JP2010253738A - ナノカーボン分散成形体の製造方法、及びナノカーボン分散成形体 - Google Patents

ナノカーボン分散成形体の製造方法、及びナノカーボン分散成形体 Download PDF

Info

Publication number
JP2010253738A
JP2010253738A JP2009104638A JP2009104638A JP2010253738A JP 2010253738 A JP2010253738 A JP 2010253738A JP 2009104638 A JP2009104638 A JP 2009104638A JP 2009104638 A JP2009104638 A JP 2009104638A JP 2010253738 A JP2010253738 A JP 2010253738A
Authority
JP
Japan
Prior art keywords
nanocarbon
thermoplastic resin
containing fluid
carbon dioxide
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009104638A
Other languages
English (en)
Inventor
Atsushi Yusa
敦 遊佐
Tetsuya Ano
哲也 阿野
Hiroki Ota
寛紀 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009104638A priority Critical patent/JP2010253738A/ja
Publication of JP2010253738A publication Critical patent/JP2010253738A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】ナノカーボンが熱可塑性樹脂に分散されたナノカーボン分散成形体を簡易、且つ効率的に製造する製造方法を提供する。
【解決手段】フッ素含有官能基で化学修飾されたナノカーボンと高圧二酸化炭素とを混合して、ナノカーボン含有流体を調製し、可塑化シリンダ内で、溶融された熱可塑性樹脂とナノカーボン含有流体とを接触混錬して、ナノカーボンを熱可塑性樹脂に分散させ、ナノカーボンを分散させた熱可塑性樹脂を成形する。
【選択図】図1

Description

本発明は、熱可塑性樹脂を成形することによって得られる樹脂成形体の製造方法、及び樹脂成形体に関する。より詳細には、本発明は、高圧二酸化炭素を用いて熱可塑性樹脂にナノカーボンを分散させたナノカーボン分散成形体を製造する製造方法、及び高機能なナノカーボン分散成形体に関する。
カーボンナノチューブ(CNT)、カーボンナノホーン、フラーレンなどの炭素原子が共有結合した構造を有するナノ構造体はナノカーボンと総称され、夢の素材として実用化に向けて広く研究されている。例えば、CNTの強度は同じ重量の鋼の数百倍であり、熱伝導率はダイヤモンドの数倍であることが報告されている(非特許文献1)。
このような素材の特徴を生かすため、例えば、ナノカーボンを含有する樹脂成形体を射出成形で製造することにより、樹脂成形体の導電性を向上する試みがなされている(特許文献1)。しかしながら、無機材料であるCNTなどのナノカーボンは有機材料である樹脂に相溶しないため、樹脂中に多量にナノカーボンを導入することができず、ナノカーボンと樹脂とが分離しやすい。また、ナノカーボンと熱可塑性樹脂とを混合したブレンド材料を射出成形する場合、ナノカーボンの含有量が多いと粘度が高くなりすぎ、成形が困難となる。そのため、熱可塑性樹脂に対してナノカーボンを少量しか使用することができず、樹脂成形体を十分に高機能化できていないのが実情である。
CNTの使用量を抑え、それを補うためCNTとともに炭素繊維を熱可塑性樹脂と混合することにより、導電性や強度を向上させた燃料電池用セパレータが提案されている(特許文献2)。この特許文献2の製造方法によれば、10〜70質量%の炭素繊維及び0.1〜15質量%のCNTを、熱可塑性樹脂と溶融混練することにより、高強度及び高導電性の燃料電池用セパレータを得ることができる。しかしながら、上記方法では炭素繊維を多量に使用しなければならないことから、少量のCNTしか熱可塑性樹脂に混合することができない。また、CNTなどの無機材料と有機材料とを機械的に混練する方法では、無機材料の微粉体が凝集しやすく、各材料を均一に混合することが難しい。さらに、この製造方法で樹脂成形体を製造する場合、押出成形などでペレットを製造した後、射出成形する必要があるため、材料作成に手間がかかるという問題がある。
一方、超臨界流体は気体としての浸透性と液体としての溶媒特性を併せもつ流体として注目されている。例えば、上記特性を有する超臨界二酸化炭素を用いて熱可塑性樹脂などのポリマーの高機能化が検討されており、本出願人もニトロ基または芳香族アミノ基で化学修飾されたナノカーボンと超臨界二酸化炭素とを混合してナノカーボン含有流体を調製し、該ナノカーボン含有流体と溶融させた熱可塑性樹脂とを可塑化シリンダ内のスクリュにより混練して、ナノカーボンを熱可塑性樹脂に浸透させる方法を先に提案した(特許文献3)。この方法によれば、ナノカーボン含有流体と溶融した熱可塑性樹脂とを混練しても粘度の増加が少なく、ナノカーボンを熱可塑性樹脂に良好に浸透させることができる。
特開2005−297207号公報
特開2002−97375号公報
特許第4062619号公報
「始まった炭素の世紀」,遠藤守信ら,日経サイエンス2002年8月号
しかしながら、ナノカーボンをニトロ基等で化学修飾することにより超臨界二酸化炭素にある程度の濃度でナノカーボンを溶解させることができるものの、樹脂成形体の高機能化のためにはさらに熱可塑性樹脂へのナノカーボンの導入量を増加させる必要がある。特に、高導電性の樹脂成形体を製造するためにはナノカーボンを樹脂成形体の表面に高濃度で分散させる必要があるが、ニトロ基等で化学修飾されたナノカーボンを用いた場合、熱可塑性樹脂の内部にナノカーボンが入り込みやすく、表面にナノカーボンを効率的に配置させることが難しい。そのため、樹脂成形体の表面層におけるナノカーボンの濃度が低くなり、ナノカーボンによる導電性などの高機能化が十分に図られないという問題がある。
本発明は上記課題を解決するためになされたものであり、本発明の目的は、ナノカーボンが熱可塑性樹脂に分散されたナノカーボン分散成形体を簡易、且つ効率的に製造する方法を提供すること、及び該製造方法により、ナノカーボンで高機能化された樹脂成形体を提供することにある。
本発明は、フッ素含有官能基で化学修飾されたナノカーボンと高圧二酸化炭素とを混合して、ナノカーボン含有流体を調製し、
前記ナノカーボン含有流体を、溶融された熱可塑性樹脂を有する可塑化シリンダに供給し、
前記可塑化シリンダ内で、前記溶融された熱可塑性樹脂と前記ナノカーボン含有流体とを接触混錬して、前記ナノカーボンを前記溶融された熱可塑性樹脂に分散させ、
前記ナノカーボンを分散させた熱可塑性樹脂を成形する、ナノカーボン分散成形体の製造方法である。
フッ素含有官能基で化学修飾されたナノカーボンは高圧二酸化炭素に優れた溶解性を有しているため、超臨界状態の二酸化炭素を用いなくとも、ナノカーボンを含有するナノカーボン含有流体を調製することができる。また、フッ素含有官能基で化学修飾されたナノカーボンを熱可塑性樹脂に分散させた場合、表面にナノカーボンがブリードアウトしやすい。このため、該ナノカーボンを含有するナノカーボン含有流体と溶融した熱可塑性樹脂とを可塑化シリンダ内で接触混練することにより、熱可塑性樹脂にナノカーボンを効率的に分散させることができる。また、上記製造方法によれば、可塑化シリンダ内で直接ナノカーボンを熱可塑性樹脂に分散させることができるため、機械的な混練による方法と比べて、ナノカーボンの微粉体の凝集も少ない。さらに、ナノカーボンを分散させた熱可塑性樹脂を成形するにあたって、射出成形を利用すれば、ナノカーボンと熱可塑性樹脂とを混練したペレットを製造する必要もないから、簡易にナノカーボン分散成形体を製造することができる。
上記ナノカーボンは、前記フッ素含有官能基として、パーフルオロアルキル基を有することが好ましい。上記フッ素含有官能基で化学修飾されたナノカーボンは、高圧二酸化炭素に対して優れた溶解性を有している。
上記ナノカーボン含有流体は、さらにフッ素系有機溶媒を含有してもよい。ナノカーボン含有流体にフッ素系有機溶媒を含有させることにより、熱可塑性樹脂の表面にナノカーボンがさらにブリードアウトしやすくなる。また、フッ素系有機溶媒は優れた耐熱性を有するため、該フッ素系有機溶媒を含有するナノカーボン含有流体を使用することにより、製造時にフッ素含有官能基で化学修飾されたナノカーボンの分解を抑えることができる。さらに、フッ素系有機溶媒を使用すれば、常圧でナノカーボン含有溶液を調製することができるため、該ナノカーボン含有溶液を加圧し、これと高圧二酸化炭素とを混合することにより連続的にナノカーボン含有流体を調製することができる。特に、フッ素系有機溶媒としては、パーフルオロアルキルアミンが好ましい。
上記製造方法において、溶融された熱可塑性樹脂とナノカーボン含有流体とを接触混練する場合、前記可塑化シリンダから高圧二酸化炭素を排出しながら行うことが好ましい。上記製造方法によれば、ナノカーボンを分散させた溶融状態の熱可塑性樹脂から高圧二酸化炭素を分離することができる。このため、ナノカーボンが残存する溶融状態の熱可塑性樹脂と新たなナノカーボン含有流体とを接触混練することにより、ナノカーボンを熱可塑性樹脂にさらに分散させることができる。
上記ナノカーボンとしては、フラーレン、カーボンナノチューブ、カーボンナノホーン、及びこれらの誘導体からなる群から選ばれる少なくとも1種を使用することができる。このような無機材料であるナノカーボンは熱可塑性樹脂と相溶し難く、樹脂成形体中にこれらのナノカーボンを高濃度で均一に分散させることが困難であるが、上記製造方法によれば、熱可塑性樹脂にこれらのナノカーボンを良好に分散させることができる。
また、本発明は、フッ素含有官能基で化学修飾されたナノカーボンと高圧二酸化炭素とを混合して、ナノカーボン含有流体を調製し、
前記ナノカーボン含有流体を、溶融された第1の熱可塑性樹脂を有する可塑化シリンダに供給し、
前記可塑化シリンダ内で、前記溶融された第1の熱可塑性樹脂と前記ナノカーボン含有流体とを接触混錬して、前記ナノカーボンを前記溶融された第1の熱可塑性樹脂に分散させ、
前記可塑化シリンダから金型内に、前記ナノカーボンを分散させた第1の熱可塑性樹脂を射出充填し、
前記ナノカーボンを分散させた第1の熱可塑性樹脂が射出充填された金型内に、第2の熱可塑性樹脂を射出充填する、ナノカーボン分散成形体の製造方法である。
上記製造方法によれば、内部よりも表面により高濃度でナノカーボンが分散されたナノカーボン分散成形体を製造することができる。また、上記製造方法によれば、表面のスキン層に高濃度でナノカーボンが分散されるため、高機能化のために比較的高価なナノカーボンの使用量も抑えることができる。
そして、本発明は、フッ素含有官能基で化学修飾されているナノカーボンが熱可塑性樹脂に分散されてなるナノカーボン分散成形体である。上記ナノカーボン分散成形体によれば、導電性などの特性を向上することができる。
上記ナノカーボン分散成形体は、内部より表面にナノカーボンを多く含有することが好ましい。内部よりも表面に高濃度でナノカーボンを含有させることにより、ナノカーボン分散成形体の表面を高機能化することができる。
以上のように、本発明によれば、ナノカーボンが熱可塑性樹脂に分散されたナノカーボン分散成形体を簡易、且つ効率的に製造することができる。これにより、高機能化されたナノカーボン分散成形体を得ることができる。
図1は、本発明の実施例1に係るナノカーボン分散成形体の製造装置を示す概略断面図である。 図2は、本発明の実施例2に係るナノカーボン分散成形体の製造装置を示す概略断面図である。 図3は、本発明の実施例3に係るナノカーボン分散成形体の製造装置を示す概略断面図である。
本実施の形態のナノカーボン分散成形体の製造方法では、フッ素含有官能基で化学修飾されたナノカーボンと高圧二酸化炭素とを混合して、ナノカーボン含有流体が調製される。フッ素含有官能基で化学修飾されたナノカーボンを使用することにより、ニトロ基等で化学修飾されたナノカーボンよりも高圧二酸化炭素にナノカーボンを高濃度で溶解することができる。特に、上記ナノカーボンを用いることにより、超臨界状態にない高圧二酸化炭素にもナノカーボンを溶解させることができる。これにより、ナノカーボン含有流体の調製及び取り扱いが容易となり、また製造装置のシール精度も緩和されるため、製造設備の簡素化も図ることができる。さらに、フッ素含有官能基で化学修飾されたナノカーボンは極性が低く、また表面エネルギーも低くなるため、該ナノカーボンと溶融した熱可塑性樹脂とを接触混練した際に熱可塑性樹脂の表面にナノカーボンがブリードアウトしやすくなる。これにより、樹脂成形体の表面にナノカーボンが偏析し、高濃度でナノカーボンが分散されたスキン層(表面層)を有する樹脂成形体を製造することができる。
フッ素含有官能基としては、具体的には、例えば、フッ素、フルオロアルキル基、フルオロアルキニル基、フルオロポリエーテル基、フルオロアリール基、フルオロアリールアルキル基、パーフルオロアルキル基、パーフルオロアルキニル基、パーフルオロポリエーテル基などが挙げられる。フッ素含有官能基で化学修飾されたナノカーボンはこれらを単独でまたは2種以上含んでいてもよい。これらの中でも、フッ素、フルオロアルキル基、パーフルオロアルキル基、パーフルオロアルキニル基、及びパーフルオロポリエーテル基からなる群から選ばれる少なくとも1種が好ましく、パーフルオロアルキル基がより好ましい。なお、パーフルオロアルキル基などのアルキル基を有するフッ素含有官能基の炭素数は、ナノカーボンを化学修飾するために使用されるフッ素系有機化合物の炭素数によるため、特に限定されるものではないが、通常、1〜16であり、好ましくは2〜10である。
フッ素含有官能基で化学修飾されたナノカーボンの合成方法としては、特に限定されず、従来公知の方法を使用することができる。例えば、硫酸、硝酸などの酸を含む溶液中でナノカーボンを超音波処理してナノカーボンに開口部を形成し、該ナノカーボンの開口部末端にカルボキシル基や水酸基などの反応性基を導入し、反応性基を有するナノカーボンと該反応性基と反応する水酸基やカルボキシル基などの官能基を有するフッ素系有機化合物とを縮合反応させる方法が挙げられる。このようなフッ素系有機化合物としては、具体的には、例えば、(CF)(CF)(F)CCHCHCHOH、CFCFCFOC(CF)(F)CFOC(CF)(F)CHOH、CFCFCFCOOHなどが挙げられる。これらのフッ素系有機化合物を使用することにより、例えば、上記のフルオロアルキル基、パーフルオロポリエーテル基、及びパーフルオロアルキル基で化学修飾されたナノカーボンをそれぞれ合成することができる。また、例えば、特許第3837567号公報に記載されている、紫外線照射下で、一般式RfN=NRf(Rfは、パーフルオロアルキル基を示す)で表されるパーフルオロアゾアルカンとナノカーボンとを反応させることにより、パーフルオロアルキル基で化学修飾されたナノカーボンを合成することができる。このようなパーフルオロアゾアルカンとしては、具体的には、例えば、パーフルオロアゾオクタン、パーフルオロアゾヘプタン、パーフルオロアゾヘキサン、パーフルオロアゾプロパン、パーフルオロアゾエタン、パーフルオロアゾメタンなどが挙げられる。なお、上記合成方法において、紫外線は180〜300nmの波長を有するものが好ましい。
フッ素含有官能基で化学修飾されるナノカーボンとしては、目的とする樹脂成形体の機能性に応じて種々のナノカーボンを使用することができる。具体的には、例えば、フラーレン、カーボンナノチューブ、カーボンナノホーン、ナノファイバ、ナノシート、及びこれらの誘導体からなる群から選ばれる少なくとも1種が好ましい。このような無機材料であるナノカーボンは熱可塑性樹脂と相溶し難く、樹脂成形体中にこれらのナノカーボンを高濃度で分散させることが困難であるが、本実施の形態の製造方法によれば、熱可塑性樹脂にこれらのナノカーボンを良好に分散させることができる。
フッ素含有官能基で化学修飾されたナノカーボンと混合される高圧二酸化炭素としては、液体状態、ガス状態、または超臨界状態の高圧二酸化炭素を用いることができる。本実施の形態で用いられるナノカーボンはフッ素含有官能基で化学修飾されているため、超臨界状態にない高圧二酸化炭素にも高濃度で上記ナノカーボンを溶解させることができる。このため、本実施の形態の製造方法によれば、製造装置を簡素化することができ、製造コストを低減することができる。従って、高圧二酸化炭素には、臨界点(温度が31℃以上、圧力が7.38MPa以上の超臨界状態)以上に加圧された二酸化炭素のみならず、臨界点より低圧力で加圧された二酸化炭素も含まれる。より具体的には、高圧二酸化炭素の圧力は、5〜30MPaが好ましく、温度は10〜150℃が好ましい。圧力が5MPa未満の場合、高圧二酸化炭素の密度が低下する傾向がある。一方、圧力が30MPaより高い場合、製造装置に高耐圧の設備が必要となり、コスト高となる。また、温度が10℃未満の場合、熱可塑性樹脂へのナノカーボンの分散が低下する傾向がある。一方、温度が150℃より高い場合、製造装置のシールが困難となる傾向がある。
ナノカーボン含有流体を調製する方法としては、特に限定されず、従来公知の方法を使用することができる。例えば、シリンジポンプなどの加圧手段により液体二酸化炭素を加圧し、加圧された高圧二酸化炭素をフッ素含有官能基で化学修飾されたナノカーボンが投入されている溶解槽に供給し、該ナノカーボンと高圧二酸化炭素とを混合撹拌することによってナノカーボン含有流体を調製することができる。ナノカーボン含有流体中のフッ素含有官能基で化学修飾されたナノカーボンの濃度は、特に制限されないが、熱可塑性樹脂へのナノカーボンの浸透性やナノカーボンの凝集を考慮すれば、飽和濃度以下が好ましい。
本実施の形態において、ナノカーボン含有流体はさらにフッ素系有機溶媒を含有してもよい。フッ素系有機溶媒を使用することにより、熱可塑性樹脂の表面へのナノカーボンのブリードアウトをさらに効率的に行うことができる。また、フッ素系有機溶媒は優れた耐熱性を有するため、該フッ素系有機溶媒を含有するナノカーボン含有流体を用いることにより、フッ素含有官能基で化学修飾されたナノカーボンの分解を抑制することができる。さらに、ナノカーボン含有流体を調製する場合、上記のように加圧された高圧二酸化炭素をナノカーボンが投入された溶解槽に供給して、高圧下でこれらが混合撹拌されるため、新たにナノカーボン含有流体を調製する場合、供給経路を一旦減圧してナノカーボンを溶解槽に供給する必要がある。これに対し、フッ素系有機溶媒を使用すれば、ナノカーボンをフッ素系有機溶媒に溶解させたナノカーボン含有溶液を常圧下で調製することができる。従って、該ナノカーボン含有溶液を加圧し、これと高圧二酸化炭素とを配管内で混合することによりナノカーボン含有流体を調製できるため、フッ素含有官能基で化学修飾されたナノカーボンと高圧二酸化炭素とを混合するために高圧の溶解槽を用いる必要がない。また、新たなナノカーボンを高圧二酸化炭素に溶解するために溶解槽を減圧する必要もない。これにより、連続的にナノカーボン含有流体を可塑化シリンダに供給することができる。なお、上記のように連続してナノカーボン含有流体を供給するためにも、フッ素系有機溶媒を使用する場合、フッ素含有官能基で化学修飾されたナノカーボンとフッ素系有機溶媒とを混合してナノカーボン含有溶液を調製し、得られたナノカーボン含有溶液を加圧し、加圧したナノカーボン含有溶液と高圧二酸化炭素とを混合してナノカーボン含有流体を調製する方法が好ましい。
フッ素系有機溶媒としては、特に限定されるものではないが、フッ素含有官能基で化学修飾されたナノカーボンの溶解性に優れる、パーフルオロアルキルアミン、パーフルオロアルキルポリエーテルカルボン酸、パーフルオロアルカン、フッ素系界面活性剤などが挙げられる。これらは、単独でまたは2種以上混合して用いてもよい。これらの中でも、安価で、高圧二酸化炭素への溶解性に優れ、高耐熱性(望ましくは、沸点が150℃以上)を有するパーフルオロトリプロピルアミン、パーフルオロトリブチルアミン、パーフルオロトリペンチルアミンなどのパーフルオロアルキルアミンがより好ましい。フッ素系有機溶媒を使用する場合のナノカーボン含有溶液中のフッ素含有官能基で化学修飾されたナノカーボンの濃度は、使用するナノカーボンやフッ素系有機溶媒の種類にもよるため、特に限定されるものではないが、0.01〜10質量%が好ましい。
次に、上記のようにして調製されたナノカーボン含有流体を、溶融された熱可塑性樹脂を有する可塑化シリンダに供給する。本実施の形態において、上記ナノカーボンが導入される熱可塑性樹脂としては、目的とする樹脂成形体の機能性に応じて種々の樹脂を使用することができる。具体的には、例えば、ポリエステル系繊維などの合成繊維、ポリプロピレン、ポリメチルメタクリレート、ポリアミド、ポリカーボネート、アモルファスポリオレフィン、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエーテルエーテルケトン、ABS系樹脂、ポリフェニレンサルファイド、ポリアミドイミド、ポリ乳酸、ポリカプロラクトンなどの熱可塑性樹脂、及びこれらの複合材料を用いることができる。また、これらの熱可塑性樹脂にガラス繊維、タルク、カーボン繊維などの各種無機フィラーを混練したものを用いることもできる。
ナノカーボン含有流体を可塑化シリンダに供給する方法は任意の方法を使用することができる。例えば、ナノカーボン含有流体の供給を間欠して行う場合、安定な送液が行えるシリンジポンプを利用し、供給量を制御することが好ましい。また、シリンジポンプを用いてナノカーボン含有流体を供給する場合、高密度でも安定な液体状態の高圧二酸化炭素を使用することが好ましい。この場合、ナノカーボン含有流体の圧力は10〜30MPaが好ましく、温度は5〜30℃が好ましい。
可塑化シリンダのナノカーボン含有流体が供給される位置は、熱可塑性樹脂の可塑化終了後の位置であれば特に限定されないが、溶融した熱可塑性樹脂の樹脂内圧が機械的に減圧される樹脂減圧部にナノカーボン含有流体を供給することが好ましい。溶融した熱可塑性樹脂の樹脂内圧が減圧される樹脂減圧部にナノカーボン含有流体を供給することにより、高圧のナノカーボン含有流体が溶融状態の熱可塑性樹脂の内部に浸透しやすくなり、効率的にナノカーボンを熱可塑性樹脂に分散させることができる。
次に、可塑化シリンダ内で、溶融された熱可塑性樹脂とナノカーボン含有流体とを接触混錬し、ナノカーボンを熱可塑性樹脂に分散させる。高圧のナノカーボン含有流体を可塑化シリンダに供給することにより、可塑化シリンダ内に加圧分散部が形成され、高圧状態で熱可塑性樹脂とナノカーボン含有流体とを接触混練することができる。これにより、ナノカーボンを熱可塑性樹脂に効率的に分散させることができる。
可塑化シリンダは、熱可塑性樹脂を溶融でき、該溶融した熱可塑性樹脂とナノカーボン含有流体とを接触混練できる構造を有するものであれば、特に制限されず、従来公知のものを使用することができる。例えば、内部に混練手段としてスクリュを有する可塑化シリンダが好ましく用いられる。溶融した熱可塑性樹脂と高圧のナノカーボン含有流体とを接触混練する際の加圧分散部における圧力は、使用する高圧二酸化炭素の圧力にもよるため、特に限定されるものではないが、8〜13MPaが好ましい。上記圧力であれば、ナノカーボンの凝集を抑えつつ、効率的にナノカーボンを熱可塑性樹脂に分散させることができる。また、スクリュは従来公知の構造を有するものを使用できるが、高圧のナノカーボン含有流体が供給される供給部近傍で溶融した熱可塑性樹脂の樹脂内圧を機械的に減圧する減圧機構を有するものを用いてもよい。ナノカーボン含有流体の供給部近傍で樹脂内圧が減圧されれば、ナノカーボン含有流体が熱可塑性樹脂に浸透しやすくなる。
接触混練にあたっては、ナノカーボン含有流体を浸透させた熱可塑性樹脂から高圧二酸化炭素を排気しながらナノカーボン含有流体と溶融した熱可塑性樹脂とを接触混練することが好ましい。すなわち、各種の熱可塑性樹脂に対する高圧二酸化炭素の溶解度は数質量%であり、そのため熱可塑性樹脂に浸透する高圧二酸化炭素に溶解しているナノカーボンの量はそれ以下となる。また、ナノカーボンの高圧二酸化炭素への溶解度は、圧力の低下に伴って低下する。従って、ナノカーボン含有流体を浸透させた熱可塑性樹脂から高圧二酸化炭素が分離されると、高圧二酸化炭素に溶解していたナノカーボンが溶融した熱可塑性樹脂内に残存し、該ナノカーボンを分散させた溶融状態の熱可塑性樹脂に新たなナノカーボン含有流体を浸透させることができる。このため、可塑化シリンダとしては、高圧二酸化炭素を排出するためのベントポートを備えたものが好ましい。また、上記のようにして高圧二酸化炭素をベントポートから排出する場合、スクリュは接触混練時にベントポート近傍で溶融した熱可塑性樹脂の樹脂内圧を機械的に減圧する他の減圧機構を有していてもよい。ベントポート近傍で樹脂内圧が低減されれば、ナノカーボン含有流体を浸透させた溶融した熱可塑性樹脂から高圧二酸化炭素が分離しやすくなり、ベントポート近傍に分離した高圧二酸化炭素がガス化して集中する。そして、ベントポートから高圧二酸化炭素が排出されるので、他の減圧機構により樹脂内圧が減圧された熱可塑性樹脂と新たに供給されたナノカーボン含有流体とを接触混練することができる。従って、ナノカーボンが熱可塑性樹脂に均一に分散された後、高圧二酸化炭素を排出しながら、連続してナノカーボン含有流体と溶融状態の熱可塑性樹脂とを接触混練することができる。これにより、ナノカーボンの凝集を抑えつつ、連続成形を行うことができる。
射出成形法によりナノカーボン分散成形体を製造する場合、熱可塑性樹脂の可塑化計量途中でスクリュを正回転及び逆回転させながら、ナノカーボン含有流体と溶融した熱可塑性樹脂とを接触混練することが好ましい。接触混練時にスクリュを逆回転させると、ナノカーボンを分散させた溶融状態の熱可塑性樹脂が逆流しようとする。このため、溶融した熱可塑性樹脂が新たに加圧分散部に供給されず、加圧分散部に滞留する熱可塑性樹脂が新たな熱可塑性樹脂に置換されない。従って、この状態で新たなナノカーボン含有流体が供給されれば、ナノカーボンを分散させた溶融状態の熱可塑性樹脂と新たなナノカーボン含有流体とをさらに接触混練することができる。
押出成形法によりナノカーボン分散成形体を製造する場合、可塑化シリンダにナノカーボン含有流体の供給部を複数箇所設け、ナノカーボン含有流体と溶融した熱可塑性樹脂との接触混練を多段階で行ってもよい。これにより、ナノカーボンの溶融した熱可塑性樹脂への分散をさらに効率的に行うことができる。この場合、ベントポートを複数箇所設け、上記と同様に高圧二酸化炭素を排出しながらナノカーボン含有流体と溶融した熱可塑性樹脂とを接触混練することが好ましい。
次に、上記のようにしてナノカーボンを分散させた熱可塑性樹脂を成形することによりナノカーボン分散成形体を製造することができる。成形法としては、従来公知の射出成形法あるいは押出成形法を使用することができる。射出成形法を利用する場合、例えば、可塑化シリンダから所定の内部形状を有する金型にナノカーボンを分散させた溶融状態の熱可塑性樹脂を射出することにより、ナノカーボン分散成形体を製造することができる。また、押出成形法を利用する場合、可塑化シリンダから所定の内部形状を有する押出ダイにナノカーボンを分散させた溶融状態の熱可塑性樹脂を射出することにより、例えば、ペレット状、チューブ状、シート状など形状を有するナノカーボン分散成形体を製造することができる。
射出成形法によりナノカーボン分散成形体を製造する場合、上記と同様にしてナノカーボンを分散させた溶融状態の第1の熱可塑性樹脂を金型に射出充填した後、さらに金型内にナノカーボンを含有しない溶融状態の第2の熱可塑性樹脂を射出充填してもよい。上記製造方法によれば、表面のスキン層にナノカーボンがさらに高濃度で分散されたナノカーボン分散成形体を製造することができる。このため、樹脂成形体をさらに高機能化することができる。また、例えば、高導電性が要求される樹脂成形体では、内部よりも表面に導電性物質が多く分散されている必要があるが、上記製造方法によれば、主としてスキン層にナノカーボンが分散された樹脂成形体が製造できるため、比較的高価なナノカーボンの使用量を抑えつつ、高導電性の樹脂成形体を得ることができる。第1及び第2の熱可塑性樹脂は同種のものを使用してもよいが、第1の熱可塑性樹脂と異なる第2の熱可塑性樹脂を使用することにより、樹脂成形体の高強度化や軽量化などを図ることができる。なお、第1及び第2の熱可塑性樹脂としては、既述した熱可塑性樹脂を使用することができる。
上記スキン層とコア部とを有するナノカーボン分散成形体を製造する場合、製造装置としては、既述した可塑化シリンダと同様のシリンダを有するものを用いてもよいが、スキン層を形成するためのナノカーボン含有流体と溶融した第1の熱可塑性樹脂とを接触混練し、射出充填する第1の可塑化シリンダと、コア部を形成するための溶融した第2の熱可塑性樹脂を射出充填する第2の可塑化シリンダとを有するいわゆるサンドイッチ方式の製造装置を使用することが好ましい。上記製造装置を使用することにより、安定してナノカーボン分散成形体を製造することができる。
押出成形によりナノカーボン分散成形体を製造する場合、さらに公知の高圧二酸化炭素や窒素を用いた発泡成形法を本実施の形態の製造方法と組み合わせてもよい。例えば、上記のようにして押出成形により製造したペレット状のナノカーボン分散成形体を溶融し、溶融した樹脂を超臨界状態の二酸化炭素や窒素を用いて射出発泡成形することにより、内部に発泡したコア部を有する樹脂成形体を得ることができる。これにより軽量化を図ることができる。また、ペレット状のナノカーボン分散成形体と、ナノカーボンを含有しない熱可塑性樹脂とを用いて、サンドイッチ成形または二色成形することにより、平滑な表面を有し、スキン層にナノカーボンを有し、内部に発泡層を有する樹脂成形体を得ることができる。本実施の形態の製造方法と上記の発泡成形法とを組み合わせることにより、軽量なだけなく、電着塗装や無電解めっきに好適な低電気抵抗のスキン層を有する樹脂成形体を製造することができる。また、発泡による樹脂成形体の物性低下を、表面のナノカーボンが分散されたスキン層により補うことができる。このため、例えば、高強度で軽量であることが要求される電磁波シールド部材として上記樹脂成形体を利用することができる。
上記製造方法により得られるナノカーボン分散成形体は、フッ素含有官能基で化学修飾されたナノカーボン及び高圧二酸化炭素を混合して調製されたナノカーボン含有流体と、溶融した熱可塑性樹脂とを接触混練することにより製造されるため、ナノカーボンが高濃度で均一に分散された樹脂成形体を製造することができる。また、フッ素含有官能基で化学修飾されたナノカーボンは極性が低く、また表面エネルギーも低いため、該ナノカーボンと溶融した熱可塑性樹脂とを接触混練した際に熱可塑性樹脂の表面にナノカーボンがブリードアウトしやすくなる。これにより、表面にナノカーボンが偏析し、内部よりも表面に高濃度でナノカーボンが分散されたスキン層を有する樹脂成形体を製造することができる。このため、本実施の形態により製造されるナノカーボン分散成形体は、従来のニトロ基あるいは芳香族アミノ基で化学修飾されたナノカーボンを使用する場合よりも、例えば、表面の電気抵抗が1桁以上低い高機能なナノカーボン分散成形体を製造することができる。なお、ナノカーボンに化学修飾されたフッ素含有官能基は、溶融した熱可塑性樹脂とナノカーボン含有流体との接触混練時や成形時にナノカーボンから脱離する場合がある。そのため、ナノカーボン分散成形体は、ナノカーボンとともに、フッ素含有官能基で化学修飾されたナノカーボン由来のフッ素含有成分を含む場合がある。
以下、実施例に基づきさらに具体的に本発明を説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
本実施例では、熱可塑性樹脂として非強化のペレット状のポリカーボネート樹脂を、フッ素含有官能基で化学修飾されたナノカーボンとしてパーフルオロオクチル基を有する単層のCNTを用い、射出成形法によりスキン層とコア部とを有するナノカーボン分散成形体を製造した。なお、スキン層とコア層には同一のポリカーボネート樹脂を使用した。図1は、本実施例で使用した製造装置を示す概略断面図である。図1に示すように、この製造装置は、フッ素含有官能基で化学修飾されたナノカーボンと高圧二酸化炭素とを混合してナノカーボン含有流体を調製し、該調製されたナノカーボン含有流体を第1の可塑化シリンダ210に供給するナノカーボン含有流体供給部100と、スキン層を形成するための第1の可塑化シリンダ210、コア部を形成するための第2の可塑化シリンダ240及び金型部250を有する射出成形部200とを備えている。これらナノカーボン含有流体供給部100及び射出成形部200は図示しない制御装置に動作制御される。
ナノカーボン含有流体供給部100は、液体二酸化炭素ボンベ101と、液体二酸化炭素を所定の圧力に加圧して高圧二酸化炭素を供給するための二酸化炭素用シリンジポンプ102と、フッ素含有官能基で化学修飾されたナノカーボンを高圧二酸化炭素に溶解するための溶解槽103とを備えており、液体二酸化炭素ボンベ101と二酸化炭素用シリンジポンプ102とを接続する配管及び二酸化炭素用シリンジポンプ102と溶解槽103とを接続する配管にはそれぞれ、吸引用エアオペレートバルブ104と供給用エアオペレートバルブ105とが配設されている。ナノカーボン含有流体を調製する場合、まず、吸引用エアオペレートバルブ104を開放して、液体二酸化炭素ボンベ101から液体二酸化炭素を吸引する。次に、二酸化炭素用シリンジポンプ102の圧力制御により所定圧力まで液体二酸化炭素を加圧した後、供給用エアオペレートバルブ105を開放して、高圧二酸化炭素をナノカーボンが投入された溶解槽103に供給する。そして、溶解槽103でナノカーボンと高圧二酸化炭素とを混合撹拌することにより、ナノカーボン含有流体が調製される。なお、二酸化炭素用シリンジポンプ102は図示しないチラーを備えており、これにより所定の温度となるように高圧二酸化炭素が温調される。本実施例では、液体二酸化炭素ボンベ101から4〜6MPaの液体二酸化炭素を吸引し、これを二酸化炭素用シリンジポンプ102により加圧して、圧力が10MPa、温度が10℃の高圧二酸化炭素を供給した。
ナノカーボン含有流体を第1の可塑化シリンダ210に供給する際には、二酸化炭素用シリンジポンプ102を圧力制御から流量制御に切替え、金型部250からのトリガー信号に応じて後述する導入バルブ212の流体供給口218を開放し、二酸化炭素用シリンジポンプ102のシリンダの駆動スピード(流量)及び駆動時間を制御することにより、一定量のナノカーボン含有流体が第1の可塑化シリンダ210に供給される。流量制御によりナノカーボン含有流体が供給された後、二酸化炭素用シリンジポンプ102が一旦停止され、供給用エアオペレートバルブ105が閉じられる。次に、二酸化炭素用シリンジポンプ102を流動制御から圧力制御に再度切替え、上記と同様にして液体二酸化炭素ボンベ101から液体二酸化炭素を吸引し、加圧して配管経路内を一定圧力に維持し、待機する。さらに、金型部250からのトリガー信号に応じて、上記した流量制御により溶解槽103からナノカーボン含有流体を供給する。これらの動作を繰り返すことにより、間欠的にナノカーボン含有流体が第1の可塑化シリンダ210に供給される。本実施例では、導入バルブ212の流体供給口218の開放から供給完了までの間、圧力計260で検出される圧力が8〜10MPaとなる範囲で、ナノカーボン含有流体が第1の可塑化シリンダ210に間欠供給された。
第1の可塑化シリンダ210の上部側面には上流側から順に、第1の熱可塑性樹脂を第1の可塑化シリンダ210に供給するための第1の樹脂供給用ホッパ211と、ナノカーボン含有流体を供給するための導入バルブ212と、第1の可塑化シリンダ210内から高圧二酸化炭素を排出するためのベントポート213とが設けられている。また、第1の可塑化シリンダ210の下部側面の導入バルブ212と対向する位置及びベントポート213に対向する位置にはそれぞれ、内圧を検出するための圧力計215,216及び図示しない温度センサが設けられている。この導入バルブ212は、第1の可塑化シリンダ210と連結された基端部に流体供給口218を有するとともに、内部に導入ピストン217を有しており、導入ピストン217で流体供給口218を開放することによって、ナノカーボン含有流体供給部100から第1の可塑化シリンダ210にナノカーボン含有流体が供給される。また、ベントポート213はバッファ容器219を介して真空ポンプ220と排気管で接続されており、ベントポート213を開放し、真空ポンプ220を作動させることより、第1の可塑化シリンダ210の内部が減圧される。従って、この第1の可塑化シリンダ210内では、導入バルブ212近傍からベントポート213近傍までの間で高圧のナノカーボン含有流体により加圧状態でナノカーボン含有流体と溶融した第1の熱可塑性樹脂とが接触混練される加圧分散部221が形成される。なお、第2の可塑化シリンダ240の上部側面には、第2の熱可塑性樹脂を第2の可塑化シリンダ240に供給するための第2の樹脂供給用ホッパ241が設けられている。
第1及び第2のスクリュS1,S2の駆動側端部はそれぞれ、図示しないモータと連結されている。各樹脂供給用ホッパ211,241から供給された熱可塑性樹脂は、可塑化シリンダ210,240の外壁面に設けられたバンドヒータ(図示せず)で可塑化シリンダ210,240が加熱されることにより、スクリュS1,S2で混練され、溶融される。また、スキン層を形成するための第1の可塑化シリンダ210内に内蔵された第1のスクリュS1は、モータを回転させることにより、正回転及び逆回転するように構成されている。さらに、第1及び第2の可塑化シリンダ210,240の射出側端部は金型部250内のキャビティ253と連通するノズル部230と接続されている。そして、接触混練の間はノズル部230の先端は閉じられているので、接触混練された溶融状態の第1及び第2の熱可塑性樹脂が第1及び第2のスクリュS1,S2の前方にそれぞれ押し出されることにより、第1及び第2のスクリュS1,S2が後退する。これにより計量が開始される。そして、可塑化計量後に、各可塑化シリンダ210,240内のスクリュS1,S2を背圧力で前進させることにより、ノズル部230からキャビティ253内にナノカーボンを分散させた溶融状態の第1の熱可塑性樹脂及び溶融状態の第2の熱可塑性樹脂がそれぞれ射出充填される。本実施例では、各可塑化シリンダ210,240の温度センサで検出される温度が280〜300℃となる範囲で成形が行われた。
また、図1に示すように、第1の可塑化シリンダ210内に内蔵されているスクリュS1には、ナノカーボン含有流体が供給される際に、第1の熱可塑性樹脂の樹脂内圧が機械的に減圧される第1の樹脂減圧部222がナノカーボン含有流体の供給部である導入バルブ212近傍に形成され、ナノカーボン含有流体と接触混練した第1の熱可塑性樹脂の樹脂内圧が機械的に減圧される第2の樹脂減圧部223がベントポート213近傍に形成されるように、第1及び第2の減圧機構が設けられている。具体的には、上流側から溶融した第1の熱可塑性樹脂が送られてくると、第1の可塑化シリンダ210の内壁と第1のスクリュS1とのギャップが狭まることにより、溶融した第1の熱可塑性樹脂の樹脂内圧が高くなるが、導入バルブ212近傍で第1の可塑化シリンダ210の内壁と第1のスクリュS1とのギャップが広がるため、樹脂内圧が減圧される第1の樹脂減圧部222が形成される。これにより、ナノカーボン含有流体が溶融した第1の熱可塑性樹脂に浸透しやすくなる。また、ベントポート213近傍の第2の樹脂減圧部223は、2段階の減圧ゾーンを有しており、上流側のスクリュ径が縮径される第1の減圧ゾーン224により樹脂内圧が減圧されるため、ナノカーボン含有流体と接触混練した第1の熱可塑性樹脂から高圧二酸化炭素が分離し、直後にある第2の減圧ゾーン225に分離した高圧二酸化炭素がガス化して集中する。これにより、ベントポート213から高圧二酸化炭素を効率的に排出できるとともに、ナノカーボンを分散させた第1の熱可塑性樹脂内の高圧二酸化炭素の濃度が減少するため、上流から送られてくる新たなナノカーボン含有流体をナノカーボンが分散された溶融状態の第1の熱可塑性樹脂にさらに浸透させることができる。そして、この状態で第1のスクリュS1を逆回転させれば、上流側から新たに溶融した第1の熱可塑性樹脂が供給されないため、ナノカーボンを分散させた第1の熱可塑性樹脂が第1の減圧ゾーン224で滞留するとともに、新たに供給されたナノカーボン含有流体もこの狭い第1の減圧ゾーン224に滞留する。よって、高圧二酸化炭素が排出されながら、ナノカーボンがさらに溶融状態の第1の熱可塑性樹脂に分散される。本実施例では、第1の可塑化シリンダ210の圧力計215で検出される圧力が8〜13MPaに保持された状態で、ナノカーボン含有流体と溶融した第1の熱可塑性樹脂とを接触混練した。
図1に示すように、金型部250は、固定金型251及び可動金型252を備えており、固定金型251と可動金型252とが当接することにより、金型部250内に所定形状のキャビティ253が形成される。上記のようにキャビティ253はノズル部230と連通しており、該ノズル部230からキャビティ253にナノカーボンを分散させた溶融状態の第1の熱可塑性樹脂及び溶融状態の第2の熱可塑性樹脂が射出充填される。固定金型251及び可動金型252はそれぞれ、固定プラテン254及び可動プラテン255に固定されており、型締め機構により可動プラテン255を駆動することにより、金型部250が開閉される。本実施例では、円盤状の成形体が2個同時に成形される金型部250を使用した。スキン層を形成する場合、第1の可塑化シリンダ210から可塑化計量されたナノカーボンを分散させた溶融状態の第1の熱可塑性樹脂がキャビティ253に射出充填される。このとき、射出充填量は、キャビティ253内全体が溶融した第1の熱可塑性樹脂で充填されない程度に調整される。
一方、上記の第1の可塑化シリンダ210による射出充填中に、第2の樹脂供給用ホッパ241から第2の熱可塑性樹脂を第2の可塑化シリンダ240に供給して、第2のスクリュS2により可塑化計量が行われる。この際、第2の可塑化シリンダ240では、ナノカーボンが分散されていない第2の熱可塑性樹脂が溶融される。そして、ナノカーボンを分散させた第1の熱可塑性樹脂の射出充填が完了する直前に、第2の熱可塑性樹脂の可塑化計量を完了させる。
次に、ナノカーボンを分散させた第1の熱可塑性樹脂の射出充填が完了した後、第2のスクリュS2を前進させて、溶融状態の第2の熱可塑性樹脂がキャビティ253に射出充填される。この際、先にキャビティ253に充填されていたナノカーボンを分散させた第1の熱可塑性樹脂は第2の熱可塑性樹脂の充填圧力により、キャビティ253を画成する金型表面に押しやられる。その結果、第2の熱可塑性樹脂の射出完了後には、成形体のスキン層にはナノカーボンが分散された第1の熱可塑性樹脂を有する層が形成され、成形体のコア部には第2の熱可塑性樹脂を有する層が形成される。
射出充填が完了した後、金型部250を冷却して、内部の樹脂を冷却固化し、金型部250を開くことにより、ナノカーボン分散成形体を得ることができる。上記のようにして製造されたナノカーボン分散成形体の表面の電気抵抗は、10Ω/□であり、成形体の表面を50μm削った内部の電気抵抗は1012Ω/□であることが確認された。従って、上記製造方法によれば、ナノカーボンにより導電性に優れた樹脂成形体が製造できるとともに、内部よりも表面にナノカーボンが高濃度で分散された樹脂成形体を製造することができる。
(実施例2)
本実施例では、フッ素系有機溶媒としてパーフルオロトリペンチルアミンをさらに含有するナノカーボン含有流体を用いた以外は、実施例1と同様にしてナノカーボン分散成形体を製造した。
図2は、本実施例で使用した製造装置を示す概略断面図である。この製造装置は、溶解槽の代わりに、ナノカーボン含有流体供給部100にナノカーボンとフッ素系有機溶媒とを混合してナノカーボン含有溶液を調製するための溶液調製部110が設けられている以外は、実施例1の製造装置の基本構成と同様の構成を備えている。このため、実施例1の製造装置と同一の構成については、同じ引用番号を付して説明を省略する。
図2に示すように、溶液調製部110は、フッ素含有官能基で化学修飾されたナノカーボンをフッ素系有機溶媒に溶解してナノカーボン含有溶液Cを調製するための混合槽111と、ナノカーボン含有溶液Cを所定の圧力に加圧し、送液するための溶液用シリンジポンプ112とを備えており、混合槽111と溶液用シリンジポンプ112とを接続する配管及び溶液用シリンジポンプ112と第1の可塑化シリンダ210とを接続する配管にはそれぞれ、吸引用エアオペレートバルブ114及び供給用エアオペレートバルブ115が配設されている。
ナノカーボン含有流体を調製するにあたっては、まず混合槽111でフッ素含有官能基で化学修飾されたナノカーボンとフッ素系有機溶媒とを常温、常圧下で混合撹拌して、ナノカーボン含有溶液Cを調製する。次に、溶液用シリンジポンプ112側の吸引用エアオペレートバルブ114を開放して、混合槽111からナノカーボン含有溶液Cをフィルタ113を介して常温で吸引し、溶液用シリンジポンプ112の圧力制御により所定圧力までナノカーボン含有溶液Cを加圧する。本実施例では、ナノカーボン含有溶液Cを10MPaに加圧した。一方、実施例1と同様にして、液体二酸化炭素ボンベ101から液体二酸化炭素を吸引し、二酸化炭素用シリンジポンプ102の圧力制御により所定圧力まで液体二酸化炭素を加圧する。本実施例では、実施例1と同様に、圧力が10MPa、温度が10℃の高圧二酸化炭素を供給した。
次に、供給用エアオペレートバルブ105,115を開放した後、二酸化炭素用シリンジポンプ102及び溶液用シリンジポンプ112を圧力制御から流動制御に切替え、加圧したナノカーボン含有溶液Cと高圧二酸化炭素とを所定の流量比となるように流動させる。本実施例では、ナノカーボン含有溶液Cと高圧二酸化炭素との流量比を1:1に設定して、間欠的に第1の可塑化シリンダ210にナノカーボン含有流体が供給された。
上記のようにしてフッ素系有機溶媒を含有するナノカーボン含有流体を用いた以外は、実施例1と同様にして製造されたスキン層及びコア部を有するナノカーボン分散成形体の表面の電気抵抗は、10Ω/□であり、成形体の表面を50μm削った内部の電気抵抗は1013Ω/□であることが確認された。従って、上記製造方法によれば、ナノカーボンがさらに表面に偏析したナノカーボン分散成形体を製造することができる。
(実施例3)
本実施例では、熱可塑性樹脂としてポリプロピレン樹脂を用い、成形に押出成形を用いた以外は、実施例2と同様にしてナノカーボン分散成形体を製造した。図3は、本実施例で使用した製造装置を示す概略断面図である。この製造装置は、実施例2の射出成形部の代わりに、押出成形部300を備えている以外は、実施例2の製造装置の基本構成と同様の構成を備えている。このため、実施例2の製造装置と同一の構成については、同じ引用番号を付して説明を省略する。なお、本実施例ではナノカーボン含有流体を連続的に可塑化シリンダに供給するために、シリンジポンプ、吸引用エアオペレートバルブ、及び供給用エアオペレートバルブは二酸化炭素側及び溶液側でそれぞれ2つづつ使用した。
図3に示すように、押出成形部300は、内部にスクリュSを有する可塑化シリンダ310を備えており、可塑化シリンダ310の駆動側端部はモータと連結されており、押出側端部は肉厚を薄くしながら熱可塑性樹脂を押し出す押出ダイ370と連結されている。
可塑化シリンダ310の上部側面には、上流側から順に、熱可塑性樹脂を供給する樹脂供給用ホッパ311と、ナノカーボン含有流体を供給するための第1の導入バルブ312Aと、高圧二酸化炭素を排出するための第1のベントポート313Aと、ナノカーボン含有流体を供給するための第2の導入バルブ312Bと、高圧二酸化炭素を排出するための第2のベントポート313Bとが設けられており、可塑化シリンダ310の下部側面には、図示しない圧力計及び温度センサが設けられている。従って、本実施例では、第1及び第2の導入バルブ312A,312Bから高圧のナノカーボン含有流体が可塑化シリンダ310に供給されることにより、可塑化シリンダ310内で複数の加圧分散部が形成され、第1及び第2のベントポート313A,313Bから高圧二酸化炭素が排出される。
また、図3に示すように、可塑化シリンダ310内に内蔵されているスクリュSは複数の減圧機構を有しており、これによりナノカーボン含有流体が供給される際に、ナノカーボン含有流体の供給部である各導入バルブ312A,312B近傍で熱可塑性樹脂の樹脂内圧が機械的に減圧される第1及び第3の樹脂減圧部322A,322Bが形成され、各ベントポート313A,313B近傍でナノカーボン含有流体と接触混練した熱可塑性樹脂の樹脂内圧が機械的に減圧される第2及び第4の樹脂減圧部323A,323Bが形成される。これらの減圧機構におけるスクリュSの構造は、実施例1における第1のスクリュS1のそれらと同様である。従って、実施例1と同様に、各樹脂減圧部で接触混練時にナノカーボンを効率的に熱可塑性樹脂に分散させることができる。本実施例では、実施例2と同様に、10MPaに加圧されたナノカーボン含有溶液Cと10MPaに加圧された高圧二酸化炭素との流量比を1:1に設定して、ナノカーボン含有流体を可塑化シリンダ310に連続供給した。
押出ダイ370はチューブ状の内部空間を有しており、可塑化シリンダ310からナノカーボンを分散させた溶融状態の熱可塑性樹脂を押し出し、図示しない水浴で冷却することにより、チューブ状のナノカーボン分散成形体が成形される。
本実施例では、上記のようにして製造したチューブ状のナノカーボン分散成形体を所定長さのペレットに切断し、このペレットを用いて射出成形機にて円盤状の射出成形体を製造した。この射出成形にあたっては、一般的な可塑化シリンダを用いて上記のナノカーボン分散成形体のペレットを溶融し、溶融した熱可塑性樹脂を射出充填した後、超臨界窒素を用いて発泡させた熱可塑性樹脂をキャビティに射出充填して、コア部を形成した。なお、コア部の発泡層は射出成形直後に金型をコアバックさせて内部を急減圧することにより、約30%軽量化した樹脂成形体を得ることができる。
上記のようにして製造されたポリプロピレン樹脂成形体の表面の電気抵抗は、10Ω/□であり、実施例1及び2の射出成形法により製造したナノカーボン分散成形体よりもさらに低い電気抵抗を有することが確認された。従って、押出成形法により製造されるナノカーボン分散成形体を用いて得られる樹脂成形体は、射出成形法により製造されるナノカーボン分散成形体よりも優れた導電性を有している。これは、上記のように押出成形法によりナノカーボン分散成形体を製造する場合、ナノカーボン含有流体と溶融した熱可塑性樹脂との接触混練を多段階で行うことができるためである。また、発泡による射出成形を行う場合、表面性の低下などが生じやすいが、上記製造方法によれば発泡によって形成されるコア部の外部がナノカーボン分散成形体を用いたスキン層で覆われるため、樹脂成形体の物性低下を補うこともできる。
100 ナノカーボン含有流体供給部
200 射出成形部
101 液体二酸化炭素ボンベ
210,310 可塑化シリンダ
250 金型部
300 押出成形部

Claims (10)

  1. フッ素含有官能基で化学修飾されたナノカーボンと高圧二酸化炭素とを混合して、ナノカーボン含有流体を調製し、
    前記ナノカーボン含有流体を、溶融された熱可塑性樹脂を有する可塑化シリンダに供給し、
    前記可塑化シリンダ内で、前記溶融された熱可塑性樹脂と前記ナノカーボン含有流体とを接触混錬して、前記ナノカーボンを前記溶融された熱可塑性樹脂に分散させ、
    前記ナノカーボンを分散させた熱可塑性樹脂を成形する、ナノカーボン分散成形体の製造方法。
  2. 前記ナノカーボンは、前記フッ素含有官能基として、パーフルオロアルキル基を有する請求項1に記載のナノカーボン分散成形体の製造方法。
  3. 前記ナノカーボン含有流体は、さらにフッ素系有機溶媒を含有する請求項1または2に記載のナノカーボン分散成形体の製造方法。
  4. 前記フッ素系有機溶媒は、パーフルオロアルキルアミンを含有する請求項3に記載のナノカーボン分散成形体の製造方法。
  5. 前記溶融された熱可塑性樹脂とナノカーボン含有流体との接触混練は、前記可塑化シリンダから高圧二酸化炭素を排出しながら行われる請求項1〜4のいずれか1項に記載のナノカーボン分散成形体の製造方法。
  6. 前記ナノカーボンは、フラーレン、カーボンナノチューブ、カーボンナノホーン、及びこれらの誘導体からなる群から選ばれる少なくとも1種である請求項1〜5のいずれか1項に記載のナノカーボン分散成形体の製造方法。
  7. フッ素含有官能基で化学修飾されたナノカーボンと高圧二酸化炭素とを混合して、ナノカーボン含有流体を調製し、
    前記ナノカーボン含有流体を、溶融された第1の熱可塑性樹脂を有する可塑化シリンダに供給し、
    前記可塑化シリンダ内で、前記溶融された第1の熱可塑性樹脂と前記ナノカーボン含有流体とを接触混錬して、前記ナノカーボンを前記溶融された第1の熱可塑性樹脂に分散させ、
    前記可塑化シリンダから金型内に、前記ナノカーボンを分散させた第1の熱可塑性樹脂を射出充填し、
    前記ナノカーボンを分散させた第1の熱可塑性樹脂が射出充填された金型内に、第2の熱可塑性樹脂を射出充填する、ナノカーボン分散成形体の製造方法。
  8. ナノカーボンが熱可塑性樹脂に分散されたナノカーボン分散成形体であって、
    前記ナノカーボンは、フッ素含有官能基で化学修飾されているナノカーボン分散成形体。
  9. 前記ナノカーボン分散成形体は、内部より表面に前記ナノカーボンを多く含有する請求項8に記載のナノカーボン分散成形体。
  10. 前記ナノカーボンは、フラーレン、カーボンナノチューブ、カーボンナノホーン、及びこれらの誘導体からなる群から選ばれる少なくとも1種である請求項8または9に記載のナノカーボン分散成形体。
JP2009104638A 2009-04-23 2009-04-23 ナノカーボン分散成形体の製造方法、及びナノカーボン分散成形体 Withdrawn JP2010253738A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104638A JP2010253738A (ja) 2009-04-23 2009-04-23 ナノカーボン分散成形体の製造方法、及びナノカーボン分散成形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104638A JP2010253738A (ja) 2009-04-23 2009-04-23 ナノカーボン分散成形体の製造方法、及びナノカーボン分散成形体

Publications (1)

Publication Number Publication Date
JP2010253738A true JP2010253738A (ja) 2010-11-11

Family

ID=43315242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104638A Withdrawn JP2010253738A (ja) 2009-04-23 2009-04-23 ナノカーボン分散成形体の製造方法、及びナノカーボン分散成形体

Country Status (1)

Country Link
JP (1) JP2010253738A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131962A (ja) * 2010-12-24 2012-07-12 Sekisui Chem Co Ltd 樹脂複合材料の製造方法及び樹脂複合材料
JP2013511576A (ja) * 2009-11-18 2013-04-04 バーダー アーゲー ポリマーとカーボンナノチューブに基づく複合材料の製造方法、この方法によって製造された複合材料及びその使用
CN103753827A (zh) * 2014-01-23 2014-04-30 华南理工大学 水辅助混炼挤出/注塑聚合物纳米复合材料的设备及实现方法
JP2016147494A (ja) * 2014-11-25 2016-08-18 三菱重工プラスチックテクノロジー株式会社 射出成形方法、及び、強化繊維の開繊方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511576A (ja) * 2009-11-18 2013-04-04 バーダー アーゲー ポリマーとカーボンナノチューブに基づく複合材料の製造方法、この方法によって製造された複合材料及びその使用
JP2012131962A (ja) * 2010-12-24 2012-07-12 Sekisui Chem Co Ltd 樹脂複合材料の製造方法及び樹脂複合材料
CN103753827A (zh) * 2014-01-23 2014-04-30 华南理工大学 水辅助混炼挤出/注塑聚合物纳米复合材料的设备及实现方法
JP2016147494A (ja) * 2014-11-25 2016-08-18 三菱重工プラスチックテクノロジー株式会社 射出成形方法、及び、強化繊維の開繊方法

Similar Documents

Publication Publication Date Title
Blyweert et al. 3D printing of carbon-based materials: A review
Qiu et al. Carbon nanotube integrated multifunctional multiscale composites
JP4758732B2 (ja) 超臨界流体を用いた熱可塑性樹脂の射出成形方法
CN1942300B (zh) 导电性热塑性树脂组合物的注射压缩成型方法
Wang et al. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite
JP4919262B2 (ja) 貯蔵容器、樹脂の成形方法及びメッキ膜の形成方法
JP2004510021A (ja) 繊維フィラ成形製品
KR101211134B1 (ko) 탄소나노소재/고분자 복합소재의 제조방법
EP2029265A2 (en) Ultrasound assisted continuous process for dispersion of nanofibers and nanotubes in polymers
JP2010253738A (ja) ナノカーボン分散成形体の製造方法、及びナノカーボン分散成形体
CN107619496A (zh) 双峰闭孔结构的发泡聚合物复合材料及其制备方法
JP5501529B2 (ja) 管部材の製造方法及び製造装置
Gackowski et al. Hybrid additive manufacturing of polymer composites reinforced with buckypapers and short carbon fibres
US8691126B2 (en) Method of fabricating an injection molded component
Yoon et al. Injection molding of wood–fiber/plastic composite foams
JP2005272541A (ja) ナノカーボンを含有するポリマー及び熱可塑性樹脂、当該熱可塑性樹脂から成形される成形品、並びに、その製造方法
JP4570651B2 (ja) 成形品の製造方法及び成形装置
JP2007051220A (ja) 表面改質法
JP2010229028A (ja) 炭素繊維複合非金属材料の製造方法
JP4062619B2 (ja) 成形体及び成形体の製造方法
Peng et al. Study of microcellular injection molding with expandable thermoplastic microsphere
KR20220030265A (ko) 고분자 발포체 물품 및 고분자 발포체의 제조 방법
Liu et al. Direct Ink Writing of Graphene Oxide Reinforced PDMS Matrix Composites for Improved Mechanical Properties
JP4717147B2 (ja) 成形品の製造方法
JP2006159569A (ja) 導電性樹脂成形体

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703