EP2545976A1 - Toile contenant des fibres fines et des particules réactives, adsorbantes ou absorbantes - Google Patents

Toile contenant des fibres fines et des particules réactives, adsorbantes ou absorbantes Download PDF

Info

Publication number
EP2545976A1
EP2545976A1 EP20120180143 EP12180143A EP2545976A1 EP 2545976 A1 EP2545976 A1 EP 2545976A1 EP 20120180143 EP20120180143 EP 20120180143 EP 12180143 A EP12180143 A EP 12180143A EP 2545976 A1 EP2545976 A1 EP 2545976A1
Authority
EP
European Patent Office
Prior art keywords
particulate
layer
fiber
web
media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20120180143
Other languages
German (de)
English (en)
Other versions
EP2545976B1 (fr
Inventor
Andrew James Dallas
William Lefei Ding
Jon Dennis Joriman
Dustin Zastera
James R. Giertz
Veli Engin Kalayci
Hoo Young Chung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donaldson Co Inc
Original Assignee
Donaldson Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donaldson Co Inc filed Critical Donaldson Co Inc
Priority to EP16182449.5A priority Critical patent/EP3127593B1/fr
Publication of EP2545976A1 publication Critical patent/EP2545976A1/fr
Application granted granted Critical
Publication of EP2545976B1 publication Critical patent/EP2545976B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/04Organic material, e.g. cellulose, cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0407Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/064The fibres being mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/069Special geometry of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1266Solidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/78Cellulose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]

Definitions

  • the invention relates to a web or fiber structure.
  • the filter, element or medium structures of the invention can act as a reactive, adsorptive or absorptive layer or in a filtration mode.
  • the structure comprises a collection fiber and a reactive, adsorptive or absorptive particulate that also acts as an active particulate, active material fiber, spacer or separation means.
  • the particulate can act as an absorbent, adsorbent or reactant.
  • Polymer webs can be made by extrusion, melt spinning, air laid and wet laid processing, etc.
  • the manufacturing technology of filter structures is vast for obtaining structures that can separate the particulate load from a mobile fluid stream.
  • Such filtration media include surface loading media and depth media in which these media can be produced in a variety of geometric structures. Principles relating to the use of such media are described in Kahlbaugh et al., U.S. Patent Nos. 5,082,476 ; 5,238,474 ; 5,364,456 and 5,672,399 .
  • the filter In any filter structure containing any arbitrarily selected filtration medium, the filter must remove a defined particle size, and at the same time, have sufficient lifetime to be economically justifiable in its particulate removing properties.
  • Lifetime is generally considered to be the time between installation and the time a filter obtains sufficient particulate load such that the pressure drop across the filter is greater than a predetermined level.
  • An increased pressure drop can cause filter bypass, mechanical filter failure, fluid starvation, or other operating problems.
  • Filtration efficiency is the characteristic of the filtration media that is related to the fraction of the particulate removed from the mobile stream. Efficiency is typically measured by a set test protocol defined below.
  • Surface loading filter media often comprise dense mats of fiber having a non-woven structure that is placed across the path of a mobile fluid stream. While the mobile fluid stream passes through the structure of the formed non-woven fibers, the particulate is typically removed from the stream at the filter surface with a certain efficiency and remains on the surface.
  • depth media typically include a relatively (compared to surface loading media) thick structure of fiber having a defined solidity, porosity, layer thickness and efficiency. Depth media and in particular, gradient density depth media are shown in Kahlbaugh et al., U.S. Patent Nos. 5,082,476 ; 5,238,474 and 5,364,456 .
  • depth media act in filtration operations by impeding the particulate loading in a mobile fluid stream within the filter layer. As the particulates impinge the depth media fibrous structure, the particulate remains within the depth media and is typically distributed onto and held with internal fibers and throughout the filter volume. In contrast, surface loading media typically accumulate particulate in a surface layer.
  • Groeger et al., U.S. Patent No. 5,486,410 teach a fibrous structure typically made from a bicomponent, core/shell fiber, containing a particulate material.
  • the particulate comprising an immobilized functional material held in the fiber structure.
  • the functional material is designed to interact with and modify the fluid stream.
  • Typical materials include silica, zeolite, alumina, molecular sieves, etc. that can either react with, or absorb materials, in the fluid stream.
  • Markell et al., U.S. Patent No. 5,328,758 use a melt blown thermoplastic web and a sorbative material in the web for separation processing. Errede et al., U.S. Patent No.
  • undesirable components may be chemically reactive or may be absorbable or adsorbable through the use of absorbents or adsorbents. Often these species form a phase that is fully miscible in the fluid and cannot be filtered, but can be removed only by chemical reaction absorbents or adsorbents. Examples of such materials are acidic or basic reacting compounds. Acid compounds include hydrogen sulfide, sulfur dioxide and other such species basic components include ammonia, amines, quaternary compounds and others. Further reactive gases such as Cl 2 , SO 2 , cyanide, phosgene and others can pose hazards.
  • the web, filter, or other flow-through or flow-by structure of the invention can comprise a substantially continuous fine fiber mass or layer containing the particulate of the invention.
  • a reactive, absorptive, or adsorptive fiber spacer or separation means in the form of a particle can be combined with, or otherwise dispersed in, the fiber mass.
  • the web of the invention includes a fiber web or layer and a fiber separation means or fiber spacer means adhered to the fiber that can be used in the form of a reactive, absorbent, or adsorbent structure.
  • the web comprises a continuous fibrous structure with a continuous fiber phase and a reactive, absorptive, or adsorptive active particulate that can treat a fluid stream.
  • the fluid stream can be a gas, or liquid with entrained materials.
  • the entrained materials can be soluble or insoluble in the mobile fluids and can be particulates of either liquid or solid impurities.
  • the liquids can be exemplified by aqueous solutions, nonaqueous fluids, water, oils, and mixtures thereof.
  • a similar structure can also act as a filter.
  • the active particulate comprises a particulate phase dispersed with the fiber.
  • the filter can be used to filter a mobile fluid such as a gaseous stream or a liquid stream.
  • the filter can be used to remove impurities from the liquid stream or from the gaseous stream. Such impurities can be entrained particulates.
  • the flow through and flow by structures can be used in structures that need no PTFE, stretched expanded Teflon ® or other related porous fluoropolymer components for successful activity.
  • the media comprising the fine fiber layer containing the active particulate of the invention can be combined with a media layer. That form can be used in a flow-by treatment unit or used in a flow-through filtration unit having adsorptive/absorptive or reactive properties. In a flow-by or pass-through unit, the media is simply configured in a form through which the mobile fluid can pass unimpeded by any filtration layer and simply contact the absorptive/adsorptive or reactive species formed in the fine fiber layer adjacent to the flow path of the fluid media.
  • the fine fiber layer containing the active particulate and media can be formed in a flow-through filtration structure that can remove particulate from the mobile fluid while in the infiltration mode
  • the media of the invention can, in a filtration mode, remove the entrained particulate from mobile fluid and at the same time absorb, adsorb or chemically react with unwanted materials in the fluid phase that may or may not be in a particulate form.
  • filter refers to the structure that is actually used in treating a mobile fluid.
  • a "filter” usually includes a housing with an inlet and outlet.
  • element typically refers to a structure used in a filter assembly the includes a media layer and other parts resulting in a useful structurally stable unit that can be inserted and removed from the filter structure.
  • Elements or webs of the invention include media layer that comprises a particulate dispersed throughout a fine fiber web. The combined fine fiber and particulate can be formed on a substrate layer to form a filter medium.
  • the particulate can comprise an amount of a single type of particulate or blend of dissimilar particles.
  • an active particulate can be blended with an inert particulate for use in such a layer.
  • the inert particulate can comprise a single particulate or can be a blend of inert particulate that differs by composition particle size, particle morphology or some other particle aspect.
  • the active particulate can comprise a mixture of particulates including different active particulates.
  • a carbon particulate could be blended with a zeolite particulate.
  • a carboxy methyl cellulose particulate can be blended with an ion exchange resin particulate in an active layer.
  • active particulate can have a blended particulate in the sense that particulates of different size, shape or methodology can be combined in the active layers of the invention.
  • the term "entrained particulate” refers to impurities in the mobile fluid while the term “dispersed particulate” refers to the particulate deliberately included within the fiber layers of the invention.
  • the element of the invention can be used in one of two separate modes. These modes are designated as "flow-through” or "flow-by".
  • flow-through mode the mobile fluid, liquid or gas, passes through the fine fiber layer and substrate in a filtration mode in a flow substantially normal to the plane of the fiber layer.
  • the entrained particulate can encounter and be removed by the element and as the fluid passes through the layers in contact with the particulate, the particulate can react with absorbed or adsorbed chemical materials suspended or dissolved in the fluid.
  • the fluid path is generally parallel to the plane of the fine fiber layer or element surface.
  • the fluid contacts the surface of the layer and does not substantially flow through the element. While depending on viscosity, flow rate, temperature, element configuration, the fluid can to some degree penetrate the layer and can flow from layer to layer, the primary mode of transport of the fluid is bypassing the layer in a direction substantially parallel to the layer's surface. In such a mode, the liquid can contact the surface of the layer and chemical materials dissolved and suspended in the fluid can react with, be absorbed, or adsorbed by the particulate.
  • the flow-through and flow-by element can be used in a variety of formats.
  • Flow-through element can be used in conventional filter structures including cartridge panel in some other filter structures, with the element in a pleated or unpleated mode.
  • the flow-by media can be included in the panel and cartridge structures.
  • Rolls media are prepared by first forming the fine fiber and particulate layer by heat treating the fiber layer if needed and then rolling the element into a multilayered roll having anywhere from 2 to 50 layers. The thickness of the roll, or a separation between the layers, determines the flow rate of fluid through the structure. The flow rates can be improved by introducing channels into the rolled media. Such channels can be preformed in the substrate upon which the fine fiber is spun, or the channels can be formed into the element after the fine fiber layer is formed on the substrate and then heat treated if necessary.
  • Mechanical forms or spacers can be included with the processing steps. The forms or spacers can introduce the channel into the structure.
  • At least one spacer portion can be included with the rolled material to inherently form a channel in one portion of the rolled structure. Further, additional spacers can be placed such that each layer of the rolled structure has at least one channel portion. An arbitrary number of spacers can be used. At least one spacer per layer can be used up to 5, 10 or 20 spacers per layer. After the spacer layers form a channel in the element, the spacers can be removed. The spacers can be removed in one mode by unrolling the element and physically removing the spacers from the element.
  • the spacers can be simply washed from the rolled assembly using a solvent in which the spacer (but not the substrate fine fiber or particulate) is soluble, thus removing the spacers and leaving flow-through channel structures.
  • the spacers can be configured in virtually any shape or structure as long as the spacer can provide a channel from the first end of the roll to the second end of the roll providing a flow through path for fluid.
  • the dimensions of the channel are greater than about 1 mm in major dimension and can range from about 1 to 500 mm in major dimension.
  • the profile of the channels can be round, oval, circular, rectangular, square, triangular, or other cross-sectional profile. The profile can be regular, or it can be irregular and amorphous.
  • the cross-sectional profile of the channel can vary from one end to the other.
  • the channel can have a relatively large cross-sectional area, whereas at the opposite end the cross-sectional area can be smaller than the input end. Additionally the input end can be smaller in cross-sectional area than the output end. Any other variation in size of the spacer can increase turbulence in the flow resulting in improved contact between the fluid and the particulate.
  • the filter or flow-through or flow-by structures of the invention are uniquely suited to provide useful properties.
  • the flow-through structure can be used to absorb/adsorb or chemically react with mobile fluid phases that flow through the flow-through structures.
  • the dispersed particulate within the flow-through structures can react with the mobile fluid (either liquid or gas), or absorb/adsorb, or react with intervening material within the fluid stream.
  • the flow-through structures can act both as a filter, and as a structure that can react with, absorb, or adsorb materials in the fluid stream. Accordingly, the dual function flow-through structures can remove undesired particulate that is typically an insoluble phase in the fluid stream.
  • the flow-through structures can also react with, absorb, or adsorb insoluble and soluble components of the fluid stream.
  • a particularly important fluid stream for the application includes air streams that can contain contaminates such as dust particulate, water, solvent residue, oil residue, mixed aqueous oil residue, harmful gases such as chlorine, benzene, sulfur dioxide, etc.
  • Other typical liquid mobile phases include fuel, oils, solvents streams, etc.
  • Such streams can be contacted with the flow-through structures of the invention to remove water, particulate contaminates, color-forming species, and minor amounts of soluble impurities.
  • the streams both gaseous and liquid
  • the active web or element of the invention can contain the fine fiber layer with the particulate dispersed within the fiber layer to absorb/adsorb or react with materials entrained in the mobile fluid phase. Such an element or web can be combined with other active or reactive species in a variety of forms.
  • the particulate of the invention can be discrete particles separate from the fiber or the particulate can be adhered to or on the surface of the fiber.
  • the particulate can be embedded into the fiber and can be partially or fully surrounded by the fiber mass. In order to form these structures, the particulate can be combined with the fiber after spinning, can be added to the fiber during spinning in the time the fiber dries and solidifies, or can be added to the spinning solution before spinning such that the particulate is embedded partially or fully in the fiber.
  • One method of forming an active layer can be by dispersing the active particulate in an aqueous or non-aqueous phase containing components, either forming the active particulate into a sheet layer, or adhering the active particulates to one or more of the components of the web or element of the invention. Any of the active particulates of the invention can be incorporated into either an aqueous or non-aqueous liquid phase for such purposes.
  • a non-aqueous solvent preferably a volatile solvent including such materials as lower alcohols, ethers, low boiling hydrocarbon fractions, chloroform methylene chloride, dimethyl sulfoxide (DMSO) and others, can be prepared by incorporating the active particulate of the material with soluble or dispersible binding materials.
  • a solution can be applied to a fiber particulate sheet like substrate or other materials to form a layer containing the active particulates that can act in that form to absorb/adsorb or react with materials entrained in the mobile fluid phase.
  • the active particulate of the invention can be dispersed in an aqueous solution or suspension of binding materials that can be similarly combined with, or coated on, fiber particulate or web sheet like substrates to form an active layer of active particulate.
  • the active particulate of the invention can be dispersed or suspended in a mixed aqueous organic phase that combines an aqueous phase with organic phase.
  • the organic phase can comprise additional solvents or other organic liquids or can comprise aqueous polymeric phase such as acrylic polymers, PTFE polymers.
  • Such mixed phases can form layers containing the active particulate and additionally can contain cross-linking components that can form bonds between adjacent polymers, further curing the coatings of films.
  • a heat treatment or thermal bonding process can be used to form a distinct layer in which there is no fully distinct fiber.
  • the heat treatment can heat the individual fibers to a temperature at or above a fusion or melting point of the individual fibers and then cause the fibers to adhere, coalesce, or form into a fused network, membrane or membrane-like structure.
  • the heat treatment can convert the fibers from a randomly distributed layer of fiber of intermediate length having only surface contact into a layer where fibers are more intimately associated. At a minimum, the fiber is heated such that at the intersections of the fibers, the fibers fuse to form a fused network.
  • the fibers can further melt and further coalesce into a more intimately associated web. With further temperature, time, and pressure, the fiber can more fully melt and spread into a porous membrane-like structure.
  • the heat treatment also can alter the location of the particulate. In the instance that the fiber is simply distributed throughout, the particulate is distributed through the fine fiber.
  • the heat treatment can fix the particulate into a structure in which the particulate is surface bonded to the heat treated fibrous, web, or membrane-like structure; however, depending again, on the temperature, time of heating, and pressure, the particulate can be incorporated into and throughout the porous membrane-like structure.
  • Such a heat treated or calendared structure can have a layer of thickness that approximates that of the original fine fiber layer, or results in a layer that is thinner than the original fine fiber layer. Accordingly, if the original fine fiber layer has a thickness that ranges from about 0.5 to 200 microns, the resulting layer can have a thickness that ranges from about 0.5 to about 150 microns or smaller often up to 100 microns and sometimes up to 50 microns, depending on the amount of fiber spun, the particulate content and the degree of heat treatment, including heating, pressure, and time.
  • One form of such a heat treatment process is the calendaring operation that can be used thermally. The calendaring process uses rollers, rollers and embossers, or embossers to form the heat treated layers.
  • An embosser can be used with a bonding pattern that can result in a regular, intermediate, or random pattern.
  • the pattern can occupy up to 50 percent of the surface area or more.
  • the bonded array occupies about 1 to 75 percent of the surface area, often about 10-50 percent of the surface area.
  • the calendaring process parameters such as time, temperature, and pressure can be varied to achieve acceptable results.
  • the temperature of the calendared rollers can range from about 25-200°C.
  • the pressure exerted on the layers using the calendaring rollers or combination of rollers can range up to 500 psi and the speed of the composite through the heat treatment station can range from about 1 to about 500 feet per minute.
  • the operating parameters of the heat treatment station must be adjusted such that the appropriate amount of heat is delivered to the fiber to obtain the correct ultimate structure. The heat cannot be so little as not to soften or melt some portion of the fiber and cannot be such that the fiber is simply melted and dispersed into the substrate. The total heat delivered can be readily adjusted to bond the fiber, soften the fiber overall or fully form the fibers into a porous membrane. Such minor adjustment of the operating parameters is well within the skill of the artisan.
  • the web or element of the invention can be comprised of a variety of different layers. Such layers can include both active and inactive layers. Active layers typically comprise a web of fine fiber with the particulates dispersed within the fine fiber or other impregnated layers or layers containing adsorbent/absorbent or reactive particulate or other such structures. Such layers can be formed into the useful element of the invention combined with protective layers, spatial layers, active layers, inactive layers, support layers, and all can be incorporated or encapsulated into conventional cartridge panel or other such protective structures. A preferred form of the active particulate comprises an adsorbent carbon particulate.
  • the particulate materials of the invention have dimensions capable of improving the active properties and filtration properties of the media and layers of the invention.
  • the materials can be made of a variety of useful materials that are inert, reactive, absorptive, or adsorptive.
  • the materials can either be substantially inert to the mobile phase and entrained particulate load passing through the web or the materials can interact with the fluid, dissolved portions of the fluid or the particulate loading in the fluid. Some or all of the particulate can be inert.
  • Preferred particulates are active, reactive, absorbent, or adsorbent materials.
  • the term "inert" indicates that the material in the web does not either substantially chemically react with the fluid or particulate loading, or substantially physically absorb or adsorb a portion of the fluid or the particulate loading onto the particulate in any substantial quantity.
  • the particulate simply alters the physical parameters of the fiber layer and the media including one or more fiber layers.
  • the active particulate of the invention can be added to any layer of the element of the invention using a variety of add on techniques.
  • the particulate of the invention can be incorporated into the fine fiber layer during spinning of the fiber as discussed elsewhere in the application.
  • the active particulate of the invention can be dissolved or dispersed into an aqueous or nonaqueous or mixed aqueous liquid and applied to any layer of a useful element of the invention.
  • the particulate can, in addition to altering the physical properties of the media or layers, react with or absorb or adsorb a portion of either the mobile fluid or the particulate loading for the purpose of altering the material that passes through the web.
  • the primary focus of the technology disclosed herein is to improve the treatment properties of the layers to increase the reactivity/absorbent/adsorbent capacity or lifetime of the physical structure of the media or layers, and to improve filter performance where needed. In many such applications, a combination of an inert particle and an interactive particle will then be used.
  • the invention relates to polymeric compositions in the form of fine fiber such as microfibers, nanofibers, in the form of fiber webs, or fibrous mats used with a particulate in a unique improved filter structure.
  • the web of the invention comprises a substantially continuous fiber phase and dispersed in the fiber mass a fiber separation means.
  • the fiber separation means can comprise a particulate phase in the web. The particulate can be found on the surface of the web, in surface products or throughout void spaces formed within the web.
  • the fibrous phase of the web can be formed in a substantially singular continuous layer, can be contained in a variety of separate definable layers or can be formed into an amorphous mass of fiber having particulate inclusion phases throughout the web randomly forming inclusion spaces around the particulate and internal web surfaces.
  • the particulate has a major dimension of less than about 5000 microns.
  • the particulate can have a major dimension of less than 200 microns, and can typically comprise about 0.05 to 100 microns or comprises about 0.1 to 70 microns.
  • the layer has a layer thickness of about 0.0001 to 1 cm, 0.5 to 500 microns, about 1 to 250 microns, or about 2 to 200 microns.
  • dispersed in the fiber is a means comprising a particulate with a particle size of about 0.25 to 200 microns, about 0.5 to 200 microns, about 1 to 200 microns about 10 to 200, or about 25 to 200 microns.
  • the particulate is dispersed throughout the fiber in the layer.
  • the particulate is present in an amount of about 0.1 to 50 vol%, about 0.5 to 50 vol%, about 1 to 50 vol%, about 5 to 50 vol% or about 10 to 50 vol%.
  • the fiber has a diameter of about 0.001 to about 2 microns, 0.001 to about 1 micron, 0.001 to about 0.5 micron, or 0.001 to about 5 microns, and the layer having a fine fiber solidity of about 0.1 to 65%, about 0.5 to 50 %; about 1 to 50%; about 1 to 30 % and about 1 to 20%.
  • the particulate is available in the layer in amount of about 1 to 1000 gm-m -2 , about 5 to 200 gm-m -2 or about 10 to 100 gm-m -2 of the layer.
  • the invention also relates to a membrane or membrane-like layer having a structure resulting from the polymeric material in the form of fine fiber.
  • the membrane is formed by heat treating the fine fiber and the particulate to form a porous membrane.
  • the membrane is a substantially continuous membrane or film-like layer having the particulate adhered to the surface of the membrane, imbedded into the membrane, or fully surrounded by the membrane polymer mass.
  • the particulate can have a major dimension of less than 200 microns and typically has a dimension of about 0.05 to 100 microns or about 0.1 to 70 microns.
  • the thickness of the membrane typically ranges from about 0.5 to about 5 microns having a pore size that ranges from about 0.1 to 5 microns often about 1 to 2 microns.
  • the preferred membrane has a thickness of less than about 20 microns, has a pore size of about 0.5 to 3 microns.
  • the particulate is present in the membrane structure in an amount of about 0.1 to 50 vol%.
  • the particulate is available in the membrane layer in an amount of up to about 10 kg m -2 typically about 0.1 to 1,000 gm-m -2 about 0.5 to 200 gm-m -2 or about 1 to 100 gm-m 2 of the membrane.
  • the particulate can take a variety of regular geometric shapes or amorphous structures. Such shapes can include amorphous or random shapes, agglomerates, spheres, discs, ovals, extended ovals, cruciform shapes, rods, hollow rods or cylinders, bars, three dimensional cruciform shapes having multiple particulate forms extending into space, hollow spheres, non-regular shapes, cubes, solid prisms of a variety of faces, corners and internal volumes.
  • the aspect ratio of the non-spherical particulate (the ratio of the least dimension of the particle to the major or largest dimension) of the invention can range from about 1:2 to about 1:10, preferably from about 1:2 to about 1:8.
  • the particulate of the invention can be made from both organic and inorganic materials and hybrid.
  • the particulate that is non-interacting with the mobile fluid or entrained particulate phase comprises organic or inorganic materials.
  • Organic particulates can be made from polystyrene or styrene copolymers expanded or otherwise, nylon or nylon copolymers, polyolefin polymers including polyethylene, polypropylene, ethylene, olefin copolymers, propylene olefin copolymers, acrylic polymers and copolymers including polymethylmethacrylate, and polyacrylonitrile.
  • the particulate can comprise cellulosic materials and cellulose derivative beads.
  • Such beads can be manufactured from cellulose or from cellulose derivatives such as methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, and others.
  • the particulates can comprise a diatomaceous earth, zeolite, talc, clay, silicate, fused silicon dioxide, glass beads, ceramic beads, metal particulates, metal oxides, etc.
  • Particulates intended for use in the present invention are characterized by average size in the range of from about 0.01 to 510 microns. Although submicron active particles are used, the present invention is applicable to fine particles up to 100 microns in average size. In any event, the average size of the active particles will be on the order of approximately 0.01 to 0.0001 of the average size of the particulates.
  • Particles include carbon particles such as activated carbon, ion exchange resins/beads, zeolite particles, diatomaceous earth, alumina particles such as activated alumina, polymeric particles including, for example, styrene monomer, and absorbent particles such as commercially available superabsorbent particles.
  • Particularly suitable absorbent/adsorbent particles are low density, porous particles, and have pores and cavities including surface cavities, ranging in diameter from about the minimum for the pore size in carbon is 0.00035 microns, which is the carbon-carbon distance to 100 microns and interconnected by smaller pores.
  • pores and cavities beneficially provide inner surface for deposition, in particular monolayer deposition, of fine particles having an average size in the range of about 0.01 to 10 microns, and thereafter for accessibility to the immobilized fine particles. 1 cm 3 of these particles provides in bulk approximately 75 to 1,500 m 2 of available surface.
  • Carbon particulates can be used in the form of filing divided activated carbon. Such activated carbons can be combined with other reactive adsorbent or adsorbent species that can be blended with, or adsorbed onto, the carbon surface.
  • Other forms of active carbon can be used including carbon nanotubes, nanoparticles, nanowires, nanocarbon ropes or larger lattices or constructs in which the individual elements comprise a carbon nanotube.
  • Such nanoparticles such as buckyballs, smaller nanotubes (or nanotube portions thereof), nanoropes, etc. can be incorporated within the interior volume of the nanotube or incorporated into the carbon atom lattice of the nano structure. Additional atoms, molecules or components can add structure or function to the nano particulate material.
  • Small molecule, oligomeric and polymeric materials can be used in the invention.
  • Small molecules typically have molecular weights of less than about 500, are typically made up of a single identifiable molecular unit and typically the units do not repeat in the molecular structure.
  • Oligomer structures typically have somewhat larger molecular weights but typically have 2 to 10 repeating molecular units in a structure.
  • Polymer units typically have substantially higher molecular weights and typically have substantially greater than 10 repeating units in a polymer structure. The differentiation between oligomeric and polymeric structures is not always clear cut; however, as the number of repeat units in the structure increases, the material tends to become more polymeric in nature.
  • the particulate can be mono-disperse or poly-disperse.
  • mono-disperse particulate the majority of the particles are similar in diameter or the major dimension.
  • one example of a mono-disperse particulate has 80% to 90% of the particulate within about 0.8 ⁇ 0.5 microns or about 1 ⁇ 0.25 micron.
  • poly-disperse material the particulate has a substantial portion of particles with different diameters.
  • a poly-disperse material could be a mixture of two mono-disperse materials or a material with a substantial amount of particulate material present throughout a broad range (e.g.) 0.1 to 10 or 0.01 to 100 microns.
  • the spheres or other shapes can be in a variety of different physical forms including solid and hollow form.
  • the particulate can have a substantially spherical or slightly oval shaped spherical structure.
  • the spheres can be solid or can have a substantial internal void volume.
  • the shell thickness of the sphere can range from about 0.05 to about 500 microns while the sphere can range from about 0.5 to about 5000 microns.
  • Other circular structures that can be used include simple toroidal structures, spiral or helical structures, or interlocking link type chain structures.
  • the particulate of the invention can also comprise a reactive absorbent or adsorbent fiber-like structure having a predetermined length and diameter.
  • the aspect ratio of such a fiber is typically about 1 to about 10:1 having a fiber diameter that is typically larger in diameter than the fine fiber of the structure.
  • the diameter ratio of the particulate fiber to the fine fiber is typically about 0.5 to about 5000:1.
  • a variety of other regular shapes can be used including cylindrical, hollow cylindrical, cruciform structures, three-dimensional cruciform structures, I-beam structures, and others.
  • the particulate can also be irregular in shape such that the particulate has a relatively well-defined major and minor dimension but has an exterior surface that is substantially irregular in nature.
  • amorphous organic and inorganic particulates can have an irregular shape, but can have a size that can provide the spacing property of the particulate material.
  • the dimensions of the spheres can be manipulated by a secondary process such as super absorbency, solvent swelling, heat expansion, porosity changes, etc.
  • Microspheres available from Expancel ® can be heat-treated to expand the volume of the microspheres tremendously.
  • Fine fiber and microsphere composite media can be produced according to this invention, and later upon a secondary treatment -not limited to heat- the structure of the composite media can be tuned in a controlled way, for example in the Expancel ® case, depending upon the level of applied heat and temperature, one can control the degree of expansion of the microspheres. For example, by expanding the microspheres, the thickness and loftiness of the structure can be increased and thereby filtration properties can be altered in a desired way. It should be understood that such changes in the physical nature of the microsphere should be accommodated by the elasticity of the fine fiber as they would stretch in the case of expansion of the microspheres. Depending upon the reversibility of the change in microspheres, one can also create lofty structures and then collapse/shrink the structure to create dense/compact filtration structures.
  • the web can also be used in filtration applications as a surface media or depth media having a continuous web of fine fiber modified by the presence of a reactive, absorptive or adsorptive spacer or separation means in the form of a particulate that in combination with the fiber in the media, provides figure of merit, filtration efficiency, filtration permeability, depth loading and extended useful lifetime characterized by minimal pressure drop increase.
  • the reactive, absorptive, or adsorptive spacer or separation means causes the fiber web to attain a structure, in which the fiber mass or web portion has reduced solidity, separated fibers or separated web portions within the structure, and increased depth of fiber layer, without increasing the amount of polymer or the number of fibers in the web.
  • the reactive, adsorptive or absorptive, portion of the fiber web can react with reactive chemical species within a mobile fluid passing through the fiber layer or such chemical components of the mobile fluid can be absorbed or adsorbed by the absorptive or adsorptive portion of the fiber layer.
  • the active particulate can be used with an inert particulate as long as the activity or activities of the particulate is maintained.
  • the resulting structure obtains improved filtration properties in combination with resistance to increased pressure drop, improved ( Figure of Merit,) improved permeability, improved efficiency, and the ability to remove both a particulate non-reactive load and a reactive gaseous or particulate load from a mobile fluid stream passing through the fiber layer.
  • the fine fiber of the invention can be in the form of a structural fiber as discussed above.
  • the fine fiber can be spun from a reactive fiber.
  • Such reactive fibers can be made from polymers having reactive side chains such as amines, sulfonic acid, carboxylic acid, or other functional groups of side chains.
  • Such side chains can be derived from the polymer itself.
  • a polyamine can be formed with a highly functional polyamine leaving acid and amine and mean functionality on the polymer side chains of substituents.
  • polysulfone or polyacrylic acid material can be formed having active or reactive acid groups.
  • ion exchange resin materials can be made having, within the resin particulate, acid, strongly acid, basic, or strongly basic functional groups that can add absorbent or reactive properties to the invention. Such materials can be dissolved or suspended and can be spun with the conventional fibers of the invention, or can be spun separately into the particle containing webs of the invention.
  • a preferred active particulate or spacer means comprises a reactive, absorptive or adsorptive particulate. Such particulate can be dispersed within the polymer containing solution. The particulate can be added to the web during formation or can be added after formation.
  • Such a web, when electrospun, is characterized by a mass of interconnected nanofiber or fine fiber with the active separation or spacer means or particulate dispersed within the fiber web on the surface of the fiber web.
  • the spacer particulate creates void spaces within the interconnected fibrous structure that reduces solidity and increases mobile fluid flow.
  • the invention also comprises a web formed by forming a fine fiber mass with the simultaneous addition or a post spinning addition of the spacer particulate to the fiber layer.
  • the particulate is interspersed throughout the mass of fibrous material.
  • the invention involves forming the spun layer in a complete finished web or thickness and then adding the active particulate to the surface of the web prior to incorporating the web into a useful article. Subsequent processing including lamination, calendaring, compression or other processes can incorporate the particulate into and through the fiber web.
  • One advantage of either simultaneous addition of the particulate to the web as it is formed or to the web after formation, is obtained when the particulate is a solvent soluble particulate.
  • Dissolving the soluble particulate in the solution would result in the incorporation of the material into the fiber without maintaining the particulate as a separate phase in the web. Adding the particulate to the web after formation preserves the solvent soluble material in its particulate form.
  • the web of the material can also have a gradient structure.
  • the term "gradient" indicates that some component (density, solidity, fiber size, etc.) of the web varies from one surface of the web to the opposite surface of the web.
  • the gradient can be characterized by a variation in amount of active particulate, varying proportions of active and inert particulate, or other variation in particulate.
  • the gradient can also be characterized in terms of a variation in the weight or the number of fibers.
  • the gradient is formed by forming successively more or less fibers or more or less particulates within the web as the web is formed.
  • the concentration of spacer means or particulate can have a gradient aspect in which the size, weight or number of particulate materials per volume is substantially increased or reduced from one surface of the web to the other.
  • the media of the invention can be used in the form of a single fine fiber web or a series of fine fiber webs in a filter structure.
  • fine fiber indicates a fiber having a fiber size or diameter of 0.001 to less than 5 microns or about 0.001 to less than 2 microns and, in some instances, 0.001 to 0.5 micron diameter.
  • a variety of methods can be utilized for the manufacture of fine fiber. Chung et al., U.S. Patent No. 6,743,273 ; Kahlbaugh et al., U.S. Patent No. 5,423,892 ; McLead, U.S. Patent No. 3,878,014 ; Barris, U.S. Patent No. 4,650,506 ; Prentice, U.S. Patent No. 3,676,242 ; Lohkamp et al., U.S. Patent No.
  • the fine fiber of the invention is typically electrospun onto a substrate.
  • the substrate can be a pervious or impervious material.
  • non-woven filter media can be used as a substrate.
  • the fiber can be spun onto an impervious layer and can be removed for down stream processing.
  • the fiber can be spun onto a metal drum or foil.
  • the substrate can comprise an expanded PTFE layer or Teflon ® layer. Such layers are useful in a variety of applications that can provide both filtration and activity from the active particulate.
  • the term “adsorptive” indicates a particle that is active to adsorb and accumulate material from a fluid stream on the surface of a particle.
  • the term “absorptive” indicates that the particle has the capacity to accumulate material from a fluid stream into the interior or void space or spaces within a particle.
  • “Chemically reactive” indicates that the particulate has the capacity to react with and chemically change both the character of the particle and the chemical character of the material in the fluid stream.
  • a “fluid stream”, in this application, indicates either a gaseous or a liquid stream that can contain a particulate.
  • the particulate can be either filtered from the fluid stream or the particulate can be adsorbed, absorbed or reacted with the particulate material of the invention.
  • active particulate when used in this disclosure, refers to the absorptive, adsorptive or reactive particulate.
  • inert particulate refers to a particulate that has no substantial absorptive, adsorptive or reactive capacity. Such particles can be used as a separation means or to occupy space.
  • the term “media” includes a structure comprising a web comprising a substantially continuous fine fiber mass and the separation or spacer materials of the invention dispersed in the fiber.
  • the term “media” indicates the web of the invention, comprising the fine fiber and dispersed particulate in combination with a substrate of some active or inert type disclosed herein.
  • the term “element” indicates the combination of the "media” of the invention with another component including cartridge components in the form of (e.g.) cylinder or flat panel structures.
  • the term “web” includes a substantially continuous or contiguous fine fiber phase with spacer particulate phase. A continuous web is necessary to impose a barrier to the passage of a particulate contaminant loading in a mobile phase. A single web, two webs or multiple webs can be combined to make up the filter media of the invention.
  • Figure of Merit can be thought of as a benefit to cost ratio, where efficiency is the benefit, and normalized pressure drop ( ⁇ P) is the cost ( ⁇ P / media velocity).
  • the "cost” is normalized so that one can compare Figures of Merit from tests run at different velocities.
  • Figure of Merit is simply an index to compare media. Larger Figure of Merit values are better than small.
  • depth media In many applications, especially those involving relatively high flow rates, an alternative type of filter media, sometimes generally referred to as "depth” media, is used.
  • a typical depth media comprises a relatively thick tangle of fibrous material.
  • Depth media is generally defined in terms of its porosity, density or percent solids content. For example, a 2-3% solidity media would be a depth media mat of fibers arranged such that approximately 2-3% of the overall volume comprises fibrous materials (solids), the remainder being air or gas space.
  • the fine fiber layers formed on the substrate in the filters of the invention should be substantially uniform in particulate distribution, filtering performance and fiber distribution. By substantial uniformity, we mean that the fiber has sufficient coverage of the substrate to have at least some measurable filtration efficiency throughout the covered substrate.
  • the media of the invention can be used in laminates with multiple webs in a filter structure.
  • the media of the invention includes at least one web of a fine fiber structure.
  • the substrate upon which the fine fiber and active particulate can be formed can be either active or inactive substrate. Such substrates can have incorporated into the substrate layer active materials in the form of coatings, particulates, or fibers that can add adsorbent/absorbent or reactive properties to the overall structure.
  • the overall thickness of the fiber web is about 1 to 100 times the fiber diameter or about 1 to 300 micron or about 5 to 200 microns.
  • the web can comprise about 5 to 95 wt.% fiber and about 95 to 5 wt.-% active particulate or about 30 to 75 wt.-% fiber and about 70 to 25 wt.% active particulate occupies about 0.1 to 50 vol% of the layer or about 1 to 50 vol% or 2 to 50 vol% of the layer.
  • the overall solidity (including the contribution of the active or inactive particulate) of the media is about 0.1 to about 50 %, preferably about 1 to about 30 %.
  • the solidity of the web without including the contribution of the particulate in the structure is about 10 to about 80 %.
  • the filter media of the invention can attain a filtration efficiency of about 20 to about 99.9999 % when measured according to ASTM-1215-89, with 0.78 ⁇ monodisperse polystyrene spherical particles, at 13.21 fpm (4 meters/min) as described herein.
  • the filter performance is about 99.97 % efficiency at 10.5 fpm and 0.3 micron NaCl or DOP particle size. Efficiency numbers in respect to this type of efficiency testing (0.3 micron DOP at 10.5 fpm test velocity), yield an efficiency in the range of 20 to 99.9999 %
  • the Figure of Merit can range from 10 to 10 5 .
  • the filtration web of the invention typically exhibits a Frazier permeability test that would exhibit a permeability of at least about 1 meters-minutes -1 , preferably about 5 to about 50 meters-minutes -1
  • the particulate that characterizes the particulate phase of the web of the invention is a particulate that is either inert to the mobile phase and the entrained contaminant load or has some defined activity with respect to the mobile fluid or the load.
  • the particulate materials of the invention have dimensions capable of improving both the filtration properties of the media and the active reactive, absorbent or adsorbent character of the structures of the invention.
  • the materials can be made of a variety of useful materials.
  • the materials can either be substantially inert to the mobile phase and entrained particulate load passing through the web or the materials can interact with the fluid or particulate loading. In an "inert" mode, the spacer particulate simply alters the physical parameters of the fiber layer and the media including one or more fiber layers.
  • the particulate When using a particulate that interacts with the fluid or the particulate loading, the particulate can, in addition to altering the physical properties of the media or layers, react with or absorb or adsorb a portion of either the mobile fluid or the particulate loading for the purpose of altering the material that passes through the web.
  • the primary focus of the technology disclosed herein is to improve the physical structure and absorptive, reactive or adsorptive character of the media or layers and to improve filter performance.
  • an active or an inert particle can be used.
  • a substantially inert particle can be used in combination with a particulate that interacts with the mobile phase or particulate loading.
  • a combination of an inert particle and an interactive particle will be used.
  • Such a combination of active particulate and inert particulate can provide both improved filter property and absorption, or adsorption properties.
  • the preferred fiber separation active, adsorptive or absorptive, means comprises a particulate.
  • a particulate used in the unique filter structures of the invention, occupies space within the filter layer or mat, reduces the effective density of the fiber, increases the tortuous pathways of the fluid through the filter and absorbs, adsorbs or reacts with the fluid or materials dissolved or dispersed in the fluid.
  • the particulate can provide the mechanical space holding effect while additionally chemically reacting with the mobile fluid or adsorbing or absorbing gaseous, liquid or solid components in the mobile fluid.
  • the active layer of the invention can comprise a nanofiber layer and dispersed within the nanofiber layer, the reactive, absorptive, or adsorptive particulate of the invention.
  • the nanofiber layers of the invention typically range from about 0.5 to about 300 microns, 1 to about 250 microns or 2 to about 200 microns in thickness and contain within the layer about 0.1 to about 50 or 10 to about 50 vol% of the layer in the form of both inert (if any) and the active particulate of the invention.
  • the active particulate of the invention can be combined with inert spacer particulate in some amount.
  • the active particulate of the invention acting to absorb, adsorb or react with contaminants within the fluid flow while the inert particulate simply provides an excluded volume within the layer to reduce solidity, improve efficiency and other filtration properties.
  • the creation of low pressure drop active particulate, chemically reactive, absorptive, or adsorptive substrates for the removal of gas phase contaminants from airstreams is from flat sheet rolls of absorptive/adsorptive/reactive media that are layered or rolled together with a spacer media to form an adsorptive/reactive substrate with open channels and absorptive/adsorptive/reactive walls.
  • the spacer media can be made to be absorptive/ adsorptive/reactive so as to contribute to the overall life/performance of the final chemical unit.
  • the spacer media that creates the open channels can be created from a mesh, single lines of a polymer bead, glue dots, metal ribs, corrugated wire/polymer/paper mesh, corrugated metal/paper/polymer sheets, strips of polymer, strips of adhesive, strips of metal, strips of ceramic, strips of paper, or even from dimples placed in the media surface.
  • These spacer media can be made absorptive/adsorptive/reactive by coating them or extruding/forming them with/from absorptive/adsorptive/reactive materials.
  • the contaminated airflow is primarily directed along the channel created by the spacer media.
  • the channel size and shape is controlled by the shape and size of the space media. Examples include squares, rectangles, triangles, and obscure shapes that may be created by a dotted pattern of polymer/adhesive.
  • the chemistry of the walls and spacer media can be made specific to adsorb acidic, basic, and organic and water vapors, as well as several specific classes of compounds including reactive carbonyl compounds, including formaldehyde, acetaldehyde and acetone.
  • the reactive material can begin in many forms or functions. These forms include layers of reactive particles attached to a substrate.
  • the reactive materials can be held together with adhesive or fibers to encapsulate, or simply hold, the particles and/or additional scrim materials are attached to hold the reactive material in place and minimize shedding of particles.
  • the reactive material can also be sandwiched between layers of scrim. The scrim could help to produce the channels or space between the layers. This could be accomplished with a high loft scrim material that would give the proper spacing as well as ability to hold all the reactive particles in the media.
  • the reactive or adsorptive particles can be held together or interspersed with fibers.
  • the combination of particles and fibers results in a material that offers several advantages: increased diffusion; allowing for the use of smaller particles, thereby increasing the external surface area and hence the reaction rate; increased permeation into the reactive layer; the combination of particle and chemical filtration into a single layer; and the direct application of reactants to a filtration application without the need of a substrate or carrier (i.e. impregnated adsorbent).
  • Imparting reactive activity to the particles and web after forming the fibrous web and structure can be accomplished using many different coating processes. For example, spray coating, dip coating, aerosol deposition, chemical vapor deposition, Kiss coating, and vacuum coating.
  • a final step may involve a drying process that may, or may not, include thermal treatments, gas purging, or vacuum methods.
  • a first aspect of the invention involves the use of a rolled substrate of an active particulate such as an activated carbon from KX Industries (trade name PLEXX) rolled with a nylon mesh to create a low pressure drop volatile organic chemical filter. Similar activated carbon substrates in flat sheets, or rolled good forms are available from other suppliers and can be applied in a similar manner. The material needs to be able to maintain the shape and flexibility to be able to form the various filter elements and minimize the shedding of particles.
  • Another aspect of the invention involves the use of nanofibers and an active particulate such as an activated carbon powder co-dispersed into an air stream, or chamber, and deposited onto a substrate that can be any thin, flexible, porous substrate (e.g. a scrim, paper, mesh, etc.).
  • the nanofibers entrap, or hold, the adsorptive particles in a thin layer and, as such, minimize the shedding of particles.
  • This entire combination of substrate layer and nanofiber/adsorbent layer is then rolled with a spacer layer that provides non-restrictive channels for air flow or transport.
  • the layer can comprise a mix of particulates that each react with a different chemical species.
  • activated carbon may also contain an impregnant that is specific for acidic, basic, or reactive organic contaminants. Examples include, citric acid for the removal of amines and ammonia, potassium hydroxide for the removal of sulfur dioxide and other acid gases, and 2,4-dinitrophenylhydrazine for the removal of carbonyl containing compounds.
  • a third aspect of the invention is the use of nanofibers and citric acid powder, or granules, co-dispersed into an air stream, or chamber, and deposited onto a substrate that can be any thin, flexible, porous substrate (e.g. a scrim, paper, mesh, etc.).
  • Still another aspect of the invention involves the use of catalytic TiO 2 particles, fibers, or layers, in the element of the invention.
  • Such catalytic layers when irradiated with UV light, can cause a chemical reaction between the catalyst and materials entrapped in the mobile phase, and can remove the materials or change them from a noxious or harmful material into a benign material.
  • Ambient light with some proportion of UV (less than 350 nm) and visible radiation (about 350 to 700 nm) can often be the source of sufficient radiation energy to obtain the catalytic effect for the TiO 2 in the element. If ambient conditions are insufficient for activity the element can be used with a separate UV source.
  • Fluorescent UV sources are known and can be used either as a separate irradiating source, or can be incorporated into the element to provide substantial amount of UV radiation onto the TiO 2 .
  • the nanofiber entraps, or holds the reactive particles in a thin layer, and as such, minimizes the shedding of particles.
  • This entire combination of substrate layer and nanofiber/adsorbent layer is then rolled with a spacer layer that provides non-restrictive channels for air flow or transport.
  • the fine fiber layer that contains the active particulate dispersed within the layer can be made from a variety of polymeric species. Since polymer species include a vast array of polymer materials.
  • the polymer can be a single polymer species or blend of polymeric species or a polymer alloy of two or more polymer species.
  • the fibers can be made using any known fine fiber manufacturing technique that involves combining polymers, if necessary with other polymers or additives, and then using a forming technique to shape the polymer into the fine fiber polymer desired.
  • a further aspect of the invention is the use of nanofibers and ion-exchange resins, or granules co-dispersed into an air stream, or chamber, and deposited onto a substrate that can be any thin, flexible, porous substrate (e.g. a scrim, paper, mesh, etc.).
  • the nanofibers entrap, or hold, the reactive particles in a thin layer and, as such, minimize the shedding of particles.
  • This entire combination of substrate layer and nanofiber/adsorbent layer is then rolled with a spacer layer that provides non-restrictive channels for air flow or transport.
  • Polymer materials that can be used as the fiber polymer compositions of the invention include both addition polymer and condensation polymer materials such as polyolefin, polyacetal, polyamide, polyester, cellulose ether and ester, polyalkylene sulfide, polyarylene oxide, polysulfone, modified polysulfone polymers and mixtures thereof.
  • Preferred materials that fall within these generic classes include polyethylene, polypropylene, poly(vinylchloride), polymethylmethacrylate (and other acrylic resins), polystyrene, and copolymers thereof (including ABA type block copolymers), poly(vinylidene fluoride), poly(vinylidene chloride), polyvinylalcohol in various degrees of hydrolysis (80% to 99.5%) in crosslinked and non-crosslinked forms.
  • Preferred addition polymers tend to be glassy (a Tg greater than room temperature).
  • nylon condensation polymers are nylon materials.
  • nylon is a generic name for all long chain synthetic polyamides.
  • nylon nomenclature includes a series of numbers such as in nylon-6,6 which indicates that the starting materials are a C 6 diamine and a C 6 diacid (the first digit indicating a C 6 diamine and the second digit indicating a C 6 dicarboxylic acid compound).
  • Nylon can be made by the polycondensation of ⁇ -caprolactam in the presence of a small amount of water. This reaction forms a nylon-6 (made from a cyclic lactam—also known as ⁇ -aminocaproic acid) that is a linear polyamide. Further, nylon copolymers are also contemplated. Copolymers can be made by combining various diamine compounds, various diacid compounds and various cyclic lactam structures in a reaction mixture and then forming the nylon with randomly positioned monomeric materials in a polyamide structure. For example, a nylon 6,6-6,10 material is a nylon manufactured from hexamethylene diamine and a C 6 and a C 10 blend of diacids. A nylon 6,6-6,6,10 is a nylon manufactured by copolymerization of ⁇ -aminocaproic acid, hexamethylene diamine and a blend of a C 6 and a C 10 diacid material.
  • Block copolymers are also useful in the process of this invention. With such copolymers the choice of solvent swelling agent is important.
  • the selected solvent is such that both blocks were soluble in the solvent.
  • One example is a ABA (styrene-EP-styrene) or AB (styrene-EP) polymer in methylene chloride solvent. If one component is not soluble in the solvent, it will form a gel.
  • block copolymers examples include Kraton ® type of styrene-b-butadiene and styrene-b-hydrogenated butadiene(ethylene propylene), Pebax ® type of E-caprolactam-b-ethylene oxide, Sympatex ® polyester-b-ethylene oxide and polyurethanes of ethylene oxide and isocyanates.
  • highly crystalline polymer like polyethylene and polypropylene require high temperature, high pressure solvent if they are to be solution spun. Therefore, solution spinning of the polyethylene and polypropylene is very difficult. Electrostatic solution spinning is one method of making nanofibers and microfiber.
  • the polyurethane (PU) polyether used in this layer of invention can be an aliphatic or aromatic polyurethane depending on the isocyanate used and can be a polyether polyurethane or a polyester polyurethane.
  • a polyether urethane having good physical properties can be prepared by melt polymerization of a hydroxyl-terminated polyether or polyester intermediate and a chain extender with an aliphatic or aromatic (MDI) diisocyanate.
  • the hydroxyl-terminated polyether has alkylene oxide repeat units containing from 2 to 10 carbon atoms and has a weight average molecular weight of at least 1000.
  • the chain extender is a substantially non-branched glycol having 2 to 20 carbon atoms.
  • the amount of the chain extender is from 0.5 to less than 2 mole per mole of hydroxyl terminated polyether. It is preferred that the polyether polyurethane is thermoplastic and has a melting point of about 140° C to 250°C or greater (e.g., 150° C. to 250° C.) with 180° C. or greater being preferred.
  • the polyurethane polymer of the invention can be made simply by combining a di-, tri- or higher functionality aromatic or aliphatic isocyanate compound with a polyol compound that can comprise either a polyester polyol or a polyether polyol.
  • a polyol compound that can comprise either a polyester polyol or a polyether polyol.
  • the reaction between the active hydrogen atoms in the polyol with the isocyanate groups forms the addition polyurethane polymer material in a straight forward fashion.
  • the OH:NCO ratio is typically about 1:1 leaving little or no unreacted isocyanate in the finished polymer. In any unreacted isocyanate compound, reactivity can be scavenged using isocyanate reactive compounds.
  • the polyurethane polymer can be synthesized in a stepwise fashion from isocyanate terminated prepolymer materials.
  • the polyurethane can be made from an isocyanate-terminated polyether or polyester.
  • An isocyanate-capped polyol prepolymer can be chain-extended with an aromatic or aliphatic dihydroxy compound.
  • isocyanate-terminated polyether or polyurethane refers generally to a prepolymer which comprises a polyol that has been reacted with a diisocyanate compound (i.e., a compound containing at least two isocyanate (-NCO) groups).
  • the prepolymer has a functionality of 2.0 or greater, an average molecular weight of about 250 to 10,000 or 600-5000, and is prepared so as to contain substantially no unreacted monomeric isocyanate compound.
  • unreacted isocyanate compound refers to free monomeric aliphatic or aromatic isocyanate-containing compound, i.e., diisocyanate compound which is employed as a starting material in connection with the preparation of the prepolymer and which remains unreacted in the prepolymer composition.
  • polyol as used herein, generally refers to a polymeric compound having more than one hydroxy (-OH) group, preferably an aliphatic polymeric (polyether or polyester) compound which is terminated at each end with a hydroxy group.
  • the chain-lengthening agents are difunctional and/or trifunctional compounds having molecular weights of from 62 to 500 preferably aliphatic diols having from 2 to 14 carbon atoms, such as, for example, ethanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol and, especially, 1,4-butanediol.
  • diesters of terephthalic acid with glycols having from 2 to 4 carbon atoms such as, for example, terephthalic acid bis-ethylene glycol or 1,4-butanediol, hydroxy alkylene ethers of hydroquinone, such as, for example, 1,4-di(B-hydroxyethyl)-hydroquinone, (cyclo)aliphatic diamines, such as, for example, isophorone-diamine, ethylenediamine, 1,2-, 1,3-propylene-diamine, N-methyl-1,3-propylene-diamine, N,N'-dimethyl-ethylene-diamine, and aromatic diamines, such as, for example, 2,4- and 2,6-toluylene-diamine, 3,5-diethyl-2,4- and/or -2,6-toluylene-diamine, and primary ortho- di-, tri- and/or tetra-alkyl-sub
  • polystyrene resin polystyrene resin
  • Preferred polyols are polyesters, polyethers, polycarbonates or a mixture thereof.
  • a wide variety of polyol compounds is available for use in the preparation of the prepolymer.
  • the polyol may comprise a polymeric diol including, for example, polyether diols and polyester diols and mixtures or copolymers thereof.
  • Preferred polymeric diols are polyether diols, with polyalkylene ether diols being more preferred.
  • Exemplary polyalkylene polyether diols include, for example, polyethylene ether glycol, polypropylene ether glycol, polytetramethylene ether glycol (PTMEG) and polyhexamethylene ether glycol and mixtures or copolymers thereof. Preferred among these polyalkylene ether diols is PTMEG. Preferred among the polyester diols are, for example, polybutylene adipate glycol and polyethylene adipate glycol and mixtures or copolymers thereof. Other polyether polyols may be prepared by reacting one or more alkylene oxides having from 2 to 4 carbon atoms in the alkylene radical with a starter molecule containing two active hydrogen atoms bonded therein.
  • alkylene oxides ethylene oxide, 1,2-propylene oxide, epichlorohydrin and 1,2- and 2,3-butylene oxide. Preference is given to the use of ethylene oxide, propylene oxide and mixtures of 1,2-propylene oxide and ethylene oxide.
  • the alkylene oxides may be used individually, alternately in succession, or in the form of mixtures.
  • Starter molecules include, for example: water, amino alcohols, such as N-alkyldiethanolamines, for example N-methyl-diethanolamine, and diols, such as ethylene glycol, 1,3-propylene glycol, 1,4-butanediol and 1,6-hexanediol.
  • Suitable polyether polyols are also the hydroxyl-group-containing polymerization products of tetrahydrofuran.
  • Suitable polyester polyols may be prepared, for example, from dicarboxylic acids having from 2 to 12 carbon atoms, preferably from 4 to 6 carbon atoms, and polyhydric alcohols.
  • Suitable dicarboxylic acids include, for example: aliphatic dicarboxylic acids, such as succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid and sebacic acid, and aromatic dicarboxylic acids, such as phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids may be used individually or in the form of mixtures, for example in the form of a succinic, glutaric and adipic acid mixture. It may be advantageous for the preparation of the polyester polyols to use, instead of the dicarboxylic acids, the corresponding dicarboxylic acid derivatives, such as carboxylic acid diesters having from 1 to 4 carbon atoms in the alcohol radical, carboxylic acid anhydrides or carboxylic acid chlorides.
  • polyhydric alcohols examples include glycols having from 2 to 10, preferably from 2 to 6, carbon atoms, such as ethylene glycol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,10-decanediol, 2,2-dimethyl-1,3-propanediol, 1,3-propanediol and dipropylene glycol. According to the desired properties, the polyhydric alcohols may be used alone or, optionally, in admixture with one another.
  • esters of carbonic acid with the mentioned diols especially those having from 4 to 6 carbon atoms, such as 1,4-butanediol and/or 1,6-hexanediol, condensation products of (omega-hydroxycarboxylic acids, for example (omega-hydroxycaproic acid, and preferably polymerization products of lactones, for example optionally substituted ( ⁇ -caprolactones.
  • polyester polyols ethanediol polyadipate, 1,4-butanediol polyadipate, ethanediol-1,4-butanediol polyadipate, 1,6-hexanediol neopentyl glycol polyadipate, 1,6-hexanediol-1,4-butanediol polyadipate and polycaprolactones.
  • the polyester polyols have molecular weights of from 600 to 5000.
  • the number of average molecular weight of the polyols from which the polymer or prepolymers may be derived may range from about 800 to about 3500 and all combinations and subcombinations of ranges therein. More preferably, the number of average molecular weights of the polyol may range from about 1500 to about 2500, with number average molecular weights of about 2000 being even more preferred.
  • the polyol in the prepolymers can be capped with an isocyanate compound or can be fully reacted to the thermoplastic polyurethane (TPU).
  • TPU thermoplastic polyurethane
  • diisocyanate compounds are available for use in the preparation of the prepolymers of the present invention.
  • the diisocyanate compound may be aromatic or aliphatic, with aromatic diisocyanate compounds being preferred.
  • suitable organic diisocyanates are, for example, aliphatic, cycloaliphatic, araliphatic, heterocyclic and aromatic diisocyanates, as are described, for example, in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136 .
  • suitable aromatic diisocyanate compounds include diphenylmethane diisocyanate, xylene diisocyanate, toluene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate and mixtures thereof.
  • suitable aliphatic diisocyanate compounds include dicyclohexylmethane diisocyanate and hexamethylene diisocyanate and mixtures thereof.
  • Preferred among the diisocyanate compounds is MDI due, at least in part, to its general commercial availability and high degree of safety, as well as its generally desirable reactivity with chain extenders (discussed more fully hereinafter).
  • diisocyanate compounds in addition to those exemplified above, would be readily apparent to one of ordinary skill in the art, once armed with the present disclosure.
  • aliphatic diisocyanates such as hexamethylene diisocyanate
  • cycloaliphatic diisocyanates such as isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 1-methyl-2,4- and -2,6-cyclohexane diisocyanate and the corresponding isomeric mixtures
  • aromatic diisocyanates such as 2,4-toluylene diisocyanate, mixtures of 2,4- and 2,6-toluylene diisocyanate, 4,4'-, 2,4'- and 2,2'-diphenylmethane diis
  • the chain-extension components are reacted, optionally in the presence of catalysts, auxiliary substances and/or additives, in such amounts that the equivalence ratio of NCO groups to the sum of all the NCO-reactive groups, especially of the OH groups of the low molecular weight diols/triols and polyols, is from 0.9:1.0 to 1.2:1.0, preferably from 0.95:1.0 to 1.10:1.0.
  • Suitable catalysts which in particular accelerate the reaction between the NCO groups of the diisocyanates and the hydroxyl groups of the diol components, are the conventional tertiary amines known in the prior art, such as, for example, triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N,N'-dimethyl-piperazine, 2-(dimethylaminoethoxy)-ethanol, diazabicyclo-(2,2,2)-octane and the like, as well as, especially, organometallic compounds such as titanic acid esters, iron compounds, tin compounds, for example tin diacetate, tin dioctate, tin dilaurate or the tindialkyl salts of aliphatic carboxylic acids, such as dibutyltin diacetate, dibutyltin dilaurate or the like.
  • organometallic compounds such as titanic acid esters, iron compounds, tin compounds, for example
  • the catalysts are usually used in amounts of from 0.0005 to 0.1 part per 100 parts of polyhydroxy compound.
  • auxiliary substances and/or additives may also be incorporated into the chain-extension components. Examples which may be mentioned are lubricants, antiblocking agents, inhibitors, stabilizers against hydrolysis, light, heat and discoloration, flameproofing agents, colorings, pigments, inorganic and/or organic fillers and reinforcing agents.
  • Reinforcing agents are especially fibrous reinforcing materials such as, for example, inorganic fibers, which are prepared according to the prior art and may also be provided with a size.
  • thermoplastics for example polycarbonates and acrylonitrile-butadiene-styrene terpolymers, especially ABS.
  • Other elastomers such as, for example, rubber, ethylene-vinyl acetate polymers, styrene-butadiene copolymers and other PUs, may likewise be used.
  • plasticisers such as, for example, phosphates, phthalates, adipates, sebacates.
  • the PUs according to the invention are produced continuously. Either the known band process or the extruder process may be used.
  • the components may be metered simultaneously, i.e. one shot, or in succession, i.e.
  • the prepolymer may be introduced either batchwise or continuously in the first part of the extruder, or it may be prepared in a separate prepolymer apparatus arranged upstream.
  • the extruder process is preferably used, optionally in conjunction with a prepolymer reactor.
  • Fiber can be made by conventional methods and can be made by melt spinning the polyurethane PU or a mixed polyether urethane and the additive.
  • Melt spinning is a well known process in which a polymer is melted by extrusion, passed through a spinning nozzle into air, solidified by cooling, and collected by winding the fibers on a collection device.
  • the fibers are melt-spun at a polymer temperature of about 150° C. to about 300° C.
  • Polymeric materials have been fabricated in non-woven and woven fabrics, fibers and microfibers.
  • the polymeric material provides the physical properties required for product stability. These materials should not change significantly in dimension, suffer reduced molecular weight, become less flexible or subject to stress cracking, or physically deteriorate in the presence of sunlight, humidity, high temperatures or other negative environmental effects.
  • the invention relates to an improved polymeric material that can maintain physical properties in the face of incident electromagnetic radiation such as environmental light, heat, humidity and other physical challenges.
  • polymeric compositions comprising two or more polymeric materials in polymer admixture, alloy format, or in a crosslinked chemically bonded structure.
  • polymer compositions improve physical properties by changing polymer attributes such as improving polymer chain flexibility or chain mobility, increasing overall molecular weight and providing reinforcement through the formation of networks of polymeric materials.
  • two related or unrelated polymer materials can be blended for beneficial properties.
  • a high molecular weight polyvinylchloride can be blended with a low molecular weight polyvinylchloride.
  • a high molecular weight nylon material can be blended with a low molecular weight nylon material.
  • differing species of a general polymeric genus can be blended.
  • a high molecular weight styrene material can be blended with a low molecular weight, high impact polystyrene.
  • a nylon-6 material can be blended with a nylon copolymer such as a nylon-6,6-6,6,10 copolymer.
  • a polyvinylalcohol having a low degree of hydrolysis such as an 80-87% hydrolyzed polyvinylalcohol can be blended with a fully or superhydrolyzed polyvinylalcohol having a degree of hydrolysis between 98 and 99.9% and higher. All of these materials in admixture can be crosslinked using appropriate crosslinking mechanisms. Nylons can be crosslinked using crosslinking agents that are reactive with the nitrogen atom in the amide linkage. Polyvinylalcohol materials can be crosslinked using hydroxyl reactive materials such as monoaldehydes, such as formaldehyde, ureas, melamine-formaldehyde resin and its analogues, boric acids and other inorganic compounds.
  • monoaldehydes such as formaldehyde, ureas, melamine-formaldehyde resin and its analogues, boric acids and other inorganic compounds.
  • Crosslinking technology is a well known and understood phenomenon in which a crosslinking reagent reacts and forms covalent bonds between polymer chains to substantially improve molecular weight, chemical resistance, overall strength and resistance to mechanical degradation.
  • additive materials can significantly improve the properties of the polymer materials in the form of a fine fiber.
  • the resistance to the effects of heat, humidity, impact, mechanical stress and other negative environmental effect can be substantially improved by the presence of additive materials.
  • the additive materials can improve the oleophobic character, the hydrophobic character, and can appear to aid in improving the chemical stability of the materials.
  • the fine fibers of the invention in the form of a microfiber are improved by the presence of these oleophobic and hydrophobic additives as these additives form a protective layer coating, ablative surface or penetrate the surface to some depth to improve the nature of the polymeric material.
  • Strongly hydrophobic groups include fluorocarbon groups, hydrophobic hydrocarbon surfactants or blocks and substantially hydrocarbon oligomeric compositions. These materials are manufactured in compositions that have a portion of the molecule that tends to be compatible with the polymer material affording typically a physical bond or association with the polymer while the strongly hydrophobic or oleophobic group, as a result of the association of the additive with the polymer, forms a protective surface layer that resides on the surface or becomes alloyed with or mixed with the polymer surface layers.
  • the surface thickness is calculated to be around 50 ⁇ , if the additive has migrated toward the surface. Migration is believed to occur due to the incompatible nature of the oleophobic or hydrophobic groups in the bulk material.
  • a 50 ⁇ thickness appears to be reasonable thickness for protective coating.
  • 50 ⁇ thickness corresponds to 20% mass.
  • 50 ⁇ thickness corresponds to 2% mass.
  • the additive materials are used at an amount of about 2 to 25 wt.%.
  • Oligomeric additives that can be used in combination with the polymer materials of the invention include oligomers having a molecular weight of about 500 to about 5000, preferably about 500 to about 3000 including fluoro-chemicals, nonionic surfactants and low molecular weight resins or oligomers.
  • useful phenolic additive materials include Enzo-BPA, Enzo-BPA/phenol, Enzo-TBP, Enzo-COP and other related phenolics were obtained from Enzymol International Inc., Columbus, Ohio.
  • the durable nanofibers and microfibers described in this invention can be added to any of the media.
  • the fibers described in this invention can also be used to substitute for fiber components of these existing media giving the significant advantage of improved performance (improved efficiency and/or reduced pressure drop) due to their small diameter, while exhibiting greater durability.
  • Fibers and microfibers are known; however, their use has been very limited due to their fragility to mechanical stresses, and their susceptibility to chemical degradation due to their very high surface area to volume ratio.
  • the fibers described in this invention address these limitations and will therefore be usable in a very wide variety of filtration, textile, membrane, and other diverse applications.
  • a media construction according to the present invention includes a first layer of permeable coarse fibrous media or substrate having a first surface.
  • a first layer of fine fiber media is secured to the first surface of the first layer of permeable coarse fibrous media.
  • the first layer of permeable coarse fibrous material comprises fibers having an average diameter of at least 10 microns, typically and preferably about 12 (or 14) to 30 microns.
  • the first layer of permeable coarse fibrous material comprises a media having a basis weight of no greater than about 200 grams/meter 2 , preferably about 0.50 to 150 g/m 2 , and most preferably at least 8 g/m 2 .
  • the first layer of permeable coarse fibrous media is at least 0.0005 inch (12 microns) thick, and typically and preferably is about 0.001 to 0.030 inch (25-800 microns) thick.
  • the element of the invention, including the fine fiber and dispersed particulate layer can be combined with a variety of other layers as discussed elsewhere in the specification.
  • the layers can be made as a flat or coplanar sheet version of the layers of the invention or can be pleated, corrugated or formed into virtually any other cross-sectional shape needed to form the low pressure drop flow through element of the invention.
  • the substrate can comprise an expanded poly PTFE layer or Teflon layer.
  • the substrate can also be substantially free of a Teflon, an expanded poly PTFE layer, or stretched PTFE fiber or layer.
  • Such layers are useful in a variety of in use applications that can provide both filtration and activity from the active particulate. Such layers can also aid in confining the particulate into the element.
  • the first layer of permeable coarse fibrous material comprises a material which, if evaluated separately from a remainder of the construction by the Frazier permeability test, would exhibit a permeability of at least 1 meter(s)/min, and typically and preferably about 2-900 meters/min.
  • a permeability of at least 1 meter(s)/min, and typically and preferably about 2-900 meters/min.
  • efficiency when reference is made to efficiency, unless otherwise specified, reference is made to efficiency when measured according to ASTM-1215-89, with 0.78 ⁇ monodisperse polystyrene spherical particles, at 20 fpm (6.1 meters/min) as described herein.
  • the layer of fine fiber material secured to the first surface of the layer of permeable coarse fibrous media is a layer of nano- and microfiber media wherein the fibers have average fiber diameters of no greater than about 2 microns, generally and preferably no greater than about 1 micron, and typically and preferably have fiber diameters smaller than 0.5 micron and within the range of about 0.05 to 0.5 micron.
  • the first layer of fine fiber material secured to the first surface of the first layer of permeable coarse fibrous material has an overall thickness that is no greater than about 30 microns, more preferably no more than 20 microns, most preferably no greater than about 10 microns, and typically and preferably that is within a thickness of about 1-8 times (and more preferably no more than 5 times) the fine fiber average diameter of the layer.
  • the electrostatic spinning process can form the microfiber or nanofiber of the unit.
  • a suitable apparatus for forming the fiber is illustrated in Barris U.S. Patent No. 4,650,506 .
  • This apparatus includes a reservoir in which the fine fiber forming polymer solution is contained, a pump and a rotary type emitting device or emitter to which the polymeric solution is pumped.
  • the emitter generally consists of a rotating union, a rotating portion including a plurality of offset holes and a shaft connecting the forward facing portion and the rotating union.
  • the rotating union provides for introduction of the polymer solution to the forward facing portion through the hollow shaft.
  • the rotating portion can be immersed into a reservoir of polymer fed by reservoir and pump. The rotating portion then obtains polymer solution from the reservoir and as it rotates in the electrostatic field, the electrostatic field aligned toward the collecting media accelerates a droplet of the solution as discussed below.
  • a substantially planar grid 60 Facing the emitter, but spaced apart therefrom, is a substantially planar grid 60 upon which the collecting media (i.e. substrate or combined substrate is positioned. Air can be drawn through the grid. The collecting media is passed around rollers which are positioned adjacent opposite ends of grid. A high voltage electrostatic potential is maintained between emitter and grid by means of a suitable electrostatic voltage source and connections and which connect respectively to the grid and emitter.
  • the collecting media i.e. substrate or combined substrate
  • Air can be drawn through the grid.
  • the collecting media is passed around rollers which are positioned adjacent opposite ends of grid.
  • a high voltage electrostatic potential is maintained between emitter and grid by means of a suitable electrostatic voltage source and connections and which connect respectively to the grid and emitter.
  • the polymer solution is pumped to the rotating union or reservoir from reservoir.
  • the forward facing portion rotates while liquid exits from holes, or is picked up from a reservoir, and moves from the outer edge of the emitter toward collecting media positioned on the grid.
  • the electrostatic potential between grid and the emitter imparts a charge to the material that cause liquid to be emitted there from as thin fibers which are drawn toward grid where they arrive and are collected on substrate or an efficiency layer.
  • solvent is evaporated from the fibers during their flight to the grid; therefore, the fibers arrive at the substrate or efficiency layer without substantial solvent.
  • the fine fibers bond to the substrate fibers first encountered at the grid.
  • Electrostatic field strength is selected to ensure that as the polymer material it is accelerated from the emitter to the collecting media, the acceleration is sufficient to render the material into a very thin microfiber or nanofiber structure.
  • Increasing or slowing the advance rate of the collecting media can deposit more or less emitted fibers on the forming media, thereby allowing control of the thickness of each layer deposited thereon.
  • the rotating portion can have a variety of beneficial positions.
  • the rotating portion can be placed in a plane of rotation such that the plane is perpendicular to the surface of the collecting media or positioned at any arbitrary angle.
  • the rotating media can be positioned parallel to or slightly offset from parallel orientation.
  • a sheet-like substrate is unwound at a station.
  • the sheet-like substrate is then directed to a splicing station wherein multiple lengths of the substrate can be spliced for continuous operation.
  • the continuous length of sheet-like substrate is directed to a fine fiber technology station comprising the spinning technology discussed above, wherein a spinning device forms the fine fiber and lays the fine fiber in a filtering layer on the sheet-like substrate.
  • the fine fiber layer and substrate are directed to a heat treatment station for appropriate processing.
  • the sheet-like substrate and fine fiber layer is then tested in an efficiency monitor and nipped if necessary at a nip station.
  • the sheet-like substrate and fiber layer is then steered to the appropriate winding station to be wound onto the appropriate spindle for further processing.
  • the element of the invention when used in a filtration mode should have a minimal pressure drop for acceptable function as a filter and to obtain the activity of the active particle(s). Such pressure drop information is known for the types of filtration devices of the invention. Such pressure drop parameters define the useful life of the filtration element of the invention.
  • the element of the invention when used in a flow through mode with no intervening filter layer, should provide little or no resistance to the flow of the mobile fluid through the element (e.g.; less 0.1 inches or less than 1-5 inches of water). Flow should not be constrained but the residence time, however, of the fluid within the element must be sufficient to obtain sufficient contact and absorbance/adsorbance/reaction needed in the element to obtain the desired activity form the active particulate within the element.
  • a useful residence time, depending on active particulate can be from about 0.01 to as long as it is necessary to obtain some removal of entrained materials.
  • the residence time can be 0.02 second to as much as 5 minutes and typically ranges from about 0.01 to 60 seconds 0.01 to 1 second or as little as 0.02 to 0.5 second.
  • the lifetime of such a unit is defined by the load of active particulate and the residual amount of activity in the unit.
  • the media, web, layers or elements of the invention can be regenerated.
  • the particulate can be regenerated by chemically treating the particulate.
  • the particulate can be generated by heating the element to a temperature sufficient to drive the absorbed or adsorbed material from the particulate surface or internal structure.
  • the element can also be evacuated such that the effects of reduced pressure can remove the volatile material from the surface of the adsorptive particle or from the interior of the absorptive particle.
  • the reactive species can be regenerated by first removing any reaction byproducts from the reaction from the active species with the entering material in the fluid phase.
  • byproducts are removed, the particulate remaining within the element enhanced by passing a solution or suspension of the active material through the element, causing the interior structure including the fine fiber layer to accumulate additional amounts of reactive material.
  • thermoplastic aliphatic polyurethane compound manufactured by Noveon ® , TECOPHILIC SP-80A-150 TPU was used.
  • the polymer is a polyether polyurethane made by reacting dicyclohexylmethane 4,4'-diisocyanate with a polyol.
  • a copolymer of nylon 6,6,6-6,10 nylon copolymer resin (SVP-651) was analyzed for molecular weight by the end group titration.
  • the number of average molecular weight was between 21,500 and 24,800.
  • the composition was estimated by the phase diagram of melt temperature of three component nylon, nylon 6 about 45%, nylon 66 about 20% and nylon 610 about 25%. ( Page 286, Nylon Plastics Handbook, Melvin Kohan ed.
  • Copolyamide (nylon 6,6-6,6,10) described earlier in Polymer Example 2 was mixed with phenolic resin, identified as Georgia Pacific 5137.
  • the elasticity benefit of this new fiber chemistry comes from the blend of a polymer with a polyurethane.
  • the polyurethane used in this invention is polymer Ex.1 obtained from Noveon, Inc. and is identified as TECOPHILIC SP-80A-150 Thermoplastic Polyurethane. This is an alcohol-soluble polymer and was dissolved in ethyl alcohol at 60 °C by rigorously stirring for 4 hours. After the end of 4 hours, the solution was cooled down to room temperature, typically overnight. The solids content of the polymer solution was around 13 %wt, although it is reasonable to suggest that different polymer solids content can be used as well.
  • Fig. 1A and 1B show a series of Scanning Electron Microscope (SEM) images showing the as-spun fibers along with some functional particles (SEM image).
  • the particles displayed in the SEM image 1 are activated carbon particles intended for removal of certain chemicals in the gas phase.
  • the adsorption capacity of these particles has a strong relationship with their post-process conditions.
  • electrospinning the solvent vapor coming off from the electrospun fibers as they form and dry can be readily adsorbed by the carbon particles hence limiting their overall capacity.
  • the fibers electrospun from this polymer solution blend polymer example 1 and polymer example 2 have excellent temperature stability and good elasticity and tackiness, which are not possible to find all-in-one in any component of the solution, polymer example 1 and polymer example 2.
  • the fibers have an average diameter about two to three times that of the average fiber diameter of polymer example 2 fibers (polymer example 2 average fiber diameter is in the range of 0.25 microns).
  • this polyurethane has excellent elasticity, it is rather preferred to have temperature resistance as well. This is particularly important if there are subsequent downstream processes that require high temperature processing.
  • the polymer solution was as follows: the polymer had a melt flow index of 18.1 g/10 min measured at 180°C.
  • the solution viscosity was measured as 210 cP at 25°C using a viscometer.
  • Reemay 2011 polyester substrate was used to deposit the nanofiber/activated carbon particle composite.
  • the substrate is very open, substrate fibers are laid down flat with no protrusion of fibers from the web and has a very low basis weight, 25 g/m 2 .
  • Activate carbon particles were dispersed to the nanofiber matrix using a deflocculator system, where the particles were fed to the deflocculator using a dry particle feeder (screw feeder) with electronic controls over the particle output rate.
  • a dry particle feeder screw feeder
  • the substrate was mounted on a continuous belt ( Figure 4a and 4b ) and as such the composite was generated using a pilot machine with limited fiber spinning capability.
  • the nanofiber/activated carbon particle composite was composed of 91.4 wt% of carbon particles and 8.6 wt% of polymeric nanofibers.
  • nanofibers Adhesion between the particles and nanofibers as a direct result of solution spinning of the nanofibers. Because nanofibers were created from a polymer solution using electrospinning process, as the nanofibers land on the target, they may retain a very small amount of the solvent in their structure and hence they have the ability to fuse onto the activated carbon particles. Because the fibers have very small fiber diameter, and there are only a handful of nanofibers in contact with the particle, the available surface area of the activated carbon for chemical adsorption is dramatically high, enough to affect the performance of the media in a positive way.
  • the heat treatment at 230°F for 5 minutes is carried out because during electrospinning of almost any polymer solution there could be a very small amount of residual solvent remaining in the nanofiber structure.
  • the standard unit of measure of FOM is 1 / (cm Hg)l(cmlsec) or (cm / sec) / cm Hg
  • FOM the better the quality of the media is; in other words, higher FOM means either higher efficiency for the same pressure drop, or lower pressure drop for the same efficiency.
  • the application of this invention is to purify fluid streams, including liquid streams and gaseous streams.
  • the filter element of the invention is placed in a location or environment suitable for a particular application, such that a contaminate-laded fluid stream can pass through or pass by the element, and contaminates can be removed.
  • Fluid streams for the application include liquid or gaseous streams that can contain contaminates such as dust particulate, water, solvent residue, oil residue, mixed aqueous oil residue, harmful gases.
  • Mobile liquid streams include fuels, oils, solvent streams, etc.
  • the streams are contacted with the flow-through or flow-by structures of the invention to remove liquid or particulate contaminants, color forming species, and soluble impurities.
  • the contaminates to be removed by application of the invention also include biological products such as, for example, prions, viruses, bacteria, spores, nucleic acids, other potentially harmful biological products or hazardous materials.
  • the invention can be used to purify fluid streams, with some further addition of liquid filtration including fuel and lubes, water filtration.air streams in any application that requires airborne acidic, basic and volatile organic gaseous filtration at relatively low gas concentrations ( ⁇ 100 ppm).
  • the application environments may consist of either a stagnant or flowing gas stream that is either dry or contains significant amounts of water.
  • One of the primary applications for this invention is to have a light weight, low pressure drop adsorbent media for semiconductor applications that require purified air to be provided to a process, tool, test, or enclosure. This may include other applications that require purified air, nitrogen, or other process gas stream.
  • the adsorbent media is capable of removing gaseous contamination within clean rooms, semiconductor industry or sub-fabrication system, process tools, and enclosures through single pass, recirculation, or static filtration. Additionally, the media can purify air that is taken from one location to another. Such air transfer can be from a sub-fabrication to the main fabrication, or from the external atmosphere to an emission test system.
  • the filter element of the invention can be placed in a vent for an enclosure, such that the interior of the enclosure is maintained at a substantially reduced moisture content with respect to the exterior of the enclosure, because the adsorbent media removes moisture from the interior of the enclosure.
  • the enclosure in which the filter element is placed includes an enclosure containing an electronic circuit or device, wherein the electronic circuit or device includes, without limitation, an organic light emitting diode, a hard drive, a display, or some combination thereof.
  • the filter element of the invention can be used as a moisture-absorbing flexible display for an electronic device.
  • the flexible display comprises a lighted display (including displays formed using light emitting diodes) combined with the filter element, which absorbs moisture from the environment or enclosure in which the flexible display is used.
  • this media could be used in various applications and in various forms including particle filtration and chemical filtration in the same layer or confined space, combination particle filter and chemical filter for use in a gas turbine application, chemical filter as the only option for gas turbine systems, high flow applications in the semiconductor industry for fan assemblies, point of use, and full filter fabrication locations or labs, applications that require a "gettering" type filter, point of use filtration for semiconductor within clean rooms with minimal space and maximum efficiency, tool mount filter for semiconductor applications within clean rooms with minimal space and maximum efficiency, high flow applications in ceiling grids for clean rooms applications, applications that require a reduced weight but similar efficiencies, applications that require a reduced pressure drop but similar efficiencies, locations requiring low particle shedding, or layers of chemical filters can be used.
  • Respirators, dust masks, surgical masks and gowns, surgical drapes, HEPA replacement including filters for semiconductor processing equipment and clean rooms, sir filtration for gasoline, natural gas or diesel powered engine, inlet filtration for air compressors, inlet filtration for dust collection equipment, vacuum cleaner filters, acid gas removal from air, cartridges for dryers, CBRN protection materials, wound care, HVAC applications, cabin air filtration, room air cleaner, fuel filter, lube filter, oil filters, liquid filters, air filter for fuel cell application, process filters, insulation material, filters for disk drives, filters for electronics enclosures, chromatographic separations, bio-separations can all be made with the materials of the application.
  • the spacing media may be chemically treated to assist in filtration or may be inert.
  • flow channels in a filter element can be created by co-rolling the spacing media and chemical filtration media around a chemically active or inert core. This can be seen in the (Fig. # 3).
  • Nanofiber layers are typically spun onto a substrate material which can be a scrim, a cellulosic substrate, a mixed synthetic cellulosic substrate or a purely cellulosic substrate.
  • the nanofiber layers containing the active or inert particulate are electrospun onto said substrates and the substrate can then be rolled into an absorbent structure.
  • the layer can be cut into similar portions and stacked to form an absorbent layer. It is important that the internal structure of any assembly of the nanofiber layers has sufficient air flow to ensure that the air can pass easily through the assembly.
  • the assembly would act, not as a filter, but purely as an absorbent assembly structure.
  • the layers of fine fiber and reactive or active particulate can be assembled into a structure that filters and reacts, adsorbs, or absorbs.
  • Such varying structures have applications in a variety of end uses.
  • the former structure has little or no filtration properties and can remove reactive contaminant materials from fluid streams such as air streams or liquid streams simply using a flow-through mechanism.
  • the latter structure can remove particulate, and can remove chemical species from a fluid such as air, simultaneously with the filtration operations.
  • the media can be configured for a straight through flow either in a flow without filtration properties or a flow including passage through a filter layer.
  • the fluid will enter in one direction through a first flow face and exit moving in the same direction from a second flow face.
  • the fluid may not interact with a surface that acts as a filter or it may interact with a flow, may contact a surface that obtains filtration properties.
  • one preferred filter construction is a wound construction including a layer of media that is turned repeatedly about a center point forming a coil such that the filter media will be rolled, wound or coiled.
  • One preferred useful structure is a corrugated structure in which the material has a fluted construction.
  • Such flutes can be formed and combined with a face sheet.
  • the corrugated media is combined with the uncorrugated media in the form of a face sheet, the resulting structure can be coiled and formed into a useful assembly.
  • the flutes form alternating peaks and troughs in the corrugated structure.
  • the upper flutes form flute chambers which can be closed at a downstream and while the flute chambers have upstream ends that are closed to form other rows of flutes.
  • the opened and closed areas cause the fluid to pass through at least one corrugated wall to obtain filtration properties from the corrugated layer.
  • such corrugated media in a coiled assembly provides an intake area for a fluid stream such as air.
  • Contaminants were generated from certified gas standards delivered into the test air stream through mass flow controllers (Aalborg; Orangeburg, NY; or Brooks/Emerson Process Management, Hatfield, PA).
  • the relative humidity was controlled using a Flow-Temperature-Humidity Controller (Miller-Nelson Research, Inc.; Monterey, CA); Model HCS-401.
  • a relative humidity of 50% RH was used for the studies presented herein.
  • the temperature and relative humidity of the air stream upstream and downstream of the adsorbent bed were measured using calibrated temperature and humidity sensors (Vaisala; Woburn, MA; Model HMP233).
  • the temperature of the adsorbent bed was controlled at 25°C using a water-jacketed sample holder and a water bath.
  • FIG. 6 is a breakthrough curves for all fine fiber entrapment elements tested.
  • Non-impregnated and impregnated activated carbons have excellent removal efficiency and life for certain organic gases.
  • the process involves deposition of a very light layer of nanofibers on a scrim for handling and integrity purposes, followed by the application of nanofiber/activated carbon composite, which constitutes the bulk of the overall composite.
  • nanofiber/activated carbon composite which constitutes the bulk of the overall composite.
  • another layer of nanofiber-only layer is deposited to the top of the composite.
  • This nanofiber only layer on the top and bottom surfaces help keep particle shedding to almost none, as we have not seen evidence of that in the past. They also help boost the particulate efficiency of the composite.
  • the structure of the invention includes, a Nanofiber layer, a Nanofiber/carbon composite layer, a Nanofiber-only layer, and a Scrim.
  • Particulate efficiency is one of the key parameters that bring an edge-formed for this type of media.
  • particulate efficiency data for two nanofiber/activated carbon composites, with the difference being their basis weights. Measurements are recorded using TSI 3160 Automated Filter Tester, operated using DOP particles of varying size at 10.5 ft/min face velocity on flat sheet samples.
  • This table shows particulate efficiencies of two nanofiber composites with different thicknesses. As one can see from the table above, by varying the composite thickness we have successfully changed the particulate efficiency of the composite. It is also possible to modify the particulate efficiency by varying the amount of nanofiber layer on the top and bottom surfaces of the composite without affecting the nanofiber/carbon composite in the middle. Furthermore, it is possible to introduce one or more nanofiber-only layer inside the middle composite in an attempt to boost the particulate efficiency to the desired target level.
  • Another structure can include a Nanofiber layer, a Nanofiber/carbon composite layer, a Nanofiber-only layer and a Scrim.
  • This Nanofiber composite similar to that above, the difference is a nanofiber-only layer in the middle of the nanofiber-carbon composite functioning as a particulate efficiency enhancement stage. While particulate efficiency is one aspect unique to this invention, another aspect is chemical adsorption and removal of contaminants from gas phase. In an attempt to understand the effects of different levels of carbon loading, Media A and Media B, which were tested for particulate efficiency were also tested for chemical adsorption capacity. In this case, these media were challenged against toluene. Results show that varying the degree of carbon loading affected the breakthrough time and overall capacity of these media as shown in Fig 6 .
  • the process involves deposition of a very light layer of nanofibers on a scrim for handling and integrity purposes, followed by the application of nanofiber/activated carbon composite, which constitutes the bulk of the overall composite.
  • nanofiber/activated carbon composite which constitutes the bulk of the overall composite.
  • another layer of nanofiber-only layer is deposited to the top of the composite.
  • This nanofiber only layer on the top and bottom surfaces help keep particle shedding to almost none, as we have not seen evidence of that in the past. They also help boost the particulate efficiency of the composite.
  • the structure of the invention includes, a Nanofiber layer, a Nanofiber/carbon composite layer, a Nanofiber-only layer, and a Scrim.
  • Particulate efficiency is one of the key parameters that bring an edge-formed for this type of media.
  • particulate efficiency data for two nanofiber/activated carbon composites, with the difference being their basis weights. Measurements are recorded using TSI 3160 Automated Filter Tester, operated using DOP particles of varying size at 10.5 ft/min face velocity on flat sheet samples.
  • This table shows particulate efficiencies of two nanofiber composites with different thicknesses.
  • Another structure can include a Nanofiber layer, a Nanofiber/carbon composite layer, a Nanofiber-only layer and a Scrim.
  • This Nanofiber composite similar to that above, the difference is a nanofiber-only layer in the middle of the nanofiber-carbon composite functioning as a particulate efficiency enhancement stage. While particulate efficiency is one aspect unique to this invention, another aspect is chemical adsorption and removal of contaminants from gas phase. In an attempt to understand the effects of different levels of carbon loading, Media A and Media B, which were tested for particulate efficiency were also tested for chemical adsorption capacity. In this case, these media were challenged against toluene. Results show that varying the degree of carbon loading affected the breakthrough time and overall capacity of these media as shown in Fig 6 .
  • Figure 7 shows the performance of a high surface area coconut shell carbon placed within the web of our fine fiber matrix in accelerated breakthrough test for toluene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Multicomponent Fibers (AREA)
  • Drying Of Gases (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
EP12180143.5A 2006-02-13 2007-02-13 Toile contenant des fibres fines et des particules réactives, adsorbantes ou absorbantes Active EP2545976B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16182449.5A EP3127593B1 (fr) 2006-02-13 2007-02-13 Toile de filtrage contenant des fibres fines et des particules expansibles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77306706P 2006-02-13 2006-02-13
EP07750930.5A EP1984092B1 (fr) 2006-02-13 2007-02-13 Toile contenant des fibres fines et des particules reactives, adsorbantes ou absorbantes

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP07750930.5A Division EP1984092B1 (fr) 2006-02-13 2007-02-13 Toile contenant des fibres fines et des particules reactives, adsorbantes ou absorbantes
EP07750930.5A Division-Into EP1984092B1 (fr) 2006-02-13 2007-02-13 Toile contenant des fibres fines et des particules reactives, adsorbantes ou absorbantes
EP07750930.5 Division 2007-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP16182449.5A Division EP3127593B1 (fr) 2006-02-13 2007-02-13 Toile de filtrage contenant des fibres fines et des particules expansibles

Publications (2)

Publication Number Publication Date
EP2545976A1 true EP2545976A1 (fr) 2013-01-16
EP2545976B1 EP2545976B1 (fr) 2016-08-03

Family

ID=38180674

Family Applications (5)

Application Number Title Priority Date Filing Date
EP20110160322 Withdrawn EP2377594A1 (fr) 2006-02-13 2007-02-13 Réseau de filtre comprenant une fibre fine et des particules bio-actives
EP16182449.5A Active EP3127593B1 (fr) 2006-02-13 2007-02-13 Toile de filtrage contenant des fibres fines et des particules expansibles
EP07750930.5A Active EP1984092B1 (fr) 2006-02-13 2007-02-13 Toile contenant des fibres fines et des particules reactives, adsorbantes ou absorbantes
EP12180143.5A Active EP2545976B1 (fr) 2006-02-13 2007-02-13 Toile contenant des fibres fines et des particules réactives, adsorbantes ou absorbantes
EP07750852A Not-in-force EP2019726B1 (fr) 2006-02-13 2007-02-13 Filet filtrant comportant des fibres fines et une substance particulaire reactive, adsorptive ou absorbante

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP20110160322 Withdrawn EP2377594A1 (fr) 2006-02-13 2007-02-13 Réseau de filtre comprenant une fibre fine et des particules bio-actives
EP16182449.5A Active EP3127593B1 (fr) 2006-02-13 2007-02-13 Toile de filtrage contenant des fibres fines et des particules expansibles
EP07750930.5A Active EP1984092B1 (fr) 2006-02-13 2007-02-13 Toile contenant des fibres fines et des particules reactives, adsorbantes ou absorbantes

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07750852A Not-in-force EP2019726B1 (fr) 2006-02-13 2007-02-13 Filet filtrant comportant des fibres fines et une substance particulaire reactive, adsorptive ou absorbante

Country Status (10)

Country Link
US (9) US8334121B2 (fr)
EP (5) EP2377594A1 (fr)
JP (2) JP5162476B2 (fr)
KR (1) KR101376927B1 (fr)
CN (4) CN102814080A (fr)
AT (1) ATE503544T1 (fr)
BR (2) BRPI0707908B1 (fr)
CA (1) CA2642186A1 (fr)
DE (1) DE602007013550D1 (fr)
WO (2) WO2007095363A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505894B2 (en) 2014-10-01 2022-11-22 3M Innovative Properties Company Articles including fibrous substrates and porous polymeric particles and methods of making same

Families Citing this family (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) * 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US20110139386A1 (en) * 2003-06-19 2011-06-16 Eastman Chemical Company Wet lap composition and related processes
WO2014089458A1 (fr) * 2012-12-06 2014-06-12 Research Triangle Institute Appareil et procédé utilisant un champ électrique pour créer des motifs de nanoparticules uniformes sur des matériaux non conducteurs afin d'augmenter la filtration et pour l'incrustation de fibres dans des matériaux pour d'autres applications
US10188973B2 (en) 2004-04-08 2019-01-29 Research Triangle Institute Apparatus and method using an electric field for creating uniform nanofiber patterns on nonconductive materials to enhance filtration and for embedment of fibers into materials for other applications
CA2640429C (fr) * 2006-01-27 2014-04-01 University Of Massachusetts Systemes et procedes d'obtention de biocarburants et substances connexes
EP2377594A1 (fr) 2006-02-13 2011-10-19 Donaldson Company, Inc. Réseau de filtre comprenant une fibre fine et des particules bio-actives
US7993523B2 (en) * 2007-03-06 2011-08-09 E. I. Du Pont De Nemours And Company Liquid filtration media
US7988860B2 (en) 2007-03-15 2011-08-02 Donaldson Company Inc. Superabsorbent-containing web that can act as a filter, absorbent, reactive layer or fuel fuse
CN101680120A (zh) * 2007-04-11 2010-03-24 新加坡国立大学 用于净化化学试剂和生物试剂的纤维
EP2155934A2 (fr) 2007-05-30 2010-02-24 Dow Global Technologies Inc. Électrofilature à base de solvant à haut rendement
EP2198944A4 (fr) * 2007-09-08 2012-03-28 Nippon Muki Kk Support de filtre pour un filtre à air et filtre à air
BRPI0817217B1 (pt) 2007-11-20 2021-02-09 Clarcor Inc. meio filtrante que compreende fibras finas e método para formar o mesmo
GB0723895D0 (en) * 2007-12-06 2008-01-16 Munro Technology Ltd Filtration of particles
JP5221676B2 (ja) * 2007-12-31 2013-06-26 スリーエム イノベイティブ プロパティズ カンパニー 流体濾過物品とその作製方法及び使用方法
WO2009109580A2 (fr) * 2008-03-04 2009-09-11 Dsm Ip Assets B.V. Procédé de production de solvant
US10646370B2 (en) 2008-04-01 2020-05-12 Donaldson Company, Inc. Enclosure ventilation filter and assembly method
US8979811B2 (en) * 2008-04-01 2015-03-17 Donaldson Company, Inc. Enclosure ventilation filter and assembly method
US20090286294A1 (en) * 2008-04-04 2009-11-19 University Of Massachusetts Methods and Compositions for Improving the Production of Fuels in Microorganisms
US8367109B2 (en) * 2008-04-09 2013-02-05 Brookhaven Science Associates, Llc Microbes encapsulated within crosslinkable polymers
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
WO2009152362A2 (fr) * 2008-06-11 2009-12-17 University Of Massachusetts Procédés et compositions pour la régulation de la sporulation
EP2321029B1 (fr) * 2008-07-18 2016-02-24 Clarcor INC. Milieu filtrant à plusieurs composants avec un accessoire de nanofibres
WO2010030900A1 (fr) * 2008-09-11 2010-03-18 The Ohio State University Research Foundation Fibres obtenues par filage électrique et applications de celles-ci
WO2010033905A1 (fr) 2008-09-19 2010-03-25 Francois Hauville Procédé et appareil d'élimination de substances indésirables présentes dans l'air
US10478517B2 (en) 2008-09-19 2019-11-19 Fipak Research And Development Company Method and apparatus for purging unwanted substances from air
US9114338B2 (en) 2008-09-19 2015-08-25 Fipak Research And Development Company Method and apparatus for purging unwanted substances from air
WO2010045576A2 (fr) * 2008-10-17 2010-04-22 Mascoma Corporation Production de lignine pure à partir de biomasse lignocellulosique
DE102009051105A1 (de) * 2008-10-31 2010-05-12 Mann+Hummel Gmbh Vliesmedium, Verfahren zu dessen Herstellung und aus diesem hergestelltes Filterelement
WO2010053959A2 (fr) * 2008-11-04 2010-05-14 Donaldson Company, Inc Matériau d'adsorption d'eau personnalisé
US20100144228A1 (en) * 2008-12-09 2010-06-10 Branham Kelly D Nanofibers Having Embedded Particles
US9885154B2 (en) * 2009-01-28 2018-02-06 Donaldson Company, Inc. Fibrous media
US8372292B2 (en) * 2009-02-27 2013-02-12 Johns Manville Melt blown polymeric filtration medium for high efficiency fluid filtration
US20100086981A1 (en) * 2009-06-29 2010-04-08 Qteros, Inc. Compositions and methods for improved saccharification of biomass
US20100298611A1 (en) * 2009-03-09 2010-11-25 Qteros, Inc. PRODUCTION OF FERMENTIVE END PRODUCTSFROM CLOSTRIDIUM sp.
EP2421984A1 (fr) * 2009-04-20 2012-02-29 Qteros, Inc. Compositions et procédés pour la fermentation d'une biomasse
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US9012186B2 (en) 2009-04-27 2015-04-21 The Board Of Trustees Of The University Of Illinois Hemicellulose-degrading enzymes
CA2766352C (fr) 2009-06-29 2018-09-18 NanoH2O Inc. Membranes perfectionnees d'osmose inverse, composites a couches minces, hybrides, avec des additifs azotes
CN102470304B (zh) * 2009-07-22 2016-01-20 唐纳森公司 使用ptfe膜以及碳网片用于hepa效率以及气味控制的过滤介质构造
US20110206928A1 (en) * 2009-08-24 2011-08-25 Maranchi Jeffrey P Reinforced Fibers and Related Processes
US8617295B2 (en) * 2009-09-30 2013-12-31 3M Innovative Properties Company Active-particulate air filter having monolith primary filter and polishing filter
US8431371B2 (en) * 2009-11-19 2013-04-30 Academia Sinica Expression system for producing multi-enzyme complexes and uses thereof
WO2011081658A2 (fr) * 2009-12-15 2011-07-07 Qteros, Inc. Méthodes et compositions pour la production de substances chimiques à partir de c. phytofermentants
US9386803B2 (en) * 2010-01-06 2016-07-12 Celanese Acetate Llc Tobacco smoke filter for smoking device with porous mass of active particulate
WO2011088422A2 (fr) * 2010-01-15 2011-07-21 Qteros, Inc. Production de biocarburant en utilisant un biofilm en fermentation
BR112012017828A2 (pt) * 2010-01-28 2017-03-21 Torey Ind Inc ''método para a produção de um produto químico por fermentação contínua''
US20110210060A1 (en) 2010-02-26 2011-09-01 Clarcor Inc. Expanded composite filter media including nanofiber matrix and method
FR2957610B1 (fr) * 2010-03-17 2012-03-23 Freudenberg Politex Sa Produit non-tisse contenant des particules organiques et/ou minerales et son procede de fabrication
GB2478791A (en) * 2010-03-19 2011-09-21 Qteros Inc Ethanol production by genetically-modified bacteria
CN101811026B (zh) * 2010-04-22 2011-11-02 奇迪电器集团有限公司 用于去除水中硒的过滤介质及其制备方法
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
WO2011151314A1 (fr) * 2010-06-03 2011-12-08 Dsm Ip Assets B.V. Membrane appropriée pour la filtration de sang
JP5718459B2 (ja) 2010-06-17 2015-05-13 ワシントン・ユニバーシティWashington University 整列した繊維を有する生物医学的パッチ
WO2012002390A1 (fr) * 2010-06-29 2012-01-05 花王株式会社 Feuille laminée de nanofibres
FI126855B (fi) * 2010-07-08 2017-06-30 Aalto-Korkeakoulusäätiö Menetelmä ja laitteisto orgaanisten liuottimien ja alkoholien tuottamiseksi mikrobeilla
KR20120021437A (ko) * 2010-07-30 2012-03-09 제일모직주식회사 유기 el 게터용 흡습충전재, 그 제조방법 및 이를 포함하는 유기 el 소자
KR20120021438A (ko) * 2010-07-30 2012-03-09 제일모직주식회사 유기 el 게터용 흡습충전재, 그 제조방법 및 이를 포함하는 유기 el 소자
WO2012015122A1 (fr) * 2010-07-30 2012-02-02 제일모직 주식회사 Matériau de remplissage à absorption d'humidité pour diode électroluminescente organique, son procédé de préparation, et diode électroluminescente organique en comportant
KR20120023492A (ko) * 2010-07-30 2012-03-13 제일모직주식회사 유기발광소자용 흡습충전재, 그 제조방법 및 이를 포함하는 유기발광소자
US8480793B2 (en) * 2010-09-15 2013-07-09 Exxonmobil Research And Engineering Company Method and apparatus for removing contaminant from fluid
BR122013013917A2 (pt) * 2010-10-06 2019-08-06 Acetate International Llc Filtros de fumaça para dispositivos de fumar com massas porosas tendo uma carga de partícula de carbono e uma queda de pressão encapsulada
CN103330283B (zh) 2010-10-15 2016-08-10 塞拉尼斯醋酸纤维有限公司 形成滤烟器用多孔物质的设备、系统和相关方法
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
JP5968328B2 (ja) 2010-11-10 2016-08-10 ナノエイチツーオー・インコーポレーテッド 非金属添加剤を含む改良された混成tfcro膜
GB2485384A (en) * 2010-11-12 2012-05-16 Ngee Ann Polytechnic Porous fibre encapsulating biological material
US20130299121A1 (en) * 2010-12-15 2013-11-14 Young-Soo Ahn Polymer composite materials for building air conditioning or dehumidification and preparation method thereof
WO2012103547A1 (fr) 2011-01-28 2012-08-02 Donaldson Company, Inc. Procédé et appareil de formation d'un support fibreux
EP2668326B1 (fr) 2011-01-28 2016-03-30 Donaldson Company, Inc. Procédé et installation pour fabriquer un corps fibreux
RU2013142684A (ru) 2011-02-22 2015-03-27 Реджентс Оф Юниверсити Оф Миннесота (Сша) Инкапсулированные в диоксиде кремния биоматериалы
FR2972261B1 (fr) * 2011-03-03 2013-04-12 Commissariat Energie Atomique Capteur d'humidite comprenant comme couche absorbante d'humidite une couche polymerique comprenant un melange de polyamides
CN102162176B (zh) * 2011-03-16 2012-09-05 华中科技大学 一种微纳波纹结构及其制备方法、装置和应用
US20120247330A1 (en) * 2011-03-30 2012-10-04 Electric Power Research Institute, Inc. Method and apparatus for rapid adsorption-desorption co2 capture
JP5882597B2 (ja) * 2011-04-15 2016-03-09 国立大学法人信州大学 フィルター及びフィルターの製造方法
WO2012157816A1 (fr) * 2011-05-16 2012-11-22 Bioneer Corporation. Filtre à huile pourvu d'un film nanoporeux
KR101371205B1 (ko) * 2011-05-16 2014-03-10 (주)바이오니아 다공막을 이용한 오일 정제방법 및 장치
RU2609795C2 (ru) 2011-05-25 2017-02-06 Доналдсон Компэни, Инк. Фильтрующий узел (варианты) и способ определения его срока службы
US8845891B2 (en) * 2011-06-09 2014-09-30 T.F.H. Publications, Inc. Aquarium filter media including nanofibers
EA027965B1 (ru) * 2011-07-07 2017-09-29 3М Инновейтив Пропертиз Компани Изделие, включающее многокомпонентные волокна и полые керамические микросферы, и способы их изготовления и использования
US20130048579A1 (en) * 2011-08-30 2013-02-28 Lawrence Livermore National Security, Llc Ceramic Filter with Nanofibers
US8979968B2 (en) * 2011-09-15 2015-03-17 Lawrence Livermore National Security, Llc Radiological/biological/aerosol removal system
EP2758568B1 (fr) * 2011-09-21 2020-01-15 Donaldson Company, Inc. Fibres fines composées de polymère réticulé avec une composition d'aldéhyde résineux
CN102329835B (zh) * 2011-09-28 2014-04-02 上海交通大学 纳米材料促进木质纤维生物质水解方法
FI130619B (en) * 2011-11-15 2023-12-15 Upm Kymmene Corp Matrix for controlled release of bioactive substances
US9155923B2 (en) 2011-12-06 2015-10-13 East Carolina University Portable respirators suitable for agricultural workers
AU2012358373A1 (en) * 2011-12-22 2014-06-05 Xyleco, Inc. Processing of biomass materials
US8840758B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
JP2015516184A (ja) * 2012-03-09 2015-06-11 フィパック・リサーチ・アンド・ディベロップメント・カンパニー 空気から不必要な物質を除去するための方法と装置
KR101427700B1 (ko) * 2012-06-29 2014-08-07 주식회사 아모그린텍 사이토카인 흡착시트, 그 제조방법 및 이를 이용한 혈액 필터
US10519434B2 (en) 2012-07-13 2019-12-31 Diomics Corporation Biologic sample collection devices and methods of production and use thereof
WO2014025745A1 (fr) * 2012-08-06 2014-02-13 Cummins Filtration Ip, Inc. Milieux filtrants à composants multiples pourvus d'additifs à libération contrôlée
SG11201502207WA (en) 2012-09-21 2015-04-29 Univ Washington Biomedical patches with spatially arranged fibers
US9317068B2 (en) 2012-09-24 2016-04-19 Donaldson Company, Inc. Venting assembly and microporous membrane composite
US10058808B2 (en) * 2012-10-22 2018-08-28 Cummins Filtration Ip, Inc. Composite filter media utilizing bicomponent fibers
US9149748B2 (en) 2012-11-13 2015-10-06 Hollingsworth & Vose Company Multi-layered filter media
US11090590B2 (en) 2012-11-13 2021-08-17 Hollingsworth & Vose Company Pre-coalescing multi-layered filter media
US9149749B2 (en) 2012-11-13 2015-10-06 Hollingsworth & Vose Company Pre-coalescing multi-layered filter media
US9017458B2 (en) * 2012-12-10 2015-04-28 Lawrence Livermore National Security, Llc Method of concurrently filtering particles and collecting gases
SG11201504356RA (en) * 2012-12-10 2015-07-30 Emd Millipore Corp Ultraporous nanofiber mats and uses thereof
WO2014098275A1 (fr) * 2012-12-17 2014-06-26 코오롱글로텍주식회사 Procédé de production pour aplanir un substrat en fibre pour dispositif d'affichage flexible
WO2014100718A1 (fr) 2012-12-21 2014-06-26 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Procédés de filage électrostatique et compositions préparées par ceux-ci
CN103115874B (zh) * 2013-01-24 2014-11-05 昆明理工大学 一种用巯基棉检测吸附剂吸附效果的方法
EP2959509B1 (fr) 2013-02-14 2018-05-23 Nanopareil, Llc Feutre hybride electrofilé, son procédé de préparation, et procédé de purification de biomolécules
US9534236B2 (en) 2013-03-08 2017-01-03 Regents Of The University Of Minnesota Membranes for wastewater-generated energy and gas
EP2964363B1 (fr) 2013-03-09 2018-10-10 Donaldson Company, Inc. Matériau filtrant non tissé comprenant des fibres de cellulose microfibrillées
US9993761B2 (en) 2013-03-15 2018-06-12 LMS Technologies, Inc. Filtration media fiber structure and method of making same
US9522357B2 (en) * 2013-03-15 2016-12-20 Products Unlimited, Inc. Filtration media fiber structure and method of making same
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
WO2014185457A1 (fr) * 2013-05-16 2014-11-20 三菱製紙株式会社 Dispositif de cryoconservation par vitrification pour cellules ou tissus
JP6294729B2 (ja) * 2014-03-28 2018-03-14 三菱製紙株式会社 細胞又は組織のガラス化凍結保存用治具
JP2016533741A (ja) 2013-07-29 2016-11-04 ダニスコ・ユーエス・インク 酵素の変異体
KR101559902B1 (ko) * 2013-08-12 2015-10-14 (주)세프라텍 흡착성 투과 폴리머 중공사막을 이용한 가스 흡탈착 분리 시스템
SG10202006161UA (en) * 2013-08-30 2020-07-29 Emd Millipore Corp High capacity composite depth filter media with low extractables
WO2015052460A1 (fr) * 2013-10-09 2015-04-16 Ucl Business Plc Milieu de chromatographie
KR101715811B1 (ko) * 2013-11-12 2017-03-13 주식회사 아모그린텍 이온 교환 멤브레인
US11014050B2 (en) 2013-11-12 2021-05-25 Amogreentech Co., Ltd. Ion exchange membrane and filter module using same
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
WO2015123406A1 (fr) 2014-02-13 2015-08-20 Donaldson Company, Inc. Filtre de recirculation pour une enceinte
JP6369044B2 (ja) * 2014-02-19 2018-08-08 凸版印刷株式会社 培養装置およびその製造方法
US10195542B2 (en) 2014-05-15 2019-02-05 Hollingsworth & Vose Company Surface modified filter media
US10399024B2 (en) 2014-05-15 2019-09-03 Hollingsworth & Vose Company Surface modified filter media
US10207225B2 (en) 2014-06-16 2019-02-19 Emd Millipore Corporation Single-pass filtration systems and processes
CN110756051B (zh) 2014-06-25 2022-11-04 Emd 密理博公司 过滤器元件、切向流过滤系统、产生进料筛网的方法
WO2016014455A1 (fr) * 2014-07-22 2016-01-28 Diomics Corporation Capteurs d'agents en suspension dans l'air, procédés, systèmes et dispositifs pour la surveillance d'agents en suspension dans l'air
US10346671B2 (en) 2014-08-15 2019-07-09 Diomics Corporation Films for biologic analyte collection and analysis and methods of production and use thereof
BR102014021034B1 (pt) * 2014-08-26 2022-04-26 Westaflex Tubos Flexíveis Ltda. Tubo flexível poroso antipoluente
KR102079585B1 (ko) 2014-08-29 2020-02-21 이엠디 밀리포어 코포레이션 잔류물의 재순환을 이용한 싱글 패스 접선 유동 여과 시스템 및 접선 유동 여과 시스템
KR102061553B1 (ko) 2014-08-29 2020-02-11 이엠디 밀리포어 코포레이션 잔류물의 재순환에 의한 싱글 패스 접선 유동 여과 시스템 및 접선 유동 여과 시스템을 사용하여 액체를 여과하는 공정
JP6525534B2 (ja) * 2014-09-04 2019-06-05 キヤノン株式会社 多孔質積層体
US10384156B2 (en) * 2014-09-12 2019-08-20 Hollingsworth & Vose Company Filter media comprising fibers including charged particles
WO2016053875A1 (fr) 2014-10-01 2016-04-07 3M Innovative Properties Company Pansements médicaux comprenant des articles de gestion de fluide et leurs procédés d'utilisation
WO2016054735A1 (fr) 2014-10-10 2016-04-14 Fpinnovations Compositions, panneaux et feuilles comprenant des filaments de cellulose et du gypse et leurs procédés de production
US10035719B2 (en) 2014-10-15 2018-07-31 Regents Of The University Of Minnesota System and membrane for wastewater-generated energy and gas
US9782049B2 (en) 2014-10-16 2017-10-10 Intelliclean Solutions, Llc Liquid filtration vacuum
US9883782B2 (en) 2014-10-16 2018-02-06 Intelliclean Solutions, Llc Liquid filtration vacuum
CN106795475B (zh) 2014-10-23 2021-01-29 三菱制纸株式会社 细胞或组织的冷冻保存用夹具及冷冻保存方法
JP2017535416A (ja) * 2014-10-31 2017-11-30 ドナルドソン カンパニー,インコーポレイティド 筐体用の再循環フィルター
US20170022634A1 (en) * 2015-03-25 2017-01-26 Cocona, Inc. Enhanced meta-aramid and para-aramid textiles, garments, and methods
CN107530594A (zh) 2015-04-07 2018-01-02 唐纳森公司 用于电子器件外壳的再循环过滤器
JP6579784B2 (ja) * 2015-04-13 2019-09-25 キヤノン株式会社 ナノファイバシート及びその製造方法
US10828587B2 (en) 2015-04-17 2020-11-10 Hollingsworth & Vose Company Stable filter media including nanofibers
WO2016183231A1 (fr) 2015-05-12 2016-11-17 Baker Group, LLP Procédé et système pour un organe bioartificiel
US20160376738A1 (en) * 2015-06-05 2016-12-29 Amogreentech Co., Ltd. Electroprocessed biofunctional composition
US10603156B2 (en) 2015-06-19 2020-03-31 University of Pittsburgh—of the Commonwealth System of Higher Education Biodegradable vascular grafts
US9868828B2 (en) * 2015-06-23 2018-01-16 Amolifescience Co., Ltd. Defined three-dimensional microenvironment for stem cell
CN108136367A (zh) 2015-08-28 2018-06-08 塞里奥尼克斯股份有限公司 用于碱性污染物的气体过滤器
WO2017040291A1 (fr) 2015-08-28 2017-03-09 Serionix, Inc. Filtres à essence pour contaminants acides
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
TWI580908B (zh) * 2015-12-04 2017-05-01 明基電通股份有限公司 濾網裝置、其製造方法以及包含其之空氣濾淨設備
JP6685589B2 (ja) * 2015-12-21 2020-04-22 タイガースポリマー株式会社 不織布濾過材及びエアクリーナエレメント
CN105457995B (zh) * 2015-12-22 2018-09-28 航天凯天环保科技股份有限公司 一种土壤洗脱装置
CN106913908B (zh) * 2015-12-25 2020-05-26 北京瑞健高科生物科技有限公司 一种具有结构记忆特性的细胞生长支架
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
EP3407998B1 (fr) 2016-01-27 2021-08-04 Koch-Glitsch, LP Dispositif avec aubes d'entrée avec traverse interne pour rigidifier et recipient contenant celui-ci
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
WO2017160650A2 (fr) * 2016-03-14 2017-09-21 3M Innovative Properties Company Filtres à air comprenant des sorbants polymères pour des aldéhydes
EP3429725B1 (fr) * 2016-03-14 2021-07-07 3M Innovative Properties Company Filtres à air comprenant des sorbants polymères pour des gaz réactifs
US10960341B2 (en) 2016-03-14 2021-03-30 3M Innovative Properties Company Air filters comprising polymeric sorbents for aldehydes
US20170298092A1 (en) * 2016-04-19 2017-10-19 Clarcor Inc. Fine fiber web with chemically functional species
WO2017187021A1 (fr) * 2016-04-29 2017-11-02 Ahlstrom-Munksjö Oyj Milieu filtrant, procédé de fabrication et utilisations de celui-ci
EP3454984A4 (fr) * 2016-05-11 2019-12-18 BASF Corporation Composition catalytique comprenant un matériau magnétique adapté au chauffage par induction
US10632228B2 (en) 2016-05-12 2020-04-28 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair
US10625196B2 (en) 2016-05-31 2020-04-21 Hollingsworth & Vose Company Coalescing filter media
JP7199702B2 (ja) * 2016-06-07 2023-01-06 株式会社 フューエンス ポリヒドロキシアルカン酸からなるナノファイバー構造体、および、不織布
EP3525922A4 (fr) * 2016-10-14 2020-05-27 Bulk Nano Processing LLC Appareil de filtre rotatif pour la fabrication de papier à dispersion de nanomatériau rouleau à rouleau
US11235290B2 (en) 2017-02-17 2022-02-01 The Research Foundation For The State University Of New York High-flux thin-film nanocomposite reverse osmosis membrane for desalination
US11547963B2 (en) 2017-03-29 2023-01-10 Knowlton Technologies, Llc High efficiency synthetic filter media
US11547598B2 (en) 2017-04-10 2023-01-10 Coloplast A/S Body side member of an ostomy appliance
US20180348191A1 (en) * 2017-05-30 2018-12-06 General Electric Company System and method for improving fuel quality
US11746372B2 (en) 2017-12-01 2023-09-05 Godx, Inc. Rapid nucleic acids separation and sample preparation via hollow-centered silica microsphere
US11583797B2 (en) * 2018-01-04 2023-02-21 Nxtnano, Llc Dual density nanofiber media
DK3533458T3 (en) * 2018-03-02 2023-06-26 Upm Kymmene Corp A medical product comprising a bioactive molecule immobilized to nanofibrillar cellulose, and a method for preparing thereof
US20210060476A1 (en) * 2018-03-27 2021-03-04 Focus Industries Limited Nanomaterial including nanofibers and beads for hepa air filter media
WO2019213107A1 (fr) * 2018-05-03 2019-11-07 Cummins Filtration Ip, Inc. Couches filtrantes composites à structures fibreuses multiples comprenant des nanofibres
WO2020005928A1 (fr) * 2018-06-25 2020-01-02 Zephyros, Inc. Insert fonctionnel pour matériaux non tissés
CN109174170A (zh) * 2018-10-15 2019-01-11 中国中化股份有限公司 一种活性金属高分散加氢异构催化剂的制备方法
CN109679823B (zh) * 2018-11-19 2022-03-15 江苏汇先医药技术有限公司 一种用于生物分子、细胞或细菌的捕获材料及捕获筛
US11439932B2 (en) 2019-01-11 2022-09-13 Lawrence Livermore National Security, Llc System and method for engineered ceramic packages for use in fluid treatment technologies
US11759742B2 (en) * 2019-02-08 2023-09-19 Johnson Controls Tyco IP Holdings LLP Air intake filter assemblies with actuatable filter slats for heating, ventilation, and/or air conditioning (HVAC) systems
CN109939494A (zh) * 2019-03-27 2019-06-28 盐城工学院 一种用于工业烟气净化的耐高温改性玻璃纤维滤料
CN110064248B (zh) * 2019-06-06 2021-08-03 北京科技大学 一种复合滤料及其制备方法和性能测试方法
WO2021030229A1 (fr) * 2019-08-09 2021-02-18 The Trustees Of Columbia University In The City Of New York Échafaudages polymères fibreux pour ingénierie des tissus mous
KR102325294B1 (ko) * 2019-10-10 2021-11-12 한국과학기술연구원 산성 광산배수 슬러지를 포함하는 황화수소 제거용 섬유 필터, 이를 포함하는 황화수소 제거 장치 및 이의 제조방법
CN112776436A (zh) * 2019-11-06 2021-05-11 北京中科艾加科技有限公司 一种复合型聚合物功能化纤维、其制备方法与其制备所用的压力喷涂设备
CN111013271B (zh) * 2020-01-13 2021-10-26 中原工学院 一种纳米纤维负载金属有机框架空气净化材料及其制备方法
JP2021146733A (ja) * 2020-03-16 2021-09-27 パナソニックIpマネジメント株式会社 繊維メッシュシートとその製造方法、及び繊維メッシュシートを用いた細胞培養チップ
WO2021188100A1 (fr) * 2020-03-18 2021-09-23 Xia Xin Rui Masque respiratoire complet élastomère à filtration d'expiration et faible résistance respiratoire pour la prévention et le confinement d'une maladie infectieuse respiratoire
CN111826805B (zh) * 2020-03-18 2021-03-12 同济大学 一种纳米纤维膜状高效水体固相反硝化碳源的合成方法
CN115697262A (zh) 2020-03-30 2023-02-03 唐纳森公司 造口术袋过滤器
CN111408357B (zh) * 2020-04-14 2021-01-29 广西大学 一种生物质智能纤维基两性型多功能吸附材料及其制备方法和应用
CN111389381B (zh) * 2020-04-14 2021-01-05 广西大学 一种近红外低温脱附型智能吸附材料及其制备方法和应用
US20210370218A1 (en) * 2020-05-29 2021-12-02 Hollingsworth & Vose Company Filter media comprising adsorptive particles
CN111892168B (zh) * 2020-07-06 2022-04-22 南京中科水治理股份有限公司 一种高吸附力微生物附着材料的制备方法及其应用
CN112619287A (zh) * 2020-11-04 2021-04-09 海信(广东)空调有限公司 过滤网及其制备方法和具有其的空调室内机和空气净化器
CN112755651B (zh) * 2020-12-31 2022-07-08 东华大学 一种多组合功能性静电纺亚微米纤维空气过滤材料及其制备
CN113171654A (zh) * 2021-04-28 2021-07-27 广东溢达纺织有限公司 一种过滤纤维层及其制备方法和口罩
US11827870B2 (en) * 2021-05-20 2023-11-28 Generen Labs, Inc. Device for producing metabolites
US11794148B2 (en) * 2021-08-22 2023-10-24 Nacelle Logistics Llc Natural gas system for on-site processing
WO2023044010A2 (fr) * 2021-09-17 2023-03-23 Ecs Environmental Solutions Milieux de filtration de fluide et leurs applications
CN114045609A (zh) * 2021-11-02 2022-02-15 南方科技大学 一种可调温口罩及其制备方法
US11976847B2 (en) 2022-03-22 2024-05-07 Danvita Thermal LLC Air purification system

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019127A (en) * 1957-10-07 1962-01-30 American Air Filter Co Filtering medium and method of making the same
US3676242A (en) 1969-08-13 1972-07-11 Exxon Research Engineering Co Method of making a nonwoven polymer laminate
US3841953A (en) 1970-12-31 1974-10-15 Exxon Research Engineering Co Nonwoven mats of thermoplastic blends by melt blowing
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3878014A (en) 1973-04-30 1975-04-15 Beloit Corp Process for matting melt blow microfibers
US4429001A (en) 1982-03-04 1984-01-31 Minnesota Mining And Manufacturing Company Sheet product containing sorbent particulate material
US4460642A (en) 1981-06-26 1984-07-17 Minnesota Mining And Manufacturing Company Water-swellable composite sheet of microfibers of PTFE and hydrophilic absorptive particles
US4650506A (en) 1986-02-25 1987-03-17 Donaldson Company, Inc. Multi-layered microfiltration medium
US4753730A (en) * 1985-01-08 1988-06-28 Rhodia Ag Filter for separating substances having lipophilic and/or oleophilic and/or apolar properties from different liquids, gases and vapors
GB2230278A (en) * 1989-04-11 1990-10-17 Seitz Filter Werke Filter material
US5082476A (en) 1990-10-19 1992-01-21 Donaldson Company, Inc. Filtration arrangement and method
US5238474A (en) 1990-10-19 1993-08-24 Donaldson Company, Inc. Filtration arrangement
US5328758A (en) 1991-10-11 1994-07-12 Minnesota Mining And Manufacturing Company Particle-loaded nonwoven fibrous article for separations and purifications
JPH07265640A (ja) 1994-03-31 1995-10-17 Tsuchiya Mfg Co Ltd 脱臭濾材
US5486410A (en) 1992-11-18 1996-01-23 Hoechst Celanese Corporation Fibrous structures containing immobilized particulate matter
US5672399A (en) 1995-11-17 1997-09-30 Donaldson Company, Inc. Filter material construction and method
JPH10165731A (ja) 1996-12-10 1998-06-23 Mitsubishi Electric Corp 空気清浄機のフィルター部材
US5965091A (en) * 1996-12-12 1999-10-12 Elf Antar France Filled paper for gas filtration
WO2003013732A1 (fr) * 2001-07-30 2003-02-20 Helsa-Werke Helmut Sandler Gmbh & Co. Kg Element filtrant
US6743273B2 (en) 2000-09-05 2004-06-01 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US20050058842A1 (en) * 2003-09-12 2005-03-17 Andrea Liebmann-Vinson Methods of surface modification of a flexible substrate to enhance cell adhesion

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034947A (en) * 1956-04-25 1962-05-15 John R Conlisk Gas-aerosol filter material
US3602233A (en) 1969-05-06 1971-08-31 Ppg Industries Inc Smoking device incorporating microporous glass particle filter
US3826067A (en) 1972-04-05 1974-07-30 Ethyl Corp Filter
US3971373A (en) 1974-01-21 1976-07-27 Minnesota Mining And Manufacturing Company Particle-loaded microfiber sheet product and respirators made therefrom
US3900648A (en) 1974-03-18 1975-08-19 Imre Jack Smith Space filling material and method
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
US4121599A (en) 1976-09-01 1978-10-24 Brown & Williamson Tobacco Corporation Filter
US4227904A (en) 1978-09-08 1980-10-14 D-Mark, Inc. Gas phase permeable filter
US4312763A (en) 1980-04-07 1982-01-26 Great Lakes Carbon Corporation Process for removal of solids from solvent refined coal solutions
US4433024A (en) 1982-07-23 1984-02-21 Minnesota Mining And Manufacturing Company Reduced-stress vapor-sorptive garments
JPS6170977A (ja) * 1984-09-14 1986-04-11 Nitto Electric Ind Co Ltd 生化学反応装置
IL75554A (en) * 1985-06-18 1993-01-14 Yeda Res & Dev Matrix for cell cultivation in vitro
JPH0669358B2 (ja) * 1985-07-11 1994-09-07 千代田化工建設株式会社 発酵装置
JPS6287097A (ja) * 1985-10-11 1987-04-21 Takara Shuzo Co Ltd 難分解性植物バイオマス資源を原料とするエタノ−ルの製造方法
US4868032A (en) * 1986-08-22 1989-09-19 Minnesota Mining And Manufacturing Company Durable melt-blown particle-loaded sheet material
US5135792A (en) 1987-01-09 1992-08-04 Beth Israel Hospital Assoc., Inc. Disposable, self-enveloping and self-containing on-demand, superabsorbent composite
US4765812A (en) 1987-10-30 1988-08-23 Allied-Signal Inc. Air laid filtering material
US5638569A (en) 1988-05-02 1997-06-17 Newell; Robert D. Polysurfacial mop head, and mop article comprising same
US4910064A (en) 1988-05-25 1990-03-20 Sabee Reinhardt N Stabilized continuous filament web
US5554520A (en) * 1988-08-31 1996-09-10 Bioenergy International, L.C. Ethanol production by recombinant hosts
US5626820A (en) * 1988-12-12 1997-05-06 Kinkead; Devon A. Clean room air filtering
US5022964A (en) 1989-06-06 1991-06-11 The Dexter Corporation Nonwoven fibrous web for tobacco filter
US7109005B2 (en) * 1990-01-15 2006-09-19 Danisco Sweeteners Oy Process for the simultaneous production of xylitol and ethanol
US5342418A (en) 1990-04-25 1994-08-30 Jesse Albert H Method of making pelletized fuel
DE4024204A1 (de) * 1990-07-31 1992-02-06 Basf Lacke & Farben Ueberzugsmittel auf der basis hydroxylgruppen enthaltender polykondensations- und polyadditionsprodukte sowie deren verwendung
US5508192A (en) 1990-11-09 1996-04-16 Board Of Regents, The University Of Texas System Bacterial host strains for producing proteolytically sensitive polypeptides
US5264365A (en) 1990-11-09 1993-11-23 Board Of Regents, The University Of Texas System Protease-deficient bacterial strains for production of proteolytically sensitive polypeptides
US5206161A (en) 1991-02-01 1993-04-27 Genentech, Inc. Human plasma carboxypeptidase B
AU653414B2 (en) * 1991-06-28 1994-09-29 Minnesota Mining And Manufacturing Company Article for separations and purifications and method of controlling porosity therein
US5270170A (en) 1991-10-16 1993-12-14 Affymax Technologies N.V. Peptide library and screening method
US5595893A (en) * 1992-06-19 1997-01-21 Iowa State University Research Foundation, Inc. Immobilization of microorganisms on a support made of synthetic polymer and plant material
US5332426A (en) 1992-07-29 1994-07-26 Minnesota Mining And Manufacturing Company Agglomerated activated carbon air filter
US5565325A (en) 1992-10-30 1996-10-15 Bristol-Myers Squibb Company Iterative methods for screening peptide libraries
US5344698A (en) 1992-11-24 1994-09-06 Malden Mills Industries, Inc. Composite undergarment fabric
US5662728A (en) * 1992-12-31 1997-09-02 Hoechst Celanese Corporation Particulate filter structure
US5360654A (en) * 1993-01-28 1994-11-01 Minnesota Mining And Manufacturing Company Sorbent articles
MX213505B (fr) 1993-02-24 2003-04-03
US5350443B2 (en) * 1993-04-19 1999-08-10 Von Hasso Bluecher Filter sheet material for passenger cabins in motor vehicles
DE69404848T2 (de) 1993-08-13 1998-03-19 Minnesota Mining & Mfg Filterpatrone mit darauf angeordneten unlöslichen enzympartikeln
US6169045B1 (en) 1993-11-16 2001-01-02 Kimberly-Clark Worldwide, Inc. Nonwoven filter media
CA2124389C (fr) 1993-11-16 2005-08-23 Richard D. Pike Filtre non tisse
JP3300529B2 (ja) 1994-03-31 2002-07-08 日鉄鉱業株式会社 帯電防止性のある濾過材とその製造方法
SE503055C2 (sv) * 1994-07-13 1996-03-18 Birger Elofsson Kassettanordning för tillförsel av neutraliserande ämnen t ex kalk
US5597645A (en) 1994-08-30 1997-01-28 Kimberly-Clark Corporation Nonwoven filter media for gas
PL319975A1 (en) 1994-10-31 1997-09-01 Kimberly Clark Co Non-woven high-density filtering materials
WO1996017569A2 (fr) 1994-12-08 1996-06-13 Kimberly-Clark Worldwide, Inc. Procede de realisation d'un gradient de taille particulaire dans un article absorbant
US5614283A (en) 1994-12-22 1997-03-25 Tredegar Industries Absorbent composite with three-dimensional film surface for use in absorbent disposable products
US5591335A (en) 1995-05-02 1997-01-07 Memtec America Corporation Filter cartridges having nonwoven melt blown filtration media with integral co-located support and filtration
CN1140625A (zh) * 1995-07-19 1997-01-22 李建文 含碘活性碳纤维及其制备方法
US5652048A (en) 1995-08-02 1997-07-29 Kimberly-Clark Worldwide, Inc. High bulk nonwoven sorbent
US5620669A (en) 1995-08-15 1997-04-15 W. L. Gore & Associates, Inc. Catalytic filter material and method of making same
US5993905A (en) 1995-10-03 1999-11-30 Msnw, Inc. Low-temperature densification of carbon fiber preforms by colloidal graphite impregnation and mechanical consolidation
JP3688028B2 (ja) 1995-10-13 2005-08-24 トヨタ自動車株式会社 ツイストビーム式サスペンション
US6165572A (en) * 1995-11-17 2000-12-26 Donaldson Company, Inc. Filter material construction and method
US6099729A (en) 1996-03-01 2000-08-08 Parker-Hannifin Corporation Coreless non-metallic filter element
US5800706A (en) * 1996-03-06 1998-09-01 Hyperion Catalysis International, Inc. Nanofiber packed beds having enhanced fluid flow characteristics
WO1997038123A1 (fr) 1996-04-05 1997-10-16 Board Of Regents, The University Of Texas System Procedes de production de proteines eucaryotes, solubles, actives sur plan biologique et contenant des liaisons disulfure, a l'interieur de cellules bacteriennes
US5779847A (en) * 1996-04-22 1998-07-14 Hoechst Celanese Corporation Process for high performance, permeable fibrous structure
US5755967A (en) * 1996-05-22 1998-05-26 Meagher; Michael M. Silicalite membrane and method for the selective recovery and concentration of acetone and butanol from model ABE solutions and fermentation broth
CN2274982Y (zh) * 1996-10-17 1998-02-25 芜湖新型滤材厂 一种活性炭组合滤件
CA2277478A1 (fr) * 1997-01-09 1998-07-16 Bonded Fibre Fabric Limited Materiau filtrant
US5952092A (en) 1997-01-30 1999-09-14 Aqf Technologies Llc Fibrous structures with labile active substance
US5972808A (en) 1997-01-30 1999-10-26 Aqf Technologies Llc Fibrous structures with fine particles
US6340713B1 (en) 1997-05-14 2002-01-22 Basf Aktiengesellschaft Expandable styrene polymers containing graphite particles
US5820645A (en) 1997-05-23 1998-10-13 Reemay, Inc. Pleatable nonwoven composite article for gas filter media
US6083715A (en) 1997-06-09 2000-07-04 Board Of Regents, The University Of Texas System Methods for producing heterologous disulfide bond-containing polypeptides in bacterial cells
JPH119270A (ja) * 1997-06-26 1999-01-19 Asahi Medical Co Ltd 有核細胞分離回収方法および有核細胞分離回収器
GB2329598B (en) 1997-09-25 2001-04-18 Racal Health & Safety Ltd Filters
US6371977B1 (en) 1997-10-08 2002-04-16 Aquatex Industries, Inc. Protective multi-layered liquid retaining composite
JPH11225763A (ja) * 1998-02-12 1999-08-24 Toyobo Co Ltd タンパク質の精製方法
US5885696A (en) * 1998-06-15 1999-03-23 Aqf Technologies Llc Patterned fibrous web
JP2000070646A (ja) * 1998-08-31 2000-03-07 Mitsubishi Paper Mills Ltd 空気清浄化フィルター部材
CA2341164A1 (fr) * 1998-09-14 2000-03-23 3M Innovative Properties Company Articles et procedes d'extraction
US7163349B2 (en) 1998-11-09 2007-01-16 The Procter & Gamble Company Combined cleaning pad and cleaning implement
US7182537B2 (en) 1998-12-01 2007-02-27 The Procter & Gamble Company Cleaning composition, pad, wipe, implement, and system and method of use thereof
ATE290544T1 (de) 1998-12-14 2005-03-15 Deutsches Krebsforsch Verfahren und vorrichtung zum aufbringen von substanzen auf einen träger, insbesondere von monomeren für die kombinatorische synthese von molekülbibliotheken
US7615373B2 (en) * 1999-02-25 2009-11-10 Virginia Commonwealth University Intellectual Property Foundation Electroprocessed collagen and tissue engineering
US6331351B1 (en) * 1999-09-22 2001-12-18 Gore Enterprise Holdings, Inc. Chemically active filter material
US6372472B1 (en) 1999-09-24 2002-04-16 Swim Pure Corporation Filter media containing powered cellulose and immobilized lipase for swimming pool and spa water filteration
US6554881B1 (en) * 1999-10-29 2003-04-29 Hollingsworth & Vose Company Filter media
US6514306B1 (en) 2000-01-27 2003-02-04 Honeywell International Inc. Anti-microbial fibrous media
AU2001247344A1 (en) 2000-03-13 2001-09-24 The University Of Akron Method and apparatus of mixing fibers
US7261818B1 (en) * 2000-03-24 2007-08-28 Camfil Ab Method for the fabrication of a pleated filter
US6673136B2 (en) * 2000-09-05 2004-01-06 Donaldson Company, Inc. Air filtration arrangements having fluted media constructions and methods
US6716274B2 (en) * 2000-09-05 2004-04-06 Donaldson Company, Inc. Air filter assembly for filtering an air stream to remove particulate matter entrained in the stream
JP3860465B2 (ja) * 2000-12-06 2006-12-20 日本バイリーン株式会社 粉体固着不織布、その製法、及びそれを含むシート材料
JP2002176979A (ja) * 2000-12-12 2002-06-25 Gencom Co セルロース結合ドメインを細胞表層に提示する形質転換酵母
WO2002051518A2 (fr) 2000-12-27 2002-07-04 Stockhausen, Inc. Procede et appareil de deshydratation de l'huile moteur utilisant des polymeres superabsorbants
US7147694B2 (en) 2001-01-22 2006-12-12 Darrell Reneker Fibrous media utilizing temperature gradient and methods of use thereof
GB0118123D0 (en) 2001-07-25 2001-09-19 3M Innovative Properties Co A filter and a method for making a filter
US20030045192A1 (en) 2001-08-31 2003-03-06 Kimberly-Clark Worldwide Rigidified nonwoven and method of producing same
JP4300006B2 (ja) * 2001-09-06 2009-07-22 日本バイリーン株式会社 固体粒子担持繊維及び固体粒子担持繊維シートの製造方法及び製造装置
US6863921B2 (en) 2001-09-06 2005-03-08 Japan Vilene Company Ltd. Process and apparatus for manufacturing fiber and fiber sheet carrying solid particles and fiber and fiber sheet carrying solid particles
JP2005501983A (ja) 2001-09-10 2005-01-20 ポレックス,コーポレーション 繊維性セルフシール部品
AR036777A1 (es) * 2001-09-10 2004-10-06 Procter & Gamble Filtro para remover agua y/o surfactantes de un fluido lipofilo
NO20016398D0 (no) 2001-12-27 2001-12-27 Abb Research Ltd Mini-kraftomformer I
US6872311B2 (en) * 2002-01-31 2005-03-29 Koslow Technologies Corporation Nanofiber filter media
AU2003208215A1 (en) * 2002-03-15 2003-09-29 Iogen Energy Corporation Method for glucose production using endoglucanase core protein for improved recovery and reuse of enzyme
KR100549140B1 (ko) 2002-03-26 2006-02-03 이 아이 듀폰 디 네모아 앤드 캄파니 일렉트로-브로운 방사법에 의한 초극세 나노섬유 웹제조방법
US8367570B2 (en) 2002-04-04 2013-02-05 The University Of Akron Mechanically strong absorbent non-woven fibrous mats
US20030211069A1 (en) 2002-05-09 2003-11-13 The Procter & Gamble Company Rinsable skin conditioning compositions
WO2004060532A1 (fr) 2002-12-16 2004-07-22 Anderson Ronald L Systeme et procede permettant une circulation auto-nettoyante
US20040116025A1 (en) * 2002-12-17 2004-06-17 Gogins Mark A. Air permeable garment and fabric with integral aerosol filtration
CA2513113A1 (fr) 2003-01-23 2004-08-05 Genentech, Inc. Procedes de production d'anticoprs humanises et d'amelioration du rendement d'anticorps ou de fragments de liaison d'antigenes en culture cellulaire
US20040180093A1 (en) 2003-03-12 2004-09-16 3M Innovative Properties Company Polymer compositions with bioactive agent, medical articles, and methods
TW200427889A (en) * 2003-03-31 2004-12-16 Teijin Ltd Non-woven fabric and process for producing the same
JP4224334B2 (ja) * 2003-03-31 2009-02-12 日本バイリーン株式会社 粉体担持構造体
WO2005005696A1 (fr) 2003-06-30 2005-01-20 The Procter & Gamble Company Nappes en nanofibres enduites
CN100575586C (zh) 2003-06-30 2009-12-30 宝洁公司 纳米纤维网中的颗粒
US7704740B2 (en) * 2003-11-05 2010-04-27 Michigan State University Nanofibrillar structure and applications including cell and tissue culture
JP2005169382A (ja) * 2003-11-19 2005-06-30 Ueda Shikimono Kojo:Kk 機能性材料及びこれを用いて形成された機能性建材、機能性繊維製品、機能性建築資材、機能性フィルター、機能性容器並びに機能性玩具
JP4509937B2 (ja) 2003-12-30 2010-07-21 キム,ハグ−ヨン 繊維形成能に優れたナノ繊維の製造方法
US20050148266A1 (en) 2003-12-30 2005-07-07 Myers David L. Self-supporting pleated electret filter media
KR100578764B1 (ko) 2004-03-23 2006-05-11 김학용 상향식 전기방사장치 및 이를 이용하여 제조된 나노섬유
US20050215965A1 (en) 2004-03-29 2005-09-29 The Procter & Gamble Company Hydrophilic nonwovens with low retention capacity comprising cross-linked hydrophilic polymers
US7772456B2 (en) 2004-06-30 2010-08-10 Kimberly-Clark Worldwide, Inc. Stretchable absorbent composite with low superaborbent shake-out
US8227026B2 (en) 2004-09-20 2012-07-24 Momentive Specialty Chemicals Inc. Particles for use as proppants or in gravel packs, methods for making and using the same
US20060148978A1 (en) 2004-09-28 2006-07-06 Reneker Darrell H Polymer structures formed on fibers and/or nanofiber
US7390760B1 (en) 2004-11-02 2008-06-24 Kimberly-Clark Worldwide, Inc. Composite nanofiber materials and methods for making same
CN101137426B (zh) 2005-02-03 2012-02-22 唐纳森公司 用于降低污染物扩散的通气过滤器
US7717975B2 (en) 2005-02-16 2010-05-18 Donaldson Company, Inc. Reduced solidity web comprising fiber and fiber spacer or separation means
WO2006094076A2 (fr) 2005-03-02 2006-09-08 Donaldson Company, Inc. Systeme et methodes permettant d'ameliorer de maniere preferentielle l'activation de la rac gtpase dans une cellule ou un tissu
US7959848B2 (en) 2005-05-03 2011-06-14 The University Of Akron Method and device for producing electrospun fibers
TWI326691B (en) 2005-07-22 2010-07-01 Kraton Polymers Res Bv Sulfonated block copolymers, method for making same, and various uses for such block copolymers
ES2560890T3 (es) 2005-08-05 2016-02-23 Schill + Seilacher Gmbh Textil no tejido de nanofibras con polvo superabsorbente incorporado
DE202005020566U1 (de) 2005-08-05 2006-04-06 Schill + Seilacher Aktiengesellschaft Superabsorber, damit ausgerüstete Nanofaservliese und deren Verwendung
CA2621828C (fr) 2005-09-07 2014-05-27 The University Of Akron Fibres de ceramique souples et leur procede de production
US8454836B2 (en) 2005-09-15 2013-06-04 The University Of Akron Method for removing water from an organic liquid
US7537695B2 (en) 2005-10-07 2009-05-26 Pur Water Purification Products, Inc. Water filter incorporating activated carbon particles with surface-grown carbon nanofilaments
CZ305244B6 (cs) 2005-11-10 2015-07-01 Elmarco S.R.O. Způsob a zařízení k výrobě nanovláken elektrostatickým zvlákňováním roztoků nebo tavenin polymerů
CZ2005700A3 (cs) 2005-11-10 2007-03-07 Elmarco, S. R. O. Filtr pro odstranování fyzikálních a/nebo biologických necistot
JP2007138871A (ja) * 2005-11-21 2007-06-07 Toyota Boshoku Corp 燃料吸着シート及びエアクリーナ
US7987856B2 (en) 2005-12-29 2011-08-02 Philip Morris Usa Inc. Smoking article with bypass channel
CA2641371C (fr) 2006-02-03 2015-10-27 The University Of Akron Mats fibreux non tisses absorbants et leur procede de preparation
EP2377594A1 (fr) 2006-02-13 2011-10-19 Donaldson Company, Inc. Réseau de filtre comprenant une fibre fine et des particules bio-actives
US20070210008A1 (en) 2006-03-13 2007-09-13 Gregory Scott Sprenger Filter monitor
US8518449B2 (en) 2006-08-25 2013-08-27 Sciessent Llc Polymer particle coating method
US20080145532A1 (en) 2006-12-15 2008-06-19 Mcdonald Duane Lyle Method of making tactile features on cartons
US7927540B2 (en) 2007-03-05 2011-04-19 Bha Group, Inc. Method of manufacturing a composite filter media
US8337742B2 (en) 2007-09-25 2012-12-25 The University Of Akron Bubble launched electrospinning jets
US20090113856A1 (en) 2007-11-05 2009-05-07 Cooper Andrew B High Efficiency Dust Separation System For Mobile Sweeper Vehicles
US8241381B2 (en) 2008-06-27 2012-08-14 Kimberly-Clark Worldwide, Inc. Air filter with integral inter-filter gap filler
US8679230B2 (en) 2008-12-19 2014-03-25 Michael L. Strickland Reducing emissions of VOCs from low-pressure storage tanks
US8409448B2 (en) 2009-01-13 2013-04-02 The University Of Akron Mixed hydrophilic/hydrophobic fiber media for liquid-liquid coalescence
AR080556A1 (es) 2009-10-09 2012-04-18 Philip Morris Prod Diseno de filtro para mejorar el perfil sensorial de articulos para fumar con boquilla de filtro de carbono
WO2011072283A2 (fr) 2009-12-11 2011-06-16 Rettenmaier Albert C Procédés de récolte d'algues au moyen d'une substance filtrante et leurs utilisations
US8987544B2 (en) 2010-12-17 2015-03-24 Kimberly-Clark Worldwide, Inc. Article with heat-activatable expandable structures
US8916012B2 (en) 2010-12-28 2014-12-23 Kimberly-Clark Worldwide, Inc. Method of making substrates comprising frothed benefit agents
WO2012135034A1 (fr) 2011-03-25 2012-10-04 Receptors Llc Fibre capable d'éliminer les microbes, à action microbicide ou à croissance statique
US9144760B2 (en) 2012-07-03 2015-09-29 The University Of Akron Liquid drainage from coalescing filter medium with drainage channels
US9522354B2 (en) 2013-10-25 2016-12-20 John Zurliene Filter assemblies and methods for producing filter assemblies

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019127A (en) * 1957-10-07 1962-01-30 American Air Filter Co Filtering medium and method of making the same
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3676242A (en) 1969-08-13 1972-07-11 Exxon Research Engineering Co Method of making a nonwoven polymer laminate
US3841953A (en) 1970-12-31 1974-10-15 Exxon Research Engineering Co Nonwoven mats of thermoplastic blends by melt blowing
US3878014A (en) 1973-04-30 1975-04-15 Beloit Corp Process for matting melt blow microfibers
US4460642A (en) 1981-06-26 1984-07-17 Minnesota Mining And Manufacturing Company Water-swellable composite sheet of microfibers of PTFE and hydrophilic absorptive particles
US4429001A (en) 1982-03-04 1984-01-31 Minnesota Mining And Manufacturing Company Sheet product containing sorbent particulate material
US4753730A (en) * 1985-01-08 1988-06-28 Rhodia Ag Filter for separating substances having lipophilic and/or oleophilic and/or apolar properties from different liquids, gases and vapors
US4650506A (en) 1986-02-25 1987-03-17 Donaldson Company, Inc. Multi-layered microfiltration medium
GB2230278A (en) * 1989-04-11 1990-10-17 Seitz Filter Werke Filter material
US5082476A (en) 1990-10-19 1992-01-21 Donaldson Company, Inc. Filtration arrangement and method
US5238474A (en) 1990-10-19 1993-08-24 Donaldson Company, Inc. Filtration arrangement
US5364456A (en) 1990-10-19 1994-11-15 Donaldson Company, Inc. Filtration arrangement and method
US5423892A (en) 1990-10-19 1995-06-13 Donaldson Company, Inc. Filtration arrangement
US5328758A (en) 1991-10-11 1994-07-12 Minnesota Mining And Manufacturing Company Particle-loaded nonwoven fibrous article for separations and purifications
US5486410A (en) 1992-11-18 1996-01-23 Hoechst Celanese Corporation Fibrous structures containing immobilized particulate matter
JPH07265640A (ja) 1994-03-31 1995-10-17 Tsuchiya Mfg Co Ltd 脱臭濾材
US5672399A (en) 1995-11-17 1997-09-30 Donaldson Company, Inc. Filter material construction and method
JPH10165731A (ja) 1996-12-10 1998-06-23 Mitsubishi Electric Corp 空気清浄機のフィルター部材
US5965091A (en) * 1996-12-12 1999-10-12 Elf Antar France Filled paper for gas filtration
US6743273B2 (en) 2000-09-05 2004-06-01 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
WO2003013732A1 (fr) * 2001-07-30 2003-02-20 Helsa-Werke Helmut Sandler Gmbh & Co. Kg Element filtrant
US20050058842A1 (en) * 2003-09-12 2005-03-17 Andrea Liebmann-Vinson Methods of surface modification of a flexible substrate to enhance cell adhesion

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Justus Liebigs Annalen der Chemie", vol. 562, pages: 75 - 136
"Nylon Plastics Handbook", 1995, HANSER PUBLISHER, pages: 286
J.E. WALZ; G.B. TAYLOR: "determination of the molecular weight of nylon", ANAL. CHEM., vol. 19, no. 7, 1947, pages 448 - 450

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505894B2 (en) 2014-10-01 2022-11-22 3M Innovative Properties Company Articles including fibrous substrates and porous polymeric particles and methods of making same

Also Published As

Publication number Publication date
EP2377594A1 (fr) 2011-10-19
BRPI0707908B1 (pt) 2018-01-30
CN102814080A (zh) 2012-12-12
US8048210B2 (en) 2011-11-01
US20170151515A1 (en) 2017-06-01
EP2019726B1 (fr) 2011-03-30
EP1984092A2 (fr) 2008-10-29
CN101437594B (zh) 2012-07-04
US20130008853A1 (en) 2013-01-10
US20140217011A1 (en) 2014-08-07
JP2009526635A (ja) 2009-07-23
KR20080103070A (ko) 2008-11-26
US20120272828A1 (en) 2012-11-01
BRPI0707908A2 (pt) 2011-05-17
DE602007013550D1 (de) 2011-05-12
US8211218B2 (en) 2012-07-03
EP3127593B1 (fr) 2020-09-02
EP3127593A1 (fr) 2017-02-08
WO2007095363A3 (fr) 2007-10-04
CN101421014A (zh) 2009-04-29
US8753438B2 (en) 2014-06-17
US8334121B2 (en) 2012-12-18
EP2545976B1 (fr) 2016-08-03
WO2007095363A2 (fr) 2007-08-23
JP2009526527A (ja) 2009-07-23
EP1984092B1 (fr) 2016-06-15
US8343264B2 (en) 2013-01-01
ATE503544T1 (de) 2011-04-15
US9610523B2 (en) 2017-04-04
CN102989431B (zh) 2015-06-17
US20110293485A1 (en) 2011-12-01
US10058807B2 (en) 2018-08-28
CN101421014B (zh) 2013-01-02
CA2642186A1 (fr) 2007-08-23
US20100176068A1 (en) 2010-07-15
WO2007095335A3 (fr) 2008-07-10
US20110253620A1 (en) 2011-10-20
WO2007095335A2 (fr) 2007-08-23
US8246730B2 (en) 2012-08-21
JP5006346B2 (ja) 2012-08-22
EP2019726A2 (fr) 2009-02-04
BRPI0707753A2 (pt) 2011-05-10
CN101437594A (zh) 2009-05-20
US20090221047A1 (en) 2009-09-03
CN102989431A (zh) 2013-03-27
KR101376927B1 (ko) 2014-03-27
JP5162476B2 (ja) 2013-03-13
US7655070B1 (en) 2010-02-02

Similar Documents

Publication Publication Date Title
US10058807B2 (en) Web comprising fine fiber and reactive, adsorptive or absorptive particulate
US8263214B2 (en) Super absorbent containing web that can act as a filter, absorbent, reactive layer or fuel fuse
US7981509B2 (en) Polymer blend, polymer solution composition and fibers spun from the polymer blend and filtration applications thereof
US20060191249A1 (en) Electronic enclosure filter containing polymer microfiber element
KR102563110B1 (ko) 나노 섬유 필터 및 그 제조 방법
KR20210035766A (ko) 저차압 여재

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120810

AC Divisional application: reference to earlier application

Ref document number: 1984092

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GIERTZ, JAMES R.

Inventor name: JORIMAN, JON DENNIS

Inventor name: CHUNG, HOO YOUNG

Inventor name: ZASTERA, DUSTIN

Inventor name: DALLAS, ANDREW JAMES

Inventor name: KALAYCI, VELI ENGIN

Inventor name: DING, WILLIAM LEFEI

17Q First examination report despatched

Effective date: 20140630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007047322

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01D0039000000

Ipc: B01D0039140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C12N 5/00 20060101ALI20160217BHEP

Ipc: B01D 39/04 20060101ALI20160217BHEP

Ipc: B01D 39/16 20060101ALI20160217BHEP

Ipc: C12M 1/12 20060101ALI20160217BHEP

Ipc: B01D 39/14 20060101AFI20160217BHEP

Ipc: B01D 39/00 20060101ALI20160217BHEP

INTG Intention to grant announced

Effective date: 20160303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1984092

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 816976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007047322

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160803

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 816976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161203

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161205

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007047322

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161103

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230119

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230120

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 18

Ref country code: GB

Payment date: 20240123

Year of fee payment: 18