4 alken
  • R 6 is H, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 haloalkyl, OR 7 , C(O)R 8 , C(O)NR 9 R 10 , C(O)OR 7 , S(O)R 8 , S(O)NR 9 R 10 , S(O) 2 R 8 , or S(O) 2 NR 9 R 10 ;
  • R 7 is H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl;
  • R 8 is H, C 1-6 alkyl, Ci -6 haloalkyl, C 2-6 alkenyl, C 2 . 6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl;
  • R 9 and R 10 are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2 . 6 alkynyl, C 1-6 alkylcarbonyl, arylcarbonyl, C 1-6 alkylsulfonyl, arylsulfonyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl and
  • R 9 and R 10 together with the N atom to which they are attached form a 4-, 5-, 6- or 7- membered heterocycloalkyl group
  • R 11 and R 12 are independently selected from H and - ⁇ ⁇ - ⁇ 2 - ⁇ 3 - ⁇ 4 ;
  • D 1 and E 1 are independently absent or independently selected from C 1-6 alkylene, C 2-6 alkenylene, C 2 . 6 alkynylene, arylene, cycloalkylene, heteroarylene, and heterocycloalkylene, wherein each of the Ci -6 alkylene, C 2-6 alkenylene, C 2 . 6 alkynylene, arylene, cycloalkylene, heteroarylene, and heterocycloalkylene is optionally substituted by 1, 2 or 3 substituents independently selected from halo, CN, NO 2 , N 3 , SCN, OH, Ci. 6 alkyl, C 1-6 haloalkyl, C 2 . 8 alkoxyalkyl, C 1-6 alkoxy, C 1-6 haloalkoxy, amino, C 1-6 alkylamino, and C 2-8 dialkylamino;
  • D 2 and E 2 are independently absent or independently selected from C 1-6 alkylene, C 2-6 alkenylene, C 2-6 alkynylene, (C 1-6 alkylene) r -O-(C 1-6 alkylene) s , (C 1-6 alkylene) r -S-( C 1-6 alkylene) s , (C 1-6 alkylene) r -NR e -(C 1-6 alkylene) s , (C , .
  • D 3 and E 3 are independently absent or independently selected from C 1-6 alkylene, C 2-6 alkenylene, C 2-6 alkynylene, arylene, cycloalkylene, heteroarylene, and heterocycloalkylene, wherein each of the C )-6 alkylene, C 2-6 alkenylene, C 2-6 alkynylene, arylene, cycloalkylene, heteroarylene, and heterocycloalkylene is optionally substituted by 1, 2 or 3 substituents independently selected from halo, CN, NO 2 , N 3 , SCN, OH, C 1-6 alkyl, C 1-6 haloalkyl, C 2-8 alkoxyalkyl, C 1-6 alkoxy, C 1-6 haloalkyl, amino, C 1-6 alkylamino, and C 2-8 dialkylamino;
  • R a is H, Cy 1 , -(C 1-6 alkyl)-Cy 1 , C -6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, wherein said C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, or C 2 . 6 alkynyl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, halosulfanyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl and heterocycloalkyl;
  • R b is H, Cy 1 , -(C 1-6 alkyl)-Cy', C 1-6 alkyl, C 1-6 haloalkyl, C 2 . 6 alkenyl, C 2-6 alkynyl, wherein said C 1-6 alkyl, C 1-6 haloalkyl, C 2 . 6 alkenyl, or C 2 . 6 alkynyl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, halosulfanyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl and
  • R a’ and R a" are independently selected from H, Ci -6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl and heterocycloalkylalkyl, wherein said C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with 1 , 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, halosulfanyl, aryl
  • R b’ and R b” are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2- 6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl and heterocycloalkylalkyl wherein said C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with 1 , 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, halosulfanyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl and heterocycloalkyl;
  • R c and R d are independently selected from H, Cy 1 , -(C 1-6 alkyl)-Cy', C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, wherein said C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, or C 2-6 alkynyl, is optionally substituted with 1, 2, or 3 substituents independently selected from Cy 1 , - (C 1-6 alkyl)-Cy', OH, CN, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, and halosulfanyl;
  • R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7- membered heterocycloalkyl group optionally substituted with 1, 2, or 3 substituents
  • R c’ and R d’ are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2- 6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl and heterocycloalkylalkyl wherein said C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with 1 , 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, halosulfanyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl and heterocycloalkyl;
  • R c’ and R d’ together with the N atom to which they are attached form a 4-, 5-, 6- or 7- membered heterocycloalkyl group optionally substituted with 1, 2, or 3 substituents
  • R c” and R d are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2- 6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl and heterocycloalkylalkyl wherein said C 1-6 alkyl, C 1-6 haloalkyl, C 2 - 6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with 1 , 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, halosulfanyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl and heterocycloalkyl;
  • R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7- membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 substituents
  • R independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 haloalkyl, halosulfanyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl and heterocycloalkyl;
  • R j is H, CN, NO 2 , or C 1-6 alkyl
  • R e and R f are independently selected from H and C 1-6 alkyl
  • R i is H, CN, or NO 2 ;
  • n 0 or 1 ;
  • n 0 or 1
  • p 0, 1, 2, 3, 4, 5, or 6;
  • q 0, 1, 2, 3, 4, 5 or 6;
  • r is 0 or 1;
  • INC424 has the following structure:
  • INC424 is (3R)-3-cyclopentyl-3-[4-(7H-pyrrolo-[2,3-d]pyrimidin-4- yl)-1H-pyrazol-1-yl]propanenitrile.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with an FGF receptor inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the FGF receptor inhibitor is disclosed in Table 1, e.g., BUW078, or in a publication recited in Table 1, e.g., International Patent Publication No.
  • the FGF receptor inhibitor e.g., BUW078, has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1, e.g.,
  • the FGF receptor inhibitor is disclosed in Table 1, e.g., BGJ398, or in a publication recited in Table 1, e.g., U.S.8,552,002 (e.g., Example 145 or Formula (I) in column 6).
  • the FGF receptor inhibitor e.g., BGJ398, has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1, e.g., U.S.8,552,002 (e.g., Example 145 or Formula (I) in column 6).
  • MSB0010718C is used in combination with BUW078 or BGJ398 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a digestive/gastrointestinal cancer; or a hematological cancer.
  • a cancer described in Table 1 e.g., a solid tumor, e.g., a digestive/gastrointestinal cancer; or a hematological cancer.
  • the FGF receptor inhibitor is a compound of Formula (I):
  • X represents N or CH
  • R 1 represents hydrogen, halogen, alkyl, alkyl substituted with saturated heterocyclyl which is unsubstituted or substituted by alkyl, amino, mono-substituted amino wherein the substituent is selected from the group consisting of alkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, di-substituted amino wherein the substituents are selected from the group consisting of alkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, alkoxy, substituted alkoxy wherein the substituents are selected from the group consisting of halo and alkoxy;
  • R 2 represents hydrogen, halogen, alkyl, alkyl substituted with saturated heterocyclyl which is unsubstituted or substituted by alkyl, amino, mono-substituted amino wherein the substituent is selected from the group consisting of alkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, di-substituted amino wherein the substituents are selected from the group consisting of alkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, alkoxy, substituted alkoxy wherein the substituents are selected from the group consisting of halo and alkoxy;
  • A represents aryl or heteroaryl;
  • B represents aryl or heteroaryl
  • R A1 represents hydrogen or a substituent different from hydrogen
  • R A2 represents a direct bond or an alkanediyl
  • R B1 represents hydrogen or a substituent different from hydrogen
  • R represents a direct bond or aminocarbonyl
  • n represents an integer selected from 0 to 3;
  • n an integer selected from 0 to 5;
  • BUW078 has the following structure:
  • BUW078 is 8-(2,6-difluoro-3,5-dimethoxy-phenyl)-quinoxaline-5- carboxylic acid (4-dimethylaminomethyl-1H-imidazol-2-yl)-amide.
  • the FGF receptor inhibitor has the following structure:
  • n 0, 1, 2, 3, 4 or 5;
  • X, Y and Z are each independently selected from N or C-R 5 , wherein at least two of X, Y and Z are N;
  • X 1 is oxygen
  • hydroxyguanidino formamidino; isothioureido; ureido; mercapto; C(O)H or other acyl; acyloxy; substituted hydroxy; carboxy; sulfo; sulfamoyl; carbamoyl; a substituted or unsubstituted cyclic group, for example the cyclic group (whether substituted or unsubstituted) may be cycloalkyl, e.g.
  • cyclohexyl phenyl, pyrrole, imidazole, pyrazole, isoxazole, oxazole, thiazole, pyridazine, pyrimidine, pyrazine, pyridyl, indole, isoindole, indazole, purine, indolizidine, quinoline, isoquinoline, quinazoline, pteridine, quinolizidine, piperidyl, piperazinyl, pyrollidine, morpholinyl or thiomorpholinyl and, for example, substituted lower aliphatic or substituted hydroxy may be substituted by such substituted or unsubstituted cyclic groups;
  • -L 1 - having 1, 2, 3, 4 or 5 in-chain atoms (e.g. selected from C, N, O and S) and optionally being selected from (i) C 1 , C 2 , C 3 or C 4 alkyl, such an alkyl group optionally being interrupted and/or terminated by
  • R a is hydrogen, hydroxy, hydrocarbyloxy or hydrocarbyl, wherein hydrocarbyl is optionally interrupted by an -O- or -NH- linkage and may be, for example, selected from an aliphatic group (e.g., having 1 to 7 carbon atoms, for example 1, 2, 3, or 4), cycloalkyl, especially cyclohexyl, cycloalkenyl, especially cyclohexenyl, or another carbocyclic group, for example phenyl; where the hydrocarbyl moiety is substituted or unsubstituted;
  • each R 4 is the same or different and selected from an organic or inorganic moiety, for example, each R 4 is the same or different and selected from halogen; hydroxy; protected hydroxy for example trialkylsilylhydroxy; amino; amidino; guanidino; hydroxyguanidino; formamidino; isothioureido; ureido; mercapto; C(O)H or other acyl; acyloxy; carboxy; sulfo; sulfamoyl;
  • X is CR 5 , wherein R 5 is H; X1 is oxygen; Y is N; Z is N; R 1 is a substituted organic moiety is a cyclic group (e.g., phenyl) substituted with 4-ethylpiperazinyl and –L 1 - is N Ra , wherein N Ra is H; R 2 is an organic moiety (e.g., H); R 3 is an organic moiety (e.g., lower aliphatic, e.g., methyl); R 4 is chloro or methoxy; and n is 4.
  • R 5 is H
  • X1 is oxygen
  • Y is N
  • Z is N
  • R 1 is a substituted organic moiety is a cyclic group (e.g., phenyl) substituted with 4-ethylpiperazinyl and –L 1 - is N Ra , wherein N Ra is H;
  • R 2 is an organic moiety (e.g., H);
  • BGJ398 has the following structure:
  • BGJ398 is 3-(2,6-dichloro-3,5-dimethoxyphenyl)-1-(6-((4-(4- ethylpiperazin-1-yl)phenyl)amino)pyrimidin-4-yl)-1-methylurea.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with an EGF receptor inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the EGF receptor inhibitor is disclosed in Table 1, e.g., EGF816, or in a publication recited in Table 1, e.g., in WO 2013/184757 (e.g., Formula (5), in claims 7, 10, 11 and 12, or in Example 5).
  • the EGF receptor inhibitor, e.g., EGF816, has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1, e.g., in WO 2013/184757 (e.g., Formula (5), in claims 7, 10, 11 and 12, or in Example 5).
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with EGF816 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)).
  • a cancer described in Table 1 e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)).
  • NSCLC non-small cell lung cancer
  • EGF816 is administered at an oral dose of about 50 to 500 mg, e.g., about 100 mg to 400 mg, about 150 mg to 350 mg, or about 200 mg to 300 mg, e.g., about 100 mg, 150 mg or 200 mg.
  • the dosing schedule can vary from e.g., every other day to daily, twice or three times a day.
  • EGF816 is administered at an oral dose from about 100 to 200 mg, e.g., about 150 mg, once a day.
  • the EGF receptor inhibitor is of formula:
  • W 1 and W 2 are independently CR 1 or N;
  • R 1 , R 1’ and R 2 are independently hydrogen; halo; cyano; C 1-6 alkyl; C 1-6 haloalkyl; 5-6 membered heteroaryl comprising 1-4 heteroatoms selected from N, O and S; phenyl, 5-6 membered heterocyclyl comprising 1-2 heteroatoms selected from N, O, S and P, and optionally substituted by oxo; - X 1 -C(O)OR 3 ; -X 1 -O-C(O)R 3 ; -X 1 -C(O)R 3 ; -X 1 -C(O)NR 4 R 5 ; -X 1 -C(O)NR 4 - X 3 -C(O)OR 3 ; -X 1 -C(O)NR 4 -X 3 -S(O) 0 - 2 R 6 ; -X 1 -NR 4 R 5 ; -X 1 -NR 4 -X 2 -C(O)R
  • R 3 , R 4 and R 5 are independently hydrogen, C 1-6 alkyl or C 1-6 haloalkyl; or wherein R 4 and R 5 together with N in NR 4 R 5 may form a 4-7 membered ring containing 1-2 heteroatoms selected from N, O, S and P, and optionally substituted with 1-4 R 7 ;
  • R 6 is C 1-6 alkyl or C 1-6 haloalkyl
  • R 6a and R 6b are independently hydroxy, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 haloalkoxy, 6-10 membered monocyclic or bicyclic aryl; a 5-10 membered heteroaryl comprising 1-4 heteroatoms selected from N, O and S; or a 4-12 membered monocyclic or bicyclic heterocyclyl comprising 1-4 heteroatoms selected from N, O and S, and optionally substituted with oxo; R 8 is
  • X 1 and X 2 are independently a bond or C 1-6 alkyl
  • X 3 is C 1-6 alkyl
  • X 4 is C 2-6 alkyl
  • R 12 , R 13 , R 16 and R 17 are independently hydrogen or C 1-6 alkyl
  • R 14 and R 15 are independently hydrogen; C 1-6 alkyl; -C(O)O-(C 1-6 alkyl); C 3-7 cycloalkyl unsubstituted or substituted with C 1-6 alkyl; or R 14 and R 15 together with N in NR 14 R 15 may form a 4-7 membered ring containing 1-2 heteroatoms selected from N, O, S, and P, and optionally substituted with 1-4 R 18 groups;
  • R 7 and R 18 are independently oxo, halo, hydroxyl, C 1-6 alkyl or C 1-6 alkoxy; and m and q are independently 1-2;
  • R 1 and R 1’ are independently hydrogen; methyl; t-butyl;
  • R 2 is hydrogen; chloro; methyl; trifluoromethyl; methoxy;
  • piperidinylmethyl ((4-methyl-3-oxo-piperazin-lyl)methyl); ((4-acetylpiperazin-1-yl)methyl); (1,1-dioxidothiomorpholine-4-carbonyl); pyrrolidinyl carbonyl unsubstituted or substituted by 1- 2 hydroxy; pyrrolidinylethoxy; (l,l-dioxidothiomorpholino)methyl; or 1,2,4-oxadiazolyl unsubstituted or substituted by C 1-6 alkyl;
  • R 2 is -CH 2 -N(CH 3 )-C(O)-CH 3 ; -CH 2 -O-(CH 2 ) 2 -OCH 3 ; -CH 2 -N(CH 3 )- (CH 2 ) 2 -SO 2 (CH 3 ); -C(O)NH-(CH 2 ) 1 . 2 -C(O)-OCH 3 ; -C(O)NH-(CH 2 ) 1 . 2 -C(O)OH; or -C(O)NH- (CH 2 ) 2 -SO 2 (CH 3 ).
  • R 8 is
  • R 14 and R 15 are independently hydrogen, C 1-6 alkyl or C 3-7 cycloalkyl; or R 14 and R 15 together with N in NR 14 R 15 may form an azetidinyl, piperidyl, pyrrolidinyl or morpholinyl; where said azetidinyl or pyrrolidinyl can be optionally substituted with 1-2 halo, methoxy or hydroxyl; and
  • R 12 and R 13 are independently hydrogen, halo, cyano, C 1-6 alkyl or C 1-6 haloalkyl;
  • R 16 and R 17 are independently hydrogen or C 1-6 alkyl; or R 16 and R 17 together with the carbon to which they are attached may form a C 3-6 cycloalkyl.
  • the EGF receptor inhibitor has the following structure: or
  • EGF816 has the followin structure:
  • EGF816 is (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2- enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a c-MET inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the c-MET inhibitor is disclosed in Table 1, e.g., INC280, or in a publication recited in Table 1, e.g., in EP 2099447 (e.g., in claim 1 or 53) or US 7,767,675 (e.g., in claim 4).
  • the c-MET inhibitor e.g., INC280, has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1.
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with INC280 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non- small cell lung cancer (NSCLC)), glioblastoma multiforme (GBM), a renal cancer, a liver cancer or a gastric cancer.
  • a cancer described in Table 1 e.g., a solid tumor, e.g., a lung cancer (e.g., non- small cell lung cancer (NSCLC)), glioblastoma multiforme (GBM), a renal cancer, a liver cancer or a gastric cancer.
  • the cancer has, or is identified as having, a c-MET mutation (e.g., a c-MET mutation or a c-MET amplification).
  • INC280 is administered at an oral dose of about 100 to 1000 mg, e.g., about 200 mg to 900 mg, about 300 mg to 800 mg, or about 400 mg to 700 mg, e.g., about 400 mg, 500 mg or 600 mg.
  • the dosing schedule can vary from e.g., every other day to daily, twice or three times a day.
  • INC280 is administered at an oral dose from about 400 to 600 mg twice a day.
  • the c-MET inhibitor has the following structure:
  • A is N or CR 3 ;
  • Cy 1 is aryl, heteroaryl, cycloalkyl, or heterocycloalkyl, each optionally substituted by 1, 2, 3, 4, or 5 ⁇ W-X-Y-Z;
  • Cy 2 is aryl, heteroaryl, cycloalkyl, or heterocycloalkyl, each optionally substituted by 1, 2, 3, 4, or 5 -W'-X'-Y'-Z';
  • L 1 is (CR 4 R 5 ) m , (CR 4 R 5 ) p -(cycloalkylene)-(CR 4 R 5 ) q , (CR 4 R 5 ) p -(arylene)-(CR 4 R 5 ) q , (CR 4 R 5 ) p -(heterocycloalkylene)-(CR 4 R 5 ) q , (CR 4 R 5 ) p -(heteroarylene)-(CR 4 R 5 ) q ,
  • R 1 is H or ⁇ W"-X"-Y"-Z"
  • R 2 is H, halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, CN, NO 2 , OR A , SR A , C(O)R B , C(O)NR C R D , C(O)OR A , OC(O)R B , OC(O)NR C R D , NR C R D , NR C C(O)R B
  • R 3 is H, cycloalkyl, aryl, heterocycloalkyl, heteroaryl, halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, , CN, NO 2 , OR A , SR A , C(O)R B , C(O)NR C R D , C(O)OR A , OC(O)R B , OC(O)NR C R D , NR C R D , NR C C(O)R B , NR C C(O)NR C R D , NR C C(O)OR A , S(O)R B , S(O)NR C R D , S(O) 2 R B , NR C S(O) 2 R B , and S(O) 2 NR C R D ; wherein said cycloalkyl, aryl, heterocycloalkyl, heteroaryl, or C 1-6 alky
  • R 2 and ⁇ L 2 -Cy 2 are linked together to form a group of formula:
  • ring B is a fused aryl or fused heteroaryl ring, each optionally substituted with 1, 2, or 3 -W'-X'-Y'-Z';
  • R 4 and R 5 are independently selected from H, halo, OH, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, alkoxyalkyl, cyanoalkyl, heterocycloalkyl, cycloalkyl, C 1-6 haloalkyl, CN, and NO 2 ;
  • R 7 and R 8 are independently selected from H, halo, OH, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, C 1-6 haloalkyl, CN, and NO 2 ;
  • R 7 and R 8 together with the C atom to which they are attached form a 3, 4, 5, 6, or 7 - membered cycloalkyl or heterocycloalkyl ring, each optionally substituted by 1, 2, or 3 substituent independently selected from halo, OH, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxy, C 1-6 haloalkyl, CN, and NO 2 ;
  • R 9 is H, C 1-6 alkyl, C 2-6 alkenyl, or C 2-6 alkynyl;
  • W, W', and W" are independently absent or independently selected from C 1-6 alkylene, C 2-6 alkenylene, C 2-6 alkynylene, O, S, NR h , CO, COO, CONR h , SO, SO 2 , SONR h and
  • each of the C 1-6 alkylene, C 2-6 alkenylene, and C 2-6 alkynylene is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C 1-6 alkyl, C 1-6 haloalkyl, OH, C 1-6 alkoxy, C 1-6 haloalkoxy, amino, C 1-6 alkylamino, and C 2-8 dialkylamino;
  • X, X', and X" are independently absent or independently selected from C 1-6 alkylene, C 2-6 alkenylene, C 2-6 alkynylene, arylene, cycloalkylene, heteroarylene, and heterocycloalkylene, wherein each of the C 1-6 alkylene, C 2-6 alkenylene, C 2-6 alkynylene, arylene, cycloalkylene, heteroarylene, and heterocycloalkylene is optionally substituted by 1, 2 or 3 substituents independently selected from halo, CN, NO 2 , OH, C 1-6 alkyl, C 1-6 haloalkyl, C 2-8 alkoxyalkyl, C 1-6 alkoxy, C 1-6 haloalkoxy, C 2-8 alkoxyalkoxy, cycloalkyl, heterocycloalkyl, C(O)OR j , C(O)NR h R i , amino, C 1-6 alkylamino, and C 2-8 dialkylamin
  • Y, Y', and Y" are independently absent or independently selected from C 1-6 alkylene, C 2-6 alkenylene, C 2-6 alkynylene, O, S, NR h , CO, COO, CONR h , SO, SO 2 , SONR h , and NR h CONR i , wherein each of the C 1-6 alkylene, C 2-6 alkenylene, and C 2-6 alkynylene is optionally substituted by 1, 2 or 3 substituents independently selected from halo, C 1-6 alkyl, C 1-6 haloalkyl, OH, C 1-6 alkoxy, C 1-6 haloalkoxy, amino, C 1-6 alkylamino, and C 2-8 dialkylamino;
  • heterocycloalkyl ring each optionally substituted by 1, 2, or 3 substituents independently selected from halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, halosulfanyl, CN, NO 2 , OR a3 , SR a3 , C(O)R b3 , C(O)NR c3 R d3 , C(O)OR a3 , OC(O)R b3 , OC(O)NR c3 R d3 , NR c3 R d3 ,
  • heterocycloalkyl ring each optionally substituted by 1, 2, or 3 substituents independently selected from halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, halosulfanyl, CN, NO 2 , OR a3 , SR a3 , C(O)R b3 , C(O)NR c3 R d3 , C(O)OR a3 , OC(O)R b3 , OC(O)NR c3 R d3 , NR c3 R d3 ,
  • Cy 4 , and Cy 5 are independently selected from aryl, cycloalkyl, heteroaryl, and
  • R A is H, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl wherein said C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, and C 1-4 alkyl;
  • R B is H, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl wherein said C 1-4 alkyl, C 2-4 alkenyl, or C 2-4 alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, and C 1-4 alkyl;
  • R C and R D are independently selected from H, C 1-4 alkyl, C 2-4 alkenyl, or C 2-4 alkynyl, wherein said C 1-4 alkyl, C 2-4 alkenyl, or C 2-4 alkynyl, is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, and C 1-4 alkyl;
  • R C and R D together with the N atom to which they are attached form a 4-, 5-, 6- or 7 - membered heterocycloalkyl group or heteroaryl group, each optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, and C 1-4 alkyl;
  • R a , R a1 , R a2 , R a3 , and R a4 are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl,
  • heteroarylalkyl, cycloalkylalkyl, and heterocycloalkylalkyl wherein said C 1-6 alkyl, C 1-6 haloalkyl, C 2 - 6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, or heterocycloalkylalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1-6 haloalkoxy;
  • R b , R b1 , R b2 , R b3 , and R b4 are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl,
  • heteroarylalkyl, cycloalkylalkyl, and heterocycloalkylalkyl wherein said C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, or heterocycloalkylalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1-6 haloalkoxy; R c and R d are independently selected from H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, ary
  • heterocycloalkylalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1-6 haloalkyl;
  • R c and R d together with the N atom to which they are attached form a 4-, 5-, 6- or 7- membered heterocycloalkyl group or heteroaryl group, each optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1-6 haloalkoxy;
  • R c1 and R d1 are independently selected from H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl or heterocycloalkylalkyl wherein said C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1- 6 haloalkoxy;
  • R c1 and R d1 together with the N atom to which they are attached form a 4-, 5-, 6- or 7- membered heterocycloalkyl group or heteroaryl group, each optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1-6 haloalkoxy;
  • R c2 and R d2 are independently selected from H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl heterocycloalkylalkyl, arylcycloalkyl, arylheterocycloalkyl, arylheteroaryl, biaryl, heteroarylcycloalkyl, heteroarylheterocycloalkyl, heteroarylaryl, and biheteroaryl, wherein said C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkylalkyl, heterocycloalkylalkyl, wherein said C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalky
  • arylcycloalkyl arylheterocycloalkyl, arylheteroaryl, biaryl, heteroarylcycloalkyl
  • heteroarylheterocycloalkyl, heteroarylaryl, and biheteroaryl are each optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, C 1-6 haloalkoxy, hydroxyalkyl, cyanoalkyl, aryl, heteroaryl, C(O)OR a4 , C(O)R b4 , S(O) 2 R b3 , alkoxyalkyl, and alkoxyalkoxy;
  • R c2 and R d2 together with the N atom to which they are attached form a 4-, 5-, 6- or 7- membered heterocycloalkyl group or heteroaryl group, each optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 baloalkyl, C 1-6 haloalkoxy, hydroxyalkyl, cyanoalkyl, aryl, heteroaryl, C(O)OR a4 , C(O)R b4 , S(O) 2 R b3 , alkoxyalkyl, and alkoxyalkoxy;
  • R c3 and R d3 are independently selected from H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl or heterocycloalkylalkyl wherein said C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1- 6 haloatkoxy;
  • R c3 and R d3 together with the N atom to which they are attached form a 4-, 5-, 6- or 7- membered heterocycloalkyl group or heteroaryl group, each optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1-6 haloalkoxy;
  • R c4 and R d4 are independently selected from H, C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2- 6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl or heterocycloalkylalkyl wherein said C 1-10 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl,
  • cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1- 6 haloalkoxy;
  • R c4 and R d4 together with the N atom to which they are attached form a 4-, 5-, 6- or 7- membered heterocycloalkyl group or heteroaryl group, each optionally substituted with 1, 2, or 3 substituents independently selected from OH, CN, amino, halo, C 1-6 alkyl, C 1-6 alkoxy, C 1-6 haloalkyl, and C 1-6 haloalkoxy;
  • R e , R e1 , R e2 , and R e4 are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, (C 1-6 alkoxy)-C 1-6 alkyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, and heterocycloalkylalkyl;
  • R f , R f1 , R f2 , and R f4 are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, and heterocycloalkyl;
  • R g is H, CN, and NO 2 ;
  • R h and R i are independently selected from H and C 1-6 alkyl
  • R j is H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl, or heterocycloalkylalkyl;
  • n 0, 1, 2, 3, 4, 5, or 6;
  • p 0, 1, 2, 3, or 4;
  • q 0, 1, 2, 3, or 4;
  • r is 0, 1, 2, 3, 4, 5, or 6;
  • s 0, 1, 2, 3, or 4;
  • t 0, 1, 2, 3, or 4;
  • L 1 is (CR 4 R 5 ) m , wherein R 4 and R 5 are independently H and m is 1; Cy 1 is heteroaryl; R 1 is H; A is N; R 2 is H; L 2 is (CR 7 R 8 ) r ,wherein r is 0; and Cy 2 is aryl substituted with 2 W'-X'-Y'-Z'.
  • INC280 has the following structure:
  • INC280 is 2-fluoro-N-methyl-4-[7-(quinolin-6- ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl]benzamide, or a pharmaceutically acceptable salt thereof.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with an Alk inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the Alk inhibitor is disclosed in Table 1, e.g., LDK378, or in a publication recited in Table 1, e.g., in WO 2008/073687 (e.g., Example 7/Compound 66) or US 8,039,479 (e.g., claim 1 or 5) (also known as ceritinib (Zykadia®).
  • the Alk inhibitor, e.g., LDK378, has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1, e.g., in WO 2008/073687 (e.g., Example 7/Compound 66) or US 8,039,479 (e.g., claim 1 or 5).
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with LDK378 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin lymphoma), an inflammatory myofibroblastic tumor (IMT), or a neuroblastoma.
  • the NSCLC is a stage IIIB or IV NSCLC, or a relapsed locally advanced or metastic NSCLC.
  • the cancer e.g., the lung cancer, lymphoma, inflammatory myofibroblastic tumor, or neuroblastoma
  • the ALK fusion has, or is identified as having, an ALK rearrangement or translocation, e.g., an ALK fusion.
  • the ALK fusion is an EML4-ALK fusion, e.g., an EML4-ALK fusion described herein.
  • the ALK fusion is an ALK-ROS1 fusion.
  • the cancer has progressed on, or is resistant or tolerant to, a ROS1 inhibitor, or an ALK inhibitor, e.g., an ALK inhibitor other than LDK378.
  • the cancer has progressed on, or is resistant or tolerant to, crizotinib.
  • the subject is an ALK-na ⁇ ve patient, e.g., a human patient.
  • the subject is a patient, e.g., a human patient, that has been pretreated with an ALK inhibitor.
  • the subject is a patient, e.g., a human patient, that has been pretreated with LDK378.
  • LDK378 and Nivolumab are administered to an ALK-na ⁇ ve patient. In another embodiment, LDK378 and Nivolumab are administered to a patient that has been pretreated with an ALK inhibitor. In yet another embodiment, LDK378 and Nivolumab are administered to a patient that has been pretreated with LDK378.
  • LDK378 is administered at an oral dose of about 100 to 1000 mg, e.g., about 150 mg to 900 mg, about 200 mg to 800 mg, about 300 mg to 700 mg, or about 400 mg to 600 mg, e.g., about 150 mg, 300 mg, 450 mg, 600 mg or 750 mg. In certain embodiment, LDK378 is administered at an oral dose of about 750 mg or lower, e.g., about 600 mg or lower, e.g., about 450 mg or lower. In certain embodiments, LDK378 is administered with food. In other embodiments, the dose is under fasting condition. The dosing schedule can vary from e.g., every other day to daily, twice or three times a day.
  • LDK378 is administered daily. In one embodiment, LDK378 is administered at an oral dose from about 150 mg to 750 mg daily, either with food or in a fasting condition. In one embodiment, LDK378 is administered at an oral dose of about 750 mg daily, in a fasting condition. In one embodiment, LDK378 is administered at an oral dose of about 750 mg daily, via capsule or tablet. In another embodiment, LDK378 is administered at an oral dose of about 600 mg daily, via capsule or tablet. In one embodiment, LDK378 is administered at an oral dose of about 450 mg daily, via capsule or tablet.
  • LDK378 is administered at a dose of about 450 mg and nivolumab is administered at a dose of about 3 mg/kg. In another embodiment, the LDK378 dose is 600 mg and the nivolumab dose is 3 mg/kg. In one embodiment, LDK378 is administered with a low fat meal.
  • the Alk inhibitor has the following structure:
  • R 1 is halo or C 1-6 alkyl
  • R 2 is H
  • R 3 is (CR 2 ) 0-2 SO 2 R 12 ;
  • R 4 is C 1-6 alkyl, C 2-6 alkenyl or C 2-6 alkynyl; OR 12 , NR(R 12 ), halo, nitro, SO 2 R 12 ,
  • R 6 is isopropoxy or methoxy
  • R 8 and R 9 is (CR 2 ) q Y and the other is C 1-6 alkyl, cyano, C(O)O 0-1 R 12 , CONR(R 12 ) or CONR(CR 2 ) p NR(R 12 );
  • X is (CR 2 ) q Y, cyano, C(O)O 0-1 R 12 , CONR(R 12 ), CONR(CR 2 ) p NR(R 12 ),
  • CONR(CR 2 ) p OR 12 CONR(CR 2 ) p SR 12 , CONR(CR 2 ) p S(O) 1-2 R 12 or (CR 2 ) 1-6 NR(CR 2 ) p OR 12 ;
  • Y is pyrrolidinyl, piperidinyl or azetidinyl, each of which is attached to the phenyl ring via a carbon atom;
  • R 12 and R 13 are independently 3-7 membered saturated or partially unsaturated carbocyclic ring, or a 5-7 membered heterocyclic ring comprising N, O and/or S; aryl or heteroaryl; or R 12 is H or C 1-6 alkyl;
  • R is H or C 1-6 alkyl
  • n 0-1;
  • p 0-4;
  • LDK378 has the following structure:
  • LDK378 is 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)- phenyl)-N4-[2-(propane-2-sulfonyl)-phenyl]-pyrimidine-2,4-diamine, or a pharmaceutically acceptable salt thereof.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a CDK4/6 inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the CDK4/6 inhibitor is disclosed in Table 1, e.g., LEE011, or in a publication recited in Table 1, e.g., in US 8,685,980 or US 8,415,355 (e.g., Formula (I) in columns 3-4 or in Example 74 at column 66).
  • the CDK4/6 inhibitor e.g., LEE011
  • MSB0010718C is used in combination with LEE011 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a neurologic cancer, melanoma or a breast cancer, or a hematological malignancy, e.g., lymphoma.
  • a cancer described in Table 1 e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a neurologic cancer, melanoma or a breast cancer, or a hematological malignancy, e.g., lymphoma.
  • a cancer described in Table 1 e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a neurologic cancer, melanoma or a breast cancer,
  • the CDK4/6 inhibitor has the following structure:
  • X is CR 9 or N
  • R 1 is C 1-8 alkyl, CN, C(O)OR 4 or CONR 5 R 6 , a 5-14 membered heteroaryl group, or a 3-14 membered cycloheteroalkyl group;
  • R 2 is C 1-8 alkyl, C 3-14 cycloalkyl, or a 5-14 membered heteroaryl group, and wherein R 2 may be substituted with one or more C 1-8 alkyl, or OH;
  • L is a bond, C 1-8 alkylene, C(O), or C(O)NR 10 , and wherein L may be substituted or unsubstituted;
  • Y is H, R 11 , NR 12 R 13 , OH, or Y is part of the following group
  • Y is CR 9 or N; where 0-3 R 8 may be present, and R 8 is C 1-8 alkyl, oxo, halogen, or two or more R 8 may form a bridged alkyl group;
  • W is CR 9 , or N, or O (where W is O, R 3 is absent); R 3 is H, C 1-8 alkyl, C 1-8 alkylR 14 , C 3-14 cycloalkyl, C(O)C 1-8 alkyl, C 1-8 haloalkyl, C 1-8 alkylOH, C(O)NR 14 R 15 , C 1-8 cyanoalkyl, C(O)R 14 , C 0-8 alkylC(O)C 0-8 alkylNR 14 R 15 , C 0-8 alkylC(O)OR 14 , NR 14 R 15 , SO 2 C 1-8 alkyl, C 1-8 alkylC 3-14 cycloalkyl, C(O)C 1-8 alkylC 3-14 cycloalkyl, C 1-8 alkoxy, or OH which may be substituted or unsubstituted when R 3 is not H.
  • R 9 is H or halogen
  • R 4 , R 5 , R 6 , R 7 , R 10 , R 11 , R 12 , R 13 , R 14 , and R 15 are each independently selected from H, C 1- 8 alkyl, C 3-14 cycloalkyl, a 3-14 membered cycloheteroalkyl group, a C 6-14 aryl group, a 5-14 membered heteroaryl group, alkoxy, C(O)H, C(N)OH, C(N)OCH 3 , C(O)C 1-3 alkyl, C 1-8 alkylNH 2 , C 1-6 alkylOH, and wherein R 4 , R 5 , R 6 , R 7 , R 10 , R 11 , R 12 , and R 13 , R 14 , and R 15 when not H may be substituted or unsubstituted;
  • n and n are independently 0-2;
  • L, R 3 , R 4 , R 5 , R 6 , R 7 , R 10 , R 11 , R 12 , and R 13 , R 14 , and R 15 may be substituted with one or more of C 1-8 alkyl, C 2-8 alkenyl, C 2-8 alkynyl, C 3-14 cycloalkyl, 5-14 membered heteroaryl group, C 6-14 aryl group, a 3-14 membered cycloheteroalkyl group, OH, (O), CN, alkoxy, halogen, or NH 2 .
  • X is CR 9 , wherein R 9 is H; R 1 is CONR 5 R 6 , wherein R 5 and R 6 are both C 1-8 alkyl, specifically methyl; R 2 is C 3-14 cycloalkyl, specifically cyclopentyl; L is a bond;
  • Y is N, zero R 8 are present, W is N, m and n are both 1, and R 3 is H.
  • LEE011 has the following structure:
  • LEE011 is 7-cyclopentyl-2-(5-piperazin-1-yl-pyridin-2-ylamino)- 7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide or a pharmaceutically acceptable salt thereof.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a PI3K-inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • a cancer described herein e.g., a cancer disclosed in Table 1
  • the PI3K-inhibitor is disclosed in Table 1, e.g., BKM120 or BYL719, or in a publications recited in Table 1, e.g., in WO2007/084786 (e.g., Example 10 in [0389] or Formula (I) in [0048]) or WO2010/029082 (e.g., Example 15 or Formula (I)).
  • the PI3K-inhibitor e.g., BKM120 or BYL719, has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publications recited in Table 1 e.g., in
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with BKM120 or BYL719 to treat a cancer or disorder described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a prostate cancer, an endocrine cancer, an ovarian cancer, a melanoma, a bladder cancer, a female reproductive system cancer, a digestive/gastrointestinal cancer, a colorectal cancer, glioblastoma multiforme (GBM), a head and neck cancer, a gastric cancer, a pancreatic cancer or a breast cancer; or a hematological malignancy, e.g., leukemia, NSCLC)
  • GBM glioblastoma multiforme
  • the PI3K-inhibitor has the following structure:
  • W is CRWor N, wherein Rw is selected from the group consisting of (1) hydrogen, (2) cyano, (3) halogen, (4) methyl, (5) trifluoromethyl, and (6) sulfonamido; R 1 is selected from the group consisting of (1) hydrogen, (2) cyano, (3) nitro, (4) halogen, (5) substituted and unsubstituted alkyl, (6) substituted and unsubstituted alkenyl, (7) substituted and unsubstituted alkynyl, (8) substituted and unsubstituted aryl, (9) substituted and unsubstituted heteroaryl, (10) substituted and unsubstituted heterocyclyl, (11) substituted and unsubstituted cycloalkyl, (12) -COR 1a , (13) -CO 2 R 1a (14)–CONR 1a R 1b , (15)–NR 1a R 1b ,, (16)–NR 1a COR 1b
  • W is CRw and Rw is hydrogen
  • R 1 is unsubstituted heterocyclyl
  • R 2 is hydrogen
  • R 3 is substituted alkyl
  • R 4 is hydrogen
  • BKM120 has the following structure:
  • BKM120 is 4-(trifluoromethyl)-5-(2,6-dimorpholinopyrimidin-4- yl)pyridine-2-amine or a pharmaceutically acceptable salt thereof.
  • the PI3K-inhibitor has the following structure:
  • R 1 represents one of the following substituents: (1) unsubstituted or substituted, preferably substituted C 1 -C 7 alkyl, wherein said substituents are independently selected from one or more, preferably one to nine of the following moieties: deuterium, fluoro, or one to two of the following moietiesC 3 -C 5 cycloalkyl; (2) optionally substituted C 3 -C 5 cycloalkyl wherein said substituents are independently substituted C 3 -C 5 cycloalkyl wherein said substituents are independently selected from one or more, preferably one to four of the following moieties: deuterium, C 1 -C 4 alkyl (preferably methyl), fluoro, cyano, aminocarbonyl; (3) optionally substituted phenyl wherein said substituents are independently selected from one or more, preferably one to two of the following moieties: deuterium, halo, cyano, C 1 -C 7 alkyl, C 1 -C 7 alky
  • A is ;
  • R 1 is substituted C 1 -C 7 alkyl, wherein said substituents are independently selected from one or more, preferably one to nine of deuterium, fluoro, or C 3 -C 5 cycloalkyl;
  • R 2 is hydrogen, and
  • R 3 is methyl.
  • BYL719 has the following structure:
  • BYL719 is (S)-pyrrolidine-1,2-dicarboxylic acid 2-amide 1-( ⁇ 4- methyl-5-[2-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-yl]-thiazol-2-yl ⁇ -amide) or a pharmaceutically acceptable salt thereof.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a BRAF inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the BRAF inhibitor is disclosed in Table 1, e.g., LGX818, or in a publication recited in Table 1, e.g., WO2011/025927 (e.g., Example 6/Compound 6 or Formula (Ia) in
  • the BRAF inhibitor e.g., LGX818, has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1.
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with LGX818 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a melanoma, e.g., advanced melanoma, a thyroid cancer, e.g, papillary thyroid cancer, or a colorectal cancer.
  • the cancer has, or is identified as having, a BRAF mutation (e.g., a BRAF V600E mutation), a BRAF wildtype, a KRAS wildtype or an activating KRAS mutation.
  • the cancer may be at an early, intermediate or late stage.
  • the BRAF inhibitor has the following structure:
  • R 2 , R 3 , R 5 , and R 6 are independently selected from hydrogen, halo, cyano, C 1-4 alkyl, halo-substituted C 1-4 alkyl, C 1-4 alkoxy and halo-substituted C 1- 4 alkoxy; with the proviso that when R 5 is fluoro and R 1 is selected from hydrogen, -X1R8a, - X 1 C(O)NR 8a R 8b , -XNR 8a X 2 R 8b , -X 1 NR 8a C(O)X 2 OR 8b and–X 1 NR 8a S(O) 0-2 R 8b , R 3 and R 6 are not both hydrogen; R 4 is selected from–R 9 and–NR 10 R 11 ; wherein R 9 is selected from C 1-6 alkyl, C 3- 8 cycloalkyl, C 3-8 heterocycloalkyl, aryl, and heteroaryl; where
  • R 3 is halo (e.g., chloro); R 4 is R 9 ; R 9 is C 1-6 alkyl (e.g., methyl), R 5 is halo (e.g., fluoro), R 7 is C 1-4 alkyl (e.g., isopropyl); Y is CR 6 ; and R 6 is H.
  • LGX818 has the following structure:
  • LGX818 is methyl (S)-(1-((4-(3-(5-chloro-2-fluoro-3- (methylsulfonamido)phenyl)-1-isopropyl-1H-pyrazol-4-yl)pyrimidin-2-yl)amino)propan-2- yl)carbamate or a pharmaceutically acceptable salt thereof.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a CAR T cell targeting CD19 to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the CAR T cell targeting CD19 is disclosed in Table 1, e.g., CTL019, or in a publication recited in Table 1, e.g., WO 2012/079000, e.g., SEQ ID NO: 12 (e.g., full-length CAR) or SEQ ID NO: 14 (e.g., CD19 scFv).
  • the CAR T cell targeting CD19 e.g., CTL019, has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1.
  • one of Nivolumab is disclosed in Table 1, e.g., CTL019, or in a publication recited in Table 1, e.g., WO 2012/079000, e.g., SEQ ID NO: 12 (e.g., full-length CAR) or SEQ ID NO: 14 (e.g., CD19 scFv).
  • the CAR T cell targeting CD19 e.g., CTL
  • Pembrolizumab or MSB0010718C is used in combination with CTL019 to treat a cancer described in Table 1, e.g., a solid tumor, or a hematological malignancy, e.g., a lymphocytic leukemia or a non-Hodgkin lymphoma.
  • the CAR T cell targeting CD19 has the USAN designation
  • CTL019 is made by a gene modification of T cells is mediated by stable insertion via transduction with a self-inactivating, replicationdeficient Lentiviral (LV) vector containing the CTL019 transgene under the control of the EF-1 alpha promoter.
  • CTL019 is a mixture of transgene positive and negative T cells that are delivered to the subject on the basis of percent transgene positive T cells.
  • the inhibitor of the immune checkpoint molecule is used in combination with a MEK inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • a cancer described herein e.g., a cancer disclosed in Table 1.
  • the MEK inhibitor is disclosed in Table 1, e.g., MEK162, or in a publication recited in Table 1, e.g., WO2003/077914 (e.g., Example 18/Compound 29lll or Formula II).
  • the MEK inhibitor e.g., MEK162
  • WO2003/077914 e.g., Example 18/Compound 29lll or Formula II.
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with MEK162 to treat a cancer described in Table 1.
  • the cancer or disorder treated with the combination is chosen from a melanoma, a colorectal cancer, a non-small cell lung cancer, an ovarian cancer, a breast cancer, a prostate cancer, a pancreatic cancer, a hematological malignancy or a renal cell carcinoma, a multisystem genetic disorder, a digestive/gastrointestinal cancer, a gastric cancer, or a colorectal cancer; or rheumatoid arthritis.
  • the cancer has, or is identified as having, a KRAS mutation.
  • the MEK inhibitor has the following structure:
  • R 1 , R 2 , R 9 and R 10 are independently selected from hydrogen, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -OR 3 , -C(O)R 3 , -C(O)OR 3 ,
  • R 3 is selected from hydrogen, trifluoromethyl, and
  • R', R" and R'" independently are selected from hydrogen, lower alkyl, lower alkenyl, aryl and arylalkyl;
  • R" is selected from lower alkyl, lower alkenyl, aryl and arylalkyl; or
  • any two of R', R", R'" or R"" can be taken together with the atom to which they are attached to form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, each of which is optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl; or
  • R 3 and R 4 can be taken together with the atom to which they are attached to form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, each of which is optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, - NR SO 2 R “" , -SO 2 NR ' R “ , -C(O)R , -C(O)OR , - OC(O)R , -NR ' C(0)0R "” , - NR C(O)R “ , -C(O)NRR “ , -SO 2 R "” , -NR ' R “ , -NR ' C(O)NR “ R '” , - NR ' C(NCN)NR “ R '” , -OR , aryl, heteroaryl, arylalkyl
  • R 4 and R 5 independently represent hydrogen or C 1 -C 6 alkyl
  • R 4 and R 5 together with the atom to which they are attached form a 4 to 10 membered carbocyclic, heteroaryl or heterocyclic ring, each of which is optionally substituted with one to three groups independently selected from halogen, cyano, nitro, trifluoromethyl,
  • R 6 is selected from trifluoromethyl
  • R 7 is selected from hydrogen
  • W is selected from heteroaryl, heterocyclyl, -C(O)OR 3 , -C(O)NR 3 R 4 , -C(O)NR 4 OR 3 , - C(O)R 4 OR 3 , -C(O)(C 3 -C 10 cycloalkyl), -C(O)(C 1 -C 10 alkyl), -C(O)(aryl), -C(O)(heteroaryl) and - C(O)(heterocyclyl), each of which is optionally substituted with 1-5 groups independently selected from -NR 3 R 4 , -OR 3 , -R 2 , and C 1 - C 10 alkyl, C 2 -C 10 alkenyl, and C 2 -C 10 alkynyl, each of which is optionally substituted with 1 or 2 groups independently selected from-NR 3 R 4 and-OR 3 ;
  • R 8 is selected from hydrogen, -SCF 3 , -Cl, -Br, -F, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -OR 3 , -C(O)R 3 , -C(O)OR 3 ,-NR 4 C(O)OR 6 , -OC(O)R 3 , -NR 4 SO 2 R 6 , -SO 2 NR 3 R 4 , -NR 4 C(O)R 3 , -C(O)NR 3 R 4 ,-NR 5 C(O)NR 3 R 4 , -NR 3 R 4 , and
  • n 0, 1, 2, 3, 4 or 5;
  • R 7 is C ⁇ - C 10 alkyl, C 3 -C 7 cycloalkyl or C 3 -C 7 cycloalkylalkyl, each of which can be optionally substituted with 1 - 3 groups independently selected from oxo, halogen, cyano, nitro, trifluoromethyl, difluoromethoxy, trifluoromethoxy, azido, -NR 4 SO 2 R 6 , - SO 2 NR 3 R 4 , -C(O)R 3 , -C(O)OR 3 , -OC(O)R 3 , -SO 2 R 3 , -NR 4 C(O)OR 6 , -NR 4 C(O)R 3 , -C(O)NR 3 R 4 , - NR 3 R 4 , -NR 5 C(O)NR 3 R 4 , -NR 5 C(NCN)NR 3 R 4 , -OR 3 , aryl, heteroaryl, aryl
  • heteroarylalkyl heterocyclyl, and heterocyclylalkyl.
  • R 1 is halogen
  • R 2 is hydrogen
  • R 3 is C 1 - C 10 alkyl substituted with OR’ and R’ is hydrogen
  • R 4 is hydrogen
  • R 7 is C 1 - C 10 alkyl
  • R 8 is bromo
  • R 9 is halogen
  • R 10 is hydrogen
  • W is–C(O)NR 4 OR 3 .
  • MEK162 has the following structure:
  • MEK162 is 5-((4-bromo-2-fluorophenyl)amino)-4-fluoro-N-(2- hydroxyethoxy)-1-methyl-1H-benzo[d]imidazole-6-carboxamide or a pharmaceutically acceptable salt thereof.
  • the inhibitor of the immune checkpoint molecule (alone or in combination with other immunomodulators) is used in combination with a BCR-ABL inhibitor to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1).
  • the BCR-ABL inhibitor is disclosed in Table 1, e.g., AMN-107, or in a publication recited in Table 1, e.g., in WO 2004/005281 (e.g., in Example 92 or Formula (I) in claim 1) or US 7,169,791 (e.g., in claim 8).
  • AMN-107 has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1, e.g., in WO 2004/005281 (e.g., in Example 92 or Formula (I) in claim 1) or US 7,169,791 (e.g., in claim 8).
  • one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with AMN-107 to treat a cancer or disorder described in Table 1, e.g., a solid tumor, e.g., a neurologic cancer, a melanoma, a digestive/gastrointestinal cancer, a colorectal cancer, a head and neck cancer; or a hematological malignancy, e.g., chronic myelogenous leukemia (CML), a lymphocytic leukemia, a myeloid leukemia; Parkinson's disease; or pulmonary hypertension.
  • CML chronic myelogenous leukemia
  • a lymphocytic leukemia a myeloid leukemia
  • Parkinson's disease Parkinson's disease
  • pulmonary hypertension e.g., chronic myelogenous leukemia (CML), a lymphocytic leukemia, a myeloid leukemia; Parkinson's disease; or pulmonary hypertension.
  • the BCR-ABL inhibitor has the following structure:
  • R 1 represents hydrogen, lower alkyl, lower alkoxy-lower alkyl, acyloxy-lower alkyl, carboxy- lower alkyl, lower alkoxycarbonyl-lower alkyl, or phenyl-lower alkyl;
  • R 2 represents hydrogen, lower alkyl, optionally substituted by one or more identical or different radicals R 3 , cycloalkyl, benzcycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted; and
  • R 3 represents hydroxy, lower alkoxy, acyloxy, carboxy, lower alkoxycarbonyl, carbamoyl, N- mono- or N,N-disubstituted carbamoyl, amino, mono- or disubstituted amino, cycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted; or wherein
  • R 1 and R 2 together represent alkylene with four, five or six carbon atoms optionally mono- or disubstituted by lower alkyl, cycloalkyl, heterocyclyl, phenyl, hydroxy, lower alkoxy, amino, mono- or disubstituted amino, oxo, pyridyl, pyrazinyl or pyrimidinyl; benzalkylene with four or five carbon atoms; oxaalkylene with one oxygen and three or four carbon atoms; or azaalkylene with one nitrogen and three or four carbon atoms wherein nitrogen is unsubstituted or substituted by lower alkyl, phenyl-lower alkyl, lower alkoxycarbonyl-lower alkyl, carboxy- lower alkyl, carbamoyl-lower alkyl, N-mono- or N,N-disubstituted carbamoyl- lower alkyl, cycloalkyl, lower alkoxy
  • R 4 represents hydrogen, lower alkyl, or halogen
  • R 1 is hydrogen
  • R 2 is phenyl substituted with CF 3 and
  • R4 is CH 3
  • AMN-107 has the followin structure:
  • AMN-107 is 4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-N- [5-(4-methyl-1H-imidazol1yl)-3-(trifluoromethyl)phenyl]benzamide or an N-oxide or pharmaceutically acceptable salt thereof.
  • SMAC mimetic LCL161 also known as SMAC mimetic LCL161 is an orally bioavailable second mitochondrial-derived activator of caspases (SMAC) mimetic and inhibitor of IAP (Inhibitor of Apoptosis Protein) family of proteins, with antineoplastic activity.
  • SMAC mimetic LCL161 binds to IAPs, such as X chromosome-linked IAP (XIAP) and cellular IAPs 1 and 2. Since IAPs shield cancer cells from the apoptosis process, this agent can be used to restore and promote the induction of apoptosis through apoptotic signaling pathways in cancer cells.
  • IAPs are overexpressed by many cancer cell types and suppress apoptosis by binding and inhibiting active caspases-3, -7 and -9, which play essential roles in apoptosis (programmed cell death), necrosis and inflammation.
  • LCL161 has the structure provided in Table 1, or as disclosed in the publication recited in Table 1, e.g., International Patent Publication No. WO2008/016893 (e.g., Formula (I), Example 1, and Compound A), European Patent No.2051990, and U.S. Patent No. 8,546,336.
  • LCL161 has the following structure:
  • LCL161 is (S)-N-((S)-1-cyclohexyl-2-((S)-2-(4-(4- fluorobenzoyl)thiazol-2-yl)pyrrolidin-1-yl)-2-oxoethyl)-2-(methylamino)propanamide.
  • an immunomodulatory e.g., an inhibitor of the immune checkpoint molecule (e.g., a PD-1 inhibitor, e.g., Nivolumab or Pembrolizumab, a PD-L1 inhibitor, e.g., MSB0010718C, or a TIM-3 inhibitor, e.g., an anti-TIM-3 antibody molecule) is used in combination with LCL161 to treat a cancer or disorder described in Table 1, e.g., a solid tumor, e.g., a breast cancer or a pancreatic cancer; or a hematological malignancy, e.g., multiple myeloma or a hematopoeisis disorder.
  • a PD-1 inhibitor e.g., Nivolumab or Pembrolizumab
  • a PD-L1 inhibitor e.g., MSB0010718C
  • a TIM-3 inhibitor e.g., an anti-TIM-3 antibody molecule
  • the inhibitor of the immune checkpoint molecule (e.g., an anti-PD-1 antibody molecule or an anti-TIM-3 antibody molecule) is administered intravenously.
  • LCL161 is administered orally.
  • the inhibitor of the immune checkpoint molecule (e.g., the anti-PD-1 antibody molecule or anti- TIM-3 antibody molecule) is administered, e.g., intravenously, at least one, two, three, four, five, six, or seven days, e.g., three days, after LCL161 is administered, e.g., orally.
  • LCL161 is administered orally.
  • the inhibitor of the immune checkpoint molecule (e.g., the anti-PD-1 antibody molecule or anti-TIM-3 antibody molecule) is administered, e.g., intravenously, at least one, two, three, four, five, six, or seven days, e.g., three days, before LCL161 is administered, e.g., orally.
  • the inhibitor of the immune checkpoint molecule (e.g., the anti-PD-1 antibody molecule or anti-TIM-3 antibody molecule) is administered, e.g., intravenously, on the same day, as LCL161 is administered, e.g., orally.
  • the administration of the inhibitor of the immune checkpoint molecule e.g., the anti-PD-1 antibody molecule or anti-TIM-3 antibody molecule
  • LCL161 results in a synergistic effect.
  • the inhibitor of the immune checkpoint molecule e.g., the anti-PD-1 antibody molecule or anti-TIM-3 antibody molecule
  • LCL161 results in a synergistic effect.
  • concentration LCL161 that is required to achieve inhibition, e.g., growth inhibition, is lower than the therapeutic dose of LCL161 as a monotherapy, e.g., 10-20%, 20-30%, 30-40%, 40-50%, 50- 60%, 60-70%, 70-80%, or 80-90% lower.
  • the concentration of the inhibitor of the immune checkpoint molecule e.g., the anti-PD-1 antibody molecule or anti-TIM-3 antibody molecule
  • the concentration of the inhibitor of the immune checkpoint molecule is lower than the therapeutic dose of the inhibitor of the immune checkpoint molecule (e.g., the anti-PD-1 antibody molecule or anti-TIM-3 antibody molecule) as a monotherapy, e.g., 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, or 80-90% lower.
  • administration of LCL161, alone or in combination with an anti-PD-1 antibody molecule increases the expression of an immune-active cytokine, e.g., IFN-gamma, in the cancer or the subject.
  • administration of LCL161, alone or in combination with an anti-PD-1 antibody molecule reduces the expression of an immune-suppressive cytokine, e.g., IL-10, in the cancer or the subject.
  • the LCL161 is administered at a dose (e.g., oral dose) of about 10- 3000 mg, e.g., about 20-2400 mg, about 50-1800 mg, about 100-1500 mg, about 200-1200 mg, about 300-900 mg, e.g., about 600 mg, about 900 mg, about 1200 mg, about 1500 mg, about 1800 mg, about 2100 mg, or about 2400 mg.
  • a dose e.g., oral dose
  • a dose e.g., oral dose of about 10- 3000 mg, e.g., about 20-2400 mg, about 50-1800 mg, about 100-1500 mg, about 200-1200 mg, about 300-900 mg, e.g., about 600 mg, about 900 mg, about 1200 mg, about 1500 mg, about 1800 mg, about 2100 mg, or about 2400 mg.
  • LCL161 is administered once a week or once every two weeks.
  • LDK378 (ceritinib) is an Anaplastic Lymphoma Kinase (ALK) inhibitor. Its chemical formula is 5-chloro-N 2 -(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N 4 -[2-(propane-2- sulfonyl)-phenyl]-pyrimidine-2,4-diamine.
  • a process for preparing LDK378 was disclosed in WO2008/073687.
  • the compound has been approved by the US FDA as ZYKADIA® for the treatment of patients with Anaplastic Lymphoma Kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC), who have progressed on or are intolerant to crizotinib.
  • ALK Anaplastic Lymphoma Kinase
  • NSCLC metastatic non-small cell lung cancer
  • the currently approved daily dose for use of LDK378 (alone) in NSCLC is 750 mg orally on an empty stomach (i.e., is not to be administered within 2 hours of a meal).
  • LDK378 demonstrated a high rate of rapid and durable responses in 246 ALK-positive NSCLC patients treated in the 750 mg dose group (RD). In these patients the overall response rate (ORR) was 58.5%. Among the 144 ALK-positive NSCLC patients with a confirmed complete response (CR) or partial response (PR), 86.1% of those patients achieved a response within 12 weeks, with a median time to response of 6.1 weeks. The estimated median duration of response (DOR) based on investigator assessment was long at 9.69 months. The median progression-free survival (PFS) was 8.21 months with 53.3% of the patients censored.
  • ORR overall response rate
  • ceritinib showed this level of high anti-cancer activity regardless of prior ALK inhibitor status (i.e., whether or not the patient received previous treatment with an ALK inhibitor).
  • a high ORR of 54.6% and 66.3% was observed in patients treated with a prior ALK inhibitor and in ALK inhibitor-na ⁇ ve patients, respectively.
  • metastatic ALK-positive NSCLC remains a difficult disease to treat.
  • Harnessing the immune system to treat patients with NSCLC represents a novel and new treatment approach, and nivolumab can be safely combined with LDK378.
  • Combination therapy involving targeted agent LDK378 and immunotherapy can improve progression- free survival and ultimately overall survival in NSCLC patients.
  • the present disclosure relates to a pharmaceutical combination, especially a pharmaceutical combination product, comprising the combination of an immunomodulator and an agent disclosed herein.
  • the compounds in the pharmaceutical combination can be administered separately or together.
  • LDK378 and the Nivolumab can be administered independently at the same time or separately within time intervals, wherein time intervals allow that the combination partners are jointly active.
  • pharmaceutical combination refers to a product obtained from mixing or combining in a non-fixed combination the active ingredients, e.g. (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab or a pharmaceutically acceptable salt thereof separately or together.
  • non-fixed combination means that the active ingredients, e.g. LDK378 and Nivolumab, are both administered separately or together, independently at the same time or separately within time intervals, wherein such administration provides therapeutically effective levels of the active ingredient in the subject in need.
  • cocktail therapy e.g. the administration of three or more active ingredients.
  • This term defines especially a“kit of parts” in the sense that the combination partners (i) LDK378 and (ii) Nivolumab (and if present further one or more co-agents) as defined herein can be dosed independently of each other.
  • joint therapeutically effective means that the compounds show synergistic interaction when administered separately or together, independently at the same time or separately within time intervals, to treat a subject in need, such as a warm-blooded animal in particular a human.
  • the combination of the present disclosure possesses beneficial therapeutic properties, e.g. synergistic interaction, strong in-vivo and in-vitro antitumor response, which can be used as a medicine. Its characteristics render it particularly useful for the treatment of cancer.
  • Suitable cancers that can be treated with the combination of the present disclosure include but are not limited to anaplastic large cell lymphoma (ALCL), neuroblastoma, lung cancer, non-small cell lung cancer (NSCLC).
  • the cancer is NSCLC.
  • the combination according to the present disclosure can besides or in addition be administered especially for cancer therapy in combination with chemotherapy, radiotherapy, immunotherapy, surgical intervention, or in combination of these.
  • Long-term therapy is equally possible as is adjuvant therapy in the context of other treatment strategies, as described above.
  • Other possible treatments are therapy to maintain the patient’s status after tumor regression, or even chemo-preventive therapy, for example in patients at risk.
  • the combination of LDK378 and Nivolumab can be used to manufacture a medicament for an ALK mediated disease as described above.
  • the combination can be used in a method for the treatment of an ALK, as described above, said method comprising administering an effective amount of a combination of (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab or a pharmaceutically acceptable salt thereof separately or together, to a subject in need thereof, according to the present disclosure.
  • jointly (therapeutically) active may mean that the compounds may be given separately or sequentially (in a chronically staggered manner, especially a sequence specific manner) in such time intervals that they preferably, in the warm-blooded animal, especially human, to be treated, and still show a (preferably synergistic) interaction (joint therapeutic effect).
  • a joint therapeutic effect can, inter alia, be determined by following the blood levels, showing that both compounds are present in the blood of the human to be treated at least during certain time intervals, but this is not to exclude the case where the compounds are jointly active although they are not present in blood simultaneously.
  • the present disclosure also describes the method for the treatment of an ALK mediated disease, wherein the combination of (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab or a pharmaceutically acceptable salt thereof separately or together.
  • the present disclosure relates to a pharmaceutical composition
  • a pharmaceutical composition comprising effective amounts of (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab, or a pharmaceutically acceptable salt thereof.
  • the present disclosure also describes the pharmaceutical combination according to the present disclosure in the form of a“kit of parts” for the combined administration.
  • the independent formulations or the parts of the formulation, product, or composition can then, e.g. be administered simultaneously or chronologically staggered, that is at different time points and with equal or different time intervals for any part of the kit of parts.
  • the compounds useful according to the disclosure may be manufactured and/or formulated by the same or different manufacturers.
  • the combination partners may be brought together into a combination therapy: (i) prior to release of the combination product to physicians (e.g. in the case of a kit comprising LDK378 and the Nivolumab); (ii) by the physician themselves (or under the guidance of a physician) shortly before administration; (iii) in the patient themselves, e.g. during sequential administration of the compound of the disclosure and the other therapeutic agent.
  • the effect of the combination is synergistic.
  • composition is dependent on the species of the subject, the body weight, age and individual condition, the disorder or disease or the severity thereof being treated, and can be determined by standard clinical techniques.
  • in vitro or in vivo assays can optionally be employed to help identify optimal dosage ranges.
  • the precise dose to be employed can also depend on the route of administration, and the seriousness of the condition being treated and can be decided according to the judgment of the practitioner and each subject's circumstances in view of, e.g., published clinical studies. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from 150 mg to 750 mg of LDK378 orally. In most cases, the daily dose for LDK378 can be between 300 mg and 750 mg.
  • LDK378 When administered in combination with Nivolumab, LDK378 can be administered at 450 mg with 3 mg/kg nivolumab, 600 mg LDK378 with 3 mg/kg Nivolumab, or 300 mg LDK378 with 3 mg/kg nivolumab.
  • the most preferred dose of both compounds for combination therapy is 600 mg of LDK378 with 3 mg/kg Nivolumab.
  • Particularly 600 mg LDK378 with 3 mg/kg Nivolumab is the most preferred dosing regimen for treating ALK-positive (e.g., EML4-ALK) NSCLC.
  • Nivolumab can be administered as the fixed dose infusion every two weeks. Ceritinib is to be taken together with a low fat meal.
  • ceritinib is administered within 30 minutes after consuming a low fat meal.
  • a patient should refrain from eating for at least an hour after intake of ceritinib and the low fat meal.
  • administration of ceritinib with daily meal intake can reduce the incidence and/or severity of gastrointestinal events. It is estimated that the steady state exposure of ceritinib at 450 mg and 600 mg with daily low-fat meal intake is within 20% relative to that of ceritinib at the recommended phase II dose of 750 mg administered fasted, as predicted by model-based clinical trial simulation, using a population pharmacokinetic model established for ALK-positive cancer patients in one clinical study in conjunction with absorption parameters estimated from another clinical study.
  • The“low-fat meal” denotes herein a meal that contains approximately 1.5 to 15 grams of fat and approximately 100 to 500 total calories.
  • ceritinib does not have a mechanism of action that would be expected to antagonize an immune response. Furthermore, immune-related adverse events have not been frequently reported in ceritinib trials. Potential overlapping toxicities between ceritinib and Nivolumab include diarrhea, nausea, AST and ALT elevations, pneumonitis, and hyperglycemia. The mechanisms of these toxicities are not expected to be similar, given the mechanisms of action of the two compounds and thus the safety profile can be managed.
  • LDK378 for use as a medicine, wherein LDK378, or a pharmaceutically acceptable salt thereof, is to be administered in combination with Nivolumab, or a pharmaceutically acceptable salt thereof, for the treatment of an ALK mediated disease, e.g. cancer.
  • ALK mediated disease refers to a disease in which activity of the kinase leads to abnormal activity of the regulatory pathways including overexpression, mutation or relative lack of activity of other regulatory pathways in the cell that result in excessive cell proliferation, e.g. cancer.
  • the ALK mediated disease can be non-small cell lung cancer (NSCLC) that is driven by the echinoderm microtubule-associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) translocation.
  • NSCLC non-small cell lung cancer
  • EML4 echinoderm microtubule-associated protein-like 4
  • ALK anaplastic lymphoma kinase
  • ALK is translocated, mutated, and/or amplified in several tumor types, and thus ALK mediated disease include, in addition to NSCLC, neuroblastoma, and anaplastic large cell lymphoma (ALCL). Alterations in ALK play a key role in the pathogenesis of these tumors.
  • Other fusion partners of ALK besides EML4 that can be relevant in an ALK mediated disease are KIF5B, TFG, KLC1 and PTPN3, but are expected to be less common than EML4. Preclinical experiments have shown that the various ALK fusion partners mediate ligand-independent
  • a pharmaceutical combination comprising (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) nivolumab, or a pharmaceutically acceptable salt thereof.
  • LDK378 in combination with Nivolumab for the manufacture of a medicament for an ALK mediated disease.
  • LDK378 in combination with Nivolumab for the manufacture of a medicament according to item 13, wherein the cancer is non-small cell lung cancer.
  • a pharmaceutical composition comprising LDK378 or a pharmaceutically acceptable salt thereof and Nivolumab or a pharmaceutically acceptable salt thereof for simultaneous or separate administration for the treatment of cancer.
  • composition according to items 22 or 23, wherein the composition comprises effective amounts of LDK378 and nivolumab.
  • composition according to any one of items 15 to 18, wherein the composition further comprises a pharmaceutical acceptable carrier.
  • LDK378 for use as a medicine, wherein LDK378, or a pharmaceutically acceptable salt thereof, is to be administered in combination with Nivolumab, or a
  • LDK378 for use as a medicine according to item 19, for the treatment of cancer.
  • a method for treating cancer in a subject in need thereof comprising
  • LDK378, or a pharmaceutically acceptable salt thereof a therapeutically effective amount of i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) nivolumab, or a pharmaceutically acceptable salt thereof.
  • Lung cancer is the most common cancer worldwide and the sub-type non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases.
  • NSCLC sub-type non-small cell lung cancer
  • EGFR epidermal growth factor receptor
  • L858R and exon 19 deletion (Ex19del) activating EGFR oncogenic mutations predominate in NSCLC patients and account for 38% and 46% of EGFR NSCLC mutations respectively.
  • EGFR Exon 20 insertion mutations (Ex20ins) are also relatively frequent, accounting for 9% of all EGFR mutations in NSCLC patients.
  • TKIs reversible EGFR Tyrosine Kinase Inhibitors
  • erlotinib and gefitinib reversible EGFR Tyrosine Kinase Inhibitors
  • TKIs EGFR Tyrosine Kinase Inhibitors
  • Second-generation EGFR TKIs have been developed to try to overcome the mechanism of acquired resistance.
  • third- generation EGFR TKIs have been developed which are WT EGFR sparing but also have relative equal potency for activating EGFR (L858R and ex19del) and acquired (T790M) mutations.
  • Third generation EFGR TKIs such as AZD9291 (mereletinib) and CO-1686 (rociletinib) are beginning to enter clinical development and are showing significant initial promise (e.g., see “AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer”, Hanne et al., N Engl J Med, 2015; 372; 1689-99 and“Rociletinib in EGFR-Mutated Non–Small-Cell Lung Cancer”, Sequist et al, J Med, 2015; 372; 1700-9).
  • ASP8273 a novel mutant-selective irreversible EGFR inhibitor, inhibits growth of non-small cell lung cancer (NSCLC) cells with EGFR activating and T790M resistance mutations”, Sakagami et al., AACR; Cancer Res 2014; 74; 1728.
  • the present invention relates to the surprising finding that a combination treatment comprising the selective mutated-EGFR inhibitor EGF816 and the anti-PD-1 antagonist Nivolumab are safe and tolerated when administered as a combination therapy to treat patients with NSCLC that have mutated-EGFR.
  • EGF816 is an EGFR inhibitor.
  • EGF816 is also known as (R,E)-N-(7-chloro-1-(1-(4- (dimethylamino)but-2-enoyl)azepan-3-yl)-1Hbenzo[d]imidazol-2-yl)-2-methylisonicotinamide (EGF816), or a pharmaceutically acceptable salt thereof.
  • a particularly useful salt is the mesylate salt thereof.
  • WO2013/184757 the contents of which are hereby incorporated by reference, describes EGF816, its method of preparation and pharmaceutical compositions comprising EGF816.
  • EGF816 has the following structure:
  • EGF816 is a targeted covalent irreversible EGFR inhibitor that selectively inhibits activating and acquired resistance mutants (L858R, ex19del and T790M), while sparing WT EGFR. (see Jia et al., Cancer Res October 1, 201474; 1734). EGF816 has shown significant efficacy in EGFR mutant (L858R, ex19del and T790M) cancer models (in vitro and in vivo) with no indication of WT EGFR inhibition at clinically relevant efficacious concentrations.
  • the disclosure relates to a pharmaceutical combination, comprising (a) a compound of formula I:
  • the disclosure provides a combination for use in a method of treating a cancer, especially an EGFR mutated cancer wherein:
  • the combined administration has clinical efficacy, e.g., as measured by
  • the progression of cancer may be monitored by methods known to those in the art.
  • the progression may be monitored by way of visual inspection of the cancer, such as, by means of X-ray, CT scan or MRI or by tumor biomarker detection.
  • an increased growth of the cancer indicates progression of the cancer.
  • Progression of cancer such as NSCLC or tumors may be indicated by detection of new tumors or detection of metastasis or cessation of tumor shrinkage.
  • Tumor evaluations can be made based on RECIST criteria (Therasse et al. 2000), New Guidelines to Evaluate the Response to Treatment in Solid Tumors, Journal of National Cancer Institute, Vol.92; 205-16 and revised RECIST guidelines (version 1.1)
  • Tumor progression may be determined by comparison of tumor status between time points after treatment has commenced or by comparison of tumor status between a time point after treatment has commenced to a time point prior to initiation of the relevant treatment.
  • the lymphoma e.g., an anaplastic large-cell lymphoma or non- Hodgkin lymphoma
  • the lymphoma has, or is identified as having, an ALK translocation, e.g., an EML4-ALK fusion.
  • the combination is for use in the treatment of NSCLC.
  • the combination is for use in the treatment of NSCLC, wherein the NSCLC is characterized by one or more of: aberrant activation, or amplification, or mutations of epidermal growth factor receptor.
  • the combination is for use in the treatment of NSCLC, wherein the NSCLC is characterized by harboring an EGFR exon 20 insertion, an EGFR exon 19 deletion, EGFR L858R mutation, EGFR T790M, or any combination thereof.
  • the combination is for use in the treatment of NSCLC, wherein the NSCLC is characterized by harboring L858R and T790M mutations of EGFR. In some embodiments, the combination is for use in the treatment of NSCLC, wherein the NSCLC is characterized by harboring an EGFR exon 20 insertion and T790M mutations of EGFR.
  • the combination is for use in the treatment of NSCLC, wherein the NSCLC is characterized by harboring an EGFR exon 19 deletion and T790M mutations of EGFR.
  • the combination is for use in the treatment of NSCLC, wherein the NSCLC is characterized by harboring EGFR mutation selected from the group consisting of an exon 20 insertion, an exon 19 deletion, L858R mutation, T790M mutation, and any combination thereof.
  • the cancer is an inflammatory myofibroblastic tumor (IMT).
  • IMT inflammatory myofibroblastic tumor
  • the inflammatory myofibroblastic tumor has, or is identified as having, an ALK rearrangement or translocation, e.g., an ALK fusion, e.g., an EML4-ALK fusion.
  • the cancer is a neuroblastoma.
  • the neuroblastoma has, or is identified as having, an ALK rearrangement or translocation, e.g., an ALK fusion, e.g., an EML4-ALK fusion.
  • an ALK rearrangement or translocation e.g., an ALK fusion, e.g., an EML4-ALK fusion.
  • EGF816 may be administered at a dose of 75, 100, 150, 225, 150, 200, 225, 300 or 350 mg. These doses may be administered once daily. E.g. EGF816 may be administered at a dose of 100 or 150 mg once daily.
  • Nivolumab may be administered in an amount from about 1 mg/kg to 5 mg/kg, e.g., 3 mg/kg, and may be administered over a period of 60 minutes, ca. once a week to once every 2, 3 or 4 weeks.
  • the combination of EGF816 and Nivolumab is administered as a combination therapy wherein the administration protocol is:
  • Nivolumab is administered intravenously over a period of 60 minutes at least one hour after administration of (i), every 2 weeks.
  • the administration protocol is repeated for the duration of a 28 day cycle.
  • the term“pharmaceutical combination” as used herein means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non- fixed combinations of the active ingredients.
  • the term“fixed combination” means that the active ingredients, e.g., a compound of formula (I) and one or more combination partners, are both administered to a patient simultaneously in the form of a single entity or dosage.
  • the term“non- fixed combination” means that the active ingredients, e.g., a compound of the present invention and one or more combination partners, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the two compounds in the body of the patient.
  • cocktail therapy e.g., the administration of three or more active ingredients.
  • a pharmaceutical combination comprising:
  • a kit comprising the pharmaceutical combinations according to any one of Enumerated Embodiments 1 to 3 and information about using the constituents of the
  • Embodiments 1 to 3 simultaneously, separately or sequentially.
  • a method of treating or preventing cancer in a subject in need thereof comprising sequential, simultaneous or separate administration of (R,E)-N-(7-chloro-1-(1-(4- (dimethylamino)but-2-enoyl)azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide, or a pharmaceutically acceptable salt thereof and Nivolumab according to any one of
  • Embodiments 1 to 3 in a jointly therapeutically effective amount to treat or prevent said cancer.
  • Embodiments 1 to 3 in the form of a kit for combined administration comprising (a) one or more dosage units of (R,E)-N-(7-chloro-1-(1-(4-(dimethylamino)but-2-enoyl)azepan-3-yl)-1H- benzo[d]imidazol-2-yl)-2-methylisonicotinamide, or a pharmaceutically acceptable salt thereof, and (b) one or more dosage units of Nivolumab.

Abstract

L'invention concerne des polythérapies. Les polythérapies peuvent être utilisées pour le traitement ou la prévention d'états et/ou de troubles cancéreux.
EP15782164.6A 2014-10-03 2015-10-02 Polythérapies Active EP3200775B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19206634.8A EP3662903A3 (fr) 2014-10-03 2015-10-02 Polythérapies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462059832P 2014-10-03 2014-10-03
PCT/US2015/053799 WO2016054555A2 (fr) 2014-10-03 2015-10-02 Polythérapies

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP19206634.8A Division EP3662903A3 (fr) 2014-10-03 2015-10-02 Polythérapies

Publications (2)

Publication Number Publication Date
EP3200775A2 true EP3200775A2 (fr) 2017-08-09
EP3200775B1 EP3200775B1 (fr) 2019-11-20

Family

ID=54337395

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15782164.6A Active EP3200775B1 (fr) 2014-10-03 2015-10-02 Polythérapies
EP19206634.8A Withdrawn EP3662903A3 (fr) 2014-10-03 2015-10-02 Polythérapies

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19206634.8A Withdrawn EP3662903A3 (fr) 2014-10-03 2015-10-02 Polythérapies

Country Status (12)

Country Link
US (2) US20170209574A1 (fr)
EP (2) EP3200775B1 (fr)
JP (2) JP2017535528A (fr)
KR (1) KR20170066546A (fr)
CN (1) CN107106687A (fr)
AU (2) AU2015327868A1 (fr)
BR (1) BR112017006664A2 (fr)
CA (1) CA2963281A1 (fr)
EA (1) EA201790737A1 (fr)
ES (1) ES2774448T3 (fr)
MX (2) MX2017004360A (fr)
WO (1) WO2016054555A2 (fr)

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386494B1 (ko) 2005-05-10 2014-04-24 인사이트 코포레이션 인돌아민 2,3-디옥시게나제의 조절제 및 이의 사용방법
US8193182B2 (en) 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
MX364200B (es) 2008-04-09 2019-04-16 Genentech Inc Composiciones y metodos novedosos para el tratamiento de las enfermedades relacionadas con la inmunidad.
KR101649548B1 (ko) 2008-07-08 2016-08-19 인사이트 홀딩스 코포레이션 인돌아민 2,3-디옥시게나아제의 억제제로서의 1,2,5-옥사디아졸
PE20120341A1 (es) 2008-12-09 2012-04-24 Genentech Inc Anticuerpos anti-pd-l1 y su uso para mejorar la funcion de celulas t
IL300955A (en) 2010-06-03 2023-04-01 Pharmacyclics Llc (R)-1-(3-(4-amino-3-(4-phenoxyphenyl)-H1-pyrazolo[4,3-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1- Indicated for use as a drug to treat chronic lymphocytic leukemia or small lymphocytic lymphoma
CN103648499B (zh) 2011-01-10 2017-02-15 无限药品股份有限公司 用于制备异喹啉酮的方法及异喹啉酮的固体形式
CN104704129A (zh) 2012-07-24 2015-06-10 药品循环公司 与对布鲁顿酪氨酸激酶(btk)抑制剂的抗性相关的突变
EP2992017B1 (fr) 2013-05-02 2020-11-18 AnaptysBio, Inc. Anticorps dirigés contre la protéine de mort programmée 1 (pd-1)
PL3021869T3 (pl) 2013-07-16 2020-11-16 F. Hoffmann-La Roche Ag Sposoby leczenia nowotworu z użyciem antagonistów wiązania osi PD-1 i inhibitorów TIGIT
WO2015048312A1 (fr) 2013-09-26 2015-04-02 Costim Pharmaceuticals Inc. Méthodes de traitement de cancers hématologiques
CR20160319A (es) 2013-12-12 2016-11-08 Jiangsu Hengrui Medicine Co Anticuerpo pd-1, fragmento de union al antigeno de este y uso médico de este
JOP20200094A1 (ar) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
WO2015109391A1 (fr) 2014-01-24 2015-07-30 Children's Hospital Of Eastern Ontario Research Institute Inc. Polythérapie anticancéreuse à base de smc
JOP20200096A1 (ar) 2014-01-31 2017-06-16 Children’S Medical Center Corp جزيئات جسم مضاد لـ tim-3 واستخداماتها
ES2899457T3 (es) 2014-02-04 2022-03-11 Pfizer Combinación de un antagonista de PD-1 y un inhibidor de VEGFR para tratar el cáncer
ME03558B (fr) 2014-03-14 2020-07-20 Novartis Ag Molécules d'anticorps anti-lag-3 et leurs utilisations
CN106132439A (zh) 2014-03-31 2016-11-16 豪夫迈·罗氏有限公司 包含抗血管发生剂和ox40结合激动剂的组合疗法
EP3191126B1 (fr) * 2014-09-13 2020-05-13 Novartis AG Thérapies combinées d'inhibiteurs d'alk
CU20170052A7 (es) 2014-10-14 2017-11-07 Dana Farber Cancer Inst Inc Moléculas de anticuerpo que se unen a pd-l1
CN112263677A (zh) 2015-02-26 2021-01-26 默克专利股份公司 用于治疗癌症的pd-1/pd-l1抑制剂
US10478494B2 (en) 2015-04-03 2019-11-19 Astex Therapeutics Ltd FGFR/PD-1 combination therapy for the treatment of cancer
KR20180015650A (ko) 2015-05-07 2018-02-13 아게누스 인코포레이티드 항-ox40 항체 및 이의 사용 방법
TWI715587B (zh) 2015-05-28 2021-01-11 美商安可美德藥物股份有限公司 Tigit結合劑和彼之用途
DK3303394T3 (da) 2015-05-29 2020-07-06 Agenus Inc Anti-ctla-4-antistoffer og fremgangsmåder til anvendelse deraf
MY188049A (en) 2015-05-29 2021-11-12 Bristol Myers Squibb Co Antibodies against ox40 and uses thereof
US10869924B2 (en) 2015-06-16 2020-12-22 Merck Patent Gmbh PD-L1 antagonist combination treatments
WO2017007658A1 (fr) * 2015-07-07 2017-01-12 Rigel Pharmaceuticals, Inc. Combinaison à médiation immunitaire pour le traitement du cancer
CA2992298A1 (fr) 2015-07-23 2017-01-26 Inhibrx Lp Proteines hybrides multivalentes et multispecifiques se liant a gitr
MA48579A (fr) 2015-09-01 2020-03-18 Agenus Inc Anticorps anti-pd1 et méthodes d'utilisation de ceux-ci
JP7034066B2 (ja) 2015-10-02 2022-03-11 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 共刺激tnf受容体に対する二重特異性抗体
JP2018532756A (ja) * 2015-11-04 2018-11-08 インサイト・コーポレイションIncyte Corporation インドールアミン2,3−ジオキシゲナーゼを阻害するための医薬組成物と方法、及びその適応
CA3007233A1 (fr) 2015-12-02 2017-06-08 Agenus Inc. Anticorps et leurs methodes d'utilisation
SG11201804839WA (en) 2015-12-14 2018-07-30 Macrogenics Inc Bispecific molecules having immunoreactivity with pd-1 and ctla-4, and methods of use thereof
WO2017106810A2 (fr) * 2015-12-17 2017-06-22 Novartis Ag Combinaison d'un inhibiteur de c-met avec une molécule d'anticorps dirigée contre pd-1 et ses utilisations
JP2018538321A (ja) * 2015-12-28 2018-12-27 シンダックス ファーマシューティカルズ,インコーポレイティド 卵巣がんの処置のためのhdac阻害剤および抗pd−l1抗体の組合せ
US11883404B2 (en) 2016-03-04 2024-01-30 Taiho Pharmaceuticals Co., Ltd. Preparation and composition for treatment of malignant tumors
KR20240014585A (ko) 2016-03-04 2024-02-01 다이호야쿠힌고교 가부시키가이샤 악성 종양 치료용 제제 및 조성물
WO2017175200A1 (fr) * 2016-04-08 2017-10-12 The Regents Of The University Of California Hydrogels et protéines d'acide hyaluronique modifié pour la libération contrôlée dans le temps d'agents biologiques
WO2017192924A1 (fr) * 2016-05-04 2017-11-09 Fred Hutchinson Cancer Research Center Vaccins à base de néoantigènes à base cellulaire et leurs utilisations
KR102375327B1 (ko) * 2016-05-05 2022-03-17 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 관문 분자를 표적으로 하는 dna 단클론성 항체
TWI808055B (zh) 2016-05-11 2023-07-11 美商滬亞生物國際有限公司 Hdac 抑制劑與 pd-1 抑制劑之組合治療
TWI794171B (zh) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Hdac抑制劑與pd-l1抑制劑之組合治療
SG11201810023QA (en) 2016-05-27 2018-12-28 Agenus Inc Anti-tim-3 antibodies and methods of use thereof
EP3463456A1 (fr) * 2016-06-03 2019-04-10 ImClone LLC Combinaison de ramucirumab et de pembrolizumab pour le traitement de certains cancers
WO2017223422A1 (fr) * 2016-06-24 2017-12-28 Infinity Pharmaceuticals, Inc. Polythérapies
WO2018009916A1 (fr) 2016-07-07 2018-01-11 The Board Of Trustees Of The Leland Stanford Junior University Conjugués d'adjuvant d'anticorps
EP3490548A4 (fr) * 2016-08-01 2020-04-15 Molecular Templates, Inc. Administration de promédicaments activés par l'hypoxie en combinaison à des agents immunomodulateurs pour le traitement du cancer
CN109963871A (zh) 2016-08-05 2019-07-02 豪夫迈·罗氏有限公司 具有激动活性的多价及多表位抗体以及使用方法
CA3034266A1 (fr) * 2016-08-19 2018-02-22 Brooklyn Immunotherapeutics Llc Utilisations d'inhibiteurs de pd-1/pd-l1 et/ou d'inhibiteurs de ctla-4 avec un agent biologique contenant de multiples composants de cytokine pour traiter le cancer
WO2018039275A1 (fr) 2016-08-24 2018-03-01 Ignyta, Inc. Combinaisons pour le traitement du cancer
CN106350488B (zh) * 2016-09-19 2019-09-27 大连大学 用于治疗肿瘤的pd-1封闭cik的制备方法
JP2019530704A (ja) 2016-10-06 2019-10-24 ファイザー・インコーポレイテッド がんの処置のためのアベルマブの投与レジメン
TWI764943B (zh) * 2016-10-10 2022-05-21 大陸商蘇州盛迪亞生物醫藥有限公司 一種抗pd-1抗體和vegfr抑制劑聯合在製備治療癌症的藥物中的用途
CN117586403A (zh) 2016-10-11 2024-02-23 艾吉纳斯公司 抗lag-3抗体及其使用方法
AU2017354070A1 (en) 2016-11-01 2019-05-16 Anaptysbio, Inc. Antibodies directed against programmed death- 1 (PD-1)
EP3534965A4 (fr) 2016-11-03 2020-06-24 Trillium Therapeutics Inc. Améliorations de la thérapie de blocage de cd47 par des inhibiteurs de hdac
EP3534964A4 (fr) 2016-11-03 2020-07-15 Trillium Therapeutics Inc. Amélioration de la thérapie de blocage des cd47 par des inhibiteurs du protéasome
MA46770A (fr) 2016-11-09 2019-09-18 Agenus Inc Anticorps anti-ox40, anticorps anti-gitr, et leurs procédés d'utilisation
MX2019006072A (es) 2016-11-30 2019-08-14 Oncomed Pharm Inc Metodos para tratamiento de cancer que comprenden agentes de enlace al inmunoreceptor de celulas t con dominios ige itim (tigit).
KR20240023677A (ko) 2016-12-05 2024-02-22 쥐원 쎄라퓨틱스, 인크. 화학요법 레지멘 동안의 면역 반응의 보존
EA201991383A1 (ru) 2016-12-07 2019-12-30 Эйдженус Инк. Антитела против ctla-4 и способы их применения
BR112019014187A2 (pt) 2017-01-09 2020-02-11 Tesaro, Inc. Métodos de tratamento de câncer com anticorpos anti-pd-1
DK3600419T5 (en) * 2017-03-20 2023-11-13 Vaccinex Inc Treatment of cancer with a semaphorin-4d antibody in combination with an epigenetic modulating agent
CN111148518A (zh) * 2017-03-30 2020-05-12 丹娜法伯癌症研究院 使用cdk4/6抑制剂调控调节性t细胞和免疫应答的方法
CN110475567A (zh) * 2017-03-31 2019-11-19 勃林格殷格翰国际有限公司 抗癌组合疗法
EP3606518A4 (fr) 2017-04-01 2021-04-07 The Broad Institute, Inc. Méthodes et compositions de détection et de modulation d'une signature génique de résistance à l'immunothérapie d'un cancer
WO2018195386A1 (fr) 2017-04-20 2018-10-25 The University Of Chicago Procédés et compositions de traitement du cancer avec des peptides à affinité mec liés à des anticorps immunothérapeutiques
BR112019025478A8 (pt) * 2017-06-02 2022-12-06 Bayer Ag Combinação de regorafenib e inibidores de pd-1/pd-l1(2) para tratamento de câncer
CN111491661A (zh) 2017-07-27 2020-08-04 诺莫坎制药有限责任公司 M(h)dm2/4的抗体及其在诊断和治疗癌症中的用途
WO2020159504A1 (fr) * 2019-01-30 2020-08-06 Nomocan Pharmaceuticals Llc Anticorps dirigés contre m(h)dm2/4 et leur utilisation dans le diagnostic et le traitement du cancer
WO2019023786A1 (fr) * 2017-08-01 2019-02-07 University Health Network Thérapies combinées pour l'inhibition de la protéine kinase ttk
EP3678669A4 (fr) * 2017-09-08 2021-06-09 University Health Network Polythérapies visant à inhiber la kinase 4 de type polo
EP3695408A4 (fr) * 2017-10-02 2021-12-15 The Broad Institute, Inc. Procédés et compositions pour détecter et moduler une signature génétique de résistance à l'immunothérapie dans un cancer
AU2018353432A1 (en) 2017-10-19 2020-04-23 Debiopharm International S.A. Combination product for the treatment of cancer
JP7378394B2 (ja) 2017-11-03 2023-11-13 オーリジーン オンコロジー リミテッド Tim-3およびpd-1経路の二重阻害剤
EP3706798A1 (fr) 2017-11-06 2020-09-16 Aurigene Discovery Technologies Limited Thérapies conjointes à des fins d'immunomodulation
CN116392497A (zh) * 2017-11-28 2023-07-07 深圳艾欣达伟医药科技有限公司 葡磷酰胺的抗癌医药用途
US20200377599A1 (en) * 2017-11-30 2020-12-03 Beth Israel Deaconess Medical Center, Inc. Compositions and methods for treating cancer
WO2019122941A1 (fr) 2017-12-21 2019-06-27 Debiopharm International Sa Polythérapie contre le cancer faisant intervenir un antagoniste d'iap et une molécule anti pd-1
US20200385478A1 (en) * 2018-01-05 2020-12-10 Biograph 55, Inc. Compositions and methods for cancer immunotherapy
RU2020123665A (ru) 2018-01-08 2022-02-10 Г1 Терапьютикс, Инк. Преимущественные режимы дозирования g1т38
EP3737373A4 (fr) * 2018-01-10 2021-09-08 Array Biopharma, Inc. Méthodes et polythérapie pour traiter le cancer
WO2019161320A1 (fr) * 2018-02-17 2019-08-22 Apollomics Inc. Traitement du cancer à l'aide d'une combinaison d'un modulateur de neutrophiles avec un modulateur de point de contrôle immunitaire
US20200376035A1 (en) * 2018-02-26 2020-12-03 The Trustees Of The University Of Pennsylvania Methods and compositions comprising cart and a smac mimetic
AU2018412532A1 (en) * 2018-03-08 2020-10-22 Astrazeneca Ab Compositions and methods for treating late stage lung cancer
US11833151B2 (en) 2018-03-19 2023-12-05 Taiho Pharmaceutical Co., Ltd. Pharmaceutical composition including sodium alkyl sulfate
CN112218634A (zh) * 2018-04-09 2021-01-12 G1治疗公司 具有驱动致癌突变的癌症的治疗
JP2021524446A (ja) * 2018-05-16 2021-09-13 デューク ユニバーシティ 免疫毒素とチェックポイント阻害剤との組み合わせを用いるネオアジュバントがん処置
WO2020024932A1 (fr) * 2018-07-31 2020-02-06 Ascentage Pharma (Suzhou) Co., Ltd. Méthode de traitement du cancer par combinaison d'un inhibiteur d'iap et d'un modulateur de molécule de point de contrôle immunitaire
WO2020038397A1 (fr) * 2018-08-21 2020-02-27 I-Mab Anticorps bispécifiques anti-pd-l1/anti-lag3 et leurs utilisations
BR112021007448A2 (pt) * 2018-11-14 2021-10-26 Bayer Aktiengesellschaft Combinação farmacêutica de anticorpos anti-ceacam6 e anti-pd-1 ou anti-pd-l1 para o tratamento de câncer
JP2022511437A (ja) 2018-11-26 2022-01-31 デバイオファーム インターナショナル エス.エー. Hiv感染の組み合わせ治療
JP2022522994A (ja) 2019-01-17 2022-04-21 デビオファーム・インターナショナル・エス・アー がんの処置のための組合せ物
EP3696191A1 (fr) 2019-02-14 2020-08-19 Fundación Instituto de Investigación contra la Leucemia Josep Carreras (IJC) Cellules car-t pour le traitement du cancer positif cd1a
EP3928793A4 (fr) * 2019-02-20 2022-12-07 Saitama Medical University Procédé et composition pour prédire une survie à long terme dans une immunothérapie anticancéreuse
WO2020172233A1 (fr) * 2019-02-22 2020-08-27 The Trustees Of Columbia University In The City Of New York Traitement du cancer de la prostate par ablation d'androgènes et blocage d'il-8
MA55088A (fr) * 2019-02-28 2022-01-05 Taiho Pharmaceutical Co Ltd Cancérothérapie utilisant un composé d'alcynyle benzène 3,5-disubstitué et un inhibiteur de point de contrôle immunitaire
WO2020190725A1 (fr) 2019-03-15 2020-09-24 Bolt Biotherapeutics, Inc. Immunoconjugués ciblant le her2
US20200319163A1 (en) * 2019-03-29 2020-10-08 Georgetown University Methods and compositions overcoming cancer cell immune resistance
CN110179977A (zh) * 2019-05-22 2019-08-30 华中科技大学同济医学院附属同济医院 用于治疗黑色素瘤、肺癌或结直肠癌的组合药物制剂
EP3996750A4 (fr) * 2019-07-12 2024-01-03 Univ Oregon Health & Science Constructions thérapeutiques pour la co-administration d'un inhibiteur de la kinase mitotique et d'un inhibiteur des points de contrôle immunitaire
FI4007777T3 (fi) 2019-08-02 2024-01-11 Fundacio De Recerca Clinic Barcelona Inst Dinvestigacions Biomediques August Pi I Sunyer Frcb Idibap CAR-T-soluja B-solujen kypsymisantigeeniä (BCMA) vastaan multippelin myelooman hoitoon
MX2022001732A (es) 2019-08-12 2022-05-06 Purinomia Biotech Inc Metodos y composiciones para promover y potenciar la respuesta inmunitaria mediada por linfocitos t dirigida a la adcc de las celulas con expresion de cd39.
KR20210028339A (ko) * 2019-09-04 2021-03-12 크리스탈지노믹스(주) Hdac 저해제와 항 pd-1 항체 또는 항 pd-l1 항체를 포함하는 약학 조성물
US20220265698A1 (en) * 2019-09-11 2022-08-25 Aureo Co., Ltd. Composition for enhancing effect of antibody drug
JP2022550037A (ja) 2019-09-25 2022-11-30 デバイオファーム インターナショナル エス.エー. 局所進行性扁平上皮癌を有する患者の治療のための投与レジメン
CA3157042A1 (fr) * 2019-11-21 2021-05-27 Beibei JIANG Procedes de traitement du cancer utilisant des anticorps anti-ox40 en combinaison avec des anticorps anti-tigit
BR112022009794A2 (pt) * 2019-11-21 2022-08-09 Univ Texas Método para tratar câncer no pulmão
US10988479B1 (en) 2020-06-15 2021-04-27 G1 Therapeutics, Inc. Morphic forms of trilaciclib and methods of manufacture thereof
US11883432B2 (en) 2020-12-18 2024-01-30 Century Therapeutics, Inc. Chimeric antigen receptor system with adaptable receptor specificity
CN112972688A (zh) * 2021-02-08 2021-06-18 吉林大学第一医院 PPARδ抑制剂联合免疫治疗药物在制备抗肿瘤药物中的应用
US20220251218A1 (en) * 2021-02-10 2022-08-11 Gnt Biotech & Medicals Corporation Pharmaceutical combination and method for overcoming immune suppression or stimulating immune response against cancer
WO2023005992A1 (fr) * 2021-07-27 2023-02-02 广州嘉越医药科技有限公司 Combinaison pharmaceutique et application associée
CN115671289B (zh) * 2021-07-27 2024-04-26 广州嘉越医药科技有限公司 药物组合及其应用
WO2023043958A1 (fr) * 2021-09-16 2023-03-23 Gt Biopharma, Inc. Protéines de fusion ciblant pd-l1 et méthodes d'utilisation y afférant
WO2023161530A1 (fr) 2022-02-28 2023-08-31 Onechain Immunotherapeutics S.L Fraction de ciblage cd1a humanisée pour traiter le cancer positif au cd1a
EP4234582A1 (fr) 2022-02-28 2023-08-30 Onechain Immunotherapeutics SL Fraction de ciblage de cd1a humanisé pour le traitement du cancer positif à cd1a
CN117604110B (zh) * 2024-01-23 2024-04-19 杭州华得森生物技术有限公司 用于乳腺癌诊断和预后判断的生物标志物及其应用

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR901228A (fr) 1943-01-16 1945-07-20 Deutsche Edelstahlwerke Ag Système d'aimant à entrefer annulaire
US2779780A (en) 1955-03-01 1957-01-29 Du Pont 1, 4-diamino-2, 3-dicyano-1, 4-bis (substituted mercapto) butadienes and their preparation
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
JPS6147500A (ja) 1984-08-15 1986-03-07 Res Dev Corp Of Japan キメラモノクロ−ナル抗体及びその製造法
EP0173494A3 (fr) 1984-08-27 1987-11-25 The Board Of Trustees Of The Leland Stanford Junior University Récepteurs chimériques par liaison et expression de l'ADN
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
JPS61134325A (ja) 1984-12-04 1986-06-21 Teijin Ltd ハイブリツド抗体遺伝子の発現方法
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
WO1988007089A1 (fr) 1987-03-18 1988-09-22 Medical Research Council Anticorps alteres
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
JP3771253B2 (ja) 1988-09-02 2006-04-26 ダイアックス コープ. 新規な結合タンパク質の生成と選択
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
GB8905669D0 (en) 1989-03-13 1989-04-26 Celltech Ltd Modified antibodies
WO1991000906A1 (fr) 1989-07-12 1991-01-24 Genetics Institute, Inc. Animaux chimeriques et transgeniques pouvant produire des anticorps humains
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
WO1991010741A1 (fr) 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation d'anticorps xenogeniques
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
WO1992020791A1 (fr) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methode de production de chainons de paires de liaison specifique
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
ES2108048T3 (es) 1990-08-29 1997-12-16 Genpharm Int Produccion y utilizacion de animales inferiores transgenicos capaces de producir anticuerpos heterologos.
DE69133557D1 (de) 1990-08-29 2007-03-15 Pharming Intellectual Pty Bv Homologe rekombination in säugetier-zellen
EP0564531B1 (fr) 1990-12-03 1998-03-25 Genentech, Inc. Methode d'enrichissement pour des variantes de l'hormone de croissance avec des proprietes de liaison modifiees
ES2330052T3 (es) 1991-03-01 2009-12-03 Dyax Corporation Proteina quimerica que comprende micro-proteinas que tienen dos o mas puentes disulfuro y relaizaciones de las mismas.
US20030206899A1 (en) 1991-03-29 2003-11-06 Genentech, Inc. Vascular endothelial cell growth factor antagonists
US6582959B2 (en) 1991-03-29 2003-06-24 Genentech, Inc. Antibodies to vascular endothelial cell growth factor
EP0580737B1 (fr) 1991-04-10 2004-06-16 The Scripps Research Institute Banques de recepteurs heterodimeres utilisant des phagemides
DE69233482T2 (de) 1991-05-17 2006-01-12 Merck & Co., Inc. Verfahren zur Verminderung der Immunogenität der variablen Antikörperdomänen
WO1994004679A1 (fr) 1991-06-14 1994-03-03 Genentech, Inc. Procede pour fabriquer des anticorps humanises
DE4122599C2 (de) 1991-07-08 1993-11-11 Deutsches Krebsforsch Phagemid zum Screenen von Antikörpern
CA2076465C (fr) 1992-03-25 2002-11-26 Ravi V. J. Chari Conjugues agents de liaison cellulaire d'analogues et de derives de cc-1065
DK1087013T3 (da) 1992-08-21 2009-05-11 Univ Bruxelles Immunoglobuliner uden lette kæder
ATE348110T1 (de) 1992-10-28 2007-01-15 Genentech Inc Hvegf rezeptor als vegf antagonist
IL117645A (en) 1995-03-30 2005-08-31 Genentech Inc Vascular endothelial cell growth factor antagonists for use as medicaments in the treatment of age-related macular degeneration
US5811097A (en) 1995-07-25 1998-09-22 The Regents Of The University Of California Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
US5968511A (en) * 1996-03-27 1999-10-19 Genentech, Inc. ErbB3 antibodies
US6111090A (en) 1996-08-16 2000-08-29 Schering Corporation Mammalian cell surface antigens; related reagents
WO1998006842A1 (fr) 1996-08-16 1998-02-19 Schering Corporation Antigenes de surface de cellules mammaliennes et reactifs qui y sont lies
US20020032315A1 (en) 1997-08-06 2002-03-14 Manuel Baca Anti-vegf antibodies
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
PT1787999E (pt) 1997-04-07 2010-11-11 Genentech Inc Anticorpos anti-vegf
DE69829891T2 (de) 1997-04-07 2005-10-06 Genentech, Inc., South San Francisco Anti-VEGF Antikörper
WO1999020758A1 (fr) 1997-10-21 1999-04-29 Human Genome Sciences, Inc. Proteines tr11, tr11sv1 et tr11sv2 de type recepteur du facteur de necrose tumorale humain
US6689607B2 (en) 1997-10-21 2004-02-10 Human Genome Sciences, Inc. Human tumor, necrosis factor receptor-like proteins TR11, TR11SV1 and TR11SV2
JP2002502607A (ja) 1998-02-09 2002-01-29 ジェネンテク・インコーポレイテッド 新規な腫瘍壊死因子レセプター相同体及びそれをコードする核酸
EP1073465B1 (fr) 1998-04-15 2005-06-22 The Brigham And Women's Hospital, Inc. Compositions pour recepteurs inhibiteurs des lymphocytes t et utilisation de telles compositions
EP1143957A3 (fr) 1998-12-16 2002-02-27 Warner-Lambert Company Traitement de l'arthrite a l'aide d'inhibiteurs de la mek
IL145134A0 (en) * 1999-03-25 2002-06-30 Knoll Gmbh Human antibodies that bind human il-12 and methods for producing
US6703020B1 (en) 1999-04-28 2004-03-09 Board Of Regents, The University Of Texas System Antibody conjugate methods for selectively inhibiting VEGF
CA2378179A1 (fr) 1999-07-12 2001-01-18 Genentech, Inc. Stimulation ou inhibition de l'angiogenese et de la cardiovascularisation avec des homologues de ligands et de recepteurs du facteur de necrose tumorale
SI1301472T1 (sl) 2000-07-19 2014-05-30 Warner-Lambert Company Llc Oksigenirani estri 4-jodo fenilamino benzihidroksamskih kislin
PE20020354A1 (es) 2000-09-01 2002-06-12 Novartis Ag Compuestos de hidroxamato como inhibidores de histona-desacetilasa (hda)
US6995162B2 (en) 2001-01-12 2006-02-07 Amgen Inc. Substituted alkylamine derivatives and methods of use
US7596459B2 (en) 2001-02-28 2009-09-29 Quadlogic Controls Corporation Apparatus and methods for multi-channel electric metering
CN100522967C (zh) 2002-02-01 2009-08-05 阿里亚德基因治疗公司 含磷化合物及其应用
EP2308861B1 (fr) 2002-03-08 2017-03-01 Eisai R&D Management Co., Ltd. Composes macrocycliques utiles en tant qu'agents pharmaceutiques
PT2275102E (pt) 2002-03-13 2015-10-27 Array Biopharma Inc Derivados de benzimidazole alquilado n3 como inibidores de mek
TWI275390B (en) 2002-04-30 2007-03-11 Wyeth Corp Process for the preparation of 7-substituted-3- quinolinecarbonitriles
GB0215676D0 (en) 2002-07-05 2002-08-14 Novartis Ag Organic compounds
US20040047858A1 (en) 2002-09-11 2004-03-11 Blumberg Richard S. Therapeutic anti-BGP(C-CAM1) antibodies and uses thereof
CN101899114A (zh) 2002-12-23 2010-12-01 惠氏公司 抗pd-1抗体及其用途
EP1578419A4 (fr) 2002-12-30 2008-11-12 3M Innovative Properties Co Complexes immunostimulants
CA2525717A1 (fr) 2003-05-23 2004-12-09 Wyeth Ligand du gitr et molecules et anticorps lies au ligand du gitr et leurs utilisations
ME00425B (me) 2003-05-30 2011-10-10 Genentech Inc Liječenje sa anti-vegf antitijelima
EP1660126A1 (fr) 2003-07-11 2006-05-31 Schering Corporation Agonistes ou antagonistes du recepteur du facteur de necrose tumorale induit par les glucocorticoides (gitr) ou de son ligand utilises dans le traitement des troubles immuns, des infections et du cancer
US20050106667A1 (en) 2003-08-01 2005-05-19 Genentech, Inc Binding polypeptides with restricted diversity sequences
WO2005044853A2 (fr) 2003-11-01 2005-05-19 Genentech, Inc. Anticorps anti-vegf
WO2005055808A2 (fr) 2003-12-02 2005-06-23 Genzyme Corporation Compositions et methodes pour le diagnostic et le traitement du cancer du poumon
GB0409799D0 (en) 2004-04-30 2004-06-09 Isis Innovation Method of generating improved immune response
US7932260B2 (en) 2004-05-13 2011-04-26 Icos Corporation Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta
WO2006083289A2 (fr) 2004-06-04 2006-08-10 Duke University Methodes et compositions ameliorant l'immunite par depletion in vivo de l'activite cellulaire immunosuppressive
RS52670B (en) 2004-06-11 2013-06-28 Japan Tobacco Inc. 5-AMINO-2,4,7-TRIOXO-3,4,7,8-TETRAHYDRO-2H-PIRIDO (2,3-D) PYRIMIDINE DERIVATIVES AND SIMILAR COMPOUNDS FOR CANCER TREATMENT
GB0512324D0 (en) 2005-06-16 2005-07-27 Novartis Ag Organic compounds
US20060009360A1 (en) 2004-06-25 2006-01-12 Robert Pifer New adjuvant composition
EA201890903A9 (ru) 2004-09-02 2021-11-10 Дженентек, Инк. Соединения пиридиловых ингибиторов передачи сигналов белком hedgehog, способ их получения, композиция и способы лечения рака и ингибирований ангиогенеза и сигнального пути hedgehog в клетках на их основе
ES2432091T5 (es) 2005-03-25 2022-03-18 Gitr Inc Moléculas de unión GITR y usos de las mismas
CA2970873C (fr) 2005-05-09 2022-05-17 E. R. Squibb & Sons, L.L.C. Anticorps monoclonaux humains pour mort programmee 1 (mp-1) et procedes pour traiter le cancer en utilisant des anticorps anti-mp-1 seuls ou associes a d'autres immunotherapies
GB0510390D0 (en) 2005-05-20 2005-06-29 Novartis Ag Organic compounds
CN104356236B (zh) 2005-07-01 2020-07-03 E.R.施贵宝&圣斯有限责任公司 抗程序性死亡配体1(pd-l1)的人单克隆抗体
WO2007004415A1 (fr) 2005-07-01 2007-01-11 Murata Manufacturing Co., Ltd. Substrat céramique à couches multiples, procédé pour le fabriquer et feuille verte composite pour la fabrication dudit substrat
CA2618218C (fr) 2005-07-21 2015-06-30 Ardea Biosciences, Inc. Inhibiteurs n-(arylamino)-sulfonamide de mek
FR2888850B1 (fr) * 2005-07-22 2013-01-11 Pf Medicament Nouveaux anticorps anti-igf-ir et leurs applications
TWI468162B (zh) 2005-12-13 2015-01-11 英塞特公司 作為傑納斯激酶(JANUS KINASE)抑制劑之經雜芳基取代之吡咯并〔2,3-b〕吡啶及吡咯并〔2,3-b〕嘧啶
EP1981969A4 (fr) 2006-01-19 2009-06-03 Genzyme Corp Anticorps anti-gitr destines au traitement du cancer
JO2660B1 (en) 2006-01-20 2012-06-17 نوفارتيس ايه جي Pi-3 inhibitors and methods of use
CA2647282A1 (fr) * 2006-04-05 2007-10-11 Pfizer Products Inc. Polytherapie a base d'un anticorps anti-ctla4
PE20110224A1 (es) 2006-08-02 2011-04-05 Novartis Ag PROCEDIMIENTO PARA LA SINTESIS DE UN PEPTIDOMIMETICO DE Smac INHIBIDOR DE IAP, Y COMPUESTOS INTERMEDIARIOS PARA LA SINTESIS DEL MISMO
MX2009001878A (es) 2006-08-21 2009-03-03 Genentech Inc Compuestos de aza-benzofuranilo y metodos de uso.
ES2689444T3 (es) 2006-11-22 2018-11-14 Incyte Holdings Corporation Imidazotriazinas e imidazopirimidinas como inhibidores de la quinasa
BRPI0722384A2 (pt) 2006-12-08 2012-06-12 Irm Llc compostos inibidores de proteÍna quinase, composiÇÕes contendo os mesmos bem como seus usos
EP2091918B1 (fr) 2006-12-08 2014-08-27 Irm Llc Composés et compositions inhibant la protéine kinase
EP3222634A1 (fr) 2007-06-18 2017-09-27 Merck Sharp & Dohme B.V. Anticorps dirigés contre le récepteur humain de mort programmée pd-1
ES2591281T3 (es) 2007-07-12 2016-11-25 Gitr, Inc. Terapias de combinación que emplean moléculas de enlazamiento a GITR
PE20140100A1 (es) 2007-09-12 2014-02-12 Genentech Inc Combinaciones de compuestos inhibidores de fosfoinositida 3-quinasa y agentes quimioterapeuticos
US8354528B2 (en) 2007-10-25 2013-01-15 Genentech, Inc. Process for making thienopyrimidine compounds
PT2690101E (pt) 2007-12-19 2015-10-08 Genentech Inc 5-anilinoimidazopiridinas e métodos de utilização
US8747847B2 (en) 2008-02-11 2014-06-10 Curetech Ltd. Monoclonal antibodies for tumor treatment
EP2262837A4 (fr) 2008-03-12 2011-04-06 Merck Sharp & Dohme Protéines de liaison avec pd-1
US8637542B2 (en) 2008-03-14 2014-01-28 Intellikine, Inc. Kinase inhibitors and methods of use
EP2282995B1 (fr) 2008-05-23 2015-08-26 Novartis AG Dérivés de quinoléines et de quinoxalines en tant qu' inhibiteurs de protéine tyrosine kinases
MX2011000039A (es) 2008-07-02 2011-05-31 Emergent Product Dev Seattle Proteinas antagonistas del factor-beta de crecimiento transformante (tgf-beta), que se unen a multiples objetivos.
BRPI0915231A2 (pt) 2008-07-08 2018-06-12 Intellikine Inc compostos inibidores de quinase e métodos de uso
AR072999A1 (es) 2008-08-11 2010-10-06 Medarex Inc Anticuerpos humanos que se unen al gen 3 de activacion linfocitaria (lag-3) y los usos de estos
PL2331547T3 (pl) 2008-08-22 2015-01-30 Novartis Ag Związki pirolopirymidynowe jako inhibitory CDK
KR20110074850A (ko) 2008-08-25 2011-07-04 앰플리뮨, 인크. Pd-1 길항제 및 그의 사용 방법
WO2010027423A2 (fr) 2008-08-25 2010-03-11 Amplimmune, Inc. Compositions d'antagonistes de pd-1 et methodes d'utilisation associees
CN103333157A (zh) 2008-09-02 2013-10-02 诺瓦提斯公司 作为激酶抑制剂的吡啶甲酰胺衍生物
UA104147C2 (uk) 2008-09-10 2014-01-10 Новартис Аг Похідна піролідиндикарбонової кислоти та її застосування у лікуванні проліферативних захворювань
WO2010030002A1 (fr) 2008-09-12 2010-03-18 国立大学法人三重大学 Cellule capable d'exprimer un ligand gitr exogène
US8703778B2 (en) 2008-09-26 2014-04-22 Intellikine Llc Heterocyclic kinase inhibitors
AU2009308707A1 (en) * 2008-10-31 2010-05-06 Biogen Idec Ma Inc. LIGHT targeting molecules and uses thereof
PE20120341A1 (es) 2008-12-09 2012-04-24 Genentech Inc Anticuerpos anti-pd-l1 y su uso para mejorar la funcion de celulas t
WO2010089411A2 (fr) 2009-02-09 2010-08-12 Universite De La Mediterranee Anticorps pd-1 et anticorps pd-l1 et leurs utilisations
EP2990421B1 (fr) 2009-04-30 2018-02-21 Tel HaShomer Medical Research Infrastructure and Services Ltd. Anticorps anti-ceacam1 et leurs procédés d'utilisation
WO2010136508A2 (fr) * 2009-05-28 2010-12-02 Glaxo Group Limited Ciblage de cellules souches
DK2769737T3 (en) * 2009-07-20 2017-07-24 Bristol Myers Squibb Co COMBINATION OF ANTI-CTLA4 ANTIBODY WITH ETOPOSIDE FOR SYNERGISTIC TREATMENT OF PROLIFERATIVE DISEASES
JO3002B1 (ar) 2009-08-28 2016-09-05 Irm Llc مركبات و تركيبات كمثبطات كيناز بروتين
US8709424B2 (en) 2009-09-03 2014-04-29 Merck Sharp & Dohme Corp. Anti-GITR antibodies
IT1395574B1 (it) 2009-09-14 2012-10-16 Guala Dispensing Spa Dispositivo di erogazione
GB0919054D0 (en) 2009-10-30 2009-12-16 Isis Innovation Treatment of obesity
WO2011066342A2 (fr) 2009-11-24 2011-06-03 Amplimmune, Inc. Inhibition simultanée de pd-l1/pd-l2
US8440693B2 (en) 2009-12-22 2013-05-14 Novartis Ag Substituted isoquinolinones and quinazolinones
SI2519543T1 (sl) 2009-12-29 2016-08-31 Emergent Product Development Seattle, Llc Beljakovine, ki se vežejo s heterodimeri in njihova uporaba
KR101846590B1 (ko) 2010-06-11 2018-04-09 교와 핫꼬 기린 가부시키가이샤 항 tim-3 항체
EA036314B1 (ru) 2010-08-20 2020-10-26 Новартис Аг Выделенные антитела к рецептору эпидермального фактора роста-3 (her3) и их фрагменты, фармацевтическая композиция, содержащая эти антитела и фрагменты, и их применение для лечения рака
CN106220739A (zh) 2010-12-09 2016-12-14 宾夕法尼亚大学董事会 嵌合抗原受体‑修饰的t细胞治疗癌症的用途
WO2012177624A2 (fr) 2011-06-21 2012-12-27 The Johns Hopkins University Rayonnement focalisé pour améliorer les thérapies basées sur l'immunité contre les néoplasmes
MY193562A (en) 2011-08-01 2022-10-19 Genentech Inc Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors
WO2013039954A1 (fr) 2011-09-14 2013-03-21 Sanofi Anticorps anti-gitr
WO2013054320A1 (fr) 2011-10-11 2013-04-18 Tel Hashomer Medical Research Infrastructure And Services Ltd. Anticorps dirigés contre la molécule d'adhésion cellulaire associée à l'antigène carcino-embryonnaire (ceacam)
LT2785375T (lt) 2011-11-28 2020-11-10 Merck Patent Gmbh Anti-pd-l1 antikūnai ir jų panaudojimas
CA2892371C (fr) 2011-12-01 2021-01-19 The Brigham And Women's Hospital, Inc. Anticorps recombinants anti-ceacam1 pour la therapie de cancer
WO2013179174A1 (fr) 2012-05-29 2013-12-05 Koninklijke Philips N.V. Système d'éclairage
JO3300B1 (ar) 2012-06-06 2018-09-16 Novartis Ag مركبات وتركيبات لتعديل نشاط egfr
KR101566538B1 (ko) 2012-06-08 2015-11-05 국립암센터 신규한 Th17 세포 전환용 에피토프 및 이의 용도
UY34887A (es) 2012-07-02 2013-12-31 Bristol Myers Squibb Company Una Corporacion Del Estado De Delaware Optimización de anticuerpos que se fijan al gen de activación de linfocitos 3 (lag-3) y sus usos
CN112587658A (zh) 2012-07-18 2021-04-02 博笛生物科技有限公司 癌症的靶向免疫治疗
AU2013295855A1 (en) 2012-07-27 2015-02-12 Novartis Ag Prediction of treatment response to JAK/STAT inhibitor
CA2916638C (fr) 2012-07-31 2021-01-12 The Brigham And Women's Hospital, Inc. Modulation de la reponse immunitaire
JP6356134B2 (ja) 2012-10-12 2018-07-11 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. 免疫応答の増強
CA2890663A1 (fr) 2012-11-08 2014-05-15 Novartis Ag Combinaison pharmaceutique comprenant un inhibiteur de b-raf et un inhibiteur d'histone desacetylase et leur utilisation dans le traitement de maladies proliferatives
JP2016501221A (ja) 2012-11-28 2016-01-18 ノバルティス アーゲー 併用療法
AR097306A1 (es) 2013-08-20 2016-03-02 Merck Sharp & Dohme Modulación de la inmunidad tumoral
AU2014364606A1 (en) * 2013-12-17 2016-07-07 Genentech, Inc. Combination therapy comprising OX40 binding agonists and PD-1 axis binding antagonists
CA2934073A1 (fr) * 2013-12-20 2015-06-25 The Broad Institute, Inc. Polytherapie comprenant un vaccin a base de neoantigenes
JOP20200094A1 (ar) * 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
JOP20200096A1 (ar) * 2014-01-31 2017-06-16 Children’S Medical Center Corp جزيئات جسم مضاد لـ tim-3 واستخداماتها
ME03558B (fr) * 2014-03-14 2020-07-20 Novartis Ag Molécules d'anticorps anti-lag-3 et leurs utilisations
JO3663B1 (ar) * 2014-08-19 2020-08-27 Merck Sharp & Dohme الأجسام المضادة لمضاد lag3 وأجزاء ربط الأنتيجين
EP3191126B1 (fr) * 2014-09-13 2020-05-13 Novartis AG Thérapies combinées d'inhibiteurs d'alk

Also Published As

Publication number Publication date
WO2016054555A3 (fr) 2016-06-30
CA2963281A1 (fr) 2016-04-07
US20210000951A1 (en) 2021-01-07
JP2017535528A (ja) 2017-11-30
EP3662903A3 (fr) 2020-10-14
EA201790737A1 (ru) 2017-08-31
ES2774448T3 (es) 2020-07-21
KR20170066546A (ko) 2017-06-14
EP3200775B1 (fr) 2019-11-20
MX2020005894A (es) 2020-08-13
US20170209574A1 (en) 2017-07-27
CN107106687A (zh) 2017-08-29
EP3662903A2 (fr) 2020-06-10
AU2015327868A1 (en) 2017-04-20
WO2016054555A2 (fr) 2016-04-07
MX2017004360A (es) 2017-06-26
AU2021204687A1 (en) 2021-08-19
BR112017006664A2 (pt) 2017-12-26
JP2022043060A (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
US20210000951A1 (en) Combination therapies
US20240075136A1 (en) Combination therapies
US20200030442A1 (en) Combination therapies
CN108025051B (zh) 包含抗pd-1抗体分子的联合疗法
TWI692484B (zh) 針對pd-1之抗體分子及其用途
EP3964528A1 (fr) Polythérapies comprenant des molécules d'anticorps dirigées contre lag-3
CA2936962A1 (fr) Molecules d'anticorps anti-lag-3 et leurs utilisations

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170411

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180129

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1242582

Country of ref document: HK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015042142

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A61K0031000000

Ipc: A61K0039395000

RIC1 Information provided on ipc code assigned before grant

Ipc: C07K 16/28 20060101ALI20190507BHEP

Ipc: A61K 31/506 20060101ALI20190507BHEP

Ipc: A61K 39/395 20060101AFI20190507BHEP

Ipc: A61P 35/00 20060101ALI20190507BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015042142

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1203433

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2774448

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1203433

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015042142

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20200924

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200924

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20201009

Year of fee payment: 6

Ref country code: CH

Payment date: 20201015

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210929

Year of fee payment: 7

Ref country code: FR

Payment date: 20210930

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210922

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211108

Year of fee payment: 7

Ref country code: DE

Payment date: 20210923

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211002

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015042142

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221002

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221002

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221003