EP2760777A1 - Bremseinrichtung mit elektromechanischer betätigungseinrichtung - Google Patents
Bremseinrichtung mit elektromechanischer betätigungseinrichtungInfo
- Publication number
- EP2760777A1 EP2760777A1 EP12759769.8A EP12759769A EP2760777A1 EP 2760777 A1 EP2760777 A1 EP 2760777A1 EP 12759769 A EP12759769 A EP 12759769A EP 2760777 A1 EP2760777 A1 EP 2760777A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- brake
- elevator
- housing
- braking
- brake housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009434 installation Methods 0.000 claims description 15
- 230000033001 locomotion Effects 0.000 claims description 12
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 238000004146 energy storage Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 230000003028 elevating effect Effects 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 206010016352 Feeling of relaxation Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012791 sliding layer Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
- B66B5/16—Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
- B66B5/18—Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
- B66B5/16—Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
- B66B5/18—Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces
- B66B5/20—Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces by means of rotatable eccentrically-mounted members
Definitions
- the invention relates to a braking device with an actuating device for braking an elevator car, a method for operating the braking device and an elevator system with such a braking device.
- the elevator system is installed in a building. It consists essentially of a cabin, which is connected via suspension means with a counterweight or with a second car. By means of a drive which acts selectively on the support means or directly on the car or the counterweight, the car is moved along, substantially vertical, guide rails.
- the elevator system is used to transport people and goods within the building over single or multiple floors.
- the elevator system includes devices to secure the elevator car in the event of failure of the drive or the suspension means. These braking devices are usually used, which can slow down the elevator car on the guide rails in case of need.
- Brake device includes a control cam similar to an eccentric.
- the control cam is rotated about a center so that the control cam engages with the guide rail.
- the control curve is via a linkage of a mechanical
- Speed limiter actuated. Such a mechanical speed limiter is expensive and maintenance-intensive.
- an elevator braking device which is suitable for delaying and holding an elevator car in cooperation with a brake rail in case of need.
- this elevator braking device is arranged on a running body of the elevator, for example the elevator car or possibly also on the counterweight and it can cooperate with guide rails, which for this purpose comprise the brake rails.
- the brake rails can be multifunctional also used to guide the driving body.
- the elevator brake device can also be arranged in the region of the drive and the brake rail can be a brake disk or a brake cable.
- the elevator brake device includes at least one brake housing.
- the brake housing includes parts that are adapted to be brought into engagement with the brake track for the purpose of braking.
- the elevator brake device includes at least one braking element which is self-reinforcing, for example, with a wedge or an eccentric or other gain curve executed.
- This braking element is preferably installed in the brake housing.
- Self-reinforcing means that the brake element, after it has been introduced with an initial force to the brake rail, automatically moves by a relative movement between the elevator brake device and the brake rail in a braking position.
- Such an initial force is provided by a force accumulator, which is designed to press the brake element in case of need against the braking surface by the brake housing in the vertical direction in a second position, preferably an upper position is pressed.
- the elevator brake device further includes an actuator also on the
- Brake housing can act and is designed to hold the brake housing in a first position, preferably a lower position. In the initial position, this first position corresponds to an operating position of the elevator installation. In this operating position, the elevator brake device is not in braking engagement and the elevator system, or their drive body can be moved operationally. The actuator can thus hold the brake housing in a first position against the force of the force accumulator in the first position. In a second position, the actuator allows the brake housing to slide to the second position. By the displacement of the brake housing in the second position are now braking parts of the elevator brake device, such as those mentioned
- the brake housing is to vertical, or in a longitudinal direction parallel to a braking direction, between the first, preferably lower position and the second, preferably upper Position displaced stored.
- the braking direction results from a direction of travel of the driving body.
- the elevator brake device further includes a support which can be attached to the drive body of the elevator installation or can be integrated therein.
- the support includes a vertical guide, which is a substantially vertical displacement of the
- the energy storage of the elevator brake device includes a compression spring which acts on the brake housing and which is preferably arranged between the support and the brake housing.
- a compression spring which acts on the brake housing and which is preferably arranged between the support and the brake housing.
- pneumatic, hydraulic or, for example, in an arrangement on a stationary body for example when driving, and weight-based energy storage in question.
- the brake housing includes the brake element, said brake element is pivotally mounted about a rotational axis in the brake housing. Further, the brake member is connected to a connecting part to the support, so that the brake member undergoes a rotation in a vertical displacement of the brake housing relative to the support. Thereby, the brake element can be brought into engagement with the brake rail.
- the vertical guide in this case has a guide length, which on the one hand is long enough to bring the brake element securely for engagement with the brake rail.
- the vertical guide is limited so that in the braking position, a braking force can be safely introduced into the support. This limitation is preferably achieved by an upper and a lower vertical stop, which limit the guide length and which the
- braking power can be transmitted to the vehicle body.
- the brake element is provided with a centering device which holds the brake element in an operating position. This ensures that the
- Elevator brake device can provide sufficient clearance to the brake rail and so that a trouble-free operation of the elevator system is possible.
- a passage clearance an air gap is called which is present in the operating position between the brake element and the brake rail to allow a method of the elevator car or the counterweight.
- the centering device can also be designed as a snap-action or latching device.
- the elevator brake device generates a braking force in the second position, which is suitable for the drive body of the elevator installation in a direction of travel
- the elevator brake device can be reset by a release movement opposite the direction of travel.
- the system is tuned such that one for releasing the elevator brake device, or their
- Clamping mechanism required restoring force is greater than the force of the force accumulator.
- the brake housing upon return of the elevator brake device from the second position back to the first position, biases the energy storage.
- the actuator can
- the actuator is designed elastically damping, for example by levers of the actuator are designed to be elastic or by attachment points, such as the electro-magnet are attached via an elastic and damping pad. This dampens beats as they occur when the system is reset.
- the brake housing is mounted horizontally displaceable in the support and held.
- the elevator braking device can be aligned automatically during braking to the brake rail. This will cause extreme side loads
- the brake element has a central clamping region which is eccentrically or eccentrically shaped with respect to the rotary bearing.
- a radial distance from the pivot bearing to the clamping area increases continuously over a rotation angle.
- the brake element includes a control eccentric with a control cam.
- Cam is eccentrically or eccentrically shaped with respect to the pivot bearing, so that a radial distance from the pivot bearing to the control cam increases over a rotation angle. It is by rotation of the control cam and the control eccentric a brake shoe to the
- the elevator brake device further includes a brake plate. This brake plate is arranged such that the brake rail, or the corresponding brake plate.
- the brake plate is in this case preferably secured by means of a brake spring in the brake housing. This allows easy adjustment of the elevator brake device to required loads and allows the compensation of wear.
- the actuator includes an electro-magnet with an anchor plate.
- the brake housing can be electromagnetically held in the first position. In the first position while the armature plate is applied to the electro-magnet and it is held electromagnetically by this. A force of the electric holding magnet counteracts the force of the energy storage. If the electro-magnet is deactivated, the energy accumulator pushes the brake housing upwards. When moving back the brake housing from the second position to the first position, the armature plate, even in the de-energized state of the electro-magnet, inevitably brought into contact with the electro-magnet. Thus, particularly favorable elements can be used, since the electro-magnet to reset the elevator brake device does not have to bridge an air gap.
- a jack solution can be selected, the latch when reset, for example, inevitably latched, but not yet locked. A lock then takes place, for example, only after switching on a control circuit that confirms a proper function of the elevator system.
- the actuator includes an auxiliary weight or it is shaped accordingly, so that a driver, preferably a locking roller of the actuator, is held in contact with the brake housing.
- the actuator includes an auxiliary spring which holds the driver or the locking roller of the actuator in contact with the brake housing.
- the locking roller allows a friction-free lateral displacement of the brake housing and the auxiliary weight, or cause the auxiliary spring, that when returning the elevator brake device, the actuator, for example, the electro-magnet is set in its initial position. This can only be one
- Coil current of the electro-magnet are turned on and the actuator is set directly.
- the actuator is adjustable.
- an adjustment of the first position of the brake housing can be performed accurately. This is made possible, for example, by the anchor plate is attached by means of an adjusting screw.
- Elevator cabin and advantageously directly on the same or grown.
- the brake rail is directly part of the guide rail and the elevator brake device clamps a web of the guide rail for the purpose of holding and braking.
- the elevator car is provided with two elevator brake devices and these elevator brake devices can be mounted on two opposite sides of the elevator
- Elevator car arranged guide rails act.
- these two elevator brake devices are coupled to a synchronization bar, and advantageously both elevator brake devices each comprise an actuator.
- a safety of the elevator brake devices can be increased since, if one of the actuators fails, the remaining actuator synchronously actuates both elevator brake devices via the synchronization rod. This prevents unilateral braking.
- a counterweight of the elevator system can be equipped with appropriate braking facilities.
- 1 is a schematic view of an elevator system in side view
- FIG. 3 is a schematic view of an elevator braking device in a first
- FIG. 4 shows the elevator brake device of FIG. 3 in a second actuated position
- FIG. 5 shows the elevator brake device of FIG. 3 in a further second, braking position
- FIG. 6 shows the elevator brake device of FIG. 3 in a first reset position
- FIG. 7 shows an alternative embodiment of an actuator for the elevator brake device of FIG.
- FIG. 8s is a side view of another embodiment of an elevator brake device in a first, unactuated position
- FIG. 8f is a front view of the elevator brake device of FIG. 8s;
- FIG. Fig. 9s is a side view of the further embodiment of Fig. 8s in a second, actuated position, and
- FIG. 9f is a front view of the elevator brake device of FIG. 9s.
- the same reference numerals are used throughout the figures for equivalent parts.
- Fig. 1 shows an elevator system 1 in an overall view.
- the elevator installation 1 is installed in a building and serves for the transport of persons or goods within the building
- the elevator installation includes an elevator car 2 which extends along
- Guide rails 6 can move up and down.
- the elevator car 2 is to with
- a drive 5 serves to drive and hold the elevator car 2.
- the drive 5 is arranged, for example, in the upper area of the building and the car 2 is suspended by suspension elements 4,
- the drive 5 For example, carrying ropes or strap, the drive 5.
- the support means 4 are guided via the drive 5 on to a counterweight 3.
- the counterweight compensates for a mass fraction of the elevator car 2, so that the drive 5 has to compensate for the main thing only an imbalance between the car 2 and counterweight 3.
- the drive 5 is arranged in the example in the upper part of the building. It could, of course, also be arranged at another location in the building, or in the area of the car 2 or the counterweight 3.
- the elevator car 2 is equipped with a braking system which is suitable for securing and / or decelerating the elevator car 2 during an unexpected movement or at overspeed.
- the braking system is arranged in the example below the car 2 and it is electrically, driven for example via a monitoring module 11.
- a mechanical speed limiter as it is commonly used, can therefore be omitted.
- the embodiment is particularly suitable for an elevator brake device which, as so-called safety gear, prevents an overspeeding of the elevator car or of the counterweight in the downward direction.
- Fig. 2 shows the elevator system of Fig. 1 in a schematic plan view.
- the brake system includes two elevator brake devices 20.
- the two elevator brake devices 20 are coupled in this example by means of a synchronization rod 15, so that the two
- Elevator brake devices 20 are actuated with each other. Thus, an unintentional one-sided braking can be avoided.
- the two elevator brake devices 20 are preferably of identical or mirror-symmetrical design and they act as needed on the arranged on both sides of the car 2 brake rails 7 a.
- the brake rails 7 are identical in the example to the guide rails 6. In cooperation with the elevator brake devices 20, they can cause a deceleration of the elevator car 2.
- a first embodiment of an elevator braking device 20 is shown in more schematic
- FIGS. 3 to 6 show the same elevator brake device 20 in different working positions.
- FIG. 3 shows the elevator brake device 20 in a first position B1. This position shown in Fig. 3 also corresponds to one
- the elevator brake device 20 does not brake.
- a brake housing 21 is installed in a support 9.
- the support 9 is attached to the drive body 2, 3, usually the elevator car 2, grown. Alternatively, of course, the support 9 can also be directly part of the elevator car.
- the brake housing 21 is in the example via sliding connections 22, 23, 50 so fixed in the support 9, that on the one hand in the vertical direction within vertical guides 50, for example in slots, is displaceable. On the other hand, it is also displaceable in the lateral direction via guide rods 22 and sliding guides 23.
- the guide rod 22 may also be arranged directly in the slot of the vertical guide 50.
- a spring 52 pushes the brake housing 21 against a, preferably adjustable stop 43.
- the spring 52 can be a compression spring, a tension spring or another
- Be force element instead of a single spring several springs can be used. It is important that the delivery force caused by the delivery spring 52 is independent of any movement states or acceleration states of the drive body.
- An energy accumulator 24 presses the brake housing 21 with a force F24 in the upward direction.
- an actuator 32 counteracts this force F24.
- the actuator 32 is in the example an electro-magnet 36.
- the electro-magnet 36 generates in the activated state PI, a magnetic holding force F36 which is dimensioned such that it can hold the brake housing in the first position Bl.
- an armature plate 37 is arranged on the brake housing 21, which ensures ideal conditions of adhesion to the brake housing 21.
- a dimension of the armature plate 37 is greater than a dimension of the electro-magnet 36 is selected. This can lead to inaccuracies in production and
- a brake element 25 is arranged in the example about a rotational axis 28a, or about a corresponding pivot bearing 28 pivotally.
- the brake element 25 is connected via a connecting part 46 to the support 9 and it is at the same time elastically fixed by a centering device 42, for example a pulling device or a tension spring.
- a position of the brake element 25 is thus determined by the position of the brake housing 21, or a position of the axis of rotation 28 a, a geometry of the connecting part 46 and the force of the centering device 42.
- the connecting part 46 is connected via a bearing point 47 to the support 9 and it is connected via an attachment point 48 to
- the connecting part 46 includes a freewheel in the form of a longitudinal slot 49, whose function will be explained later.
- the brake element 25 has a central clamping region 26 on which eccentric with respect to the rotation axis 28a is formed, so that a radial distance R increases from the rotation axis 28a to the clamping portion 26 via a rotation angle.
- To the clamping area 26 connects seamlessly a brake area 27.
- the clamping region 26 is shaped in such a way that when the clamping region 26 is pressed against a guide rail 6, the brake element 25 is automatically taken along or further rotated.
- the clamping region 26 is knurled, for example.
- the brake housing 21 further includes a brake plate 30, which as
- Brake counter-coating is executed. Between brake element 25 and brake plate 30, in the non-braking arrangement according to FIG. 25a, there is an intermediate space corresponding to a thickness of the guide rail 6, or a brake rail 7 plus twice the amount of drive-through clearance S1.
- the clearance Sl is usually about 1.5 mm (millimeters) to 3.0 mm (millimeters).
- the monitoring module 11 of the elevator installation 1 detects a fault in the elevator installation which requires intervention of the elevator braking apparatus 20, this deactivates
- the monitoring module is advantageously carried out so that the power to the electro-magnet 36 is not only interrupted but controlled so that the magnetic field is degraded quickly. As a result, a fast response of the elevator brake device can be achieved.
- the degraded magnetic field eliminates the holding force F36 of the electro-magnet 36 and the energy storage 24 pushes the brake housing 21 together with the axis of rotation 28a up in a first intermediate position B2 'as shown in Fig. 4. That is, the brake housing, or the axis of rotation 28a of the brake member 25 is vertically, in a direction parallel to a braking direction, shifted. This shifting is made possible by the vertical guide 50. In this case, the brake element is now through the
- the brake housing 21, or the axis of rotation 28a of the brake element 25 has now reached a second position B2 which is shown in Fig. 5.
- the brake element has reached its braking position, which is designated in Fig. 5 with 25c.
- the second position B2 in the support 9 is determined by the design and dimension of the vertical guide 50.
- the vertical guide 50 is limited in this embodiment by a lower vertical stop 50u and an upper vertical stop 50o.
- the brake area 27, together with the brake plate 30, generates a required braking force to securely brake and hold the vehicle body.
- the braking force is transmitted via the guide rod 22 and the boundary of the vertical guide 50, or in the example via the upper vertical stop 50o to the support 9 and further to the drive body 2, 3.
- Attachment point 48 on the brake element 25 has also moved downward in the longitudinal slot 49 of the connecting part 46. This means that with successful clamping between
- the drive body 2, 3 is now raised. This is usually done by means of the drive 5 of the elevator installation 1 or, if this is defective, with others
- Driving body in the upward direction rotates the still clamping brake element 25 back to the normal position shown in FIG. 3 is reached again.
- the contact surface between armature plate 37 and electro-magnet 36 is provided, for example, with a sliding layer, which favors a lateral resetting of the brake housing 21.
- the shape of the brake element 25 is exemplary. Other shapes are possible. The forms are usually determined by experiments, or optimized.
- FIG. 7 An alternative embodiment of the known from the previous example elevator brake device 20 is shown in Fig. 7.
- the actuator 32 is executed by means of a lever mechanism. Instead of the direct electromagnetic
- the brake housing 21 and thus the axis of rotation 28a of the brake member 25 is held via a locking roller 33 in the first position Bl.
- the locking roller 33 is arranged on a locking lever 35 which is mounted in a pivot point 34.
- the locking lever 35 is now held by the electro-magnet 36 with associated armature plate 37 in the first position PI.
- the locking roller 33 can yield and the energy accumulator 24 can push the brake housing 21 together with the axis of rotation 28a upwards into the second position B2 ', B2, as explained in the preceding exemplary embodiment.
- Thessens can be carried out as previously described.
- the locking lever 35 is reset together with the locking roller 33 and the armature plate 37, for example by an auxiliary weight 38 or an auxiliary spring 39, so that the armature plate 37 abuts upon reaching the first position Bl and he first position PI of the actuator on the electro-magnet 36.
- a lateral displacement of the brake housing 21 can be done easily, since the
- Locking roller 33 virtually no lateral sliding resistance generated.
- a required electromagnetic force of the electro-magnet 36 can be made low because the required force F36 of the electro-magnet 36 can be reduced by selecting the lever arrangement.
- a horizontally arranged pivot bearing can be used or instead of the brake plate 30, a counter-brake wedge can be used, which causes an additional gain.
- FIGS. 8s, 8f and 9s, 9f A further embodiment of an elevator brake device 20 is explained in FIGS. 8s, 8f and 9s, 9f.
- a braking device is used as an example as it is known in the basic structure of DE2139056.
- Figs. 8s and 8f illustrate the elevators Brake device 20 in the first position Bl, where 8s shows a side view and 8f shows a view from the front.
- Figs. 9s and 9f show the same elevator brake device 20 in the second position B2.
- the first position B1 shown in FIGS. 8s and 8f again corresponds to the normal position of the elevator brake device 20. In this position, the vehicle body 2, 3 or the elevator car 2 can be moved.
- the elevator brake device 20 does not brake.
- the brake housing 21 is in turn installed in the support 9.
- the support 9 is attached to the drive body 2, 3. Alternatively, of course, the support 9 in this embodiment be directly part of the elevator car, or the driving body.
- the brake housing 21 is in the example about the single guide rod 22 in the vertical guide 50 so fixed in the support 9, that it is displaceable in the vertical direction within the vertical guides 50, here in the form of slots. Also in this example is the
- Brake housing 21 are located a tilt stop 51, which is executed in order to
- the brake housing 21 is of course also mounted in the lateral direction on the guide rods 22 slidably.
- the spring 52 presses the brake housing 21 in this example against the adjustable stop 43.
- This adjustable stop 43 is for example a stop screw, which is screwed into the support 9 and which thus determines a lateral position of the brake housing 21 in the support 9.
- the energy accumulator 24 presses in this embodiment, the brake housing 21 with a force F24 in the upward direction.
- a force F24 in the upward direction.
- the actuator 32 is in turn an electro-magnet 36.
- the electro-magnet 36 generates in the activated state PI, a magnetic holding force F36, which is dimensioned so that they can hold the brake housing 21 via a brake housing stop 21 'in the first position Bl ,
- the electro-magnet 36 acts on the brake housing stop 2 über via the blocking lever 35 and the blocking roller 33 arranged on the blocking lever.
- the locking lever 35 acts via a lever translation, which is determined by the pivot point 34 of the locking lever 35.
- the brake element 25 is arranged in the brake housing 21, in turn, the brake element 25 is arranged.
- the brake element 25 includes in this embodiment a control eccentric 44 and a brake shoe 45.
- the control eccentric 44 is pivotally mounted about the axis of rotation 28a, or about the corresponding pivot bearing 28.
- the control eccentric 44 is connected via the connecting part 46 to the support 9 and it is at the same time elastically fixed by the centering device 42.
- a position of the Steuererexzenters 44 is thus by the position of the brake housing 21, and a position of the Rotation axis 28a, a geometry of the connecting part 46 and the force of the
- the connecting part 46 is connected via the bearing point 47 to the support 9 and it is connected via the attachment point 48 to the brake element 25, and to the control eccentric 44.
- the connecting part 46 includes a freewheel in the form of a longitudinal slot 49, whose function has already been explained in principle in the previous example.
- the control eccentric 44 has a control cam 44 ', which is shaped with respect to the rotation axis 28a, so that a radial distance R from the rotation axis 28a to the control curve 44' increases over a rotation angle.
- the electro-magnet 36 is deactivated.
- the monitoring module 11 interrupts, for example, a power supply to the electro-magnet 36. This eliminates the
- Holding force F36 of the electro-magnet 36 and the energy storage 24 pushes the brake housing 21 together with the axis of rotation 28a upwards, finally in the second position B2. That is, the brake housing, or the axis of rotation 28a of the brake element 25 with control eccentric 44, control cam 44 'and brake shoe 45 is displaced vertically in the support 9. This displacement is made possible by the vertical guide 50. In this case, the control eccentric 44 is now retained by the connecting part 46 at the attachment point 48, resulting in a rotation of the control eccentric 44 about the axis of rotation 28a. This takes place until the control cam 44 'of the control eccentric 44 comes into contact with the guide rail 6, or is pressed against the guide rail 6.
- the drive body 2, 3 is in a downward movement or as soon as he slides away, for example, the Steuererexzenters 44 is automatically rotated further, so that the brake housing 21 is pushed away until the passage play between the brake plate 30 and guide rail 6 is repealed. Next is by rotation of the
- the drive body 2, 3 is now raised again. Since the brake element 25, or the control eccentric 44 together with the brake shoe 45 and with the brake plate 30 is still clamped on the guide rail 6, the support 9 can within the
- Vertical guide 50 are set in motion.
- the brake housing 21 thus again reaches the original first position Bl and the locking lever 35, or possibly the armature plate 37 arranged on the locking lever, is brought to the electro-magnet 36. If the monitoring module 11 is a corresponding release, the magnetic field of the electro-magnet 36 can be turned on, whereby the brake housing 21 again in this first Position Bl can be kept. During further movement of the vehicle in the upward direction, the still clamping brake element 25 rotates back until the normal position shown in FIGS. 8s and 8f is reached again. It should be noted that the vertical guide 50 further allows the drive body 2, 3 at reset, regardless of
- Clamping resistance of the elevator brake device can be set in motion and that upon reaching the first end of the vertical guide 50, a kinetic energy of the driving body 2, 3 helps to reset the elevator brake device.
- the illustrated arrangements can be varied by the person skilled in the art.
- the brakes can be mounted above or below the car 2. It can also be used on a car 2 more Bremspaare.
- the brake device can also be used in an elevator system with multiple cabins, in which case each of the cabs has at least one such braking device.
- the brake device can be grown in case of need also on the counterweight 3 or it can be mounted on a self-propelled cabin.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Maintenance And Inspection Apparatuses For Elevators (AREA)
- Cage And Drive Apparatuses For Elevators (AREA)
- Braking Arrangements (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12759769.8A EP2760777B1 (de) | 2011-09-30 | 2012-09-21 | Bremseinrichtung mit elektromechanischer betätigungseinrichtung |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11183388 | 2011-09-30 | ||
EP12759769.8A EP2760777B1 (de) | 2011-09-30 | 2012-09-21 | Bremseinrichtung mit elektromechanischer betätigungseinrichtung |
PCT/EP2012/068639 WO2013045359A1 (de) | 2011-09-30 | 2012-09-21 | Bremseinrichtung mit elektromechanischer betätigungseinrichtung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2760777A1 true EP2760777A1 (de) | 2014-08-06 |
EP2760777B1 EP2760777B1 (de) | 2015-06-17 |
Family
ID=46875861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12759769.8A Active EP2760777B1 (de) | 2011-09-30 | 2012-09-21 | Bremseinrichtung mit elektromechanischer betätigungseinrichtung |
Country Status (8)
Country | Link |
---|---|
US (1) | US9457989B2 (de) |
EP (1) | EP2760777B1 (de) |
KR (1) | KR101997300B1 (de) |
CN (1) | CN103648953B (de) |
BR (1) | BR112013018423B1 (de) |
ES (1) | ES2547452T3 (de) |
MX (1) | MX348031B (de) |
WO (1) | WO2013045359A1 (de) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102791603B (zh) * | 2010-03-18 | 2015-12-16 | 因温特奥股份公司 | 具有制动器设备的升降机系统 |
CN103648953B (zh) * | 2011-09-30 | 2016-06-15 | 因温特奥股份公司 | 具有电动机械致动装置的制动装置 |
BR112013018122B1 (pt) * | 2011-09-30 | 2021-03-09 | Inventio Ag | dispositivo de freio para elevador para frenagem de uma cabine de elevador, instalação de elevador e método para a frenagem de uma cabine de elevador |
NZ629351A (en) * | 2012-03-20 | 2016-04-29 | Inventio Ag | Safety brake device in a lift installation |
CN104812689B (zh) * | 2012-11-27 | 2017-03-08 | 因温特奥股份公司 | 用于电梯系统的行进体的安全制动装置 |
CN104837758B (zh) * | 2012-12-13 | 2017-04-12 | 因温特奥股份公司 | 用于电梯系统的防坠装置 |
EP2837592A1 (de) | 2013-08-13 | 2015-02-18 | Aplicaciones Electromecanicas Gervall, S.A. | Antriebssystem für ein Aufzugssicherheitsgetriebe |
ES2713691T3 (es) * | 2014-06-12 | 2019-05-23 | Otis Elevator Co | Mecanismo de accionamiento del miembro de freno |
WO2015191695A1 (en) | 2014-06-12 | 2015-12-17 | Otis Elevator Company | Braking system resetting mechanism for a hoisted structure |
WO2016045934A1 (de) * | 2014-09-24 | 2016-03-31 | Inventio Ag | Aufzugbremse |
CN107000994B (zh) * | 2014-12-17 | 2020-10-09 | 因温特奥股份公司 | 用于电梯的缓冲单元 |
US10486939B2 (en) | 2015-09-27 | 2019-11-26 | Otis Elevator Company | Breaking system for a hoisted structure and method of controlling braking a hoisted structure |
US10584014B2 (en) | 2015-12-07 | 2020-03-10 | Otis Elevator Company | Robust electrical safety actuation module |
DE102016200593A1 (de) * | 2016-01-19 | 2017-07-20 | Thyssenkrupp Ag | Bremseinrichtung für einen Fahrkorb eines Aufzugsystems |
US20170275136A1 (en) * | 2016-03-24 | 2017-09-28 | Home Conveyance Safety Ltd. | Emergency fall arresting system |
US10889468B2 (en) | 2016-12-13 | 2021-01-12 | Otis Elevator Company | Electronics safety actuator |
US10569993B2 (en) * | 2017-03-29 | 2020-02-25 | Otis Elevator Company | Safety brake actuation mechanism for a hoisted structure |
US10562739B2 (en) * | 2017-08-25 | 2020-02-18 | Otis Elevator Company | Synchronized electronic safety actuator |
US11434104B2 (en) | 2017-12-08 | 2022-09-06 | Otis Elevator Company | Continuous monitoring of rail and ride quality of elevator system |
CN110356944B (zh) * | 2018-03-26 | 2021-08-03 | 上海三菱电梯有限公司 | 电梯制动装置 |
CN110356945B (zh) * | 2018-03-26 | 2021-03-16 | 上海三菱电梯有限公司 | 直线运动组件的磨损检测设备及电梯制动装置 |
US10889467B2 (en) | 2018-05-08 | 2021-01-12 | Otis Elevator Company | Synchronization based on distance of magnet assembly to rail |
US11078045B2 (en) * | 2018-05-15 | 2021-08-03 | Otis Elevator Company | Electronic safety actuator for lifting a safety wedge of an elevator |
EP3604196B1 (de) * | 2018-08-03 | 2023-04-26 | Otis Elevator Company | Elektronische sicherheitsbetätigungsanordnung für aufzugssystem |
US10822200B2 (en) * | 2018-10-12 | 2020-11-03 | Otis Elevator Company | Elevator safety actuator systems |
CN109358553B (zh) * | 2018-11-09 | 2020-08-18 | 浙江国自机器人技术有限公司 | 升降机运动控制方法及装置、升降机控制器及升降机系统 |
CN111170114B (zh) * | 2018-11-13 | 2021-05-25 | 上海三菱电梯有限公司 | 快速响应电梯制动装置及电梯 |
EP3898481A1 (de) * | 2018-12-21 | 2021-10-27 | Inventio AG | Aufzugssystem-anordnung mit einer aufzugsbremseinrichtung |
EP3674248B1 (de) * | 2018-12-31 | 2022-09-07 | KONE Corporation | Aufzugkabinenfeststellbremse |
KR102173779B1 (ko) | 2019-01-28 | 2020-11-04 | 윤창열 | 회전형 제동패드를 구비한 엘리베이터 쳐짐방지용 정위치 클램핑 및 비상제동 장치 |
KR102009349B1 (ko) | 2019-03-21 | 2019-08-12 | 그린엘리베이터(주) | 엘리베이터 처짐방지용 정위치 클램핑 및 비상제동 장치 |
KR102197421B1 (ko) | 2019-05-27 | 2021-01-04 | 주식회사 현대클러치 | 개문발차 방지 및 처짐 방지용 엘리베이터 정위치 클램핑 및 비상제동 장치 |
CN112758798B (zh) * | 2019-11-06 | 2024-07-30 | 奥的斯电梯公司 | 升降机轿厢的稳定装置和升降机系统 |
US11472671B2 (en) * | 2019-11-07 | 2022-10-18 | Otis Elevator Company | Inspection assembly for elevator system |
EP3831759A1 (de) | 2019-12-02 | 2021-06-09 | Inventio AG | Vorrichtung zum führen und bremsen eines entlang einer führungsschiene zu verlagernden fahrkörpers einer aufzuganlage |
US11891275B2 (en) * | 2019-12-12 | 2024-02-06 | Inventio Ag | Brake device, e.g. with a wedge-shaped brake element, for braking a travelling body that can be moved in a guided manner along a guide rail in a movement direction |
AU2020405929B2 (en) * | 2019-12-17 | 2024-07-18 | Inventio Ag | Safety brake for an elevator |
EP4347471A1 (de) | 2021-06-03 | 2024-04-10 | Wurtec, Incorporated | Aufzugsführungsschienenblockanordnung |
CN113860113B (zh) * | 2021-08-30 | 2023-02-14 | 伟龙意程智能科技(江苏)有限公司 | 一种电梯用偏心轮型安全钳结构 |
CN115092789B (zh) * | 2022-08-25 | 2022-11-11 | 河南起升智能科技有限公司 | 防意外移动装置、防意外移动组件和电梯 |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3706361A (en) * | 1970-07-21 | 1972-12-19 | Dresser Ind | Safety brake |
US3783978A (en) * | 1972-07-24 | 1974-01-08 | Elevator Safety Co | Stop control for elevators |
FI85129C (fi) * | 1989-12-14 | 1992-03-10 | Kone Oy | Faongapparat. |
JP2529771B2 (ja) * | 1990-11-06 | 1996-09-04 | 三菱電機株式会社 | ロ―プレスリニアモ―タエレベ―タ― |
JP2710464B2 (ja) * | 1990-11-30 | 1998-02-10 | 日本オーチス・エレベータ株式会社 | 電磁ブレーキ |
JPH04365771A (ja) * | 1991-06-13 | 1992-12-17 | Toshiba Corp | エレベータ |
JP3090809B2 (ja) * | 1993-03-05 | 2000-09-25 | 株式会社東芝 | 自走式エレベータ |
US6499933B2 (en) * | 1997-04-03 | 2002-12-31 | Tokyo Electron Limited | Elevating mechanism, carrier conveying apparatus and heat treatment installation |
ATE226554T1 (de) * | 1997-08-21 | 2002-11-15 | Aufzugstechnologie Schlosser G | Bremsfangvorrichtung |
US5819879A (en) * | 1997-11-06 | 1998-10-13 | Otis Elevator Company | Safety brake |
US6173813B1 (en) * | 1998-12-23 | 2001-01-16 | Otis Elevator Company | Electronic control for an elevator braking system |
JP2001019292A (ja) * | 1999-06-25 | 2001-01-23 | Inventio Ag | 鉛直搬送装置の荷重支持手段の鉛直方向変位と鉛直方向振動とを防止する装置および方法 |
US6425462B1 (en) * | 2000-11-03 | 2002-07-30 | Su The Tran | Gravity-assisted elevator brake/clutch |
CN1313346C (zh) * | 2001-06-29 | 2007-05-02 | 三菱电机株式会社 | 电梯紧急制动装置 |
JP2004262652A (ja) * | 2002-09-23 | 2004-09-24 | Inventio Ag | エレベータ用の安全装置 |
MY135853A (en) * | 2003-02-04 | 2008-07-31 | Inventio Ag | Safety device for an elevator |
KR100695596B1 (ko) * | 2003-03-24 | 2007-03-14 | 미쓰비시덴키 가부시키가이샤 | 엘리베이터의 비상 브레이크 장치 |
DE502004007232D1 (de) * | 2003-06-16 | 2008-07-03 | Invento Ag | Seilbremse für einen aufzug |
ATE491662T1 (de) * | 2003-10-07 | 2011-01-15 | Otis Elevator Co | Fernrückstellbare seillose not-stopp-vorrichtung für einen aufzug |
CA2720505C (en) * | 2004-05-25 | 2013-01-29 | Mitsubishi Denki Kabushiki Kaisha | Safety device for an elevator |
US7650969B2 (en) * | 2004-12-03 | 2010-01-26 | Otis Elevator Company | Safety device for use in an elevator system including a triggering member for activating a safety brake |
CN101102955B (zh) * | 2006-01-10 | 2010-05-19 | 三菱电机株式会社 | 电梯装置 |
DE602006021240D1 (de) * | 2006-11-08 | 2011-05-19 | Otis Elevator Co | Aufzugbremsvorrichtung |
MY143851A (en) * | 2006-12-05 | 2011-07-15 | Inventio Ag | Braking device for holding and braking a lift cabin in a lift facility |
WO2008080847A1 (de) * | 2007-01-05 | 2008-07-10 | Continental Teves Ag & Co. Ohg | Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugkabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine |
JP5112342B2 (ja) * | 2007-02-15 | 2013-01-09 | 三菱電機株式会社 | エレベータの安全装置 |
WO2009040934A1 (ja) * | 2007-09-28 | 2009-04-02 | Mitsubishi Electric Corporation | エレベータの安全装置 |
ATE506313T1 (de) * | 2007-11-12 | 2011-05-15 | Thyssenkrupp Elevator Ag | Bremsvorrichtung zum bremsen eines fahrkorbs |
CA2821144C (en) * | 2010-12-17 | 2019-02-19 | Inventio Ag | Device for actuating and resetting a safety gear |
US9169104B2 (en) * | 2010-12-17 | 2015-10-27 | Inventio Ag | Activating a safety gear |
CA2816359C (en) * | 2010-12-17 | 2019-02-19 | Inventio Ag | Monitoring device for detecting unintended departure of a lift cage from standstill |
CN103648953B (zh) * | 2011-09-30 | 2016-06-15 | 因温特奥股份公司 | 具有电动机械致动装置的制动装置 |
WO2013060597A1 (de) * | 2011-10-27 | 2013-05-02 | Inventio Ag | Geschwindigkeitsbegrenzer für einen aufzug |
CA2850583C (en) * | 2011-11-29 | 2019-12-10 | Inventio Ag | Safety brake with resetting means |
WO2013084312A1 (ja) * | 2011-12-07 | 2013-06-13 | 三菱電機株式会社 | エレベータの非常止め装置、及びエレベータの非常止め装置の取付方法 |
US20130175120A1 (en) * | 2012-01-06 | 2013-07-11 | Thyssenkrupp Access Manufacturing, Llc | Residential elevator |
BR112014019895A8 (pt) * | 2012-02-17 | 2017-07-11 | Inventio Ag | Sistema de freio com fricção variável |
NZ629351A (en) * | 2012-03-20 | 2016-04-29 | Inventio Ag | Safety brake device in a lift installation |
-
2012
- 2012-09-21 CN CN201280033466.0A patent/CN103648953B/zh active Active
- 2012-09-21 ES ES12759769.8T patent/ES2547452T3/es active Active
- 2012-09-21 BR BR112013018423-0A patent/BR112013018423B1/pt active IP Right Grant
- 2012-09-21 EP EP12759769.8A patent/EP2760777B1/de active Active
- 2012-09-21 WO PCT/EP2012/068639 patent/WO2013045359A1/de active Application Filing
- 2012-09-21 MX MX2014003699A patent/MX348031B/es active IP Right Grant
- 2012-09-21 KR KR1020147008380A patent/KR101997300B1/ko active IP Right Grant
- 2012-09-24 US US13/625,385 patent/US9457989B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2013045359A1 * |
Also Published As
Publication number | Publication date |
---|---|
US9457989B2 (en) | 2016-10-04 |
BR112013018423B1 (pt) | 2021-03-16 |
MX2014003699A (es) | 2014-07-22 |
US20130081908A1 (en) | 2013-04-04 |
KR101997300B1 (ko) | 2019-10-01 |
MX348031B (es) | 2017-05-23 |
CN103648953A (zh) | 2014-03-19 |
WO2013045359A1 (de) | 2013-04-04 |
CN103648953B (zh) | 2016-06-15 |
KR20140082966A (ko) | 2014-07-03 |
BR112013018423A2 (pt) | 2016-10-11 |
EP2760777B1 (de) | 2015-06-17 |
ES2547452T3 (es) | 2015-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2760777B1 (de) | Bremseinrichtung mit elektromechanischer betätigungseinrichtung | |
EP2760776B1 (de) | Bremseinrichtung mit elektromechanischer betätigung | |
EP3405423B1 (de) | Bremseinrichtung für einen fahrkorb eines aufzugsystems | |
EP2925654B1 (de) | Fangvorrichtung zu einem fahrkörper einer aufzugsanlage | |
EP2547617B1 (de) | Aufzugsanlage mit bremseinrichtung | |
EP2651809B1 (de) | Betätigung einer fangvorrichtung | |
EP2058262B1 (de) | Bremsvorrichtung zum Bremsen eines Fahrkorbs | |
EP3938308B1 (de) | Fangbremseinrichtung und fangbremsverfahren | |
EP2582606A1 (de) | Haltebremse mit gesperre | |
DE102019106627A1 (de) | Fangbremseinrichtung und Fangbremsverfahren | |
WO2013175003A1 (de) | Dämpfungseinheit für einen aufzug | |
EP3774629A1 (de) | Zangenbremse für eine aufzugsanlage, die insbesondere als halte- und sicherheitsbremse dient | |
EP3720799B1 (de) | Fangvorrichtung für einen fahrkörper, aufzugsanlage mit einer fangvorrichtung und verfahren zum entsperren einer fangvorrichtung | |
EP4069619B1 (de) | Vorrichtung zum führen und bremsen eines entlang einer führungsschiene zu verlagernden fahrkörpers einer aufzuganlage | |
EP2050706A1 (de) | Festhaltevorrichtung | |
WO2023148266A1 (de) | Bremsfangvorrichtung | |
EP2931640B1 (de) | Fangvorrichtung für eine aufzugsanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131011 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150219 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 731800 Country of ref document: AT Kind code of ref document: T Effective date: 20150715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012003516 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2547452 Country of ref document: ES Kind code of ref document: T3 Effective date: 20151006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150917 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150917 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150617 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151017 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151019 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012003516 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150921 |
|
26N | No opposition filed |
Effective date: 20160318 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150617 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 731800 Country of ref document: AT Kind code of ref document: T Effective date: 20170921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170921 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20211012 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230920 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20231102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220922 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20231001 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240926 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240924 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 13 |