EP2593536A1 - Verfahren zur herstellung von kohlepartikel enthaltenden presslingen - Google Patents

Verfahren zur herstellung von kohlepartikel enthaltenden presslingen

Info

Publication number
EP2593536A1
EP2593536A1 EP11738661.5A EP11738661A EP2593536A1 EP 2593536 A1 EP2593536 A1 EP 2593536A1 EP 11738661 A EP11738661 A EP 11738661A EP 2593536 A1 EP2593536 A1 EP 2593536A1
Authority
EP
European Patent Office
Prior art keywords
water
weight
substance
carbon particles
compacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11738661.5A
Other languages
English (en)
French (fr)
Other versions
EP2593536B1 (de
Inventor
Hado Heckmann
Josef Stockinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
SIEMENS VAI METALS TECHNOLOGIES GmbH
Siemens VAI Metals Technologies GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIEMENS VAI METALS TECHNOLOGIES GmbH, Siemens VAI Metals Technologies GmbH Austria filed Critical SIEMENS VAI METALS TECHNOLOGIES GmbH
Publication of EP2593536A1 publication Critical patent/EP2593536A1/de
Application granted granted Critical
Publication of EP2593536B1 publication Critical patent/EP2593536B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/105Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with a mixture of organic and inorganic binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • C10L5/146Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders with wax, e.g. paraffin wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • C10L5/16Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders with bituminous binders, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/22Methods of applying the binder to the other compounding ingredients; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates

Definitions

  • the invention relates to a process for the production of pellets containing pellets, the pellets obtained thereby and the use of the pellets in processes for producing pig iron in a fixed bed or in processes for the preparation of carbon carriers for processes for producing pig iron in a fixed bed.
  • Compressive strength is required to maintain the original size of the compacts after being charged into a material bunker or fixed bed reactor, despite pressure exerted by superposed layers of material.
  • hot strength refers to a) strength remaining after pyrolysis of the pellets in a high temperature zone
  • Coke particles existing size of these particles is largely retained.
  • coals which show an extraordinarily high water absorption capacity, in particular characterized by a high inherent moisture content.
  • the moisture content of the compacts should not be too high, ie at a maximum of 7% by weight. This is because this moisture in the use of the pellets for pig iron production or for the production of carbon carriers for
  • Drying produced additional pore volume.
  • the unwetted pore volume can absorb a corresponding amount of water or aqueous media.
  • the additional pore volume can again absorb water or aqueous medium.
  • certain coals also tend to have extra pore volume due to grain damage, especially during intense drying to generate.
  • molasses contains components which act catalytically with respect to a reaction of carbon with hot, C0 2 -containing gases, whereby in particular in the hot zones of a production of pig iron serving fixed bed at temperatures> 800-1000 ° C, depending on the pressure, the extent a conversion of solid carbon with C0 2 increases according to Boudouard reaction.
  • the hot strength of molasses-treated compacts is relieved by pyrolysis-derived, semi-coke or coke particles.
  • bitumen as a binder proposed in WO9901583A1 does not pose such problems associated with molasses. However, the production of pellets with bitumen is associated with very high binder costs.
  • the object of the present invention is to provide a process for the production of compacts, in which these disadvantages of the prior art are overcome, and compacts with sufficient green and hot strength even with the use of carbon particles, which must be pre-dried, using a known Lesser amount of a water-containing binder system can be produced.
  • This object is achieved by a method for producing a compact containing carbon particles, in which the carbon particles are mixed with a water-containing binder system and the resulting mixture is further processed by pressing into compacts,
  • At least a subset of the carbon particles is subjected to at least two impregnation steps in which it is impregnated with at least one substance.
  • the substance either penetrates into the pores of the carbon particles and accordingly prevents the penetration of components of the aqueous binder system by filling in the pore space. Or the substance settles in the Exit points of the pores on the carbon particle surface, also called pore necks, and prevents by this clogging of the pore necks penetration of components of the aqueous binder system in the pores.
  • aqueous binder system which is needed on the coal particle surface for binding purposes, can no longer fulfill these binding purposes after penetration into the pores. Accordingly, as compared with a method in which aqueous binder system can penetrate the pores, the amount of aqueous binder system required is reduced.
  • the coal particles to be processed into compacts become
  • a moisture content of less than 8% by weight preferably to a moisture content of less than 7% by weight.
  • a moisture in a range from greater than or equal to 4% by weight to less than 8% by weight is particularly preferred, a moisture in a range from greater than or equal to 5% by weight to less than 7% by weight is particularly preferred.
  • the aqueous binder system may contain one or more other components besides water.
  • the impregnation step may consist of steaming the carbon particles with the substance, spraying the carbon particles with the substance, mixing the substance into a moving bed of carbon particles, or mixing the substance into one
  • Fluidized bed of coal particles exist.
  • It may be subjected to at least two impregnation steps, a subset or all of the coal particles to be processed into compacts. It can also be three, four, five, six, seven, eight, nine, ten or more impregnation steps. If the total amount of carbon particles to be processed into compacts is subjected to at least two impregnation steps, the above-described effects of the impregnation will occur in the total amount of coal particles to be processed into compacts.
  • Impregnant consumed as in an impregnation of the entire Compacts to be processed coal particles is consumed as in an impregnation of the entire Compacts to be processed coal particles.
  • the above-described effects of impregnation occur in the subset and thus contribute to an improvement in the properties of the compact.
  • a first impregnation will improve the efficiency and / or durability of a subsequent impregnation.
  • the effect caused by the impregnation may decrease with increasing age of the pellets - for example, such that the briquettes behave brittle after a certain time.
  • Pores have been caused by the impregnating agent or separation of the impregnating agent from the pore walls, for example due to cooling and / or contraction.
  • different impregnating agents can be used for the first and second impregnation steps.
  • penetration and subsequent closure of pores that were still incomplete or not sealed after the first impregnation step can take place-because the impregnation agent in the second impregnation step is, for example, another
  • Viscosity and / or other wetting properties against the carbon particles has.
  • the carbon particles can be impregnated in all impregnation steps with the same substance. In different impregnation steps can also be used.
  • the substance with which it is impregnated is preferably used as a liquid or by means of a liquid for impregnation.
  • a liquid for example, substances that are liquid at the temperature prevailing at the impregnation step are.
  • Impregnation by means of a liquid denotes, for example, impregnation with substances which, although they are not themselves liquid under the conditions prevailing during the impregnation step, are emulsified or suspended in a liquid.
  • the carbon particles to be impregnated are preferably heated to a temperature at which the substance is liquid.
  • the substance impregnated with the carbon particles in at least one of the impregnation steps is water.
  • Carbon carriers having a low moisture content than these compacts can limit the water input into the pig iron production process to an acceptable level.
  • the substance with which carbon particles are impregnated in at least one of the impregnation steps is a water-insoluble and / or water-repellent substance.
  • the water-insoluble and / or water-repellent substance preferably belongs to that from waxes, organic coking or refinery products, as well as plastics
  • the impregnation step is advantageously carried out at a temperature at which the water-insoluble and / or water-repellent substance is liquid, in particular viscous.
  • the water-insoluble and / or water-repellent substance solidifies on cooling in the exit points of the pores on the coal particle surface.
  • the substance with which carbon particles are impregnated in at least one of the impregnation steps is an aqueous solution of a substance or a mixture of substances.
  • a substance or a mixture of substances for example, it is molasses, which is an aqueous solution of a mixture of carbohydrates and other natural products.
  • dissolved substances of all kinds which improve the hot strength and cold strength of the compacts, can be used, for example starch or lignin bases from waste liquors of pulp production.
  • the substance with which the carbon particles are impregnated in at least one of the impregnation steps is an aqueous one
  • Suspension of solid colloids wherein the solid has water-repellent properties.
  • examples include suspensions of colloidal talc, graphite or waxes in water. If the solids settle in the pores or in the pore necks, the entry of water-containing binder systems is made more difficult due to the high surface tension of the water-repellent solids.
  • the substance with which the carbon particles are impregnated in at least one of the impregnation steps an emulsion containing on the one hand water and on the other hand carbonaceous substances such as bitumens, raw tars obtained from hard coal, pitches, waxes, oils.
  • the lower limit of the amount of substance added in the impregnation step, called impregnating agent, is 0.5% by weight, preferably 1% by weight
  • the upper limit is 5% by weight, preferably 3% by weight, more preferably 2% by weight, based on the weight of the compacts to be processed good, so the coal particles.
  • Addition of more than 5% by weight of impregnating agent does not make economic sense. If less than 0.5% by weight of impregnating agent is added, impregnation is no longer effective.
  • Binder system molasses and quicklime or hydrated lime. It can also consist of these components.
  • the binder system contains molasses in combination with strong inorganic acids, such as phosphoric acid, sulfuric acid, nitric acid.
  • Binder system an emulsion of bitumen in water. It can also consist of such an emulsion.
  • the binder system contains products from waste liquors of pulp production, starches, cellulose, beet pulp, waste paper pulp, groundwood, or long-chain polyelectrolytes such as carboxymethylcellulose.
  • quicklime or hydrated lime binder systems have the disadvantage that quicklime CaO and hydrated lime Ca (OH) 2 increase the reactivity of the pellets against hot C0 2 -containing gases due to catalytic activity, have the Embodiments without lime or hydrated lime have the advantage of providing compacts with comparatively lower reactivity.
  • iron or iron oxide-containing particles are processed in a mixture with the carbon particles.
  • Pressings are subjected to a heat treatment after the pressing.
  • the heat treatment is carried out at a temperature higher than the pressure.
  • the heat treatment causes a drying and / or hardening of the compacts.
  • Heat treatment can be carried out at temperatures of preferably> 250 ° C and ⁇ 350 ° C, where irreversible chemical processes can convert binder components.
  • water-soluble binder components may be rendered water-insoluble
  • the compounds formed during such conversions can contribute to the
  • molasses-containing binder system for example, a conversion of molasses by caramelization.
  • a conversion of molasses by caramelization for example, a conversion of molasses by caramelization.
  • the heat treatment causes a drying.
  • the heat treatment additionally causes a concentration of the solutions, suspensions or emulsions and, accordingly, one
  • Components may, in addition to the aqueous binder system added thereafter, contribute to increased hot strength and cold strength
  • the heat treatment can be the transformation of the due
  • Heat treatment initially resulting coating the pore walls in water-insoluble compounds, or cause in the reactivity of the carbon particles to hot C0 2 containing gases lowering compounds.
  • Maximum temperature of the heat treatment is due to the pyrolysis of the carbon particles limited and is at 350 ° C.
  • Heat treatment is 150 ° C.
  • Impregnation step added amount less than that in the subsequent
  • Impregnation step and as a binder system is carried out in the impregnation step, an addition of 2 -3% by weight, while added as a binder later 7-10% by weight.
  • Impregnation step and as a binder system is carried out in the impregnation step, an addition of 3 to 5% by weight, while added as a binder later 6 to 8% by weight.
  • the limits of the specified ranges are included.
  • a heat treatment is necessary to remove the carrier liquid water so far that the emulsified substances or the dissolved substances settle in the pores or the pore necks. As a result, the pores are occupied or the
  • the processing into compacts after the impregnation steps can be carried out by known methods, for example as described in WO 02 / 50219A1 or in AT005765U 1, or by any method suitable for processing coal particles with a water-containing binder system into compacts.
  • Drying costs are reduced, resulting in an energy savings. Accordingly, since the provision or operation of devices for post-drying can be dispensed with, or the dimensions of the devices and the cost of their operation can be reduced, this is equivalent to operating cost and investment cost reduction.
  • a reduction in the C0 2 reactivity of the resulting after pyrolysis of the pellets in a melter carburetor or the cokes obtained from compacts may result.
  • a low CO 2 reactivity is desired in the operation of a melter gasifier so that the semi-coke in the fixed bed of the melter gasifier or the coke in the fixed bed of a blast furnace remain stable from the charge to the bed surface until reaching the immediate gasification zone in the area of the oxygen nozzles or the tuyeres and thereby promote the permeability of the fixed bed with respect to the gassing and the drainage of molten phases.
  • the reduction of the C0 2 reactivity of the coke or the coke is achieved in that the inner surface of the pores of the carbon particles in the compact can no longer be coated by the impregnation of a binder which contains reactivity-promoting substances.
  • the binder component molasses contains alkalis as reactivity-promoting substances. If the impregnation, for example with substances containing bitumen or waxes, prevents molasses coating the inner surface of the pores, the C0 2 reactivity is thus reduced compared to semi-coke or coke obtained by a process without impregnation step.
  • a minor proportion of undersized coke is commonly used in the COREX® or Fl N EX® process for the production of pig iron in a fixed bed of a melter gasifier
  • Thermo-mechanical stability refers to a test method in which the compacts are subjected to a thermal shock procedure, and the resulting semi-coke is subjected to drumming.
  • the improved thermo-mechanical stability is represented by the fact that the proportion of coarse grain of the tumbled Halbkokses compared to conventionally produced compacts by the inventive
  • the inventive method for the production of compacts makes it possible to reduce the consumption of binder or to curb the harmful effects of reactant-promoting binder components even in the production of coke using compacts of the starting materials.
  • the compacts may be, for example, briquettes or slugs from a compaction.
  • the pellets contain up to 97% by weight of carbon particles,
  • 0.5% by weight preferably 1% by weight, and the upper limit thereof is 5% by weight, preferably 3% by weight, particularly preferably 2% by weight
  • the 15% by weight of the components of a binder system are to be understood as meaning that the water is not included as a component of the binder system, ie the 15% by weight relates to the nonaqueous components of the binder
  • the compact also contains iron or iron oxide-containing particles.
  • Such particles can, for example, in the pig iron or
  • Table 1 shows the evaluation of tests for the production of compacts with regard to the drop resistance (SF) and the puncture strength (PDF) of the pellets during a test campaign.
  • the pellets are after the
  • the compacts are briquettes.
  • the water-containing binder system a system consisting of molasses and quicklime was used.
  • the molasses itself had a water content of 20
  • Impregnating agent used As bitumen Mexphalte 55 Shell was used. The commercial hydraulic oil used was less viscous than the bitumen under the conditions of use.
  • the kneading machine from Köppern used for kneading purposes consisted of a vertical cylindrical container, through which a centrally rotating shaft with kneading arms is guided.
  • Green compacts had a nominal volume of 20 cm 3 .
  • the task of the material to be pressed was done by means of gravitational arbiter. From the experimental roller press associations were made consisting of several green compacts. These associations contain green compacts both in the margins of the associations and in the middle of the associations.
  • the bandages are broken along the dividing seams between the individual green compacts.
  • the associations break up during discharge from the trial roller press into individual green compacts. After kneading in the kneader, the kneaded mixtures were subjected to pressing as a material to be pressed in the trial roll press to produce green compacts.
  • the resulting green compacts are still soft - which is indicated in the jargon by the word "green” - and are subjected to curing to arrive at the finished compact This curing, for example, by at least partial drying by storage in air and / or a thermal treatment done.
  • a type 469 testing machine from ERICHSEN was used for the determination of the dot compressive strength.
  • the lower edition is formed by a round plate of 80 mm diameter and the upper by a horizontal round iron of 10 mm diameter.
  • the Feed rate for the upper support is 8 mm / min.
  • Puncture resistance PDF is considered a maximum load bearing of a green
  • Table 1 indicate the average point compressive strength at break due to point pressure loading in Newton.
  • six green compacts or compacts from the middle region and six green compacts or pellets from the edge region of the bandages obtained in the trial roller press were examined. From the data obtained in these studies, averages were calculated, with the minimum and maximum values, respectively, being disregarded.
  • Particle size d50 of 0.95 mm together with 30% by weight of Ensham coal with a mean particle size d50 of 0.57 mm is used as material to be processed into pellets of carbon particles.
  • This material to be processed into compacts was processed into compacts by impregnating by subjecting the coal to be processed to drying and then by granulation to a desired grain size.
  • the resulting carbon particles are subjected to an impregnation step with the addition of bitumen.
  • To the carbon particles thus obtained then takes place the addition of a water-containing binder system, in this case molasses with the addition of the solid, finely divided binder component quicklime, with mixing, wherein the mixing can be one or more stages.
  • the resulting mixture is subjected to kneading and pressing.
  • the product obtained after curing is the briquette.
  • Ensham coal comes from Ensham Resources of Queensland, Australia.
  • the molasses in the water-containing binder system was used in an amount of 8% by weight, based on the weight of the material to be processed into compacts.
  • the molasses itself contained a proportion of 20% by weight of water.
  • the water-containing binder system consisted of 2% by weight, based on the weight of the material to be processed into compacts, Ensham coal, of burnt lime.
  • the amount of bitumen used was 2% by weight, based on the weight of the material to be processed into compacts. After impregnation with bitumen, the processing was carried out analogously to experiment 1 after its only impregnation step.
  • the temperature of the coal treated with oil and bitumen was 53 ° C before the molasses addition.
  • One part can also be impregnated with one part in 2 or more stages, while the other part is not impregnated or only impregnated in one stage.
  • the method according to the invention is outlined below with reference to the block diagrams shown in FIGS. 1 to 3.
  • the coal 1 to be processed into compacts in this case briquettes, is subjected to drying 2 and then brought to a desired grain size by granulation 3.
  • the carbon particles 4 thus obtained are then subjected to a first impregnation step 6 with the addition of a first impregnating agent 5.
  • the product 7 of the first impregnation step 6 is subjected to a second impregnation step 8 with a second impregnation agent 9.
  • To the product 10 of the second impregnation step 8 then takes place the addition of a water-containing
  • Binder system 1 in this case molasses with the addition of solid, finely divided
  • the mixture 13 thus obtained is subjected to kneading 14 and then to pressing 15.
  • the product 17 obtained after curing 16 is the briquette.
  • the addition of the molasses / quicklime binder system to the product to be processed can be done by adding molasses and quicklime at the same time, or by adding quicklime and molasses in succession.
  • Moisten moisture This can be done with water or part of the aqueous molasses done the binder system. For this purpose, up to half, preferably up to one third of the molasses can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Kohlepartikel enthaltenden Presslingen, die dabei gewonnenen Presslinge sowie die Verwendung der Presslinge in Verfahren zur Roheisenerzeugung in einem Festbett oder in Verfahren zur Herstellung von Kohlenstoffträgern für Verfahren zur Roheisenerzeugung in einem Festbett. Dabei wird vor dem Vermischen mit dem Wasser enthaltenden Bindemittelsystem zumindest eine Teilmenge der Kohlepartikel zumindest zwei Imprägnierungsschritten unterworfen, in welchen sie mit zumindest einer Substanz imprägniert wird.

Description

Beschreibung Bezeichnung der Erfindung Verfahren zur Herstellung von Kohlepartikel enthaltenden Presslinqen
Gebiet der Technik
Die Erfindung betrifft ein Verfahren zur Herstellung von Kohlepartikel enthaltenden Presslingen, die dabei gewonnenen Presslinge sowie die Verwendung der Presslinge in Verfahren zur Roheisenerzeugung in einem Festbett oder in Verfahren zur Herstellung von Kohlenstoffträgern für Verfahren zur Roheisenerzeugung in einem Festbett.
Stand der Technik
In Verfahren zur Roheisenerzeugung in einem Festbett, beispielsweise in
Einschmelzvergasern, oder in Verfahren zur Herstellung von Kohlenstoffträgern für
Verfahren zur Roheisenerzeugung in einem Festbett, beispielsweise Kokserzeugung für Hochöfen, verwendete, Kohlepartikel enthaltende Presslinge, beispielsweise Briketts, müssen nach dem Austrag aus der Presse eine gewisse Sturz- und Druckfestigkeit aufweisen. Die Sturzfestigkeit ist erforderlich, damit die ursprüngliche Größe der Presslinge im Zuge einer Chargierung in einen Prozess unbeschadet unvermeidlicher Stürze, beispielweise bei der Übergabe von einem auf ein anderes Förderband oder bei Chargierung in einen Materialbunker, möglichst weitgehend erhalten bleibt. Die
Druckfestigkeit ist erforderlich, damit die ursprüngliche Größe der Presslinge nach Chargierung in einen Materialbunker oder einen Festbettreaktor trotz eines durch übergelagerte Materialschichten ausgeübten Druckes erhalten bleibt.
Diese Festigkeitsanforderungen werden auch unter dem Begriff Kaltfestigkeit zusammengefasst.
Neben der Kaltfestigkeit ist auch die Heißfestigkeit von Presslingen - insbesondere bei Verwendung in thermischen Prozessen - ein Kriterium für ihre Einsatztauglichkeit. Im besonderen Fall der Verwendung von feinkörnige Kohlepartikel enthaltenden Presslingen in Verfahren zur Roheisenerzeugung, wie beispielsweise in einem Einschmelzvergaser oder Hochofen, bezieht sich der Begriff der Heißfestigkeit a) auf eine Festigkeit der nach Pyrolyse der Presslinge in einer Hochtemperaturzone zurückbleibenden
Halbkoks- beziehungsweise Koks-Partikel, und b) auf eine Festigkeit dieser
Halbkoks- beziehungsweise Koks-Partikel nach erfolgtem chemischen Angriff eines heißen, C02-hältigen Gases. Ein Mindestmaß an Heißfestigkeit ermöglicht, dass die nach der Konvertierung der Presslinge durch Pyrolyse in Halbkoks- beziehungsweise
Koks-Partikel vorhandene Größe dieser Partikel weitgehend erhalten bleibt.
Bei Verfahren zur Roheisenerzeugung in einem Festbett ist die Entwicklung von
Unterkorn aus Presslingen oder Koks-Partikeln vor Chargierung in ein Festbett oder innerhalb eines Festbettes deshalb unerwünscht, weil hierdurch die Permeabilität des Festbettes verschlechtert wird. Im besonderen Fall eines Verfahrens zur
Roheisenerzeugung betrifft das sowohl die Gaspermeabilität als auch das
Drainageverhalten des Festbettes bezüglich des flüssigen Roheisens und der Schlacke. Verschlechtert sich die Permeabilität des Festbettes, so sind nachteilige Auswirkungen auf dessen Produktivität, dessen spezifischen Energiebedarf, sowie dessen
Produktqualität zu erwarten.
Aus WO 02/50219A1 ist es bekannt, Presslinge mit ausreichender Kaltfestigkeit aus feinkörnigen Kohlepartikeln mittels eines Bindemittelsystems aus Branntkalk und Melasse herzustellen. Dabei werden feinkörnige Kohlepartikel von Feinkohle und Branntkalk vermischt, die Mischung zwecks Fortschreiten der Löschreaktion mit Feuchte aus den Kohlepartikeln ruhen gelassen, dann Melasse zugemischt, die dabei erhaltene Mischung geknetet und schließlich aus ihr Presslinge gepresst.
Es gibt Kohlen, die ein außerordentlich hohes Wasseraufnahmevermögen zeigen, insbesondere gekennzeichnet durch eine hohe inhärente Feuchte. Für den Einsatz in der Roheisenerzeugung soll die Feuchte der Presslinge jedoch nicht zu hoch, das heißt bei maximal 7 Gewichts% liegen. Das deshalb, weil diese Feuchte bei der Verwendung der Presslinge zur Roheisenerzeugung oder zur Herstellung von Kohlenstoffträgern für
Verfahren zur Roheisenerzeugung energetisch belastend wirkt, da mit der Feuchte der Presslinge der spezifische Verbrauch von Kohlenstoffträgern deutlich ansteigt. Daher sind Kohlen, deren Feuchte höher liegt, vor der Verarbeitung zu Presslingen zu trocknen. Zusätzlich zu dem in der ungetrockneten Kohle bereits vorhandenen unbenetzten Porenvolumen wird durch die Austreibung von Wasser aus Hohlräumen bei der
Trocknung zusätzliches Porenvolumen erzeugt. Das unbenetzte Porenvolumen kann eine entsprechende Menge an Wasser beziehungsweise wässrigen Medien aufnehmen. Auch das zusätzliche Porenvolumen kann selbstverständlich erneut Wasser oder wässriges Medium aufnehmen. Überdies neigen bestimmte Kohlen auch dazu - insbesondere bei intensiver Trocknung - infolge Kornschädigung zusätzliches Porenvolumen zu generieren. Bei Trocknung einer Kohle mit hohem Wasseraufnahmevermögen auf eine akzeptable Feuchte vor der Anwendung des in WO 02/50219A1 beschriebenen
Verfahrens zur Herstellung von Presslingen wird ein großes zusätzliches Porenvolumen generiert. Daher saugt ein getrockneter Kohlepartikel einen erheblichen Teil der zur Herstellung einer Bindung auf der Partikeloberfläche benötigten Melasse, die als wässrige Lösung aufzufassen ist, in seine Poren ein. Daher ist für solche Kohlen mit üblicherweise verwendeten Melassezusätzen von < 10Gewichts% Prozent, bezogen auf das Gewicht der zu verarbeitenden Kohle, keine ausreichende Festigkeit für die Presslinge zu erzielen. Um dennoch Presslinge mit ausreichender Festigkeit auf Basis Melassebinder herstellen zu können, muss
auf die Generierung von unbenetztem Porenvolumen durch Trocknung verzichtet werden, oder
um so viel mehr Melasse zugesetzt werden, wie von dem Porenvolumen aufgenommen wird und daher nicht zur Bindung der auf der Oberfläche der Kohlepartikel zur Verfügung steht.
Diese Maßnahmen sind jedoch aus Gründen der Prozessökonomie unerwünscht.
Auch bei von Natur aus weniger feuchten Kohlen, die zur Erreichung einer Feuchte der Presslinge von maximal 7 Gewichts% nicht getrocknet werden müssen, wird ein Teil der Melasse in Poren der Kohlepartikeln eingesogen. Melasse enthält jedoch Komponenten, die hinsichtlich einer Reaktion von Kohlenstoff mit heißen, C02-haltigen Gasen katalytisch wirken, wodurch insbesondere in den heißen Zonen eines der Erzeugung von Roheisen dienenden Festbettes bei Temperaturen > 800-1000°C, abhängig vom Druck, das Ausmaß einer Umsetzung von festem Kohlenstoff mit C02 gemäß Boudouard-Reaktion zunimmt. Infolgedessen lässt die Heißfestigkeit von, aus mit Melasse behandelten Presslingen durch Pyrolyse hervorgehenden, Halbkoks- beziehungsweise Koks-Partikeln nach.
Die in WO9901583A1 vorgeschlagene Verwendung von Bitumen als Bindemittel wirft solche mit Melasse verbundenen Probleme nicht auf. Eine Herstellung von Presslingen mit Bitumen ist jedoch mit sehr hohen Bindemittelkosten behaftet.
Die in der AT005765U1 vorgeschlagene Verwendung einer wässrigen Bitumenemulsion als Bindemittelsystem senkt den Bitumenverbrauch um bis zu mehr als 50%. In der Praxis hat es sich jedoch gezeigt, dass die Einsatzkohlen Feuchten von wesentlich über 5 Gewichts% aufweisen müssen, damit bei Verwendung derartiger Bitumenemulsionen stabile Presslinge entstehen. Zudem besteht das Problem, dass in den Kohlepartikeln vorhandene Poren wässrige Bitumenemulsion aufsaugen können, beziehungsweise der Emulsion Wasser entziehen und diese damit infolge Tröpfchen-Koaleszenz destabilisieren können, bevor eine weitgehend gleichmäßige Verteilung der Emulsion innerhalb des zu Presslingen zu verarbeitenden Gutes und entsprechend eine gleichmäßige Benetzung der Partikeloberfläche durch die Emulsion erfolgen kann. Hierdurch wird die Wirksamkeit der Emulsion als Bindmittel reduziert.
Zusammenfassung der Erfindung
Technische Aufgabe
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung von Presslingen bereitzustellen, bei dem diese Nachteile des Standes der Technik überwunden werden, und Presslinge mit genügender Grün- und Heißfestigkeit selbst bei Verwendung von Kohlepartikeln, die vorgetrocknet werden müssen, unter Einsatz einer gegenüber bekannten Verfahren geringeren Menge eines Wasser enthaltenden Bindemittelsystems hergestellt werden können.
Technische Lösung
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Kohlepartikel enthaltenden Presslings, bei dem die Kohlepartikel mit einem Wasser enthaltenden Bindemittelsystem vermischt werden und die dabei erhaltene Mischung durch Pressung zu Presslingen weiterverarbeitet wird,
dadurch gekennzeichnet,
dass vor dem Vermischen mit dem Wasser enthaltenden Bindemittelsystem
zumindest eine Teilmenge der Kohlepartikel zumindest zwei Imprägnierungsschritten unterworfen wird, in welchen sie mit zumindest einer Substanz imprägniert wird. Vorteilhafte Wirkung der Erfindung
Bei der Imprägnierung dringt die Substanz entweder in die Poren der Kohlepartikel ein und verhindert entsprechend durch Ausfüllung des Porenraumes ein Eindringen von Komponenten des wässrigen Bindemittelsystems. Oder die Substanz lagert sich in den Austrittsstellen der Poren auf der Kohlepartikeloberfläche, auch Porenhälse genannt, ab und verhindert durch dieses Verstopfen der Porenhälse ein Eindringen von Komponenten des wässrigen Bindemittelsystems in die Poren.
Auf diese Weise wird verhindert, dass wässriges Bindemittelsystem, welches auf der Kohlepartikeloberfläche zu Bindungszwecken benötigt wird, diese Bindungszwecke nach Eindringen in die Poren nicht mehr erfüllen kann. Entsprechend wird gegenüber einem Verfahren, bei dem wässriges Bindemittelsystem in die Poren eindringen kann, die Menge an benötigtem wässrigem Bindemittelsystem vermindert. Vorzugsweise werden die zu Presslingen zu verarbeitenden Kohlepartikel,
beziehungsweise zumindest eine Teilmenge von ihnen, vor dem Imprägnierungsschritt einer Trocknung auf eine Feuchte von weniger als 8 Gewichts%, bevorzugt auf eine Feuchte von weniger als 7 Gewichts% unterworfen. Eine Feuchte in einem Bereich von größer/gleich 4 Gewichts% bis weniger als 8 Gewichts% ist besonders bevorzugt, eine Feuchte in einem Bereich von größer/gleich 5 Gewichts% bis weniger als 7 Gewichts% ist besonders bevorzugt.
Das wässrige Bindemittelsystem kann, abgesehen von Wasser, eine oder mehrere weitere Komponenten enthalten.
Der Imprägnierungsschritt kann aus Bedampfung der Kohlepartikel mit der Substanz, aus Besprühung der Kohlepartikel mit der Substanz, aus Einmischen der Substanz in eine bewegte Schüttung der Kohlepartikel, oder aus Einmischen der Substanz in eine
Wirbelschicht der Kohlepartikel bestehen.
Es kann eine Teilmenge oder die gesamte zu Presslingen zu verarbeitende Menge Kohlepartikel zumindest zwei Imprägnierungsschritten unterworfen. Es können auch drei, vier, fünf, sechs, sieben, acht, neun, zehn oder mehr Imprägnierungsschritte erfolgen. Wenn die gesamte zu Presslingen zu verarbeitende Menge Kohlepartikel zumindest zwei Imprägnierungsschritten unterworfen wird, werden die oben beschriebenen Effekte der Imprägnierung bei der gesamten zu Presslingen zu verarbeitende Menge Kohlepartikel auftreten.
Wenn eine Teilmenge der zu Presslingen zu verarbeitende Menge Kohlepartikel zumindest zwei Imprägnierungsschritten unterworfen wird, wird weniger
Imprägnierungsmittel verbraucht als bei einer Imprägnierung der gesamten zu Presslingen zu verarbeitenden Menge Kohlepartikel. Die oben beschriebenen Effekte der Imprägnierung treten jedoch bei der Teilmenge auf und tragen so zu einer Verbesserung der Eigenschaften des Presslings bei. Eine erste Imprägnierung die Effizienz und/oder die Haltbarkeit einer darauffolgenden Imprägnierung verbessern. Bei nur einem Imprägnierungsschritt kann es zu einem Nachlassen des durch die Imprägnierung hervorgerufenen Effektes mit zunehmendem Alter der Presslinge kommen - beispielsweise dergestalt, dass die Brkketts sich nach gewisser Zeit spröde verhalten. Ein Nachlassen der durch Imprägnierung
hervorgerufenen Effekte kann beispielsweise durch unvollständige Verschließung der
Poren durch das Imprägnierungsmittel oder Ablösung des Imprägnierungsmittels von den Porenwänden, beispielsweise infolge Abkühlung und/oder Kontraktion, verursacht worden sein.
Werden zwei Imprägnierungsschritte durchgeführt, können solche Effekte vermindert beziehungsweise verhindert werden. Dabei ist es besonders vorteilhaft, wenn
unterschiedliche Imprägnierungsmittel für den ersten und zweiten Imprägnierungsschritt verwendet werden. Beispielsweise kann dann im zweiten Imprägnierungsschritt ein Eindringen und in der Folge Verschließen von Poren stattfinden, die nach dem ersten Imprägnierungsschritt noch unvollständig oder nicht verschlossen wurden - weil das Imprägnierungsmittel im zweiten Imprägnierungsschritt beispielsweise eine andere
Viskosität und/oder andere Benetzungseigenschaften gegenüber der Kohlepartikel hat.
Es kann vorteilhaft sein, wenn eine Teilmenge oder die gesamte zu Presslingen zu verarbeitende Menge Kohlepartikel mehr als zwei Imprägnierungsschritten unterworfen wird. Nach einem vorangehenden Imprägnierungsschritt verbleibende unverschlossene oder unbenetzte Poren können in einem der nachfolgenden Imprägnierungsschritte imprägniert beziehungsweise benetzt oder verschlossen werden.
Die Kohlepartikel können in allen Imprägnierungsschritten mit der gleichen Substanz imprägniert werden. In verschiedenen Imprägnierungsschritten können auch
verschiedene Substanzen verwendet werden.
Die Substanz, mit der imprägniert wird, wird bevorzugt als Flüssigkeit beziehungsweise mittels einer Flüssigkeit zur Imprägnierung eingesetzt. Als Flüssigkeit beispielsweise Substanzen, die bei der beim Imprägnierungsschritt herrschenden Temperatur flüssig sind. Imprägnierung mittels einer Flüssigkeit bezeichnet beispielsweise Imprägnierung mit Substanzen, die zwar unter den beim Imprägnierungsschritt herrschenden Bedingungen nicht selbst flüssig sind, aber in einer Flüssigkeit emulgiert oder suspendiert sind.
Gegenüber einem Einsatz von festen Substanzen wird dadurch das Eindringen in Poren beziehungsweise das Verstopfen von Porenhälsen verbessert beziehungsweise überhaupt erst ermöglicht.
Um zu gewährleisten, dass eine beim Imprägnierungsschritt eingesetzte Substanz während des Imprägnierungsschrittes flüssig bleibt, werden die zu imprägnierenden Kohlepartikel vorzugsweise auf eine Temperatur aufgeheizt, bei der die Substanz flüssig ist.
Nach einer Ausführungsform ist die Substanz, mit der Kohlepartikel in zumindest einem der Imprägnierungsschritte imprägniert werden, Wasser.
Dann wird im Imprägnierungsschritt Wasser in die Poren eingesaugt, die infolgedessen kein Bestreben mehr zeigen, den Kohlepartikeln nach dem Imprägnierungsschritt zugeführte Komponenten des wässrigen Bindemittelsystems aufzusaugen. Infolgedessen können bei bisherigen Verfahren in Poren gesaugte und damit für das Binden der Presslinge unwirksam werdende Komponenten einen Beitrag zum Binden der Presslinge leisten.
Durch Begrenzung des Anteils von mit Wasser imprägnierten Presslingen in einer Einsatzmischung für einen Roheisenerzeugungsprozess in Kombination mit
Kohlenstoffträgern, die eine geringe Feuchte als diese Presslinge aufweisen, kann der Wassereintrag in den Roheisenerzeugungsprozess auf ein akzeptables Ausmaß begrenzt werden.
Nach einer anderen Ausführungsform ist die Substanz, mit der Kohlepartikel in zumindest einem der Imprägnierungsschritte imprägniert werden, eine wasserunlösliche und/oder wasserabstoßende Substanz.
Werden die Poren im Imprägnierungsschritt mit einer solchen Substanz gefüllt, und dabei die Porenwände mit solchen Substanzen beschichtet, sinkt das Bestreben der Poren, Komponenten des wässrigen Bindemittelsystems aufzusaugen. Werden die
Austrittsstellen der Poren auf der Kohlepartikeloberfläche von solchen Substanzen verschlossen, können keine Komponenten des wässrigen Bindemittelsystems mehr in die Poren eindringen. Infolgedessen können bisher in Poren gesaugte und damit für das Binden der Presslinge unwirksam werdende Komponenten einen Beitrag zum Binden der Presslinge leisten.
Die wasserunlösliche und/oder wasserabstoßende Substanz gehört bevorzugt zu der aus Wachsen, organischen Kokerei- oder Raffinerieprodukten, sowie Kunststoffen
beziehungsweise Kunststoffabfällen bestehenden Gruppe von Substanzen. Es kann sich auch um Altöl handeln. Es kann sich auch um Bitumen handeln. Diese Substanzen stehen üblicherweise in großen Mengen kostengünstig zur Verfügung. Dabei erfolgt der Imprägnierungsschritt vorteilhafterweise bei einer Temperatur, bei der die wasserunlösliche und/oder wasserabstoßende Substanz flüssig, insbesondere dickflüssig vorliegt. Als dickflüssig in diesem Sinne werden Flüssigkeiten angesehen, deren Viskosität mindestens 1 Pas beträgt, und maximal 100 Pas, beispielsweise 10 Pas, beträgt. Bei diesen Bedingungen verteilt sich die Substanz auf der Oberfläche der Kohlepartikel und dringt in die Austrittsstellen der Poren aber kaum in das Innere der Poren ein. Dadurch wird der Verbrauch der wasserunlöslichen und/oder wasserabstoßenden Substanz im Imprägnierungsschritt gering gehalten. Vorteilhafterweise verfestigt sich die wasserunlösliche und/oder wasserabstoßende Substanz bei Abkühlung in den Austrittsstellen der Poren auf der Kohlepartikeloberfläche.
Nach einer anderen Ausführungsform ist die Substanz, mit der Kohlepartikel in zumindest einem der Imprägnierungsschritte imprägniert werden, eine wässrige Lösung eines Stoffes oder einer Stoffmischung. Beispielweise ist es Melasse, welche eine wässrige Lösung einer Mischung von Kohlehydraten und anderen Naturstoffen ist.
Grundsätzlich können gelöste Stoffe aller Art, welche die Heißfestigkeit und Kaltfestigkeit der Presslinge verbessern, eingesetzt werden, beispielsweise Stärke oder Lignin-Laugen aus Ablaugen der Zellstoffgewinnung.
Es ist bevorzugt, Lösungen von Stoffen oder Stoffmischungen zu verwenden, welche durch Wärmebehandlung und/oder chemische Reaktion in wasserunlösliche Substanzen umgewandelt werden. Dadurch wird erreicht, dass die von diesen Stoffen oder
Stoffgemischen hervorgerufenen Effekte nicht dadurch geschmälert werden, dass sie im Wasser des Wasser enthaltenden Bindemittelsystems aufgelöst und aus den Poren ausgeschwemmt werden. Nach einer anderen Ausführungsform ist die Substanz, mit der die Kohlepartikel in zumindest einem der Imprägnierungsschritte imprägniert werden, eine wässrige
Suspension von Feststoffkolloiden, wobei der Feststoff wasserabweisende Eigenschaften aufweist. Beispiel dafür sind Suspensionen von kolloidem Talk, von Graphit oder von Wachsen in Wasser. Lagern sich die Feststoffe in den Poren beziehungsweise in den Porenhälsen ab, ist der Eintritt von Wasser enthaltenden Bindemittelsystemen aufgrund der hohen Oberflächenspannung der wasserabweisenden Feststoffe erschwert.
Nach einer weiteren Ausführungsform ist die Substanz, mit der die Kohlepartikel in zumindest einem der Imprägnierungsschritte imprägniert werden, eine Emulsion enthaltend einerseits Wasser sowie andererseits kohlenstoffhaltige Substanzen wie beispielsweise Bitumina, Rohteere erhalten aus Steinkohle, Peche, Wachse, Öle.
Beim Eindringen solcher Emulsionen in die Poren werden die kohlenstoffhaltigen
Substanzen in dünnen Schichten auf der Porenoberfläche abgelagert. Bei Pyrolyse entstehen aus diesen dünnen Schichten Kohlenstoffschichten. Diese vermindern die Reaktivität des Presslings gegenüber heißen C02-haltigen Gasen im Vergleich zu einer Ausführungsform, in der in den Poren keine dünnen Schichten der Substanzen abgelagert werden. Ein solcher Effekt tritt auch auf, wenn die Substanz, mit der die Teilmenge der Kohlepartikel im Imprägnierungsschritt imprägniert wird, keine Emulsion ist,
beispielsweise wenn die Substanz Bitumen ist.
Das Auftreten eines solchen Effektes liegt daran, dass die aus den Substanzen entstehenden Kohlenstoffschichten wenige oder keine bezüglich Reaktion mit heißen C02-haltigen Gasen katalytisch wirkende Substanzen enthalten. Im Gegensatz dazu enthalten die Kohlepartikel bzw. das Material, das zu Presslingen verarbeitet werden soll, katalytisch wirkende Verbindungen, bspw. Eisen oder Alkalien. Entsprechend ist die
Reaktivität eines Presslings, dessen Oberfläche und Poren mit einer aus den Substanzen hervorgehenden Kohlenstoffschicht bedeckt ist, geringer als die eines Presslings ohne eine solche Kohlenstoffschicht.
Beim Einsatz von Kohlepartikeln, die vor der Verarbeitung zu Presslingen einer Vortrocknung bedürfen, ist es aus wirtschaftlichen Gründen von Vorteil, die Trocknung nicht wesentlich unter 5 Gewichts% Feuchte, das heißt auf maximal 4 Gewichts% Feuchte, voranzutreiben. Dadurch wird die Entstehung von zusätzlichem Porenvolumen infolge der Trocknung begrenzt und entsprechend im Imprägnierungsschritt weniger Substanz von Poren aufgenommen. Entsprechend wird im Imprägnierungsschritt weniger Substanz verbraucht. Zudem muss zur Trocknung weniger apparativer und energetischer Aufwand betrieben werden.
Die Untergrenze der Menge von im Imprägnierungsschritt zugesetzter Substanz, genannt Imprägnierungsmittel, beträgt 0,5 Gewichts%, bevorzugt 1 Gewichts%, die Obergrenze beträgt 5 Gewichts%, bevorzugt 3 Gewichts%, besonders bevorzugt 2 Gewichts%, bezogen auf das Gewicht des zu Presslingen zu verarbeitenden Gutes, also der Kohlepartikel. Zusatz von mehr als 5 Gewichts% Imprägnierungsmittel ist ökonomisch nicht sinnvoll. Bei Zusatz von weniger als 0,5 Gewichts% Imprägnierungsmittel ist eine Imprägnierung nicht mehr effektiv.
Gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens enthält das
Bindemittelsystem Melasse sowie Branntkalk oder Kalkhydrat. Es kann auch aus diesen Komponenten bestehen.
Gemäß anderen Ausführungsformen enthält das Bindemittelsystem Melasse in Kombination mit starken anorganischen Säuren, wie beispielsweise Phosphorsäure, Schwefelsäure, Salpetersäure.
Gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens enthält das
Bindemittelsystem eine Emulsion von Bitumen in Wasser. Es kann auch aus einer solchen Emulsion bestehen.
Gemäß weiterer Ausführungsformen enthält das Bindemittelsystem Produkte aus Ablaugen der Zellstoffgewinnung, Stärken, Cellulose, Rübenschnitzel, Altpapierschliff, Holzschliff, oder auch langkettige Polyelektrolyte wie beispielsweise Carboxymethylcellulose.
Da Branntkalk oder Kalkhydrat enthaltende Bindemittelsysteme den Nachteil haben, dass Branntkalk CaO und Kalkhydrat Ca(OH)2 die Reaktivität der Presslinge gegenüber heißen C02-haltigen Gasen aufgrund katalytischer Wirksamkeit erhöhen, besitzen die Ausführungsformen ohne Branntkalk oder Kalkhydrat den Vorteil, Presslinge mit im Vergleich geringerer Reaktivität bereitzustellen.
Nach einer Ausführungsform des erfindungsgemäßen Verfahrens werden auch Eisen- oder Eisenoxid-haltige Partikel in einem Gemisch mit den Kohlenpartikeln verarbeitet.
Gemäß einer besonderen Ausprägung des erfinderischen Verfahrens werden die
Presslinge nach der Pressung einer Wärmebehandlung unterzogen werden.
Die Wärmebehandlung erfolgt bei einer gegenüber der Pressung erhöhten Temperatur. Die Wärmebehandlung bewirkt eine Trocknung und/oder Härtung der Presslinge. Die
Wärmebehandlung kann bei Temperaturen von bevorzugt > 250°C und < 350°C erfolgen, bei denen irreversible chemische Vorgänge Bindemittelkomponenten umwandeln können.
Beispielsweise können wasserlösliche Bindemittelkomponenten in wasserunlösliche
Verbindungen umgewandelt werden.
Die bei solchen Umwandlungen entstehenden Verbindungen können einen Beitrag zur
Festigkeit der Presslinge leisten.
Im Fall eines Melasse enthaltenden Bindemittelsystems erfolgt beispielsweise eine Umwandlung von Melasse durch Karamellisierung. Gemäß einer besonderen Ausprägung des erfinderischen Verfahrens werden die
Kohlepartikel nach dem Imprägnierungsschritt vor dem Vermischen mit dem Wasser enthaltenden Bindemittelsystem einer Wärmebehandlung unterzogen.
Die Wärmebehandlung bewirkt eine Trocknung. Für den Fall, dass sich in den Poren Lösungen oder Emulsionen befinden, bewirkt die Wärmebehandlung zusätzlich ein Einengen der Lösungen, Suspensionen oder Emulsionen und entsprechend eine
Beschichtung der Porenwandungen mit gelösten, suspendierten oder emulgierten
Komponenten. Diese können, zusätzlich zu dem danach hinzugefügten wässrigen Bindemittelsystem, einen Beitrag zu erhöhter Heißfestigkeit und Kaltfestigkeit der
Presslinge liefern.
Weiterhin kann die Wärmebehandlung die Umwandlung der infolge der
Wärmebehandlung zunächst entstehenden Beschichtung der Porenwandungen in wasserunlösliche Verbindungen, oder in die Reaktivität der Kohlepartikel gegenüber heißen C02 haltigen Gasen herabsetzende Verbindungen bewirken. Die
Maximaltemperatur der Wärmebehandlung ist durch die Pyrolyse der Kohlepartikel beschränkt und liegt bei 350°C. Die Untergrenze für die Temperatur bei dieser
Wärmebehandlung liegt bei 150°C.
Wird für die Imprägnierung die gleiche Wasser enthaltende Emulsion verwendet, wie sie als Wasser enthaltendes Bindemittelsystem zum Einsatz kommt, so ist die im
Imprägnierungsschritt zugegebene Menge geringer als die beim nachfolgenden
Vermischen zugegebene Menge an Wasser enthaltenden Bindemittelsystem.
Beispielsweise bei Verwendung von Bitumen in Wasser - Emulsion im
Imprägnierungsschritt und als Bindemittelsystem erfolgt im Imprägnierungsschritt eine Zugabe von 2 -3 Gewichts%, während als Bindemittelsystem später 7-10 Gewichts% zugegeben werden.
Dasselbe gilt, wenn für die Imprägnierung die gleiche wässrige Lösung eines Stoffes oder eines Stoffgemisches verwendet wird, wie sie als Wasser enthaltendes Bindemittelsystem zum Einsatz kommt. Beispielsweise bei Verwendung von Melasse im
Imprägnierungsschritt und als Bindemittelsystem erfolgt im Imprägnierungsschritt eine Zugabe von 3 bis 5 Gewichts%, während als Bindemittelsystem später 6 bis 8 Gewichts% zugegeben werden. Dabei sind die Grenzen der angegebenen Bereiche mit umfasst. In diesen Fällen ist nach der Zugabe im Imprägnierungsschritt eine Wärmebehandlung notwendig, um die Trägerflüssigkeit Wasser soweit zu entfernen, dass die emulgierten Substanzen beziehungsweise die gelösten Stoffe sich in den Poren beziehungsweise den Porenhälsen absetzen. Dadurch werden die Poren belegt beziehungsweise die
Porenhälse verstopft. Insgesamt wird daher zur Herstellung der Presslinge weniger Wasser enthaltendes Bindemittelsystem benötigt als bei einer Herstellung ohne
Imprägnierungsschritt.
Die Verarbeitung zu Presslingen nach den Imprägnierungsschritten kann durch bekannte Verfahren, beispielsweise wie in WO 02/50219A1 oder in AT005765U 1 beschrieben, beziehungsweise durch jedes zur Verarbeitung von Kohlepartikel mit einem Wasser enthaltenden Bindemittelsystem zu Presslingen geeignete Verfahren erfolgen.
Eine erfindungsgemäß erst nach den Imprägnierungsschritten mit einer
wasserunlöslichen und/oder wasserabstoßende Substanz erfolgende Zugabe von Wasser enthaltenden Bindemittelsystemen bei der Herstellung von Presslingen vermindert die Verfahrenskosten gegenüber herkömmlichen Verfahren wie etwa gemäß WO02/50219A1 . Die Vermeidung einer Wasseraufnahme der Kohle während der Herstellung von Presslingen mit Wasser enthaltenden Bindemittelsystemen vermindert einerseits den spezifischen Kohleverbrauch bei Roheisenerzeugungsverfahren, bei denen die Presslinge oder aus ihnen gewonnener Koks zum Einsatz kommen, da weniger Wasser aus dem Bindemittelsystem im Pressling vorhanden ist und entsprechend weniger Energie für dessen Verdampfung aufgewendet werden muss. Andererseits kann eine in
herkömmlichen Verfahren zur Herstellung von Presslingen aufgrund der Wasseraufnahme aus dem Bindemittelsystem auftretende Notwendigkeit zur Nachtrocknung der Presslinge bei Anwendung des erfindungsgemäßen Verfahrens entfallen, oder der
Trocknungsaufwand reduziert werden, woraus eine Energieeinsparung resultiert. Da entsprechend auf die Errichtung oder den Betrieb von Vorrichtungen zu Nachtrocknung verzichtet werden kann, oder die Dimensionen der Vorrichtungen und der Aufwand ihres Betriebes reduziert werden kann, ist dies gleichbedeutend mit einer Betriebskosten- sowie einer Investmentkostensenkung.
Als zusätzlicher vorteilhafter Effekt der Imprägnierungsschritte kann sich, je nach Art der zur Imprägnierung verwendeten Substanz, eine Minderung der C02-Reaktivität des nach Pyrolyse der Presslinge in einem Einschmelzvergaser entstandenen Halbkokses beziehungsweise des aus Presslingen gewonnenen Kokses ergeben. Eine geringe C02- Reaktivität ist beim Betrieb eines Einschmelzvergasers gewünscht, damit der Halbkoks im Festbett des Einschmelzvergasers bzw. der Koks im Festbett eines Hochofens von der Chargierung auf die Bettoberfläche bis zum Erreichen der unmittelbaren Vergasungszone im Bereich der Sauerstoffdüsen bzw. der Windformen stabil bleiben und dadurch die Permeabilität des Festbettes in Bezug auf die Durchgasung und die Drainage schmelzflüssiger Phasen fördern. Die Minderung der C02-Reaktivität des Halbkokses beziehungsweise des Kokses wird dadurch erreicht, dass die innere Oberfläche der Poren der Kohlepartikel im Pressling durch die Imprägnierung nicht mehr von einem Bindemittel, welches reaktivitätsfördernde Substanzen enthält, überzogen werden kann. Beispielsweise enthält die Bindemittelkomponente Melasse als reaktivitätsfördernde Substanzen Alkalien. Wird durch die Imprägnierung, beispielsweise mit Bitumina oder Wachse enthaltenden Substanzen, vermieden, dass Melasse die innere Oberfläche der Poren überzieht, ist die C02-Reaktivität also gegenüber mittels eines Verfahrens ohne Imprägnierungsschritt gewonnenem Halbkoks oder Koks herabgesetzt. Ein Minderanteil von unterkörnigem Koks wird im COREX®- oder Fl N EX®- Verfahren zur Roheisenerzeugung in einem Festbett eines Einschmelzvergasers häufig zur
Einsatzkohle gegeben, um die Permeabilität des Festbettes zu verbessern. Bei
Verwendung von erfindungsgemäß hergestellten Presslingen, oder aus solchen hergestelltem Koks, wird eine Entfestigung der Halbkoks- bzw. Koks-Partikel durch heißes C02 inhibiert und somit einem Zerfall der Partikel entgegengewirkt. . Bei erfindungsgemäß hergestellten Presslingen ist nämlich auch eine gegenüber auf herkömmliche Art hergestellten Presslingen verbesserte Thermo-Mechnische-Stabilität des Halbkokses festzustellen. Thermo-Mechnische-Stabilität bezieht sich also auf den Aspekt der
Heißfestigkeit, der eine Festigkeit der nach Pyrolyse der Presslinge in einer
Hochtemperaturzone zurückbleibenden Halbkoks- beziehungsweise Koks-Partikel betrifft. Thermo-Mechanische-Stabilität bezieht sich auf eine Prüfmethode, bei der die Presslinge einer Thermoschockprozedur ausgesetzt werden, und der dabei gewonnene Halbkoks Trommlung unterworfen wird. Die verbesserte Thermo-Mechanische-Stabilität stellt sich dadurch dar, dass der Anteil an Grobkorn des getrommelten Halbkokses gegenüber herkömmlich hergestellten Presslingen durch die erfindungsgemäße
Imprägnierung vergrößert wird.
Mit einem aus erfindungsgemäß hergestellten Presslingen durch Pyrolyse abgeleitetem Halbkoks gepacktem Festbett werden eine deutlich bessere Gaspermabilität und ein besseres Drainageverhalten des Festbettes ermöglicht als nach dem Stand der Technik. Die Verbesserung der Reaktivtätseigenschaften des Halbkokses ermöglicht daher eine Verringerung oder gar Vermeidung des Kokszusatzes zur COREX®- oder FINEX®- Einsatzkohle
Im Bereich der Kokereitechnik wird bekanntlich durch eine Erhöhung der Schüttdichte der Einsatzkohle die Qualität des daraus erzeugten Kokses verbessert. Die Verwendung vieler Einsatzkohlen für die Erzeugung von Hüttenkoks wird durch eine Verdichtung der Einsatzkohle überhaupt erst möglich. Neben Stampfkokereien wurden daher
Verfahrenvarianten für Kokereien im Schüttbetrieb entwickelt, die eine Brikettierung bzw. teilweise Brikettierung der Einsatzkohlen vorsahen. Aus heutiger Sicht ist jedoch eine Brikettierung mit bituminösen Bindemittel aus wirtschaftlichen Gründen, eine
Heißbrikettierung oder eine Brikettierung mit Steinkohlenteer-stämmigen Binder aus Gründen des Gesundheitsschutzes, und eine Brikettierung mit Melasse oder vergleichbaren Bindern wegen des Eintrags unerwünschter Stoffe in den Koks problematisch.
Das erfindungsgemäße Verfahren zur Herstellung von Presslingen ermöglicht es, auch bei der Herstellung von Koks unter Verwendung von Presslingen der Einsatzstoffe den Verbrauch an Bindemittel zu reduzieren beziehungsweise die schädlichen Auswirkungen reaktivitätsfördernder Bindemittelkomponenten einzudämmen.
Die Presslinge können beispielsweise Briketts oder Schülpen aus einer Kompaktierung sein.
Die Presslinge enthalten bis zu 97 Gewichts% Kohlepartikel,
und bis zu 15 Gewichts% Komponenten eines Bindemittelsystem,
sowie, bezogen auf das Gewicht des zu Presslingen zu verarbeitenden Gutes
Kohlepartikel, wasserunlösliche und/oder wasserabstoßende Substanzen, oder Feststoffe mit wasserabweisenden Eigenschaften, in einer Menge, deren Untergrenze
0,5 Gewichts%, bevorzugt 1 Gewichts%, beträgt, und deren Obergrenze 5 Gewichts%, bevorzugt 3 Gewichts%, besonders bevorzugt 2 Gewichts%, beträgt
Dabei sind die 15 Gewichts% der Komponenten eines Bindemittelsystems so zu verstehen, das Wasser nicht als Komponente des Bindemittelsystems mit umfasst ist - die 15 Gewichts% beziehen sich also auf die nicht-wässrigen Komponenten des
Bindemittelsystems.
Nach einer Ausführungsform enthält der Pressling auch Eisen- oder Eisenoxid-haltige Partikel. Solche Partikel können beispielsweise aus bei der Roheisen- oder
Stahlerzeugung anfallenden Stäuben oder Schlämmen stammen.
Beschreibung von Ausführungsformen
Tabelle 1 zeigt die Auswertung von Versuchen zum Herstellen von Presslingen im Hinblick auf die Sturzfestigkeit (SF) und die Punktdruckfestigkeit (PDF) der Presslinge im Rahmen einer Versuchskampagne. Dabei werden die Presslinge nach dem
erfindungsgemäßen Verfahren mit Imprägnierung einer Teilmenge der Kohlepartikel mit zwei Imprägnierungsschritten, beziehungsweise mit einem Imprägnierungsschritt hergestellt. Bei den Presslingen handelt es sich um Briketts.
Als Wasser enthaltendes Bindemittelsystem wurde ein System bestehend aus Melasse und Branntkalk verwendet. Die Melasse selbst hatte einen Wassergehalt von 20
Massen%.
Folgende handelsübliche Melasse wurde im Bindemittelsystem verwendet:
Zuckerrohr-Melasse der Firma Täte & Lyle mit einem Gesamt-Zuckergehalt von 51 %. Als Branntkalk im Bindemittelsystem wurde Branntkalk Weißfeinkalk der Firma Walhalla Kalk verwendet.
Zur Imprägnierung wurde Bitumen und handelsübliches Hydrauliköl als
Imprägnierungsmittel verwendet. Als Bitumen wurde Mexphalte 55 der Firma Shell verwendet. Das verwendete handelsübliche Hydrauliköl war dünnflüssiger als das Bitumen unter den Einsatzbedingungen.
Die Zumischung des Imprägnierungsmittels Bitumen erfolgte in einem Pfugscharmischer der Firma Lödige Typ FM130D, die übrigen Mischungen wurden in einem
Chargenmischer vom Typ R08 W der Firma Eirich hergestellt. Das für die Knetvoränge verwendete Knetwerk der Firma Köppern bestand aus einem senkrecht stehenden zylindrischen Behälter, durch den eine mittig drehende Welle mit Knetarmen geführt ist.
Das Herstellen der Grünpresslinge wurde mittels einer Versuchs-Walzenpresse vom Typ 52/10 der Firma Köppern durchgeführt. Das gewählte kissenförmige Format für die
Grünpresslinge wies ein Nennvolumen von 20 cm3 auf. Die Aufgabe des zu pressenden Materials erfolgte mittels Schwerkraftzuteiler. Von der Versuchs-Walzenpresse wurden dabei Verbände bestehend aus mehreren Grünpresslingen hergestellt. In diesen Verbänden befinden sich Grünpresslinge sowohl im Randbereich der Verbände als auch im Mittenbereich der Verbände.
Um für die Ermittlung der Sturzfestigkeit beziehungsweise der Punktdruckfestigkeit einzelne Grünpresslinge beziehungsweise einzelner Presslinge zu erhalten, werden die Verbände entlang der Teilungsnähte zwischen den einzelnen Grünpresslingen zerbrochen. In der Regel zerbrechen die Verbände beim Austrag aus der Versuch- Walzenpresse zu einzelnen Grünpresslingen. Nach dem Knetvorgang im Knetwerk wurden die gekneteten Mischungen als zu pressendes Material einer Pressung in der Versuchs-Walzenpresse unterworfen, um Grünpresslinge herzustellen.
Die dabei erhaltenen Grünpresslinge sind noch weich - was im Fachjargon durch den Wortzusatz„grün" angedeutet wird - und werden einer Härtung unterzogen, um zum fertigen Pressling zu gelangen. Diese Härtung kann beispielsweise durch zumindest teilweise Trocknung durch Lagerung an der Luft und/oder eine thermische Behandlung erfolgen.
Nach der Pressung wurden einzelne Grünpresslinge jeweils sofort, im Fachjargon grün, auf Sturzfestigkeit (SF) und Punktdruckfestigkeit (PDF) untersucht. Die Ergebnisse dieser Untersuchungen sind in den„sofort" enthaltenden Spalten für PDF und SF gezeigt.
Die Messungen von Sturzfestigkeit und Punktdruckfestigkeit wurden jeweils nach 1 h Härtung an der Luft, und nach 24h Härtung an der Luft wiederholt. Die Ergebnisse dieser Untersuchungen sind in den„1 h" und„24h" enthaltenden Spalten gezeigt.
Beim Sturztest (angelehnt an ASTM D440) zur Feststellung der Sturzfestigkeit wird eine 2 kg schwere Probe von Grünpresslingen beziehungsweise von durch Trocknung an der Luft oder durch thermische Trocknung gehärteten Presslingen viermal über ein Fallrohr aus einer Höhe von 5 m in einen Auffangbehälter gestürzt, dessen Boden in Form einer massiven Stahlplatte ausgebildet ist. Das Fallrohr weist einen Durchmesser von 200 mm und der Sammelbehälter einen Durchmesser von 260 mm auf. Die Stärke der Stahlplatte beträgt 12 mm. Die Auswertung des Sturztests per Siebanalyse erfolgt nach dem zweiten und vierten Sturz. Die Zahlenwerte für Sturzfestigkeit SF in Tabelle 1 geben jeweils den Anteil der Kornfraktion >20 mm nach vier Stürzen an.
Für die Ermittlung der Punktdruckfestigkeit wurde eine Prüfmaschine vom Typ 469 der Firma ERICHSEN verwendet. Bei diesem Prüfverfahren werden einzelne Grünpresslinge beziehungsweise durch Trocknung an der Luft oder durch thermische Trocknung gehärtete Presslinge zwischen zwei Auflagen eingespannt, von denen die untere mit einem Kraftaufnehmer gekoppelt ist und die obere mittels Spindeltrieb zur Aufbringung einer schleichend schwellenden Drucklast kontinuierlich nachgeführt wird. Die untere Auflage wird durch eine Rundplatte von 80 mm Durchmesser und die obere durch ein waagerechtes Rundeisen von 10 mm Durchmesser gebildet. Die Vorschubgeschwindigkeit für die obere Auflage beträgt 8 mm/min. Die
Punktdruckfestigkeit PDF wird als maximale Lastaufnahme eines grünen
beziehungsweise eines gehärteten Presslings vor Bruch registriert - die Eintragungen in Tabelle 1 geben die mittlere Punktdruckfestigkeit bei Bruch infolge Punktdruckbelastung in Newton an. Es wurden jeweils sechs Grünpresslinge beziehungsweise Presslinge aus dem Mittenbereich und sechs Grünpresslinge beziehungsweise Presslinge aus dem Randbereich der in der Versuchs-Walzenpresse erhaltenen Verbände untersucht. Aus den bei diesen Untersuchungen gewonnenen Daten wurden Mittelwerte errechnet, wobei jeweils die Minimal- und Maximal-Werte unberücksichtigt gelassen wurden. Die
Mittelwerte sind in Tabelle 1 angegeben.
Tabelle 1
In Versuch 1 wurde ein Gemisch 70 Gewichts% Ensham Kohle mit einer mittleren
Partikelgröße d50 von 0.95 mm zusammen mit 30 Gewichts% Ensham Kohle mit einer mittleren Partikelgröße d50 von 0.57 mm als zu Presslingen zu verarbeitendes Gut Kohlepartikel verwendet. Dieses zu Presslingen zu verarbeitende Gut wurde mit einem Imprägnierungsschritt zu Presslingen verarbeitet, indem zu verarbeitende Kohle einer Trocknung unterzogen und danach durch Körnen auf eine gewünschte Körnung gebracht wird. Die dabei erhaltenen Kohlepartikel werden einem Imprägnierungsschritt unter Zugabe von Bitumen unterzogen. Zu den dabei erhaltenen Kohlepartikeln erfolgt danach der Zusatz eines Wasser enthaltenden Bindemittelsystems, in diesem Fall Melasse unter Zusatz der festen, feinteiligen Bindemittelkomponente Branntkalk, unter Mischen , wobei das Mischen ein- oder mehrstufig sein kann. Die dabei erhaltene Mischung wird einer Knetung und einer Pressung unterworfen. Das nach Härten erhaltene Produkt ist das Brikett.
Ensham-Kohle stammt von der Firma Ensham Resources aus Queensland, Australien. Die Melasse im Wasser enthaltenden Bindemittelsystem wurde in einer Menge von 8 Gewichts%, bezogen auf das Gewicht des zu Presslingen zu verarbeitenden Gutes, eingesetzt. Die Melasse selbst enthielt einen Anteil von 20 Gewichts% Wasser. Das Wasser enthaltende Bindemittelsystem bestand neben Melasse noch aus 2 Gewichts%, bezogen auf das Gewicht des zu Presslingen zu verarbeitenden Gutes, Ensham-Kohle, an Branntkalk.
Punktdruckfestigkeit und Sturzfestigkeit zu verschiedenen Zeitpunkten sind in Tabelle 1 , erste Datenspalte angegeben.
Im Versuch 2 nach dem erfindungsgemäßen Verfahren wurde das gleiche zu Presslingen zu verarbeitende Gut eingesetzt. Die gesamte eingesetzte Ensham-Kohle wurde mit handelsüblichem Hydraulikol imprägniert und über Nacht ruhen gelassen. Die eingesetzte Menge Öl betrug 2 Gewichts% bezogen auf das Gewicht des zu Presslingen zu verarbeitenden Gutes Ensham-Kohle . Dann wurde die gesamte eingesetzte, mit Öl bereits imprägnierte Ensham-Kohle mit Bitumen imprägniert. Als Bitumen wurde Shell
Mexphalte 50/70 mit einem Erweichungspunkt von circa 50°C verwendet. Die eingesetzte Menge Bitumen betrug 2 Gewichts%, bezogen auf das Gewicht des zu Presslingen zu verarbeitenden Gutes. Nach der Imprägnierung mit Bitumen erfolgte die Verarbeitung analog zu Versuch 1 nach dessen einzigem Imprägnierungsschritt. Die Temperatur der mit Öl und Bitumen behandelten Kohle betrug vor der Melassezugabe 53°C.
Es ist zu erkennen, dass eine zweistufige Imprägnierung zu Presslingen führt, die im Vergleich zu mit einer einstufigen Imprägnierung hergestellten Presslingen höhere Sturzfestigkeit aufweisen, und nach 24 Stunden eine höhere Punktdruckfestigkeit haben.
Von einer Teilmenge kann auch ein Teil in 2 oder mehr Stufen imprägniert werden, während der andere Teil nicht oder nur in einer Stufe imprägniert wird.
Kurze Beschreibung der Zeichnungen
Im Folgenden wird das erfindungsgemäße Verfahren anhand der in den Figuren 1 bis 3 dargestellten Blockschemata skizziert. Gemäß Figur 1 wird die zu Presslingen, in diesem Fall Briketts, zu verarbeitende Kohle 1 einer Trocknung 2 unterzogen und danach durch Körnen 3 auf eine gewünschte Körnung gebracht. Die dabei erhaltenen Kohlepartikeln 4 werden danach unter Zusatz eines ersten Imprägnierungsmittels 5 einem ersten Imprägnierungsschritt 6 unterzogen. Das Produkt 7 des ersten Imprägnierungsschrittes 6 wird einem zweiten Imprägnierungsschritt 8 mit einem zweiten Imprägnierungsmittel 9 unterzogen. Zu dem Produkt 10 des zweiten Imprägnierungsschrittes 8 erfolgt dann der Zusatz eines Wasser enthaltenden
Bindemittelsystems 1 1 , in diesem Fall Melasse unter Zusatz fester, feinteiliger
Bindemittelkomponenten aus Branntkalk, unter Mischen 12, wobei das Mischen 12 ein- oder mehrstufig sein kann. Die dabei erhaltene Mischung 13 wird einer Knetung 14 und danach einer Pressung 15 unterworfen. Das nach Härten 16 erhaltene Produkt 17 ist das Brikett. Allgemein kann bei der Herstellung von Presslingen gemäß der vorliegenden Erfindung die Zugabe des Wasser enthaltenden Bindemittelsystems Melasse/Branntkalk zu dem zu Presslingen zu verarbeitenden Gut derart erfolgen, dass Melasse und Branntkalk gleichzeitig zugegeben werden, oder derart, dass Branntkalk und Melasse nacheinander zugegeben werden.
Dabei ist es bei der Verwendung von Imprägnierungsmitteln wie beispielsweise Bitumen, bevorzugt, dass zuerst eine Teilmenge der für die Herstellung der Presslinge
vorgesehenen Melasse zugegeben wird, dann eine Mischung erfolgt, und dann
Branntkalk zugegeben wird. Nachdem die dabei erhaltene Mischung ruhen gelassen wurde, wird die Restmenge der für die Herstellung der Presslinge vorgesehenen Melasse zugegeben. Teilmenge und Restmenge ergeben in Summe die für die Herstellung der Presslinge vorgesehenen Melasse. Der Vorteil dieses Vorgehens ist es, dass ein
Einkneten des Branntkalks in weiches Imprägnierungsmittel beim Mischen des zu Presslingen zu verarbeitenden Gut mit dem Wasser enthaltenden Bindemittelsystem vermieden beziehungsweise vermindert wird.
Im Falle der Imprägnierung kann es vorkommen, dass für die Löschreaktion des
Branntkalkes notwendige Feuchtigkeit nicht ausreichend zur Verfügung steht - bei nicht imprägnierten Kohlen kann diese Feuchtigkeit vom Branntkalk aus den Kohlepartikeln entzogen werden. In diesem Fall ist es notwendig, die imprägnierten Kohlen mit
Feuchtigkeit zu benetzen. Dies kann mit Wasser oder einem Teil der wässrigen Melasse des Bindemittelsystems geschehen. Hierzu kann bis zur Hälfte, bevorzugt bis zu einem Drittel der Melasse verwendet werden.
Bezugszeichenliste
1 Kohle
2 Trocknung
3 Körnen
4 Kohlepartikel
5 erstes Imprägnierungsmittel
6 erster Imprägnierungsschritt
7 Produkt des ersten Imprägnierungsschrittes
8 zweiter Imprägnierungsschritt
9 zweites Imprägnierungsmittel
10 Produkt des zweiten Imprägnierungsschrittes
1 1 Wasser enthaltendes Bindemittelsystem
12 Mischen
13 Mischung
14 Knetung
15 Pressung
16 Härten
17 nach dem Härten erhaltenes Produkt
Liste der Anführungen
Patentliteratur
WO02/50219A1 WO9901583A1 AT005765U1

Claims

Ansprüche
1 ) Verfahren zur Herstellung eines Kohlepartikel enthaltenden Presslings, bei dem die Kohlepartikel mit einem Wasser enthaltenden Bindemittelsystem vermischt werden und die dabei erhaltene Mischung durch Pressung zu Presslingen weiterverarbeitet wird, dadurch gekennzeichnet,
dass vor dem Vermischen mit dem Wasser enthaltenden Bindemittelsystem
zumindest eine Teilmenge der Kohlepartikel zumindest zwei Imprägnierungsschritten unterworfen wird, in welchen sie mit zumindest einer Substanz imprägniert wird.
2) Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein Imprägnierungsschritt aus Bedampfung der Kohlepartikel mit der Substanz, aus Besprühung der Kohlepartikel mit der Substanz, aus Einmischen der Substanz in eine bewegte Schüttung der
Kohlepartikel, oder aus Einmischen der Substanz in eine Wirbelschicht der Kohlepartikel besteht.
3) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Substanz, mit der Kohlepartikel imprägniert werden, Wasser ist. 4) Verfahren nach einem der Ansprüche 1-2, dadurch gekennzeichnet, dass die
Substanz, mit der Kohlepartikel imprägniert werden, eine wasserunlösliche und/oder wasserabstoßende Substanz ist.
5) Verfahren nach einem der Ansprüche 1-2, dadurch gekennzeichnet, dass die
Substanz, mit der Kohlepartikel imprägniert werden, eine wässrige Lösung eines Stoffes oder einer Stoffmischung ist.
6) Verfahren nach einem der Ansprüche 1-2, dadurch gekennzeichnet, dass die
Substanz, mit der Kohlepartikel imprägniert werden, eine wässrige Suspension von Feststoffkolloiden, wobei der Feststoff wasserabweisende Eigenschaften aufweist, ist.
7) Verfahren nach einem der Ansprüche 1-2, dadurch gekennzeichnet, dass die
Substanz, mit der Kohlepartikel imprägniert werden, eine Emulsion, enthaltend einerseits Wasser sowie andererseits kohlenstoffhaltige Substanzen, ist. 8) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Untergrenze der Menge von in den zumindest zwei Imprägnierungsschritten zugesetzter Substanz 0,3 Gewichts%, bevorzugt 0,5 Gewichts%, besonders bevorzugt 1 Gewichts%, beträgt, und die Obergrenze 5 Gewichts%, bevorzugt 3 Gewichts%, besonders bevorzugt 2 Gewichts%, , bezogen auf das Gewicht des zu Presslingen zu verarbeitenden Gutes Kohlepartikel, beträgt.
9) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bindemittelsystem Melasse sowie Branntkalk oder Kalkhydrat enthält.
10) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bindemittelsystem eine Emulsion von Bitumen in Wasser enthält. 1 1 ) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auch Eisen- oder Eisenoxid-haltige Partikel in einem Gemisch mit den
Kohlenpartikeln verarbeitet werden.
12) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Pressling nach der Pressung einer Wärmebehandlung unterzogen wird.
13) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kohlepartikel nach dem Imprägnierungsschritt vor dem Vermischen mit dem Wasser enthaltenden Bindemittelsystem einer Wärmebehandlung unterzogen werden.
14) Pressling, enthaltend bis zu 97 Gewichts% Kohlepartikel, und bis zu 15 Gewichts% Komponenten eines Bindemittelsystem,
dadurch gekennzeichnet, dass er, bezogen auf das Gewicht des zu Presslingen zu verarbeitenden Gutes Kohlepartikel, wasserunlösliche und/oder wasserabstoßende Substanzen, oder Feststoffe mit wasserabweisenden Eigenschaften, in einer Menge enthält, deren Untergrenze 0,5 Gewichts%, bevorzugt 1 Gewichts%, beträgt, und deren Obergrenze 5 Gewichts%, bevorzugt 3 Gewichts%, besonders bevorzugt 2 Gewichts%, beträgt 15) Pressling nach Anspruch 14, dadurch gekennzeichnet, dass die wasserunlösliche und/oder wasserabstoßende Substanz zu der aus Wachsen, organischen Kokerei- oder Raffinerieprodukten, sowie Kunststoffen beziehungsweise Kunststoffabfällen, und Altöl bestehenden Gruppe von Substanzen gehört.
16) Pressling nach einem der Ansprüche 14 und 15, dadurch gekennzeichnet, dass der Pressling auch Eisen- oder Eisenoxid-haltige Partikel enthält.
17) Verwendung eines Presslings gemäß einem der Ansprüche 14 bis 16
in einem Prozess zur Roheisenerzeugung in einem Festbett als Kohlenstoffträger oder in einem Prozess zur Herstellung von Kohlenstoffträgern für einen Prozess zur
Roheisenerzeugung in einem Festbett.
EP11738661.5A 2010-07-12 2011-07-08 Verfahren zur herstellung von kohlepartikel enthaltenden presslingen Not-in-force EP2593536B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1179/2010A AT510135B1 (de) 2010-07-12 2010-07-12 Verfahren zur herstellung von kohlepartikeln enthaltenden presslingen
PCT/EP2011/061619 WO2012007385A1 (de) 2010-07-12 2011-07-08 Verfahren zur herstellung von kohlepartikel enthaltenden presslingen

Publications (2)

Publication Number Publication Date
EP2593536A1 true EP2593536A1 (de) 2013-05-22
EP2593536B1 EP2593536B1 (de) 2014-10-29

Family

ID=44533453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11738661.5A Not-in-force EP2593536B1 (de) 2010-07-12 2011-07-08 Verfahren zur herstellung von kohlepartikel enthaltenden presslingen

Country Status (6)

Country Link
US (1) US20130174695A1 (de)
EP (1) EP2593536B1 (de)
KR (1) KR20130096705A (de)
CN (1) CN102959058B (de)
AT (1) AT510135B1 (de)
WO (1) WO2012007385A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525525B (zh) * 2016-10-21 2020-02-04 中联煤层气国家工程研究中心有限责任公司 一种人工煤心标准试件的制作方法
CN111621314B (zh) * 2020-06-11 2021-11-02 河北中煤旭阳能源有限公司 捣固配煤炼焦方法
US12000011B2 (en) * 2021-06-22 2024-06-04 Midrex Technologies, Inc. System and method for the production of hot briquetted iron (HBI) containing flux and/or carbonaceous material at a direct reduction plant
CN113696297A (zh) * 2021-08-20 2021-11-26 广州厚邦木业制造有限公司 以复合材料为芯板的地板制备工艺及其地板

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1551966A (en) 1923-11-14 1925-09-01 Themselves Process of preparing materials for briquetting and the product thereof
US2310095A (en) 1940-05-23 1943-02-02 Ernest T Lance Production of lignite briquettes
US4333738A (en) * 1980-11-24 1982-06-08 John S. Mathis Synthetic fire log and method for making same
DE3321683C2 (de) * 1982-06-22 1984-09-27 Gelsenberg Ag, 4300 Essen Verfahren zur Herstellung von Pellets bzw. Grünpellets aus Kohle oder kohlestoffhaltigen Materialien
DE3432365A1 (de) * 1984-09-03 1986-03-13 Deutsche Bp Ag, 2000 Hamburg Brennstoff auf basis von kohle
GB2181449B (en) * 1985-10-05 1989-05-04 Bobrite Limited Fuel briquettes
DE3836940C1 (de) 1988-10-29 1990-05-17 Th. Goldschmidt Ag, 4300 Essen, De
AU668328B2 (en) * 1993-12-27 1996-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Solid fuel made from porous coal and production process and production apparatus therefore
AT407053B (de) 1997-07-04 2000-12-27 Voest Alpine Ind Anlagen Verfahren und anlage zur herstellung einer metallschmelze in einem einschmelzvergaser unter verwertung von feinkohle
TR200202004T1 (tr) * 2000-12-19 2003-05-21 Posco Üstün mukavemetli kömür briketi ve bu briketi yapma yöntemi
AT5765U1 (de) 2001-09-14 2002-11-25 Voest Alpine Ind Anlagen Verfahren zur verhüttung eines metallhaltigen einsatzstoffes, vorzugsweise zur erzeugung von roheisen und/oder flüssigen stahlvorprodukten
BR0306210A (pt) 2002-09-02 2004-08-24 Posco Briquetes de carvão para o processo de redução por fusão, e o método para a fabricação do mesmo
JP4045232B2 (ja) * 2003-11-07 2008-02-13 株式会社神戸製鋼所 低品位炭を原料とする固形燃料の製造方法および製造装置
JP3920304B1 (ja) * 2005-11-22 2007-05-30 株式会社神戸製鋼所 低品位炭を原料とする固形燃料の製造方法および製造装置
JP4805802B2 (ja) * 2006-12-13 2011-11-02 株式会社神戸製鋼所 固形燃料の製造方法および製造装置
AT507851B1 (de) * 2009-01-16 2017-10-15 Primetals Technologies Austria GmbH Verfahren zur herstellung von kohlepartikel enthaltenden presslingen
AT510136B1 (de) * 2010-07-12 2016-11-15 Primetals Technologies Austria GmbH Verfahren zur herstellung von kohlepartikeln enthaltenden presslingen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012007385A1 *

Also Published As

Publication number Publication date
KR20130096705A (ko) 2013-08-30
AT510135A1 (de) 2012-01-15
US20130174695A1 (en) 2013-07-11
WO2012007385A1 (de) 2012-01-19
CN102959058A (zh) 2013-03-06
EP2593536B1 (de) 2014-10-29
CN102959058B (zh) 2014-10-29
AT510135B1 (de) 2016-11-15

Similar Documents

Publication Publication Date Title
AT510136B1 (de) Verfahren zur herstellung von kohlepartikeln enthaltenden presslingen
EP2379682B1 (de) Verfahren zur herstellung von kohlepartikel enthaltenden presslingen
DE3008823C2 (de) Verfahren zum Agglomerieren von kohlenstoffhaltigem Feinmaterial
EP2544997B1 (de) Verfahren zur herstellung von mit base aktiviertem kohlenstoff
DE4498936C2 (de) Verfahren zur Herstellung von aktiviertem Koks für Prozesse zur gleichzeitigen Desulfurierung und Denitrierung
DE2501636C2 (de)
DE2640787A1 (de) Verfahren und vorrichtung zur herstellung von hochofenkoks
EP2593536B1 (de) Verfahren zur herstellung von kohlepartikel enthaltenden presslingen
DE2624779C2 (de) Verfahren zum Herstellen von Aktivkohlekörnern
DD142175A5 (de) Verfahren zur herstellung von harter koerniger aktivkohle
DE3244471A1 (de) Verfahren fuer die herstellung von festem hochofenkoks
DE2253454A1 (de) Verfahren zum herstellen kohleund eisenhaltiger briketts
DE3231665T1 (de) Verfahren zur Herstellung von Kohlematerial für die Entschwefelung
DE2625625A1 (de) Koernige aktivkohle und verfahren zu ihrer herstellung
DE2527678C2 (de) Verfahren zur Herstellung von Koks für metallurgische Zwecke
EP0192807B1 (de) Verfahren zur Herstellung reaktiver, kohlenstoffreicher Presslinge
DE3232644A1 (de) Verfahren zur herstellung von vollmoellerformlingen fuer die calciumcarbilderzeugung
DD152524A5 (de) Harte koernige aktivkohle und verfahren zu ihrer herstellung
DD284609A5 (de) Entschwefelndes kohlenstoffmaterial und seine herstellung
DE2251606A1 (de) Verfahren zum herstellen eines festen brennstoffes fuer die erzreduktion
AT5765U1 (de) Verfahren zur verhüttung eines metallhaltigen einsatzstoffes, vorzugsweise zur erzeugung von roheisen und/oder flüssigen stahlvorprodukten
DE2627429B2 (de) Verfahren zur Herstellung vonwerti«em Stückkoks aus Weichbraunkohle nach dem einstufigen Verfahren
DE3441756A1 (de) Verfahren zum herstellen braunkohlehaltiger pellets fuer die vergasung
DE19704887A1 (de) Verfahren zur Herstellung von Briketts aus aschereichen Braunkohlen
DE2444066B2 (de) Verfahren zur Abkürzung der Verkokungszeit von Kohlekörpern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 5/10 20060101ALI20140408BHEP

Ipc: C22B 1/245 20060101ALI20140408BHEP

Ipc: C10L 5/36 20060101ALI20140408BHEP

Ipc: C21B 13/00 20060101ALI20140408BHEP

Ipc: C10L 5/06 20060101ALI20140408BHEP

Ipc: C10L 5/16 20060101ALI20140408BHEP

Ipc: C10L 5/04 20060101AFI20140408BHEP

Ipc: C10L 5/14 20060101ALI20140408BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 693612

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011004841

Country of ref document: DE

Effective date: 20141211

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141029

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011004841

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011004841

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150708

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20160627

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160725

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 693612

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170708