WO2022033743A1 - Procédé pour disperser de la nanocellulose dans des polymères et produits correspondants - Google Patents

Procédé pour disperser de la nanocellulose dans des polymères et produits correspondants Download PDF

Info

Publication number
WO2022033743A1
WO2022033743A1 PCT/EP2021/065227 EP2021065227W WO2022033743A1 WO 2022033743 A1 WO2022033743 A1 WO 2022033743A1 EP 2021065227 W EP2021065227 W EP 2021065227W WO 2022033743 A1 WO2022033743 A1 WO 2022033743A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
cellulose
dispersion
thermoplastic
composite
Prior art date
Application number
PCT/EP2021/065227
Other languages
English (en)
Inventor
Stein Dietrichson
Joachim KARTHÄUSER
Original Assignee
Re-Organic As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Re-Organic As filed Critical Re-Organic As
Publication of WO2022033743A1 publication Critical patent/WO2022033743A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • C08J3/2056Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase the polymer being pre-melted
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/485Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with three or more shafts provided with screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates generally to a method for producing thermoplastic composites comprising nano-cellulose, specifically thermoplastic composites comprising 0.1-75% nano-cellulose by weight.
  • the invention furthermore relates to products formed by the thermoplastic composite and articles produced from said thermoplastic composite products.
  • Dispersion of nano-cellulose in polymers and products derived from these polymers are known.
  • the dispersion is often difficult, for example due to the tendency of the nano-cellulose to agglomerate. It is therefore difficult to get nano-cellulose homogenously dispersed in a polymer, such as a thermoplastic.
  • Dispersions of nano-cellulose can be concentrated by various means, including reverse osmosis and distillation of water. The viscosity increases significantly upon concentration.
  • nano-cellulose has a tendency to re-agglomerate rather quickly, therefore incorporating as much nano-cellulose as possible in plastics is difficult. Avoiding re-agglomeration and achieving a homogenous distribution in the polymer will furthermore be a compromise between performance and costs.
  • MALA Maleic anhydride
  • MALA has traditionally been used as additive, e.g. at 1-6 %, typically 2-3 % wt., for increasing the adhesion between plastic and wooden material.
  • MALA has a range of negative properties, including toxicity, smell, cost and corrosive stress for process equipment.
  • thermoplastics and cellulose use surface-active ingredients, known as surfactants, to enable mixing of thermoplastics and cellulose in general: US 2008 0241 262 (nano-shells), US 2016 0303 102 (drug formulations), WO 2010 072 665 (Nano-fibers for textiles produced by electrospinning), US 2011 0250 256 (Genic Co, Seoul, Korea, Nano-web porous films, including gelling agent).
  • surfactants surface-active ingredients
  • CAB cellulose acetate butyrate
  • a planetary extruder is a type of extruder generally comprising a central extruder spindle surrounded by a plurality of planetary spindles around its circumference.
  • the planetary spindles are sometimes arranged with threads or inclined tracks, having an angle of approximately 45°.
  • the barrel in which the spindles are commonly arranged, may be arranged with tracks on its inner surface to mesh with the planetary spindles.
  • An example of a planetary extruder is disclosed in US Patent US4268176A.
  • Another version of a planetary extruder is disclosed in US Patent US9061442B2, both of which are incorporated herein by reference.
  • a plurality of screws also referred to as degassing screws, surround a central shaft. Both of these two extruders display how a plurality of screws may provide both a high level of kneading, as well as efficient degassing.
  • Nano-cellulose shall be understood as cellulosic fibres, in particular cellulosic fibres obtained by defibring of lignocellulosic raw-material, optionally bleached, with typical fibre lengths of 10 nanometres up to 100 micrometres, wherein a size distribution of non-agglomerated fibres may peak at approximately 50-500 nanometres.
  • the term may be understood as for example nanocrystalline cellulose (NCC) or microfibrillar cellulose (MFC).
  • Thermoplastics shall be considered as the group of polymers which melt at a temperature in the range 60 - 200°C, comprising polyolefins, including polyethylene (PE), polypropylene (PP), polyesters including polyethylene terephthalate (PET), polylactic acid (PLA) and other plastics which can be processed in compounding devices such as twin-screw compounding machines or in extruders, specifically planetary extruders.
  • polyolefins including polyethylene (PE), polypropylene (PP), polyesters including polyethylene terephthalate (PET), polylactic acid (PLA) and other plastics which can be processed in compounding devices such as twin-screw compounding machines or in extruders, specifically planetary extruders.
  • aqueous dispersion is brought into contact with a hydrophobic polymer with the intention to transfer ingredients from the aqueous phase to the polymer.
  • a compounding device shall denote any intensive mixer, such as kneaders, batch mixers, continuous mixers, extruders capable of mixing materials and standard twin-screw compounders which are able to mix polymer blends under pressure, and which allow venting and removal of gases such as water vapour in a controlled manner, e.g. by pressure relief valves.
  • An object of the present invention is to overcome at least some of the difficulties outlined above. This is done by providing a method for producing a thermoplastic composite comprising 0.1-75 % by weight nano-cellulose, comprising the following steps: providing nano-cellulose as a waterborne dispersion wherein said dispersion comprises 0.2-30% by weight nano-cellulose; providing molten thermoplastic in a compounding device which allows for both mixing and controlled venting of gas through a venting system of the compounding device; adding said nano-cellulose dispersion to the compounding device and mixing said nano-cellulose dispersion and the thermoplastic in said compounding device to form the thermoplastic composite, wherein the mixing is performed at a temperature of 60-200° C and at a pressure of 1 bar or higher, preferably 10 bar or higher; removing water in the form of water vapour by controlled venting through the venting system of the compounding device; and forming the composite into a solidified composite product, such as, but not limited to, an extrusion product, a pellet or a film;
  • nano-cellulose is highly prone to agglomeration into larger clusters of cellulose, it is provided in a water dispersion at low concentrations of 0.2-30% by weight nano-cellulose.
  • the dispersion comprises a lot of water which must be removed.
  • the water presents difficulties when striving for a homogenous dispersion of nano-cellulose in a thermoplastic due to the hydrophobic nature of the polymer. Therefore, controlling the temperature, pressure, mixing and venting is vital for achieving a homogenous dispersion.
  • nano-cellulose may replace MALA in plastic / wood composites, i.e. adhesion between macroscopic, micrometre to millimetre size wooden material and plastic is improved by incorporation of nanocellulose.
  • the nano-cellulose is cellulosic fibres, preferably cellulosic fibres obtained by defibring of lignocellulosic raw-material, and with fibre lengths of 10 nanometres to 100 micrometres.
  • the nano-cellulose is one of nanocrystalline cellulose (NCC) or microfibrillar cellulose (MFC).
  • the nano-cellulose dispersion further comprises an alcohol, preferably below 50% by weight.
  • the nano-cellulose dispersion is added continuously to the compounding device.
  • the nano-cellulose dispersion is added to the compounding device by use of a pressure pump.
  • the thermoplastic is an organic polymer with a molecular weight above 10 000 g/mol.
  • the thermoplastic is based on monomers comprising ethylene, and furthermore being selected from: polyester, polyolefins, high density polyethylene, propylene, butene, isoprene, butadiene, terephthalic acid, lactic acid (PLA), glycols, thermoplastic elastomers including SBS, SIS and SEBS or a mixture thereof.
  • the method further comprises the step of, after forming of the composite, drying the composite to a residual water content of below 10% by weight, preferably below 5% and more preferably below 1 % by treatment in a drying device.
  • the nano-cellulose dispersion further comprises carbon nano tubes (CNT) in an amount such that the content of CNT in a final composite composition ranges from 0.1 % by weight to 10% by weight, and wherein the CNT may be dispersed in the nano-cellulose dispersion by one of: dispersion by ultrasound separately in water and thereafter mixed with nano-cellulose water dispersion; or dispersed directly in the nano- cellulose dispersion.
  • CNT carbon nano tubes
  • the CNT gives the composite many advantageous properties e.g. electrical conductivity or microwave absorbency. Furthermore, mixing the CNT/cellulose dispersion with thermoplastics results in a faster phase transfer of CNT/cellulose into the thermoplastic compared with the phase transfer rate of only nano-cellulose. This is for example due to the increased hydrophobicity of the CNT/cellulose complex.
  • the compounding device is a twin-screw compounder.
  • the compounding device is an extruder comprising a screw assembly comprising more than two extruder screws.
  • the more than two extruder screws are arranged surrounding a central axis of the extruder, wherein the central axis is one of a central screw or a central drive shaft.
  • the compounding device is a planetary extruder.
  • the planetary extruder is a compounding device which provides a large polymer surface available for the nano-cellulose dispersion and thereby improves the dispersion of nano-cellulose in the polymer.
  • the planetary extruder is highly effective in shearing both molten plastics and agglomerated nano-cellulose. This is partly due to the threaded surfaces of the central and the planetary spindles. This way, the extruder constantly provides much more new, available surface than many other extruder types. New surface is important for the adsorption and incorporation of nano- cellulose in the polymer.
  • the planetary extruder is furthermore equally efficient at lower (e.g. 0.5%) and higher (e.g. 25%) concentration of nano-cellulose in the dispersion.
  • a composite product comprising 0.1-75 % by weight nano-cellulose and a thermoplastic, produced by the method according to the present disclosure.
  • the thermoplastic is produced from recycled material, preferably with a content of a polymer from a single source of at least 90 %, such as high-density polyethylene from plastic bottles, low-density polyethylene films from agricultural use, or PLA from food packaging from fast food restaurants.
  • thermoplastic composite comprising a thermoplastic polymer and 0.1-75% by weight nano-cellulose.
  • the method results in thermoplastics comprising well dispersed nano-cellulose.
  • the nano-cellulose may give the thermoplastic improved properties such as increased impact resistance, increased tensile strength, and improved barrier properties.
  • Improved barrier properties may for example be provided by producing a film made of the thermoplastic composite, wherein the nano-cellulose may prevent or lessen diffusion of air through the film.
  • the disclosed method is energy-efficient, economic and scalable.
  • the method generally comprises mixing of a liquid or molten thermoplastic and nano-cellulose provided as water-borne dispersion in a compounding device.
  • a liquid or molten thermoplastic and nano-cellulose provided as water-borne dispersion in a compounding device.
  • nano-cellulose transfers to the organic polymer phase, and water is vaporized and removed through a venting system of the compounding device.
  • the waterborne nano-cellulose dispersion comprises 0.2-30% by weight, preferably 0.2-10% by weight, more preferably 0.3-5% by weight nano-cellulose and the water removal from the nano-cellulose dispersion during mixing is at least 90% by weight, preferably at least 95%.
  • the thermoplastic is an organic polymer with a molecular weight above 10 000 g/mol.
  • the thermoplastic is based on monomers comprising ethylene.
  • the thermoplastic may for example be selected from: polyester, polyolefins, high density polyethylene, propylene, butene, isoprene, butadiene, terephthalic acid, lactic acid (PLA), glycols, thermoplastic elastomers including SBS, SIS and SEBS or a mixture thereof.
  • the thermoplastic may for example be, but is not limited to, polyethylene (PE) and polypropylene (PP) in the case of polyolefins, or polyethylene terephthalate (PET), polylactic acid (PLA) or similar in the case of polyesters.
  • the thermoplastic is produced from recycled material, preferably with a content of a polymer from a single source of at least 90 %, wherein the single source may be for example high- density polyethylene from plastic bottles, low-density polyethylene films from agricultural use, or PLA from food packaging.
  • simple one-screw extruders may be used as the compounding device.
  • more advanced compounding devices may be used such as twin-screw extruders or planetary extruders.
  • One technical problem to be solved by the invention is therefore to provide a large surface of hydrophobic plastic for the polar phase of nano-cellulose, in order to facilitate the efficient transfer of nano-cellulose to the organic polymer phase without the nano-cellulose re-agglomerating to micrometre or millimetre size particles during the removal of water.
  • one-screw or twin-screw extruders provide a sufficiently large polymer surface for the nano-cellulose dispersion.
  • an extruder having a screw assembly comprising more than two screws in order to provide an even larger contact surface between the polymer and the nano-cellulose dispersion.
  • the screw assembly comprising more than two screws should be understood as more than two screws arranged in the same section of the extruder, being arranged essentially in parallel.
  • the extruder may furthermore comprise a plurality of sections along its length, each comprising a screw assembly comprising one or a plurality of screws.
  • the extruder comprising more than two screws enables both efficient mixing with little mechanical stress on the wooden or cellulosic fibres, as well as removal of water as steam through one or more venting zones.
  • the extruder has a modular structure, with adjustable compounding and degassing sections, and can therefore be adapted to the compound at hand and is suitable for various combinations of thermoplastic and nano-cellulose. Low concentrations of cellulose in water require more intensive or longer agitation times. Various degassing stations are advisable. As the volume of material decreases significantly upon water removal, it is practical to produce master batches with different residual water levels, and the final dry product is produced from master batches.
  • the extruder comprising more than two screws is a planetary extruder.
  • the waterborne nano-cellulose dispersion comprises 0.2-30% by weight, preferably 0.2-10% by weight, more preferably 0.3-5% by weight nano-cellulose.
  • the nano-cellulose dispersion is added to the compounding device containing the molten thermoplastic by means of a pressure pump.
  • the nano-cellulose dispersion further comprises up to 50% of an alcohol, preferably ethanol.
  • an alcohol preferably ethanol.
  • other alcohols are possible such as isopropanol or methanol.
  • the alcohol is also vaporized during mixing in the compounding device and let off through the venting system of the compounding device.
  • the temperature during mixing of the composite in the compounding device is preferably 60-200°C, more preferably 100-200°C. Furthermore, a pressure inside the compounding device is kept at above 1 bar, preferably above 10 bar. To achieve this, the venting system of the compounding device allows for controlled venting in order to both release water vapor, and possibly alcohol, as well as keeping the desired pressure in the compounding device. The venting system furthermore provides that the water/alcohol is not removed too quickly, in order to make sure that the nano-cellulose is sufficiently dispersed in the thermoplastic before vaporizing.
  • additives are added to the compounding device to be mixed with the composite.
  • Additives may for example be, but are not limited to, functional additives such as carbon nano tubes (CNT) for imparting e.g. electrical conductivity or microwave absorbency, antioxidants, colorants, or fillers including wood fibres and mineral fillers such as silica, titanium dioxide, or other fillers, preferably with small particle sizes.
  • functional additives such as carbon nano tubes (CNT) for imparting e.g. electrical conductivity or microwave absorbency, antioxidants, colorants, or fillers including wood fibres and mineral fillers such as silica, titanium dioxide, or other fillers, preferably with small particle sizes.
  • polar particles such as fine silica or titanium dioxide can be added, e.g. at concentrations of 0.2-3% wt. of the final composite product. This is beneficial for the preservation of the nano-size distribution, i.e. for the prevention of agglomeration and subsequent presence of agglomerated cellulose particles in the final products.
  • wooden materials including medium-density fibres (MDF) or wooden waste materials are added, in weight ratios of thermoplastic I wooden material between 5/1 to 1/5.
  • materials for economically competitive composites can be obtained, alternatively pellets and sticks for use as combustible materials are prepared.
  • These articles are useful for cooking food in outdoor activities or in developing countries where food is prepared over open fire.
  • the a.m. products can replace firewood, and are even preferred to firewood due to higher energy density, clean combustion profile and due to the fact that recycling of plastic waste, in particular low density polyethylene is enabled.
  • one of the main advantages of the nano-cellulose is to increase adhesion between the plastic and the wooden material, thereby significantly reducing, or even eliminating the need to add adhesion increasing agents such as MALA.
  • the content of nano-cellulose is typically below 1 % by weight.
  • residual water from the nano-cellulose dispersion may be used as blowing agent to afford porous products with higher surface, e.g. for easier use as combustible fuel.
  • CNT carbon nano tubes
  • the CNT are dispersed in water using ultrasound through known procedures.
  • the CNT water dispersion is added to the nano-cellulose water dispersion, and the mixture is further dispersed in order to afford complexes of CNT and nano-cellulose.
  • CNT may also be directly dispersed with ultrasound in the nano-cellulose water dispersion; however, increased temperatures are required in that case.
  • Mixing said CNT/cellulose dispersion with thermoplastics results in a faster phase transfer of CNT/cellulose into thermoplastics compared with the phase transfer rate of pure nano-cellulose. This is for example due to the increased hydrophobicity of the CNT/cellulose complex.
  • Products resulting from the CNT enhanced composite are characterized by increased electrical conductivity and microwave absorbance.
  • the weight ratio CNT I nano-cellulose vary depending on intended use, e.g. between 5:95 to 95:5, but a 30:70 to 70:30 weight ratio is preferred.
  • the desired homogeneity is reached and/or the desired amount of nano-cellulose is dispersed in the polymer.
  • Homogeneity may for example be measured by visual measuring, using a suitable visual aid, of an average distance between the individual dispersed nano-cellulose fibres.
  • the desired amount of nano-cellulose is achieved by performing the method of the present disclosure one time. In another embodiment the method of the present disclosure is repeated a plurality of times to achieve the desired amount of nano-cellulose in the polymer.
  • thermoplastic composite product having improved mechanical and other properties, including barrier properties.
  • such products may be typical extrusion products, or pellets for example for use in injection moulding machines, or films.
  • the product may be used on its own, or further processed into a composite article. Forming into an article may be performed for example by extrusion, pressure-moulding, injection-moulding, blow-moulding, rotation-moulding or other suitable method.
  • the article may for example be articles for cooking or heating, extruded articles such as tubes or profiles for fencing and terraces and construction, injection- moulded or pressure-moulded articles for furniture and car interior purposes, films for packaging coatings, adhesives, sealants, or other end-uses.
  • the mixed raw materials or products can be further dried to a residual water content of below 10% by weight, preferably below 5% and more preferably below 1 % by treatment in a drying device for example by vacuum.
  • thermoplastic composites comprising nano-cellulose and its derived products

Abstract

L'invention concerne un procédé pour la production d'un composite thermoplastique comprenant 0,1 à 75 % en poids de nanocellulose, comprenant les étapes suivantes : l'utilisation de nanocellulose sous forme d'une dispersion à base aqueuse, ladite dispersion comprenant 0,2 à 30 % en poids de nanocellulose ; l'introduction de thermoplastique fondu dans un dispositif de mélange qui permet à la fois le mélange et l'évacuation contrôlée de gaz par un système d'évent du dispositif de mélange ; l'addition de ladite dispersion de nanocellulose dans le dispositif de mélange et le mélange de ladite dispersion de nanocellulose et du thermoplastique dans ledit dispositif de mélange pour former le composite thermoplastique, le mélange étant effectué à une température de 60 à 200 °C et à une pression supérieure ou égale à 1 bar ; l'élimination d'eau sous la forme de vapeur d'eau par évacuation contrôlée par le système d'évent du dispositif de mélange ; et la transformation du composite en un produit composite solidifié, tel que, mais non exclusivement, un produit d'extrusion, une pastille ou un film, l'élimination d'eau provenant de la dispersion de nanocellulose pendant le mélange étant d'au moins 90 % en poids, de préférence d'au moins 95 %.
PCT/EP2021/065227 2020-08-14 2021-06-08 Procédé pour disperser de la nanocellulose dans des polymères et produits correspondants WO2022033743A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE2000139 2020-08-14
SE2000139-2 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022033743A1 true WO2022033743A1 (fr) 2022-02-17

Family

ID=76355510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/065227 WO2022033743A1 (fr) 2020-08-14 2021-06-08 Procédé pour disperser de la nanocellulose dans des polymères et produits correspondants

Country Status (1)

Country Link
WO (1) WO2022033743A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268176A (en) 1979-01-12 1981-05-19 Hermann Berstorff Maschinenbau Gmbh Planetary extruder for thermoplastics material
US20080241262A1 (en) 2004-03-29 2008-10-02 The University Of Houston System Nanoshells and Discrete Polymer-Coated Nanoshells, Methods For Making and Using Same
WO2010072665A1 (fr) 2008-12-23 2010-07-01 Basf Se Modification de nanofibres ou de mésofibres ou de produits textiles plats produits par électrofilage à l'aide de protéines amphiphiles
US20110250256A1 (en) 2007-08-10 2011-10-13 Genic Co, Ltd. Dissolvable Nano Web Porous Film and Method of Preparing the Same
US8105682B2 (en) 2006-09-01 2012-01-31 The Regents Of The University Of California Thermoplastic polymer microfibers, nanofibers and composites
US20120292578A1 (en) * 2009-11-18 2012-11-22 Alexander Bacher METHOD FOR PRODUCING COMPOSITE MATERIALS BASED ON POLYMERS AND CARBON NANOTUBES (CNTs), COMPOSITE MATERIALS PRODUCED IN THIS WAY AND USE THEREOF
US20130133848A1 (en) 2008-06-17 2013-05-30 Akzo Nobel N.V. Cellulosic product
US9061442B2 (en) 2013-03-01 2015-06-23 Gneuss Gmbh Extruder
US20160303102A1 (en) 2013-12-05 2016-10-20 Alrise Biosystems Gmbh Process for the production of drug formulations for oral administration
JP2019044164A (ja) * 2018-08-23 2019-03-22 旭化成株式会社 セルロース強化樹脂組成物の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268176A (en) 1979-01-12 1981-05-19 Hermann Berstorff Maschinenbau Gmbh Planetary extruder for thermoplastics material
US20080241262A1 (en) 2004-03-29 2008-10-02 The University Of Houston System Nanoshells and Discrete Polymer-Coated Nanoshells, Methods For Making and Using Same
US8105682B2 (en) 2006-09-01 2012-01-31 The Regents Of The University Of California Thermoplastic polymer microfibers, nanofibers and composites
US20110250256A1 (en) 2007-08-10 2011-10-13 Genic Co, Ltd. Dissolvable Nano Web Porous Film and Method of Preparing the Same
US20130133848A1 (en) 2008-06-17 2013-05-30 Akzo Nobel N.V. Cellulosic product
WO2010072665A1 (fr) 2008-12-23 2010-07-01 Basf Se Modification de nanofibres ou de mésofibres ou de produits textiles plats produits par électrofilage à l'aide de protéines amphiphiles
US20120292578A1 (en) * 2009-11-18 2012-11-22 Alexander Bacher METHOD FOR PRODUCING COMPOSITE MATERIALS BASED ON POLYMERS AND CARBON NANOTUBES (CNTs), COMPOSITE MATERIALS PRODUCED IN THIS WAY AND USE THEREOF
US9061442B2 (en) 2013-03-01 2015-06-23 Gneuss Gmbh Extruder
US20160303102A1 (en) 2013-12-05 2016-10-20 Alrise Biosystems Gmbh Process for the production of drug formulations for oral administration
JP2019044164A (ja) * 2018-08-23 2019-03-22 旭化成株式会社 セルロース強化樹脂組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 202003, Derwent World Patents Index; AN 2020-32553A, XP002804074 *

Similar Documents

Publication Publication Date Title
EP2163577B9 (fr) Allongeurs de chaînes et matériaux cellulaires thermoplastiques en mousse obtenus par un procédé d'extrusion réactif et avec l'aide des dits allongeurs de chaînes
KR101104618B1 (ko) 성형재 및 성형품을 제조하기 위한 나노크기 무기 입자를함유하는 열가소성 성형재 및 성형품, 및 이들의 용도
CA2770973C (fr) Procede de production de melanges amidon thermoplastique/polymere
WO2019011152A1 (fr) Mélange maître présentant une résistance, une ténacité et une transmittance améliorées, procédé de préparation s'y rapportant et son utilisation
US11472959B2 (en) Aliphatic polyester resin composition, method for producing the same, and produced product
CN105348756A (zh) 一种抗菌聚酯薄膜及其制备方法与它的用途
WO1992010539A1 (fr) Materiaux et/ou pieces moulees a base d'amidon modifie par des composes polymeres synthetiques et leur procede de production
CA3015359A1 (fr) Concentres polymeres hautement charges
CN105504704A (zh) 乙醇胺活化钠基蒙脱土/聚合物复合生物降解吹膜树脂及制备方法
US10472471B2 (en) Masterbatch comprising colorant particles and a polyol poly(hydroxy fatty acid) ester as dispersing agent
JP2019043979A (ja) セルロース強化樹脂組成物の製造方法
CN109553934A (zh) 采用扩链剂制备的pbs/pbat共混改性生物降解树脂及其制备方法
WO2022033743A1 (fr) Procédé pour disperser de la nanocellulose dans des polymères et produits correspondants
Wacharawichanant et al. Effect of mixing conditions and particle sizes of titanium dioxide on mechanical and morphological properties of polypropylene/titanium dioxide composites
KR100816411B1 (ko) 고분자 복합재료 및 그 제조방법
CN111286164B (zh) 一种生物降解塑料及其制备方法
CN113817296A (zh) 一种新型生物可降解缠绕膜专用料及其制备方法
KR20180119479A (ko) 복합분해성 폴리올레핀계 수지 조성물 및 이의 제조방법
CN108059804B (zh) 一种pbat降解色母粒及其制备方法
EP3418321A1 (fr) Procédé pour la préparation d'une formulation plastifiante granulée contenant un alcool ramifié à chaîne longue et du polypropylène, formulation ainsi obtenue et procédé de plastificationi de poly(acide lactique) faisant appel à ladite formulation
JP2006104482A (ja) エチレン−ビニルアルコール共重合体樹脂組成物の製造方法
JP2019044164A (ja) セルロース強化樹脂組成物の製造方法
JP7162366B1 (ja) 酢酸セルロース組成物、及びその製造方法
JP4399525B2 (ja) カーボンナノ線条体分散樹脂組成物の製造方法
JP6762632B1 (ja) 無機物質粉末含有ポリオレフィン系樹脂成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21731145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21731145

Country of ref document: EP

Kind code of ref document: A1