EP2501746B1 - Procédé de production de matériaux composites à base de polymères et de nanotubes de carbone (cnt), et matériaux composites ainsi produits, ainsi que leur utilisation - Google Patents
Procédé de production de matériaux composites à base de polymères et de nanotubes de carbone (cnt), et matériaux composites ainsi produits, ainsi que leur utilisation Download PDFInfo
- Publication number
- EP2501746B1 EP2501746B1 EP10708103.6A EP10708103A EP2501746B1 EP 2501746 B1 EP2501746 B1 EP 2501746B1 EP 10708103 A EP10708103 A EP 10708103A EP 2501746 B1 EP2501746 B1 EP 2501746B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carbon nanotubes
- cnts
- dispersion
- polymer
- process step
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002041 carbon nanotube Substances 0.000 title claims description 221
- 229920000642 polymer Polymers 0.000 title claims description 88
- 239000002131 composite material Substances 0.000 title claims description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000000034 method Methods 0.000 claims description 129
- 239000006185 dispersion Substances 0.000 claims description 98
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 89
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 54
- 239000002270 dispersing agent Substances 0.000 claims description 52
- 230000008569 process Effects 0.000 claims description 50
- -1 polyacetates Polymers 0.000 claims description 24
- 239000007791 liquid phase Substances 0.000 claims description 22
- 238000002156 mixing Methods 0.000 claims description 21
- 238000001125 extrusion Methods 0.000 claims description 20
- 239000012071 phase Substances 0.000 claims description 20
- 239000002048 multi walled nanotube Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 238000007872 degassing Methods 0.000 claims description 16
- 239000000155 melt Substances 0.000 claims description 15
- 238000000265 homogenisation Methods 0.000 claims description 14
- 238000005516 engineering process Methods 0.000 claims description 12
- 239000002109 single walled nanotube Substances 0.000 claims description 12
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 11
- 229920001169 thermoplastic Polymers 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 239000002612 dispersion medium Substances 0.000 claims description 9
- 239000000080 wetting agent Substances 0.000 claims description 9
- 239000004952 Polyamide Substances 0.000 claims description 8
- 229920002647 polyamide Polymers 0.000 claims description 8
- 230000003381 solubilizing effect Effects 0.000 claims description 8
- 229910021389 graphene Inorganic materials 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 239000004416 thermosoftening plastic Substances 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 5
- 238000002604 ultrasonography Methods 0.000 claims description 5
- 150000001336 alkenes Chemical class 0.000 claims description 4
- 238000004870 electrical engineering Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 229920000098 polyolefin Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 238000005057 refrigeration Methods 0.000 claims description 4
- 229920006344 thermoplastic copolyester Polymers 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 238000009835 boiling Methods 0.000 claims description 2
- 239000002480 mineral oil Substances 0.000 claims description 2
- 235000010446 mineral oil Nutrition 0.000 claims description 2
- 229920001643 poly(ether ketone) Polymers 0.000 claims description 2
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 229920002312 polyamide-imide Polymers 0.000 claims description 2
- 229920001230 polyarylate Polymers 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920001601 polyetherimide Polymers 0.000 claims description 2
- 229920001470 polyketone Polymers 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 229920006132 styrene block copolymer Polymers 0.000 claims description 2
- 239000002518 antifoaming agent Substances 0.000 claims 2
- 125000001174 sulfone group Chemical group 0.000 claims 2
- 150000003568 thioethers Chemical class 0.000 claims 2
- 229920000265 Polyparaphenylene Polymers 0.000 claims 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims 1
- 150000003673 urethanes Chemical class 0.000 claims 1
- 239000000243 solution Substances 0.000 description 52
- 229920003023 plastic Polymers 0.000 description 28
- 239000004033 plastic Substances 0.000 description 28
- 229910052799 carbon Inorganic materials 0.000 description 19
- 239000013530 defoamer Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000003054 catalyst Substances 0.000 description 14
- 239000000654 additive Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000002071 nanotube Substances 0.000 description 12
- 229920000620 organic polymer Polymers 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 230000007928 solubilization Effects 0.000 description 10
- 238000005063 solubilization Methods 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 238000010348 incorporation Methods 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 238000009849 vacuum degassing Methods 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000013329 compounding Methods 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical group 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 4
- 241000234282 Allium Species 0.000 description 4
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000000608 laser ablation Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000003421 catalytic decomposition reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000004665 fatty acids Chemical group 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000006254 rheological additive Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- VATRWWPJWVCZTA-UHFFFAOYSA-N 3-oxo-n-[2-(trifluoromethyl)phenyl]butanamide Chemical compound CC(=O)CC(=O)NC1=CC=CC=C1C(F)(F)F VATRWWPJWVCZTA-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 101001094837 Arabidopsis thaliana Pectinesterase 5 Proteins 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 101710113246 Pectinesterase 3 Proteins 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/205—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
- B29B7/482—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
- B29B7/483—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
- B29B7/488—Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
- B29B7/489—Screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/60—Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
- B29B7/603—Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/826—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/84—Venting or degassing ; Removing liquids, e.g. by evaporating components
- B29B7/845—Venting, degassing or removing evaporated components in devices with rotary stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/86—Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/04—Particle-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/76—Venting, drying means; Degassing means
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/205—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
- C08J3/2053—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
- C08J3/2056—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase the polymer being pre-melted
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/005—Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/22—Thermoplastic resins
Definitions
- the present invention relates to a process for the production of composite materials based on at least one polymer on the one hand and carbon nanotubes (CNTs) on the other hand and the composite materials obtainable in this way and their use.
- CNTs carbon nanotubes
- Carbon nanotubes, etc. referred to interchangeably as carbon nanotubes (CNTs engl.
- C arbon anotubes n) are microscopically small tubular structures (ie, molecular nanotubes) of carbon. Their walls consist - like those of the fullerenes or as the planes of graphite - essentially exclusively of carbon, the carbon atoms occupy a honeycomb-like structure with hexagons and three bonding partners, which is determined by the sp 2 -bridging the carbon atoms.
- Carbon nanotubes are thus derived from the carbon planes of the graphite, which are rolled up into a tube, so to speak:
- the carbon atoms form a honeycomb-like, hexagonal structure with three bonding partners each.
- Tubes with ideal hexagonal structure have a uniform thickness and are linear; but it is also possible kinked or narrowing tubes containing pentagonal carbon rings.
- helical ie spiral-wound
- the diameter of the carbon nanotubes (CNTs) is in the range of a few nanometers (eg 1 to 50 nm), but carbon nanotubes (CNTs) with tube diameters of only 0.4 nm have also been produced. Lengths of several microns to millimeters for single tubes and up to a few centimeters for tube bundles have already been achieved.
- CNTs Under carbon nanotubes (CNTs) are understood in the prior art in particular cylindrical carbon tubes having a diameter, for example, between 3 and 100 nm and a length which is a multiple of the diameter. These tubes consist of one or more layers of ordered carbon atoms and have a different nucleus in morphology. These carbon nanotubes are synonymously referred to, for example, as “carbon fibrils”, “hollow carbon fibers” or the like.
- Carbon nanotubes have long been known in the literature. Although Iijima (see publication: S. Iijima, Nature 354, 56-58, 1991 ) is generally referred to as an explorer of nanotubes, these materials, especially fibrous graphite materials with multiple graphite layers, have been known since the 1970's and early 1980's, respectively. Tates and Baker (cf. GB 1 469 930 A1 or EP 0 056 004 A2 ) describe for the first time the deposition of very fine fibrous carbon from the catalytic decomposition of hydrocarbons. However, the carbon filaments made from short-chain hydrocarbons are not characterized more closely with respect to their diameter.
- Typical structures of these carbon nanotubes are in particular those of the cylinder type.
- arc processes arc discharge "
- laser ablation laser ablation
- CVD process chemical vapor deposition
- CCVD process chemical vapor deposition
- Carbon nanotubes are commercially available and are offered by various manufacturers (eg, from Bayer MaterialScience AG, Germany, CNT Co. Ltd., China, Cheap Tubes Inc., USA, and Nanocyl SA, Belgium). , Corresponding production processes are familiar to the person skilled in the art. Thus, carbon nanotubes (CNTs), for example by arc discharge z. B. between carbon electrodes, starting from graphite by means of laser ablation ( "evaporation”) or by catalytic decomposition of hydrocarbons (engl. C hemical v apor d eposition, short CVD) produced.
- CNTs carbon nanotubes
- the electrical conductivity within the carbon nanotubes is metallic or semiconducting.
- carbon nanotubes which are superconducting at low temperatures.
- CNTs have - with a density of z. 1.3 to 1.4 g / cm 3 - an enormous tensile strength of several megapascals;
- steel has a maximum tensile strength of only about 2 MPa at a density of at least 7.8 g / cm 3 , which results in a mathematically at least 135 times better ratio of tensile strength to density for individual CNTs than for steel.
- the current carrying capacity and the electrical and thermal conductivity are particularly interesting:
- the current carrying capacity is estimated to be 1000 times higher than for copper wires, while the thermal conductivity at room temperature is almost twice as high as that of diamond.
- CNTs can also be semiconductors, they can be used to manufacture excellent transistors that withstand higher voltages and temperatures - and thus higher clock frequencies - than silicon transistors.
- functional transistors made of CNTs have already been manufactured.
- nonvolatile memories can be realized with the aid of CNTs. It is also possible to use CNTs in the field of measuring technology (for example scanning tunneling microscopes).
- carbon nanotubes can also be used in plastics: this, for example, greatly improves the mechanical properties of plastics. In addition, it is possible to produce in this way electrically conductive plastics.
- CNTs carbon nanotubes
- plastics or organic polymers in the form of so-called composite or composite materials.
- a polymeric composition comprising at least one organic polymer and carbon nanotubes (CNTs), said composite material being prepared by introducing carbon nanotubes (CNTs) into a melt of the polymer under homogenization.
- CNTs carbon nanotubes
- the US 2007/0213450 A1 relates to a method for producing nanotubes or fiber-containing composite materials by contacting dispersions of nanotubes with polymer melts.
- a dispersion of nanotubes is mixed with the polymer melt to remove the liquid phase of the nanotube dispersion.
- CNTs carbon nanotubes
- the present invention is therefore an object of the invention to provide a method for producing composite or composite materials based on polymers or plastics on the one hand and carbon nanotubes (CNTs) on the other hand and the corresponding composite or composite materials, in particular the previously described, with
- CNTs carbon nanotubes
- CNTs carbon nanotubes
- a further object of the present invention is the provision of composite materials based on organic polymers or carbon nanotubes (CNTs) of the aforementioned type with improved properties, in particular with increased fillings of carbon nanotubes (CNTs) and / or improved homogeneities and / or or improved mechanical and / or electrical properties.
- CNTs carbon nanotubes
- the present invention thus proposes a method according to claim 1; Further, advantageous properties of the method according to the invention are the subject of the relevant sub-claims of the method.
- Another object of the present invention are obtainable by the process according to the invention composite or composite materials, as described or defined in the corresponding, directed to the composite or composite materials claims; further, advantageous Embodiments of the composite or composite materials according to the invention are the subject of the relevant subclaims.
- the Applicant has surprisingly found that the above-described process can efficiently produce composite materials comprising at least one organic polymer on the one hand and carbon nanotubes (CNTs) on the other hand.
- CNTs carbon nanotubes
- the method sequence according to the invention is exemplary according to an embodiment in FIG Fig. 1 illustrated.
- Fig. 1 schematically shows the sequence of the inventive method:
- first carbon nanotubes (CNTs) in a continuous, generally liquid under process conditions phase in particular in a dispersion or solvent dispersed or solubilized, so that a dispersion or solution of carbon nanotubes (CNTs) in the continuous, generally liquid phase results (see 1 of Fig. 1 ).
- second process step (b) the previously prepared dispersion or solution of carbon nanotubes (CNTs) is introduced into the melt of at least one polymer or plastic under homogenization, in particular mixing (cf. Fig.
- a mixture of molten polymer and carbon nanotubes (CNTs) is obtained, which is allowed to cool in a final step (c) until the polymer solidifies.
- a composite material according to the invention which comprises at least one generally organic polymer or one generally organic plastic on the one hand and carbon nanotubes (CNTs) on the other hand.
- the phrase "providing a dispersion or solution of carbon nanotubes (CNTs) in a continuous liquid phase" according to process step (a) of the process according to the invention also includes the possibility of corresponding commercial or commercially available dispersions or solutions of carbon nanotubes (CNTs) in a continuous , preferably liquid phase, as for example, by the Belgium Nanocyl SA, Sambreville, Belgium, or the FutureCarbon GmbH, Bayreuth, Germany, sold.
- the inventive method allows a particularly good homogenization with respect to the distribution of the carbon nanotubes (CNTs) in the organic polymer or the organic plastic, since the carbon nanotubes (CNTs) not in mass, but in dilute form (namely in the form of a dispersion or Solution) are introduced into the melt of the polymer. Furthermore, the method according to the invention enables relatively high filling levels of carbon nanotubes (CNTs), which leads to improved electrical properties, in particular surface and volume resistances, of the resulting composite materials. Due to the aforementioned homogeneous, particularly uniform distribution equally improved mechanical properties, such. B. bending, impact and other strengths, the resulting composite or composite materials. Also, the inventive method is universally applicable to a virtually unlimited variety of polymers or plastics.
- the polymer used in the invention is generally a thermoplastic polymer.
- the polymer used according to the invention is selected from the group of polyamides, polyacetates, polyketones, polyolefins, polycarbonates, polystyrenes, polyesters, polyethers, polysulfones, polyfluoropolymers, polyurethanes, polyamideimides, polyarylates, polyarylsylfones, polyethersylfones, polyarylsulphides, polyvinylchlorides, polyetherimides, polytetrafluoroethylenes, polyetherketones , Polylactates and their mixtures and copolymers.
- the polymer used according to the invention is selected from thermoplastic polymers, preferably from the group of polyamides; Polyolefins, in particular polyethylene and / or polypropylene; Polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); thermoplastic elastomers (TPE), particularly olefin-based thermoplastic elastomers (TPE-O or TPO), olefin-based crosslinked thermoplastic elastomers (TPE-V or TPV), urethane-based thermoplastic elastomers (TPE-U or TPU), thermoplastic copolyesters (TPE-E or TPC), thermoplastic styrene block copolymers (TPE-S or TPS), thermoplastic copolyamides (TPE-A or TPA); thermoplastic acrylonitrile / butadiene / styrene (ABS); Polylactates (PLA); Polymethyl (methacrylonitrile / buta
- CNTs carbon nanotubes
- WO 2008/058589 A2 or the corresponding German equivalent (patent family member) DE 10 2006 055 106 A1 . FR 2 899 573 A1 and US 2008/0076837 A1 ,
- the preparation of the dispersion or solution of the synthetic nanotubes (CNTs) in process step (a) can usually be carried out with introduction of energy, in particular also under pressurization and / or under ultrasound introduction.
- the preparation of the dispersion or solution in process step (a) can be carried out by mixing in the liquid phase under pressure, in particular by high-pressure shear or by Kugelmühlenvermahlung, as further explained below. Furthermore, the preparation of the dispersion or solution in process step (a) can also be carried out with ultrasound introduction.
- the dispersion or solubilization of the carbon nanotubes (CNTs) carried out in process step (a) takes place in a stirred ball mill and / or under ultrasound introduction, in particular with an input of energy, in particular grinding energy, in the range of 5,000 to 50,000 kWh / ton solids (CNTs), preferably 5,000 to 20,000 kWh / ton solids (CNTs);
- energy in particular grinding energy
- Such devices are offered for example by Hosokawa Alpina AG, Augsburg, Germany.
- the aforementioned dispersing or solubilization techniques make it possible to achieve the highest possible contents of solids (CNTs), especially in short times.
- the resulting dispersion or solution has a small particle size or agglomerate size of the carbon nanotubes (CNTs)
- a good dispersion can be achieved according to the invention in that the deagglomeration of the CNTs according to process step (a) takes place before the compounding carried out in process step (b), preferably in a stirred ball mill, and subsequently in process step (b) "only" a homogeneous and Fine distribution or incorporation of the CNT dispersion or CNT solution must be performed or effected.
- the carbon nanotubes (CNTs) are added in a concentration of 0.001 to 30% by weight, in particular 0.01 to 20% by weight, preferably 0.01 to 15% by weight, particularly preferably 0, 01 to 10 wt .-%, each based on the resulting dispersion or solution used.
- the preparation of the dispersion or solution in process step (a) takes place by stepwise or batchwise addition of the carbon nanotubes (CNTs) into the continuous liquid phase;
- the individual batches may each comprise the same or different amounts of carbon nanotubes (CNTs).
- This approach has the particular advantage that an improved incorporation of the carbon nanotubes (CNTs) can be realized, in particular an excessive intermediate increase in viscosity of the resulting dispersion or solution is avoided, which greatly facilitates the handling.
- the dispersing or solubilization process is carried out in the presence of at least one additive, in particular at least one dispersing or solubilizing additive.
- additives are dispersants (dispersants), in particular wetting agents or surfactants, defoamers, stabilizers, pH adjusters, rheology modifiers or rheological additives, compatibilizing additives, etc., and mixtures of the aforementioned type.
- step (a) in process step (a) in the presence of at least one dispersant (dispersant) is carried out.
- a dispersant dispersant
- the homogeneity of both the dispersion or solution and the subsequently produced composite or composite material can be controlled in this way; Without wishing to be bound by any theory, the effects thereof may be explained by the fact that the dispersant remains at least partially on the surface of the carbon nanotubes (CNTs) or is attached thereto, or that it is bonded to it Incorporation of the hereby modified carbon nanotubes (CNTs) results in the polymer or in the plastic.
- wetting agents and surfactants are used as dispersants (dispersants) according to the invention, particularly preferably from the group of polyether-modified copolymers of unsaturated 1,2-acid anhydrides and addition products of hydroxyl compounds and / or compounds having tertiary amino groups polyisocyanates.
- the dispersants used according to the invention may also be selected from the group of polymers and copolymers having functional and / or pigment affinity groups, alkylammonium salts of polymers and copolymers, polymers and copolymers having acidic groups, comb and Block copolymers, such as block copolymers with in particular basic pigment affinic groups, optionally modified acrylate block copolymers, optionally modified polyurethanes, optionally modified and / or optionally salified polyamines, phosphoric esters, ethoxylates, polymers and copolymers with fatty acid residues, optionally modified polyacrylates, such as transesterified polyacrylates, optionally modified polyesters, such as acid-functional polyesters, derivatives of cellulose, such as carboxymethyl cellulose, water-soluble sulfates or sulfonates of higher hydrocarbons, such as sodium dodecy Isulfonate, or lower organic polymers such as
- dispersants having number-average molecular weights of at least 1,000 g / mol, preferably at least 2,000 g / mol, more preferably at least 3,000 / mol, very particularly preferably at least 4,000 g / mol, are preferably used according to the invention; At such molecular weights, especially with increasing molecular weight, migration tendency in the final product (i.e., the composite material) is reduced or even at least substantially completely suppressed.
- this dispersant is preferably used in amounts of 10 to 300 wt .-%, preferably 50 to 250 wt .-%, each based on the to be dispersed or to be solubilized carbon nanotubes (CNTs) used.
- dispersant synonymously also referred to as dispersant, dispersing additive, wetting agent, etc., as used in the context of the present invention generally refers, in particular, to substances which facilitate the dispersion of particles in a dispersion medium or dispersion medium, in particular by the Surface tension between the two components - to be dispersed particles on the one hand and dispersants on the other hand - is lowered, so wetting is brought about.
- dispersants dispersants
- dispersing agent should not be confused with the term dispersing agent because the latter refers to the continuous phase of the dispersion (ie the liquid, continuous dispersing medium).
- the dispersant also serves the purpose of stabilizing the dispersed particles (ie, the carbon nanotubes), ie, stably dispersing them, and efficiently avoiding or at least minimizing their reagglomeration; this in turn leads to the desired viscosities of the resulting dispersions, since in practice, this results in readily handleable, flowable systems - even at high concentrations of the dispersed carbon nanotubes.
- process step (a) is carried out in the presence of at least one defoamer.
- the defoamer can be used either as the sole additive or together with at least one further additive, in particular a dispersant (in particular as described above).
- the defoamer also contributes in many respects to a significant improvement in the dispersing or solubilizing properties, but also in terms of the properties of the incorporation of the polymer and of the resulting composite or composite materials. Firstly, the defoamer effectively prevents a foaming during the manufacturing process of the dispersion or solution in the context of process step (a).
- the defoamer also prevents unwanted foaming of the dispersion or solution of the carbon nanotubes (CNTs) produced in process step (a) when introduced into the melt of the polymer or plastic, since this entry usually takes place under high pressures. Furthermore, the defoamer also causes unwanted foaming of the polymer, in particular when introducing the dispersion or the solution of the carbon nanotubes (CNTs), is prevented, which consequently also leads to improved properties in the final product, the resulting composite material ,
- Defoamers which are preferably used according to the invention are in particular selected from the group of mineral oil-based or silicone-based defoamers and their mixtures or combinations.
- the amount of defoamer used in process step (a) can vary within wide limits. In general, amounts of 0.1 to 300 wt .-%, in particular 0.5 to 250 wt .-%, preferably 5 to 200 wt .-%, more preferably 10 to 150 wt .-%, particularly preferably 20 to 100 wt .-%, of the defoamer, in each case based on the carbon nanotubes (CNTs), used in step (a). According to the invention Defoamer further generally in amounts of 0.01 to 20 wt .-%, in particular 0.02 to 10 wt .-%, preferably 0.03 to 5 wt .-%, more preferably 0.05 to 2 wt. %, particularly preferably 0.05 to 1 wt .-%, each based on the resulting dispersion or solution used.
- the continuous liquid phase used in process step (a) is a solution mixture present under dispersing or solubilizing conditions, in particular under atmospheric pressure (101.325 kPa) and in a temperature range from 10 to 100 ° C., preferably 25 to 70 ° C., in the liquid state of matter. or dispersants used.
- atmospheric pressure 101.325 kPa
- a temperature range from 10 to 100 ° C., preferably 25 to 70 ° C., in the liquid state of matter. or dispersants used.
- CNTs carbon nanotubes
- the solvent or dispersing agent is generally selected to have a boiling point in the temperature range of 20 to 300 ° C, preferably 50 to 200 ° C, at atmospheric pressure (101.325 kPa) 60 to 150 ° C, having.
- the dispersion or solution of carbon nanotubes (CNTs) prepared in process step (a) is introduced by means of a delivery and / or metering pump.
- the entry under pressurization in particular with a delivery pressure of 2 to 100 bar, preferably 5 to 50 bar, preferably 10 to 40 bar, since the dispersion or solution of the carbon nanotubes (CNTs) is introduced into the molten polymer, so that The vapor pressure of the continuous liquid phase must be counteracted.
- the entry is made at a constant metering rate and / or with constant metering accuracy, so that a constant, uniform entry is ensured in the molten polymer and thus results in a final product with consistently uniform, homogeneous quality.
- Feed and / or metering pumps suitable according to the invention are sold, for example, by ViscoTec Pumpen und Dosiertechnik GmbH, Töging / Inn, Germany.
- the introduction or metering of the CNT dispersion or CNT solution into the polymeric melt takes place directly against the pressure of the melt or directly into the melt for an instantaneous or instantaneous dispersion in the polymer, without agglomerates being able to form.
- the CNT suspension or CNT solution is metered in the liquid phase or introduced or introduced into the polymeric melt; especially the vapor pressure has to be considered. Due to this procedure, particularly good results are obtained.
- this process step or this introduction is carried out according to the invention in an extrusion device.
- the extrusion device is designed as a screw extruder.
- the polymer is advantageously at least 10 ° C, preferably at least 20 ° C, particularly preferably 10 to 50 ° C, heated above its melting point or melting range. In this way, it is reliably ensured that all the polymer is in the molten state.
- temperatures of 150 ° C. to 300 ° C., in particular 180 ° C. to 280 ° C. are used for the polymers used according to the invention, ie usually in process step (b) the polymers are heated to temperatures of 150 ° C. to 300 ° C., in particular 180 ° C to 280 ° C, heated.
- excessively high temperatures can lead to partial decomposition or partial degradation of the polymers and any additives present, while if the temperatures are too low there is the risk that there is no homogeneous melt or the polymer is at least partially not melted.
- the extrusion device comprises mixing means for homogenizing, in particular mixing, the dispersion or solution of carbon nanotubes (CNTs) provided in process step (a) with the melt of at least one polymer and a degassing device, preferably for degassing under reduced pressure, for purposes of removal the continuously liquid phase.
- mixing means for homogenizing, in particular mixing, the dispersion or solution of carbon nanotubes (CNTs) provided in process step (a) with the melt of at least one polymer and a degassing device, preferably for degassing under reduced pressure, for purposes of removal the continuously liquid phase.
- the extrusion device may be divided into several sections or zones.
- the extrusion device can have a first section or a first zone for introducing the at least one polymer, followed by a melting section (melting zone) for melting the polymer, again followed by an introduction section (introduction zone) for introducing the dispersion or solution of the carbon nanotubes (CNTs). followed again by a homogenization and degassing section (homogenization and degassing zone), which in turn is followed by a discharge section (discharge zone).
- step (b) the introduction of the dispersion or solution of the CNTs previously prepared in process step (a) at high speed the extruder, in particular the screw conveyor of the extruder, and / or low throughput and / or takes place with a high energy input.
- particularly finely divided CNT dispersions or CNT solutions are used.
- the entry of the CNT dispersion or CNT solution in process step (b) preferably takes place at a volume-related throughput of 1 to 1000 ml / min, in particular 2 to 500 ml / min, preferably 5 to 200 ml / min, preferably 10 to 100 ml / min.
- rotational speeds of the extruder, in particular the screw conveyor of the extruder are in the range of 100 to 1,000 rpm, in particular 200 to 900 rpm, preferably 300 to 800 rpm.
- mass-related throughputs of the polymer in the range of 0.1 to 100 kg / h, in particular 1 to 50 kg / h, preferably 2 to 25 kg / h, preferably 3 to 15 kg / h, are advantageous.
- the removal of the continuous phase of the CNT dispersion or CNT solution takes place simultaneously.
- residual contents of continuous phase in particular residual water contents, of at most 1% by weight, preferably at most 0.5% by weight, particularly preferably at most 0.3% by weight, very particularly preferably at most 0.2% by weight, are preferred.
- % based on the end product (ie based on the composite material according to the invention), obtained or adjusted.
- the extruder 1 has an extruder 1. It is driven by means of a motor 2 via a clutch 3 and a gear 4.
- the extruder 1 has a housing 5 provided with a heater 6, in which two approximately 8-shaped interlocking housing bores 7, 8 are formed with mutually parallel axes 9, 10. In these housing bores 7, 8, two screw shafts 11, 12 are arranged, which are coupled to the transmission 4.
- the worm shafts 11, 12 are driven in the same direction.
- the extruder 1 has a feed hopper 14 arranged in a conveying direction 13 behind the gear 4, through which plastic (polymer) to be processed is supplied or plastics (polymers) to be treated are supplied and to which a feed zone 15 adjoins. Following is a melting zone 16 trained.
- the reflow zone 16 is followed by the conveying zone 17. Thereafter, the filler-blending zone 18 is formed. This is downstream of the backwater zone 19. This is followed by the conveyor zone 20 and the homogenization zone 21. Subsequently, a vacuum degassing zone 22 is formed, followed by a mixing zone 23 connects. This mixing zone 23 is followed by a backflow zone 24, behind which there is a vacuum degassing zone 25. This is followed by a pressure build-up zone 26 and thereon a discharge zone 27.
- the worm shafts 11, 12 have worm elements 28.
- they are provided with kneading elements 29.
- turn screw elements 30 are arranged.
- mixing elements 33 are provided, as they are made DE 41 34 026 C2 (corresponding US 5,318,358 A ) are previously known.
- DE 41 34 026 C2 corresponding US 5,318,358 A
- a suspension metering device 31 a dispersion or solution of carbon nanotubes and optionally additives in a continuous liquid phase via the feed line 32 into the housing bore.
- jam elements 34 are provided in the form of return screw elements or the like.
- screw elements 35 and in the homogenization zone 21 mixing elements 36 are arranged.
- a retention degassing screw machine 43 opens radially to the axis 9 in a housing bore 7 a. It has a drive motor 45, which is coupled via a coupling 46 with a gear 47, from which two closely meshing counselSchnecken 48, 49 are driven in the same direction.
- the screw conveyors 48, 49 are arranged in likewise 8-shaped mutually penetrating housing bores 50, which opens into the housing bore 7 through a retaining degassing opening 43 in the housing 6 and extends into the vicinity of the screw elements 37.
- the molten plastic is retained by the co-rotating screws and degassed through a degassing port 52 in the housing 51 against atmospheric pressure.
- the jam elements 34 By means of the jam elements 34 it is achieved that the plastic melted in the melting zone 16 (polymer) completely fills the screw cross-section at least in the filler mixing zone 18.
- the speed of the extruder is chosen so that the pressure in the mixing zone 18 is above the vapor pressure, for example, over 20 bar in polyethylene (PE) or polypropylene (PP) at a temperature of 200 ° C.
- the metering device 31 for the dispersion or solution is to be designed so that it can overcome the prevailing in the mixing zone 18 pressure in the dosage of the suspension.
- the diameter of the delivery line 32 is greater than 4 mm in order to prevent clogging of the delivery lines.
- the molten plastic (polymer) mixed with dispersion passes into the conveying zone 20 after the backflow zone 19.
- dispersion ie solvent or dispersion medium, carbon nanotubes and, if appropriate, additives
- dispersion ie solvent or dispersion medium, carbon nanotubes and, if appropriate, additives
- the pressure in the extruder and the proportions of solution are reduced or dispersion medium (for example water fractions of the dispersion or solution) evaporate and are discharged via the retention degassing opening 43 of the retention degassing screw machine 43.
- the rotational speed of the retaining degassing screw machine 43 is selected so that the molten plastic (polymer) is reliably retained.
- Extrusion devices which are suitable according to the invention are marketed, for example, by Coperion GmbH (formerly Coperion Werner & Pfleiderer GmbH & Co. KG), Stuttgart, Germany.
- process step (a) can be carried out batchwise and the subsequent process steps (b) and (c) can be carried out continuously.
- the carbon nanotubes (CNTs) can be incorporated into the polymer or the plastic with high concentrations or high degrees of filling.
- the carbon nanotubes (CNTs) in amounts of 0.001 to 20 wt .-%, in particular 0.1 to 15 wt .-%, preferably 0.5 to 12 wt .-%, particularly preferably 1 to 10 wt .-% , based on the composite material of polymer or carbon nanotubes (CNTs) incorporated.
- CNTs carbon nanotubes
- CNTs carbon nanotubes
- the carbon nanotubes (CNTs) used according to the invention may have average inner diameters of 0.4 to 50 nm, in particular 1 to 10 nm, preferably 2 to 6 nm, and / or average outer diameters of 1 to 60 nm, in particular 5 to 30 nm, preferably 10 to 20 nm.
- the carbon nanotubes (CNTs) used according to the invention may have mean lengths of 0.01 to 1000 .mu.m, in particular 0.1 to 500 .mu.m, preferably 0.5 to 200 .mu.m, particularly preferably 1 to 100 .mu.m.
- the carbon nanotubes (CNTs) used according to the invention may have a tensile strength per carbon nanotube of at least 1 GPa, in particular at least 5 GPa, preferably at least 10 GPa, and / or a modulus of elasticity per carbon nanotube of at least 0.1 TPa, in particular at least 0.5 TPa at least 1 TPa, and / or a thermal conductivity of at least 500 W / mK, in particular at least 1000 W / mK, preferably at least 2000 W / mK, and / or an electrical conductivity of at least 10 3 S / cm, in particular at least 0.5 ⁇ 10 4 S / cm, preferably at least 10 4 S / cm, have.
- CNTs have a bulk density in the range of 0.01 to 0.3 g / cm 3 , in particular 0.02 to 0.2 g / cm 3 , preferably 0.1 to 0.2 g / cm 3 , and are present as agglomerates or conglomerates of a variety of carbon nanotubes (CNTs), especially in strongly entangled form.
- suitable carbon nanotubes are commercially available, for example via the Bayer Material Science AG, Leverkusen, for example, the product series Baytubes ® (z. B. Baytubes ® C 150 P).
- the carbon nanotubes used may, for example, be of the cylinder-type, scroll-type or of the onion-type structure type, in each case single-walled or multi-walled, preferably multi-walled.
- the carbon nanotubes (CNTs) used can have a length to outside diameter ratio of ⁇ 5, preferably ⁇ 100.
- the carbon nanotubes can be used in the form of agglomerates;
- the agglomerates may in particular have an average diameter in the range of 0.05 to 5 mm, preferably 0.1 to 2 mm, particularly preferably 0.2 to 1 mm.
- the carbon nanotubes (CNTs) used can have an average diameter of 3 to 100 nm, preferably 5 to 80 nm, particularly preferably 6 to 60 nm.
- the scroll type carbon nanotubes may be selected with multiple graphene sheets gathered or rolled up into a stack.
- Such products are, for example, by Bayer MaterialScience AG, Leverkusen, available, for example, the product line Baytubes ® (z. B. Baytubes ® C 150 P).
- carbon nanotubes according to the invention in particular all single-walled or multi-walled carbon nanotubes z. B. of the cylinder type, scroll type or onion-like structure can be used. Preference is given to multi-walled carbon nanotubes of the cylinder type, scroll type or mixtures thereof.
- carbon nanotubes having a length to outside diameter ratio of greater than 5, preferably greater than 100.
- the carbon nanotubes are particularly preferably used in the form of agglomerates, wherein the agglomerates in particular have a mean diameter in the range of 0.05 to 5 mm, preferably 0.1 to 2 mm, particularly preferably 0.2 to 1 mm ,
- Carbon nanotubes which can be used according to the invention particularly preferably have essentially an average diameter of from 3 to 100 nm, preferably from 5 to 80 nm, particularly preferably from 6 to 60 nm.
- the individual graphene or graphite layers in these carbon nanotubes viewed in cross-section, evidently run continuously from the center of the CNTs to the outer edge without interruption. This can be z. B. allow improved and faster intercalation of other materials in the tube framework, as more open edges than entry zone of the intercalates are available compared to CNTs with simple scroll structure ( Carbon 34, 1996, 1301-3 ) or CNTs with onion-like structure ( Science 263, 1994, 1744-7 ).
- CCVD gaseous hydrocarbons
- methane, ethane, ethylene, butane, butene, butadiene, benzene or other carbonaceous reactants used It is therefore preferred to use CNTs obtainable from catalytic processes according to the invention.
- the catalysts usually include metals, metal oxides or decomposable or reducible metal components.
- the metals mentioned for the catalyst are Fe, Mo, Ni, V, Mn, Sn, Co, Cu and other subgroup elements.
- the individual metals usually have a tendency to support the formation of carbon nanotubes, however, according to the prior art, high yields and small proportions amorphous carbons advantageously achieved with such metal catalysts based on a combination of the above metals. Consequently, CNTs obtainable using mixed catalysts are preferably used according to the invention.
- Particularly advantageous catalyst systems for the production of CNTs are based on combinations of metals or metal compounds containing two or more elements from the series Fe, Co, Mn, Mo and Ni.
- carbon nanotubes and the properties of the carbon nanotubes formed generally depend in complex ways on the metal component catalyst or a combination of several metal components, the optional catalyst support material, and the catalyst-support interaction, the reactant gas and partial pressure, an admixture of hydrogen or other gases, the reaction temperature and the residence time or the reactor used.
- a particularly preferred method for the production of carbon nanotubes is known from WO 2006/050903 A2 known.
- Carbon nanotubes of various structures which can be removed from the process predominantly as carbon nanotube powders are produced in the various processes mentioned above using various catalyst systems.
- Carbon nanotubes which are more suitable for the invention are obtained by processes which are described in principle in the following references:
- carbon nanotubes with diameters smaller than 100 nm is first in the EP 0 205 556 B1 described.
- light (ie, short- and medium-chain aliphatic or mononuclear or dinuclear aromatic) hydrocarbons and an iron-based catalyst are used, at which carbon support compounds are decomposed at a temperature above 800 to 900 ° C.
- the WO 86 / 03455A1 describes the production of carbon filaments having a cylindrical structure with a constant diameter of 3.5 to 70 nm, an aspect ratio (ie ratio of length to diameter) greater than 100, and a core region.
- These fibrils consist of many continuous layers of ordered carbon atoms arranged concentrically about the cylindrical axis of the fibrils.
- These cylinder-like nanotubes were prepared by a CVD process from carbonaceous compounds by means of a metal-containing particle at a temperature between 850 ° C and 1200 ° C.
- multi-walled carbon nanotubes in the form of nested seamless cylindrical nanotubes or also in the form of the described scroll or onion structures today takes place commercially in larger quantities, predominantly using catalytic processes. These processes usually show a higher yield than the above-mentioned arc and other processes and today are typically performed on a kilogram scale (several hundred kilograms per day worldwide).
- the MW carbon nanotubes thus produced are generally much cheaper than the single-wall nanotubes and are therefore z. B. used as a performance-enhancing additive in other materials.
- Another object of the present invention - according to a second aspect of the present invention - are composite materials (composite materials) containing at least one polymer on the one hand and carbon nanotubes (CNTs) on the other hand, in particular as they are obtainable by the inventive method described above.
- composite materials composite materials containing at least one polymer on the one hand and carbon nanotubes (CNTs) on the other hand, in particular as they are obtainable by the inventive method described above.
- the subject matter of the present invention is composite materials (composite materials) which comprise at least one polymer on the one hand and carbon nanotubes (CNTs) on the other hand, in particular obtainable by the process according to the invention described above, wherein the composite materials according to the invention generally have a content of carbon nanotubes (US Pat. CNTs) of 0.001 to 20 wt .-%, in particular 0.1 to 15 wt .-%, preferably 0.5 to 12 wt .-%, particularly preferably 1 to 10 wt .-%, based on the composite material having.
- composite materials which comprise at least one polymer on the one hand and carbon nanotubes (CNTs) on the other hand, in particular obtainable by the process according to the invention described above, wherein the composite materials according to the invention generally have a content of carbon nanotubes (US Pat. CNTs) of 0.001 to 20 wt .-%, in particular 0.1 to 15 wt .-%, preferably 0.5 to 12 w
- the composite materials according to the invention may furthermore, in particular as a result of production, comprise at least one dispersant (dispersant), in particular as defined above, preferably in amounts of from 0.01 to 300% by weight, in particular in amounts of from 0.05 to 250% by weight. , preferably 0.1 to 200 wt .-%, particularly preferably 0.5 to 150 wt.%, Very particularly preferably 1 to 100 wt .-%, each based on the carbon nanotubes (CNTs).
- the dispersant allows in the course of the manufacturing process a good and very homogeneous incorporation of carbon nanotubes (CNTs).
- the composite materials according to the invention in particular equally production reasons, comprise at least one defoamer, in particular as defined above, preferably in amounts of 0.01 to 200 wt .-%, in particular 0.05 to 175 wt .-%, preferably 0, 1 to 150 wt .-%, particularly preferably 0.2 to 100 wt.%, Each based on the carbon nanotubes (CNTs).
- the defoamer also ensures good and homogeneous incorporation of the carbon nanotubes (CNTs) during the manufacturing process.
- the composite materials according to the invention have excellent electrical or conductivity properties.
- the composite materials according to the invention have excellent electrical resistance values.
- the electrical resistance of an insulating material between any two electrodes on or in a test specimen of any shape is referred to as an insulation resistance, distinguishing three different types of resistances, namely volume resistivity, surface resistance, and resistance between stoppers .
- volume resistance is meant the resistance measured between two planar electrodes inside the material, in particular determined according to DIN IEC 60 093 VDE 0303/30; if the volume resistance is converted to a cube of 1 cm edge length, the specific volume resistance is obtained.
- the surface resistance provides information about the prevailing on the surface of an insulating insulating state, in particular equally determined according to DIN IEC 60 093 VDE 0303/30.
- Schwarz / Ebeling ed.
- the surface resistance can also be determined by a method as described in US Pat Fig. 4 is shown schematically and is also shown in the embodiments: The measurement of the electrical surface resistance is carried out according to this method, as in Fig. 4 shown on Test specimens with a diameter of 80 mm and a thickness of 2 mm, which are produced by a pressing process.
- the various polymers as used in the embodiments, for example, the following temperatures are used for the production of the press plates: polypropylene 200 ° C; Polyethylene 220 ° C; Polyamide 280 ° C.
- Fig. 4 the various polymers, as used in the embodiments, for example, the following temperatures are used for the production of the press plates: polypropylene 200 ° C; Polyethylene 220 ° C; Polyamide 280 ° C.
- the composite materials according to the invention have in particular a surface resistance, in particular surface resistivity, of less than 10 8 ohms, in particular less than 10 7 ohms, preferably less than 10 6 ohms, preferably less than 10 5 ohms, particularly preferably less than 10 3 ohms.
- the composite materials according to the invention have in particular a volume resistivity, in particular volume resistivity, of less than 10 12 ohm cm, in particular less than 10 11 ohm cm, preferably less than 10 10 ohm cm, preferably less than 10 9 ohm.cm, more preferably less than 10 8 ohm.cm, most preferably less than 10 7 ohm.cm.
- the composite materials according to the invention have excellent mechanical properties, in particular excellent impact strength, elongation and elongation at break, yield stresses, tensile moduli, etc.
- Another object of the present invention - according to a third aspect of the present invention - the use of the above-described composite materials (composite materials) according to the present invention in the field of electronics and electrical engineering, the computer, semiconductor and measurement technology and industry, the air and space technology, the packaging industry, the automotive industry and refrigeration technology.
- composite materials can be used for the production of conductive or semiconducting components, components, structures, devices or the like, in particular for the field of electronics and electrical engineering, the computer, semiconductor and measuring technology and industry Aerospace engineering, the packaging industry, the automotive industry and refrigeration technology.
- the present invention in particular the method according to the invention and the composite materials (composite materials) obtainable in this way are associated with a multiplicity of special features and advantageous properties, which distinguish the invention from the prior art:
- carbon nanotubes can be incorporated into organic polymers or plastics in a reliable and reproduced manner.
- composite materials or composites based on organic polymers or plastics on the one hand and carbon nanotubes (CNTs) on the other hand result in higher fill levels or concentrations of carbon nanotubes (CNTs) and with improved homogeneity, which likewise improves the electrical and mechanical properties leads.
- the composite materials according to the invention have improved surface and volume resistances compared with the prior art and improved mechanical resistance.
- CNTs carbon nanotubes with high concentrations, exact metering accuracies, high throughputs and excellent homogeneities can be incorporated into the abovementioned polymers or plastics.
- Solvent- and / or water-sensitive polymers can also be reacted in the context of the present invention.
- polyamides that, although they are water-sensitive polymers which generally tend to hydrolytically decompose in the presence of water when compounding according to the prior art, they are readily usable in the process according to the invention (even in the presence of water) can be processed or used, whereby it is even possible to introduce an aqueous CNT suspension to produce a corresponding composite material;
- no hydrolytic degradation of the polymer takes place, especially since only a very short-term exposure to water - and this at high pressure - takes place.
- aqueous dispersions of carbon nanotubes with varying concentrations in the presence of dispersing are prepared, which subsequently using a metering / delivery pump of ViscoTec pumps and metering GmbH , Töging / Inn, Germany, in an extrusion device (Coperion GmbH, formerly: Coperion Werner & Pfleiderer GmbH & Co.
- Example of an inventively employable dispersant based on a modified with polyether groups copolymer of unsaturated 1,2-acid anhydrides A mixture of 80 g of conjugated sunflower fatty acid, 37 g of maleic anhydride and 42 g Polyoxyethylenallylmethylether having an average molecular weight of 450 are introduced and with stirring to 137 ° C heated up. Within 4 hours, a solution of 4.4 g of tert-butyl perbenzoate in 53 g of dipropylene glycol dimethyl ether is added dropwise. After completion of the addition is stirred for 0.5 hours at 137 ° C. The product obtained has a solids content of 75%.
- the complete plant is subdivided into three units, namely dispersing unit (Hosokawa Alpine AG), high-pressure pump (ViscoTec) and extruder (Coperion).
- the dispersion unit consists (procedurally) of stirred ball mill 132 AHM (Hosokawa Alpine), 2 peristaltic pumps, 2 containers of 25 liters with dissolver stirrer, 9 valves, hose lines.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Claims (15)
- Procédé pour la préparation d'un matériau composite à base d'au moins un polymère d'une part et de nanotubes de carbone (NTC) d'autre part, le procédé comprenant les étapes de procédé suivantes :(a) préparation d'une dispersion ou d'une solution de nanotubes de carbone (NTC) dans une phase liquide continue par dispersion ou solubilisation de nanotubes de carbone (NTC) dans un dispersant ou un solvant,
la préparation de la dispersion ou de la solution dans l'étape de procédé (a) ayant lieu par mélange dans la phase continue avec introduction de pression et/ou d'ultrasons et les nanotubes de carbone (NTC) étant utilisés en une concentration de 0,001 à 30% en poids, par rapport à la dispersion ou la solution résultante ; puis(b) introduction de la dispersion ou de la solution de nanotubes de carbone (NTC) préparée dans l'étape de procédé (a) dans la masse fondue d'au moins un polymère avec homogénéisation et élimination de la phase continue,
l'introduction de la dispersion ou de la solution de nanotubes de carbone (NTC) préparée dans l'étape de procédé (a) dans la masse fondue du polymère ayant lieu au moyen d'une pompe de refoulement et/ou de dosage mise sous pression et à une vitesse de dosage constante et/ou une précision de dosage constante,
l'étape de procédé (b) ayant lieu dans un dispositif d'extrusion, le dispositif d'extrusion présentant des dispositifs de mélange pour l'homogénéisation de la dispersion ou de la solution de nanotubes de carbone (NTC) préparée dans l'étape de procédé (a) avec la masse fondue du polymère et un dispositif de dégazage en vue de l'élimination de la phase continue, et
une teneur résiduelle en phase continue d'au plus 1% en poids, par rapport au produit fini, étant réglée ; puis(c) refroidissement du mélange, obtenu dans l'étape de procédé (b), de polymère fondu et de nanotubes de carbone (NTC) jusqu'à la solidification du polymère et obtention consécutive d'un matériau composite qui comprend au moins un polymère et des nanotubes de carbone (NTC). - Procédé selon la revendication 1, caractérisé en ce qu'on utilise comme polymère un polymère thermoplastique, choisi dans le groupe formé par les polyamides, les polyacétates, les polycétones, les polyoléfines, les polycarbonates, les polystyrènes, les polyesters, les polyéthers, les polysulfones, les polyfluoropolymères, les polyuréthanes, les polyamidimides, les polyarylates, les polyarylsulfones, les polyéthersulfones, les poly(sulfures d'aryle), les poly(chlorures de vinyle), les polyétherimides, les polytétrafluoroéthylènes, les polyéthercétones, les polylactates ainsi que leurs mélanges et leurs copolymères ; et/ou en ce que le polymère utilisé est choisi parmi les polymères thermoplastiques du groupe des polyamides ; des polyoléfines ; des poly(téréphtalates d'éthylène) (PET) et des poly(téréphtalates de butylène)(PBT) ; des élastomères thermoplastiques (TPE), des élastomères thermoplastiques à base d'oléfines (TPE-O ou TPO), des élastomères thermoplastiques réticulés à base d'oléfines (TPE-V ou TPV), des élastomères thermoplastiques à base d'uréthane (TPE-U ou TPU), des copolyesters thermoplastiques (TPE-E ou TPC), des copolymères à blocs thermoplastiques de styrène (TPE-S ou TPS), des copolyamides thermoplastiques (TPE-A ou TPA) ; de l'acrylonitrile/butadiène/styrène thermoplastique (ABS) ; des polylactates (PLA) ; des poly((méth)acrylates de méthyle) (PMA ou PMMA) ; des poly(sulfures de phénylène)(PPS) ; ainsi que leurs mélanges et copolymères.
- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la dispersion ou la solubilisation des nanotubes de carbone (NTC) réalisée dans l'étape de procédé (a) a lieu dans un broyeur à billes à agitateur et/ou sous introduction d'ultrasons et/ou en ce que la dispersion ou la solubilisation des nanotubes de carbone (NTC) réalisée dans l'étape de procédé (a) a lieu par dispersion par cisaillement sous haute pression ; et/ou en ce que les nanotubes de carbone (NTC) sont utilisés en une concentration de 0,01 à 20% en poids, par rapport à la dispersion ou la solution résultante ; et/ou en ce que la préparation de la dispersion ou de la solution dans l'étape de procédé (a) a lieu par addition pas à pas ou par charges des nanotubes de carbone (NTC) dans la phase continue liquide.
- Procédé selon l'une quelconque des étapes de procédé précédentes, caractérisé en ce que l'étape (a) est réalisée en présence d'au moins un dispersant, le dispersant étant utilisé en des quantités de 10 à 300% en poids, par rapport aux nanotubes de carbone (NTC) et/ou le dispersant étant choisi dans le groupe des agents mouillants et tensioactifs et/ou le dispersant présentant une masse moléculaire numérique moyenne d'au moins 1000 g/mole ; et/ou en ce que l'étape de procédé (a) est réalisée en présence d'au moins un antimousse, choisi dans le groupe des antimousses à base d'huile minérale ou de silicone et/ou en des quantités de 0,1 à 300% en poids, par rapport aux nanotubes de carbone (NTC) et/ou en des quantités de 0,01 à 20% en poids, par rapport à la dispersion ou à la solution.
- Procédé selon l'une quelconque des étapes de procédé précédentes, caractérisé en ce qu'on utilise comme phase continue liquide un solvant ou un dispersant aqueux, organique ou aqueux-organique et/ou en ce qu'on utilise comme phase continue liquide un solvant ou un dispersant se trouvant dans un état liquide dans les conditions de dispersion ou de solubilisation ; et/ou en ce que la phase continue présente, à la pression atmosphérique (101,325 kPa), un point d'ébullition dans la plage de température de 20 à 300°C ; et/ou en ce que l'introduction de la dispersion ou de la solution de nanotubes de carbone (NTC) préparée dans l'étape de procédé (a) a lieu à une pression de refoulement de 2 à 100 bars.
- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif d'extrusion est réalisé sous forme d'une extrudeuse à vis sans fin ; et/ou en ce que le dispositif d'extrusion est réparti en plusieurs sections, comprenant une première section pour l'introduction dudit au moins un polymère, suivie d'une section de fusion pour fondre le polymère, à son tour suivie d'une section d'introduction pour introduire la dispersion ou la solution des nanotubes de carbone (NTC), à nouveau suivie d'une section d'homogénéisation et de dégazage, qui est à son tour suivie d'une section d'évacuation.
- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les nanotubes de carbone (NTC) sont incorporés en des quantités de 0,001 à 20% en poids, par rapport au matériau composite constitué de polymère et de nanotubes de carbone (NTC).
- Procédé selon l'une quelconque des revendications précédentes, caractérisé- en ce que les nanotubes de carbone (NTC) utilisés sont choisis parmi les nanotubes de carbone à paroi simple (SWCNT ou, selon le cas SWNT) ou les nanotubes de carbone multi-parois (MWCNT ou, selon le cas MWNT) et/ou- en ce que les nanotubes de carbone (NTC) utilisés présentent un diamètre interne moyen de 0,4 à 50 nm et/ou- en ce que les nanotubes de carbone (NTC) utilisés présentent un diamètre externe moyen de 1 à 60 nm et/ou- en ce que les nanotubes de carbone (NTC) utilisés présentent des longueurs moyennes de 0,01 à 1000 µm et/ou- en ce que les nanotubes de carbone (NTC) utilisés présentent une résistance à la traction par nanotube de carbone d'au moins 1 GPa et/ou- en ce que les nanotubes de carbone (NTC) utilisés présentent un module d'élasticité par nanotube de carbone d'au moins 0,1 TPa et/ou- en ce que les nanotubes de carbone (NTC) utilisés présentent une conductibilité thermique d'au moins 500 W/mK et/ou- en ce que les nanotubes de carbone (NTC) utilisés présentent une conductibilité électrique d'au moins 103 S/cm et/ou- en ce que les nanotubes de carbone (NTC) utilisés présentent une densité apparente dans la plage de 0,01 à 0,3 g/cm3.
- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les nanotubes de carbone utilisés sont du type cylindrique, du type spirale ou du type à structure en pelure d'oignon et/ou réalisés à paroi simple ou à multi-parois et/ou en ce que les nanotubes de carbone (NTC) utilisés présentant un rapport longueur à diamètre externe ≥ 5 et/ou en ce que les nanotubes en carbone (NTC) sont utilisés sous forme d'agglomérats, les agglomérats présentant un diamètre moyen dans la plage de 0,05 à 5 mm, et/ou en ce que les nanotubes de carbone (NTC) utilisés présentent un diamètre moyen de 3 à 100 nm et/ou en ce que les nanotubes de carbone (NTC) sont choisis parmi ceux du type spirale présentant plusieurs couches de graphène, qui réunies en pile ou enroulées.
- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le procédé est réalisé en continu ou de manière semi-continue, l'étape de procédé (a) étant réalisée de manière discontinue et/ou les étapes de procédés consécutives (b) et (c) étant réalisées de manière continue.
- Matériau composite, comprenant au moins un polymère d'une part et des nanotubes de carbone (NTC) d'autre part, pouvant être obtenu par un procédé selon l'une quelconque des revendications précédentes.
- Matériau composite selon la revendication 11, comprenant au moins un polymère d'une part et des nanotubes de carbone (NTC) d'autre part, le matériau composite présentant une teneur en nanotubes de carbone (NTC) de 0,001 à 20% en poids, par rapport au matériau composite ; et/ou
comprenant au moins un dispersant en des quantités de 0,01 à 300% en poids, par rapport aux nanotubes de carbone (NTC). - Matériau composite selon l'une quelconque des revendications précédentes,
comprenant au moins un antimousse en des quantités de 0,01 à 200% en poids, par rapport aux nanotubes de carbone (NTC) ; et/ou
caractérisé par une résistance superficielle inférieure à 108 Ohms ; et/ou
caractérisé par une résistance de contact (résistance en volume) inférieure à 1012 Ohms * cm. - Utilisation du matériau composite selon l'une quelconque des revendications précédentes dans le domaine de l'électronique et de l'électrotechnique, dans la technique et l'industrie informatique, des semi-conducteurs et de la mesure, dans la technique aéronautique et aérospatiale, dans l'industrie d'emballage, dans l'industrie automobile ainsi que dans la technique de refroidissement.
- Utilisation d'un matériau composite selon l'une quelconque des revendications précédentes pour la fabrication de pièces, de composants, de structures ou de dispositifs conducteurs ou semi-conducteurs pour le domaine de l'électronique et de l'électrotechnique, la technique et l'industrie informatique, des semi-conducteurs et de la mesure, la technique aéronautique et aérospatiale, l'industrie d'emballage, l'industrie automobile ainsi que la technique de refroidissement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10708103.6A EP2501746B1 (fr) | 2009-11-18 | 2010-02-08 | Procédé de production de matériaux composites à base de polymères et de nanotubes de carbone (cnt), et matériaux composites ainsi produits, ainsi que leur utilisation |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP2009008218 | 2009-11-18 | ||
EP2009008217 | 2009-11-18 | ||
EP2010000323 | 2010-01-20 | ||
EP2010000622 | 2010-02-02 | ||
EP10708103.6A EP2501746B1 (fr) | 2009-11-18 | 2010-02-08 | Procédé de production de matériaux composites à base de polymères et de nanotubes de carbone (cnt), et matériaux composites ainsi produits, ainsi que leur utilisation |
PCT/EP2010/000757 WO2011060839A1 (fr) | 2009-11-18 | 2010-02-08 | Procédé de production de matériaux composites à base de polymères et de nanotubes de carbone (cnt), et matériaux composites ainsi produits, ainsi que leur utilisation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2501746A1 EP2501746A1 (fr) | 2012-09-26 |
EP2501746B1 true EP2501746B1 (fr) | 2013-10-23 |
Family
ID=42227762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10708103.6A Active EP2501746B1 (fr) | 2009-11-18 | 2010-02-08 | Procédé de production de matériaux composites à base de polymères et de nanotubes de carbone (cnt), et matériaux composites ainsi produits, ainsi que leur utilisation |
Country Status (9)
Country | Link |
---|---|
US (1) | US20120292578A1 (fr) |
EP (1) | EP2501746B1 (fr) |
JP (1) | JP5696269B2 (fr) |
KR (1) | KR101423091B1 (fr) |
CN (1) | CN102712764A (fr) |
AU (1) | AU2010321303B2 (fr) |
CA (1) | CA2781224A1 (fr) |
ES (1) | ES2440766T3 (fr) |
WO (1) | WO2011060839A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2810978A1 (fr) * | 2013-06-07 | 2014-12-10 | Future Carbon GmbH | Retrait d'un support de faible viscosité à partir d'un composite polymère avec un matériau thermoplastique |
CN106468680A (zh) * | 2015-08-19 | 2017-03-01 | Sk新技术株式会社 | 碳纳米管的品质评价方法 |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN2012DN06580A (fr) * | 2010-03-02 | 2015-10-23 | Total Petrochemicals Res Feluy | |
FR2959231B1 (fr) * | 2010-04-22 | 2012-04-20 | Arkema France | Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes |
TWI515165B (zh) * | 2010-10-29 | 2016-01-01 | 東麗股份有限公司 | 碳奈米管集合體分散液之製造方法 |
DE102010043470A1 (de) * | 2010-11-05 | 2012-05-10 | Evonik Degussa Gmbh | Zusammensetzung aus Polyamiden mit niedriger Konzentration an Carbonsäureamidgruppen und elektrisch leitfähigem Kohlenstoff |
DE102010043473A1 (de) * | 2010-11-05 | 2012-05-10 | Evonik Degussa Gmbh | Carbon Nanotubes enthaltende Polyamid 12-Zusammensetzung |
CN103764556B (zh) * | 2011-09-02 | 2016-01-06 | 独立行政法人产业技术综合研究所 | 碳纳米管复合材料及导电材料 |
CN102430154A (zh) * | 2011-12-07 | 2012-05-02 | 北京航空航天大学 | 含碳纳米管的三维多孔支架材料的制备方法 |
JP5616943B2 (ja) * | 2012-02-21 | 2014-10-29 | 大日精化工業株式会社 | 導電性樹脂組成物の製造方法及び導電性樹脂組成物 |
CN102675836B (zh) * | 2012-04-21 | 2014-01-29 | 中国科学院宁波材料技术与工程研究所 | 一种导电/抗静电聚酯pet复合材料的制备方法 |
US20130295290A1 (en) * | 2012-05-03 | 2013-11-07 | Ppg Industries Ohio, Inc. | Compositions with a sulfur-containing polymer and graphenic carbon particles |
US20130317159A1 (en) * | 2012-05-22 | 2013-11-28 | Chevron Phillips Chemical Company Lp | Reinforced Poly(Arylene Sulfide) Compositions |
US8946333B2 (en) * | 2012-09-19 | 2015-02-03 | Momentive Performance Materials Inc. | Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics |
CN105051930A (zh) * | 2013-03-14 | 2015-11-11 | 福尔甘汽车工业有限公司 | 用于获得碳纳米管在固体或粘性基体中的混合物的工艺 |
KR20140130917A (ko) * | 2013-05-02 | 2014-11-12 | 삼성디스플레이 주식회사 | 탄소나노튜브-초고분자량폴리에틸렌 복합체, 이를 포함하는 성형품 및 그 성형품의 제조방법 |
EP3037484A4 (fr) * | 2013-08-23 | 2017-05-03 | Nitta Corporation | Matériau composite à base de résine |
CN104865667B (zh) * | 2014-01-02 | 2018-08-31 | 江苏华脉光电科技有限公司 | 一种应急抢险光缆及采用该光缆的应急装置 |
JP6573793B2 (ja) * | 2014-07-23 | 2019-09-11 | 日信工業株式会社 | 熱可塑性樹脂組成物の製造方法 |
KR101741327B1 (ko) | 2014-08-29 | 2017-05-29 | 주식회사 엘지화학 | 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품 |
WO2016032307A1 (fr) * | 2014-08-29 | 2016-03-03 | 주식회사 엘지화학 | Composite présentant des propriétés mécaniques améliorées et objet moulé le contenant |
CN104231224A (zh) * | 2014-10-22 | 2014-12-24 | 苏州市景荣科技有限公司 | 一种导电的pu鞋材及其制造方法 |
FR3027604B1 (fr) * | 2014-10-27 | 2016-11-04 | Arkema France | Preparation d'un melange-maitre a base de soufre et de nanocharges carbonees, le melange-maitre obtenu et ses utilisations |
CN104371153A (zh) * | 2014-12-08 | 2015-02-25 | 济宁利特纳米技术有限责任公司 | 一种由碳纳米管和石墨烯共同改性的橡胶复合材料 |
CN104559187B (zh) * | 2015-02-03 | 2017-06-16 | 国家电网公司 | 碳纳米管改性有机硅树脂基复合材料的制备方法 |
TWI654074B (zh) * | 2015-02-12 | 2019-03-21 | 台灣奈米碳素股份有限公司 | Method for producing composite material containing carbon material by using high energy thrust |
CN105153639B (zh) * | 2015-07-09 | 2017-07-18 | 河海大学 | 一种碳纳米管微球/玻璃纤维协同增强环氧复合材料的制备方法 |
KR102699555B1 (ko) | 2015-12-29 | 2024-08-27 | 사빅 글로벌 테크놀러지스 비.브이. | 중합체 코팅된 다중벽 탄소 나노튜브 |
KR101799573B1 (ko) * | 2016-02-19 | 2017-11-20 | 금호석유화학 주식회사 | 전도성 수지 조성물 및 이를 이용한 플라스틱 성형품 |
KR101800845B1 (ko) * | 2016-03-30 | 2017-11-23 | 금호석유화학 주식회사 | 전기전도성 수지 조성물 및 그 성형품 |
CA3055734A1 (fr) * | 2017-03-07 | 2018-09-13 | Esprix Technologies, LP. | Polycetone aliphatique modifiee par des nanostructures de carbone |
KR102377623B1 (ko) * | 2018-01-29 | 2022-03-24 | 주식회사 엘지화학 | 탄소나노튜브 분산액의 제조방법 |
KR102645311B1 (ko) | 2018-08-13 | 2024-03-08 | 삼성디스플레이 주식회사 | 두께 측정 장치 및 이를 이용한 두께 측정 방법 |
DE102018124523B4 (de) * | 2018-10-04 | 2020-10-22 | Gneuss Gmbh | Verfahren zur Herstellung von Polymeren, in welchen Füllstoffe mit Partikelgrößen kleiner 10 μm eingearbeitet und homogen verteilt sind. |
US11111146B2 (en) * | 2018-10-04 | 2021-09-07 | Wootz, LLC | Carbon nanotube product manufacturing system and method of manufacture thereof |
ES2722499B2 (es) * | 2018-11-20 | 2021-06-15 | Univ Madrid Politecnica | Metodo y sistema de tratamiento de materiales |
CN109754907B (zh) * | 2018-12-21 | 2020-03-27 | 昆明理工大学 | 一种碳纳米管聚合物复合导电材料及其制备方法 |
CN112175344A (zh) * | 2019-07-05 | 2021-01-05 | 中国石油化工股份有限公司 | 一种聚酮复合材料、其制备方法及其应用 |
KR102352358B1 (ko) | 2019-10-30 | 2022-01-20 | 금오공과대학교 산학협력단 | Lft용 abs수지 복합재료 및 그 제조방법 |
CN111470876B (zh) * | 2020-03-16 | 2021-10-19 | 中山大学 | 一种高石墨化聚酰亚胺基石墨厚膜及其制备方法 |
WO2022033743A1 (fr) * | 2020-08-14 | 2022-02-17 | Re-Organic As | Procédé pour disperser de la nanocellulose dans des polymères et produits correspondants |
TWI789007B (zh) * | 2021-09-13 | 2023-01-01 | 南亞塑膠工業股份有限公司 | 導電聚酯疊層結構及導電包裝材料 |
TWI788009B (zh) * | 2021-09-13 | 2022-12-21 | 南亞塑膠工業股份有限公司 | 導電聚酯組成物 |
KR20240064172A (ko) | 2022-11-04 | 2024-05-13 | 주식회사 삼일화학 | 그래핀-탄소나노튜브를 활용한 고강도 경량화 도전성 복합소재 및 이의 제조방법 |
CN117153459B (zh) * | 2023-09-04 | 2024-08-23 | 安徽聚虹电器有限公司 | 烧结自粘性电抗器用防水低噪声铝芯导线的制备方法 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1469930A (en) | 1974-10-11 | 1977-04-06 | Atomic Energy Authority Uk | Carbon filaments |
CA1175616A (fr) | 1981-01-05 | 1984-10-09 | Exxon Research And Engineering Company | Obtention de monoxyde de fer et de fibres de carbone |
DE3245482A1 (de) | 1982-12-08 | 1984-06-14 | Byk-Mallinckrodt Chemische Produkte Gmbh, 4230 Wesel | Entschaeumer und verfahren zu ihrer herstellung |
US4663230A (en) | 1984-12-06 | 1987-05-05 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and compositions containing same |
DE4134026C2 (de) | 1991-10-15 | 1994-04-21 | Werner & Pfleiderer | Gleichdrallschneckenkneter |
DE19917186C1 (de) | 1999-04-16 | 2000-09-21 | Goldschmidt Ag Th | Mittel zur Entschäumung wäßriger Medien und dessen Verwendung |
US20050127329A1 (en) * | 2001-08-17 | 2005-06-16 | Chyi-Shan Wang | Method of forming nanocomposite materials |
CA2473529A1 (fr) | 2002-01-15 | 2003-07-24 | Versilant Nanotechnologies, Llc | Compositions de nanotubes de carbone en suspension, procedes de fabrication correspondants, et utilisations associees |
US20040034177A1 (en) | 2002-05-02 | 2004-02-19 | Jian Chen | Polymer and method for using the polymer for solubilizing nanotubes |
US7285591B2 (en) * | 2003-03-20 | 2007-10-23 | The Trustees Of The University Of Pennsylvania | Polymer-nanotube composites, fibers, and processes |
JP2005089738A (ja) | 2003-08-12 | 2005-04-07 | Toray Ind Inc | カーボンナノチューブ分散溶液およびカーボンナノチューブ分散体 |
US20050186378A1 (en) * | 2004-02-23 | 2005-08-25 | Bhatt Sanjiv M. | Compositions comprising carbon nanotubes and articles formed therefrom |
DE102004054959A1 (de) | 2004-11-13 | 2006-05-18 | Bayer Technology Services Gmbh | Katalysator zur Herstellung von Kohlenstoffnanoröhrchen durch Zersetzung von gas-förmigen Kohlenverbindungen an einem heterogenen Katalysator |
JP4776221B2 (ja) * | 2004-12-15 | 2011-09-21 | 旭化成ケミカルズ株式会社 | 組成物の製造方法 |
JP2009521535A (ja) | 2005-08-08 | 2009-06-04 | キャボット コーポレイション | ナノチューブを含むポリマー組成物 |
DE102005050890A1 (de) * | 2005-10-21 | 2007-04-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zur Herstellung eines Nanokomposites |
US20070096083A1 (en) * | 2005-10-27 | 2007-05-03 | Intel Corporation | Substrate core polymer nanocomposite with nanoparticles and randomly oriented nanotubes and method |
JP2007169120A (ja) | 2005-12-22 | 2007-07-05 | The Inctec Inc | カーボンナノチューブの分散方法 |
DE102006007147A1 (de) | 2006-02-16 | 2007-08-23 | Bayer Technology Services Gmbh | Verfahren zur kontinuierlichen Herstellung von Katalysatoren |
JP2007231096A (ja) * | 2006-02-28 | 2007-09-13 | Tokai Rubber Ind Ltd | 燃料ホース用材料の製法およびそれにより得られた燃料ホース用材料 |
US10144638B2 (en) * | 2006-03-09 | 2018-12-04 | Battelle Memorial Institute | Methods of dispersing carbon nanotubes |
FR2899573B1 (fr) | 2006-04-07 | 2008-05-30 | Solvay | Emulsion aqueuse comprenant une polyolefine fonctionnalisee et des nanotubes de carbone |
JP2008037694A (ja) * | 2006-08-04 | 2008-02-21 | Mitsubishi Heavy Ind Ltd | ナノカーボン材料製造装置及びナノカーボン材料精製方法 |
FR2907442B1 (fr) | 2006-10-19 | 2008-12-05 | Arkema France | Materiau composite conducteur a base de polymere thermoplastique et de nanotube de carbone |
DE102006055106C5 (de) | 2006-11-14 | 2018-08-23 | Byk-Chemie Gmbh | Dispergierverfahren |
US20080292979A1 (en) * | 2007-05-22 | 2008-11-27 | Zhe Ding | Transparent conductive materials and coatings, methods of production and uses thereof |
DE102007044031A1 (de) | 2007-09-14 | 2009-03-19 | Bayer Materialscience Ag | Kohlenstoffnanoröhrchenpulver, Kohlenstoffnanoröhrchen und Verfahren zu ihrer Herstellung |
TWI393730B (zh) * | 2008-12-08 | 2013-04-21 | Taiwan Textile Res Inst | 導電母粒及導電單纖纖維 |
JP2010253738A (ja) * | 2009-04-23 | 2010-11-11 | Hitachi Maxell Ltd | ナノカーボン分散成形体の製造方法、及びナノカーボン分散成形体 |
-
2010
- 2010-02-08 ES ES10708103.6T patent/ES2440766T3/es active Active
- 2010-02-08 AU AU2010321303A patent/AU2010321303B2/en not_active Ceased
- 2010-02-08 CA CA2781224A patent/CA2781224A1/fr not_active Abandoned
- 2010-02-08 KR KR1020127015660A patent/KR101423091B1/ko active IP Right Grant
- 2010-02-08 JP JP2012539201A patent/JP5696269B2/ja not_active Expired - Fee Related
- 2010-02-08 WO PCT/EP2010/000757 patent/WO2011060839A1/fr active Application Filing
- 2010-02-08 EP EP10708103.6A patent/EP2501746B1/fr active Active
- 2010-02-08 US US13/510,758 patent/US20120292578A1/en not_active Abandoned
- 2010-02-08 CN CN2010800614840A patent/CN102712764A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2810978A1 (fr) * | 2013-06-07 | 2014-12-10 | Future Carbon GmbH | Retrait d'un support de faible viscosité à partir d'un composite polymère avec un matériau thermoplastique |
CN106468680A (zh) * | 2015-08-19 | 2017-03-01 | Sk新技术株式会社 | 碳纳米管的品质评价方法 |
Also Published As
Publication number | Publication date |
---|---|
US20120292578A1 (en) | 2012-11-22 |
KR101423091B1 (ko) | 2014-07-25 |
AU2010321303A1 (en) | 2012-06-07 |
JP5696269B2 (ja) | 2015-04-08 |
EP2501746A1 (fr) | 2012-09-26 |
KR20120113218A (ko) | 2012-10-12 |
CA2781224A1 (fr) | 2011-05-26 |
AU2010321303B2 (en) | 2014-02-13 |
CN102712764A (zh) | 2012-10-03 |
WO2011060839A1 (fr) | 2011-05-26 |
ES2440766T3 (es) | 2014-01-30 |
WO2011060839A8 (fr) | 2012-12-06 |
JP2013511576A (ja) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2501746B1 (fr) | Procédé de production de matériaux composites à base de polymères et de nanotubes de carbone (cnt), et matériaux composites ainsi produits, ainsi que leur utilisation | |
EP2089317B1 (fr) | Procédé de dispersion | |
Sahoo et al. | Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods | |
EP2639261B1 (fr) | Composition de polyamide conductrice d'électricité contenant du carbone | |
EP2426163A1 (fr) | Procédé destiné à la fabrication de composites polymères CNT | |
EP2266786A1 (fr) | Fabrication de matières composites à partir de nano-composites | |
WO2010102763A1 (fr) | Masses de polyuréthane comportant des nanotubes de carbone | |
WO2012045727A1 (fr) | Production de dispersions contenant des nanotubes de carbone | |
EP2328736A1 (fr) | Procédé de fabrication de matériaux composites contenant des nanotubes de carbone, ayant une résistance réduite | |
KR101576658B1 (ko) | 유동층 다중벽 탄소나노튜브를 적용한 탄소나노튜브-고분자 나노 복합체 및 그 제조방법 | |
US11161742B2 (en) | Nanostructured materials having intercalated carbon nanoparticles | |
EP2509917B1 (fr) | Granulat de particules de carbone, dispersion à base de granulat de particules de carbone et procédés de fabrication du granulat et de la dispersion | |
US20200346930A1 (en) | Agglomerated solid material made from loose carbon nanotubes | |
WO2019040564A1 (fr) | Dispersions, colles, gels et pâtes de nanoparticules de carbone sans additifs | |
Olowojoba et al. | Assessment of dispersion evolution of carbon nanotubes in shear-mixed epoxy suspensions by interfacial polarization measurement | |
KR20100058099A (ko) | 변성 폴리페닐렌옥사이드 수지 조성물, 그 제조방법 및 반도체 칩 트레이 | |
EP1619216A1 (fr) | Procédé pour la préparation des nanocomposites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120511 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WILLING, NADINE Inventor name: BACHER, ALEXANDER Inventor name: ZANKI, ADRIAN Inventor name: TECKLENBURG, JANIN Inventor name: MIKONSAARI, IRMA Inventor name: MEYER, HELMUT Inventor name: DIEMERT, JAN Inventor name: POTYRA, EVA Inventor name: LUESSENHEIDE, SUSANNE Inventor name: SCHUNKE, BORIS Inventor name: SAWITOWSKI, THOMAS Inventor name: METZGER, JOERG Inventor name: BERKEI, MICHAEL |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WILLING, NADINE Inventor name: BERKEI, MICHAEL Inventor name: METZGER, JOERG Inventor name: SAWITOWSKI, THOMAS Inventor name: MIKONSAARI, IRMA Inventor name: TECKLENBURG, JANIN Inventor name: SCHUNKE, BORIS Inventor name: BACHER, ALEXANDER Inventor name: LUESSENHEIDE, SUSANNE Inventor name: MEYER, HELMUT Inventor name: ZANKI, ADRIAN Inventor name: POTYRA, EVA Inventor name: DIEMERT, JAN |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B82Y 30/00 20110101ALI20130308BHEP Ipc: C08K 3/04 20060101ALI20130308BHEP Ipc: C08J 5/00 20060101ALI20130308BHEP Ipc: C08J 3/205 20060101AFI20130308BHEP Ipc: H01B 1/24 20060101ALI20130308BHEP Ipc: C08K 7/24 20060101ALI20130308BHEP |
|
INTG | Intention to grant announced |
Effective date: 20130411 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
INTG | Intention to grant announced |
Effective date: 20130912 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COPERION GMBH Owner name: BYK-CHEMIE GMBH Owner name: BADA AG Owner name: FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 637591 Country of ref document: AT Kind code of ref document: T Effective date: 20131115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010005147 Country of ref document: DE Effective date: 20131219 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2440766 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140130 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140223 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20140218 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010005147 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140218 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140208 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20140724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010005147 Country of ref document: DE Effective date: 20140724 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20150901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 637591 Country of ref document: AT Kind code of ref document: T Effective date: 20150208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140124 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100208 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170217 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20170216 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170221 Year of fee payment: 8 Ref country code: ES Payment date: 20170213 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180208 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20190801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240223 Year of fee payment: 15 |