EP2475812B1 - Stabilisierung von polyacrylnitril-precursorgarnen - Google Patents

Stabilisierung von polyacrylnitril-precursorgarnen Download PDF

Info

Publication number
EP2475812B1
EP2475812B1 EP10749843.8A EP10749843A EP2475812B1 EP 2475812 B1 EP2475812 B1 EP 2475812B1 EP 10749843 A EP10749843 A EP 10749843A EP 2475812 B1 EP2475812 B1 EP 2475812B1
Authority
EP
European Patent Office
Prior art keywords
application space
yarn
precursor yarn
electromagnetic waves
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10749843.8A
Other languages
English (en)
French (fr)
Other versions
EP2475812A1 (de
Inventor
Bernd Wohlmann
Michael WÖLKI
Christian Hunyar
Rudolf Emmerich
Mathias Kaiser
Matthias Graf
Lukas Alberts
Klaus-Dieter Nauenburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Carbon Europe GmbH
Original Assignee
Toho Tenax Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Europe GmbH filed Critical Toho Tenax Europe GmbH
Priority to EP10749843.8A priority Critical patent/EP2475812B1/de
Publication of EP2475812A1 publication Critical patent/EP2475812A1/de
Application granted granted Critical
Publication of EP2475812B1 publication Critical patent/EP2475812B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile

Definitions

  • the invention relates to a method for stabilizing polyacrylonitrile yarns.
  • Stabilized polyacrylonitrile multifilament yarns are needed in the production of carbon fibers.
  • Today's carbon fibers are predominantly made of polyacrylonitrile fibers, i. made of polyacrylonitrile precursor yarns.
  • the polyacrylonitrile precursor yarns are first subjected to stabilization by an oxidation treatment before the stabilized precursor yarns are subsequently carbonized at temperatures of at least 1200 ° C. in a nitrogen atmosphere and, if appropriate, graphitized in a further step at temperatures up to about 2800 ° C., thus carbon fibers to obtain.
  • the stabilization of polyacrylonitrile precursor yarns is generally understood to mean the conversion of the yarns via chemical stabilization reactions, in particular via cyclization reactions and dehydrogenation reactions, from a thermoplastic state into an oxidized, infusible and simultaneously flame-resistant state.
  • the stabilization is carried out today usually in conventional convection ovens at temperatures between 200 and 300 ° C and under an oxygen-containing atmosphere (see, eg F. Fourné: "Synthetic Fibers", Carl Hanser Verlag Kunststoff Vienna 1995, chapter 5.7 ).
  • a stepwise conversion of the Precursorgarns of a thermoplastic into an oxidized, infusible fiber instead of ( J.-B.
  • the yarn passes through differently tempered oven stages, by means of which a slow heating of the yarn can be set and thus sufficient removal of the exothermic heat from the yarn material can be achieved.
  • the stabilization can be carried out, for example, in a conventional convection oven with three oven stages, wherein in the first stage at temperatures in the range of 200 to 300 ° C usually a residence time of at least 20 minutes is required to perform the stabilization to the extent that the density of the precursor yarn is increased by about 0.03 g / cm 3 .
  • the precursor yarn based on a polyacrylonitrile polymer submitted in the process according to the invention is a yarn which contains at least 85% of polymerized acrylonitrile.
  • the polyacrylonitrile polymer may also contain portions of comonomers, such as e.g. of vinyl acetate, methyl acrylate, methyl methacrylate, vinyl chloride, vinylidene chloride, styrene or itaconic acid (ester).
  • thermoplastic polyacrylonitrile precursor yarn prepared may be a yarn which has not yet been subjected to any stabilization.
  • the precursor yarn presented can also be a polyacrylonitrile yarn which has already been subjected to partial stabilization, in which case the stabilization proceeds further in the process according to the invention.
  • the method according to the invention is not limited to stabilizing the precursor yarn completely by the method according to the invention, but it can also be carried out so that the yarn is only stabilized to a certain degree.
  • the method according to the invention is therefore suitable for partially or completely stabilizing an untreated polyacrylonitrile precursor yarn.
  • the inventive method comprises the further partial or complete stabilization of an already partially stabilized Precursorgarns. In this case, the previous partial stabilization and / or a subsequent completion of the stabilization can also be done under Use of the method according to the invention or by known methods in conventional convection ovens.
  • the applicator When carrying out the process according to the invention, e.g. generated in a magnetron high-frequency electromagnetic waves, which are guided via suitable means, preferably via a waveguide or a coaxial into the application space.
  • the applicator has a generally channel-shaped application space with a wall of a conductive material, which is traversed by the precursor yarn to be stabilized and into which the electromagnetic waves are fed.
  • the wall surrounding the application space can be, for example, a continuous metal wall. However, it is also possible to form the wall of a conductive grid-shaped material.
  • the application space preferably has a circular, oval or rectangular contour transversely to the feedthrough direction of the precursor yarn and thus transversely to the propagation direction of the electromagnetic waves.
  • the applicator is a rectangular waveguide.
  • the application space furthermore comprises, in its interior surrounded by the wall, a conductive element, which is preferably a metal rod.
  • a conductive element extends coaxially to the longitudinal axis of the application space, i. in the propagation direction of the electromagnetic waves, whereby a coaxial conductor is formed.
  • the conductive element is arranged in the center of the application space. In such coaxial conductors, it is advantageous if the application space has a circular contour transversely to the propagation direction of the electromagnetic waves.
  • the application space can at its inlet end, at which the Precursorgarn enters the applicator and / or at its outlet end, from which the Precursor yarn leaves the applicator, have diaphragms through which the precursor yarn is passed. These diaphragms hold the high-frequency electromagnetic waves in the application space.
  • the applicator e.g. a tube which is connected via an elbow with the application space, wherein the precursor yarn to be stabilized is guided in the region of the elbow by the wall into the application space.
  • the maximum electric field strength of the high-frequency electromagnetic waves in the application space is set to a level in the range from 3 to 150 kV / m.
  • the level of the field strength refers to the unladen state of the applicator, ie. to a state where the precursor yarn to be stabilized does not pass through the applicator.
  • microwaves High-frequency electromagnetic waves of a frequency of 300 MHz to 300 GHz, which are generally referred to as microwaves, are preferred for carrying out the method according to the invention. Particularly preferred are microwaves in the range of 300 MHz to 45 GHz and in a particular embodiment microwaves in the range of 900 MHz to 5.8 GHz. By default, microwaves are used with a frequency of 915 MHz and 2.45 GHz, which are suitable for carrying out the invention Method are best suited.
  • the process gas may be an inert gas, for example nitrogen, argon or helium.
  • nitrogen is used as the inert gas.
  • the process gas used in the process according to the invention is an oxygen-containing gas. It has been shown that can be achieved in the stabilization by means of an oxygen-containing gas higher carbon yields.
  • an oxygen-containing gas is understood as meaning a gas which contains molecular oxygen, the concentration of molecular oxygen in the oxygen-containing gas preferably being less than 80% by volume. Most preferably, the oxygen-containing gas is air.
  • the critical minimum temperature T crit is the temperature above which the high-frequency electromagnetic waves couple sufficiently into the precursor yarn passing through the application device, ie above which the electromagnetic waves are sufficiently absorbed by the yarn and the conversion reactions take place. It has been shown that the atmosphere surrounding the precursor yarn in the application space and thus the precursor yarn passing through the application space itself must exceed a certain threshold temperature, ie the critical minimum temperature, so that the high-frequency electromagnetic waves couple so strongly into the precursor yarn that the conversion reactions or chemical stabilization reactions, ie in particular cyclization reactions, dehydrogenation reactions and oxidation reactions can proceed to stabilize the yarn.
  • the high-frequency electromagnetic waves may already be coupled into the yarn below the critical minimum temperature, the coupled-in electromagnetic waves do not yet result in a temperature increase in the yarn sufficient for initiating the conversion reactions, since at the same time cooling takes place due to the process gas flowing relative to the yarn the yarn is done.
  • the critical minimum temperature T crit can be determined in a simple way for the precursor yarn guided in each case by the application device. As stated, above the critical minimum temperature, the electromagnetic waves are sufficiently absorbed by the precursor yarn and, as a result of the resulting temperature increase in the yarn, initiates the conversion reactions leading to the stabilization of the yarn. As a result, among other HCN gas is released.
  • the HCN gas can be measured by conventional analytical methods such as gas chromatography, mass spectrometry or electrochemical HCN sensors in the gas outlet, via which the process gas introduced into the applicator is removed from the applicator.
  • the minimum temperature is understood to be that temperature above which the electromagnetic waves couple so strongly or are absorbed so strongly by the yarn that the conversion reactions in the yarn, ie in particular the cyclization reaction, take place and as a result HCN gas is released becomes.
  • the conversion reactions may take place on the basis of the HCN cleavage associated cyclization can be detected by IR spectroscopy.
  • the maximum temperature T max is to be understood as meaning the temperature which is 20 ° C. below the decomposition temperature of the precursor yarn introduced into the application device.
  • the process gas in the application space has a temperature in the range between (T crit + 20 ° C) and (T max - 20 ° C).
  • the decomposition temperature can be easily determined by thermogravimetric measurements. In this case, the decomposition temperature is that temperature at which a sample of the precursor yarn presented in the method according to the invention loses 5% of its mass within a time of less than 5 minutes.
  • the respective critical minimum temperature T crit and the maximum temperature T max is dependent on the precursor material, ie, for example, of concrete polyacrylonitrile polymer.
  • the polyacrylonitrile Precursorgarne commonly used for the purpose of carbon fiber production can be used in the inventive method.
  • the critical minimum temperature and the maximum temperature can be influenced by additives which may be added to the polyacrylonitrile.
  • the precursor yarn may contain additives which bring about an improvement in the absorption capacity of the precursor yarn with respect to high-frequency electromagnetic waves.
  • these additives are polyethylene glycol, carbon black or carbon nanotubes.
  • the critical minimum temperature and the maximum temperature are also dependent on the degree of stabilization of the Precursorgarns submitted in the process according to the invention. This shows that with increasing degree of stabilization, the critical minimum temperature shifts to higher values. It is likewise evident that increasing stabilization has the effect of increasing thermal stability and, as a result, increasing decomposition temperatures, and thus also of increasing maximum temperatures in the context of the present invention.
  • the adjustment of the temperature of the process gas flowing through the application space can be effected for example by supplying a gas heated to the required temperature into a heat-insulated application space.
  • a process gas which is initially tempered to a lower temperature level may be present in the application space or in a heat exchanger upstream of the application space, e.g. be heated by means of suitable heating elements or by means of IR radiation to the required temperature.
  • a combination of different methods is possible to set the required temperature of the process gas in the application room.
  • the density of, for example, originally about 1.19 g / cm 3 by the stabilization ultimately increases to a value of up to about 1.40 g / cm 3 .
  • the degree of stabilization can thus also be determined on the basis of the density of the precursor material.
  • the process gas fed into the application space has, on the one hand, the task of ensuring a temperature level at the yarn, at which a sufficient coupling of the high-frequency electromagnetic waves into the yarn takes place.
  • the task of the process gas is to transport the released during the conversion reactions volatile degradation products such as HCN, NH 3 or H 2 O, on the other hand but also the resulting heat of reaction and to provide a temperature level in particular in the range Precursorgarns, the is below the maximum temperature T max .
  • an oxygen-containing gas is used as the process gas, this gas finally also has the task of providing the required amount of oxygen for the conversion or oxidation reactions leading to stabilization in the precursor yarn.
  • the process gas is guided through the application space such that it has a flow velocity of at least 0.1 m / s relative to the precursor yarn passing through the application space.
  • the flow rate is above 0.1 m / s relative to the Precursorgarn set so that the aforementioned requirements are met.
  • limits are set up to the extent that too high a flow velocity of the gas lead to instabilities in the yarn path of the precursor yarn and thus there is a risk of yarn breakage or tearing of the yarn.
  • the process gas is introduced into the application space and discharged therefrom so that it flows through the application space perpendicular to the precursor yarn, wherein the flow velocity is perpendicular to the precursor yarn in the range of 0.1 to 2 m / s.
  • the process gas is introduced into the application space and removed therefrom so that the process gas parallel to the Precursorgarn the application space or in countercurrent to the transport direction of Precursorgarns with a related to the free cross section of the application space average flow velocity of 0.1 to 20 m / s flows through relative to the application space passing through the precursor yarn.
  • the flow rate is particularly preferably in the range between 0.5 and 5 m / s.
  • the precursor yarn in the applicator is kept under a defined tension.
  • the precursor yarn is preferably passed through the applicator under a thread tension in the range from 0.125 to 5 cN / tex. Particularly preferred is a thread tension in the range of 0.5 to 3.5 cN / tex.
  • the residence time of the precursor yarn in the application space is at least 20 s.
  • An upper limit of the residence time results from e.g. the desired degree of stabilization, which is to be achieved after passing through the yarn by the applicator or from device-technical boundary conditions, for example with regard to the displayable length of the applicator.
  • the precursor yarn is passed through one after the other through a plurality of application devices, ie, through at least two application devices arranged one behind the other.
  • each of these application devices can be equipped with their own means for generating a field of high-frequency electromagnetic waves, but it is also possible that all the application devices have a common microwave generator, for example.
  • the series connection of several application devices offers the advantage that in each of the application devices taking into account, for example, the current degree of stabilization of the respective application device passing precursor yarn independent adjustment with respect to the optimal process parameters can be done, such as in terms of field strength, temperature, the flow velocity of the process gas, the oxygen content of the optionally used oxygen-containing gas, the residence time, the yarn tension, etc ..
  • the frequency is e.g.
  • the microwaves are technically determined by the availability of low-cost high-performance sources to specific areas.
  • the field distribution in the application space is determined by its geometry and by the frequency and the power of the supplied electromagnetic waves. In the application space, this results in the expression of field maxima, the distance of which is determined inter alia by the geometry of the application space.
  • the precursor yarn to be stabilized in the application space passes through the stationary field maxima in a rhythm predetermined by the yarn speed.
  • a pronounced heating or heating of the yarn takes place in the region of the maxima and cooling takes place in the region of the minima due to the process gas flowing in the fiber.
  • this can lead to the stabilization process gets into an unstable area.
  • the high intensity of the coupled-in electromagnetic waves can lead to a large extent to the described exothermic conversion reactions, which in turn lead to an increase in temperature in the yarn material.
  • This in turn results in an improved coupling of the electromagnetic waves and thus an intensification of the exothermic reactions, combined with a further increase in the temperature in the yarn.
  • the heat generated by the inflowing process gas can only be dissipated to a limited extent, so that the stabilization process becomes unstable. A stabilization of the process can be achieved in such cases, for example via a temporal change in field strength.
  • the field strength in the application space has a periodically varying intensity over time, the period being determined primarily by the yarn speed and by the distance of the stationary field maxima.
  • the intensity changes sinusoidally or in the form of pulses, wherein in the case of a pulsed change in intensity, the field strength can change, for example, between two non-zero levels or between zero and a non-zero level.
  • the polyacrylonitrile precursor yarn 8 to be stabilized is withdrawn from a bobbin 9, introduced into the applicator 2 after looping around a deflection roller 10 via an aperture 11 in the elbow 6 and passed through the application space 3.
  • the precursor yarn 8 treated in the applicator 2 leaves the application device 1 via an elbow 13 connected to the outlet end 12 of the applicator 2 through an aperture 14.
  • the yarn tension of the precursor yarn can be adjusted by the drive speeds of the deflection rollers 10, 15.
  • the process gas required in the process of the invention is introduced into the application space 3 and passes through the application space 3 in the illustrated case in direct current to Precursorgarn 8 via a attached to the elbow 13 outlet nozzle 19, the process gas together with the volatile degradation products due to in the application space 3 in the yarn 8 occurring conversion reactions have arisen, discharged from the applicator 2.
  • the elbow 13 at the outlet end 12 of the applicator 2 is connected in the illustrated case with a pipe section 20 which is closed at its free end with a metal plate 21. This ensures that the electromagnetic waves are reflected back into the application space 3.
  • An untreated polyacrylonitrile precursor yarn was prepared as it is suitable for the production of carbon fibers, the precursor yarn having 12,000 filaments with a filament diameter of about 8 ⁇ m.
  • the density of the precursor yarn was 1.18 g / cm 3 .
  • the application device used for microwave treatment corresponded in structure to the in FIG. 1 illustrated device.
  • a microwave generator microwaves having a wavelength of 2.45 GHz were generated and led via a rectangular waveguide connected to the microwave generator via an elbow in the application space (R 26 rectangular waveguide), which had a length of 120 cm.
  • R 26 rectangular waveguide In the rectangular waveguide hot air at a temperature of 190 ° C was supplied via a side-mounted nozzle and passed in direct current to the precursor yarn through the application space, the volume flow was so dimensioned that resulted in the application space, an average flow rate of 2 m / s.
  • the application space was tempered by heating elements arranged in the wall to a temperature of 170 ° C., so that an air temperature of 170 ° C. prevailed in the application space. In the application room, a maximum electric field strength of 30 kV / m was set.
  • the polyacrylonitrile precursor org was introduced into the application device and passed through the applicator continuously at a speed of 30 m / h and under a thread tension of 0.9 cN / tex. In the area of an elbow connected to the outlet of the applicator, the yarn was led out of the application device.
  • Example 2 The same application device as in Example 1 was used.
  • the process parameters were also the same as in Example 1.
  • a polyacrylonitrile Precursorgam was submitted, which had already been subjected in a conventional process in a convection oven of a partial stabilization.
  • the yarn presented in this example had a density of 1.19 g / cm 3 and had a yellow color.
  • the density of the yarn was increased to 1.20 g / cm 3 and the yarn had turned a dark brown color.
  • Example 2 The same application device was used as in Example 1, except that the applicator, unlike Example 1, had a length of 1.0 m.
  • a partially stabilized yarn was introduced, which had a density of 1.21 g / cm 3 and a dark brown to black color due to the partial stabilization.
  • the temperature of the supplied hot air and the temperature of the arranged in the wall of the applicator heating elements was set to 170 ° C, so that the hot air in the application room also had a temperature of 170 ° C.
  • the yarn speed was 10 m / h, the yarn tension 1.25 cN / tex.
  • a pulsating microwave field was set by switching the magnetron on / off, in which the maximum electric field strength was 25 kV / m (15 s) and zero kV / m (6 s).
  • the color of the yarn leaving the application device had changed in the direction of a black color.
  • the density had increased to 1.24 g / cm 3 .
  • Example 1 An application device was used as in Example 1, whereby the same process parameters as in Example 1 were set.
  • the yarn was used, which was also used in Example 1. Notwithstanding Example 1, however, the yarn was treated several times in succession in the application device by being passed a total of three times through the application device. The partially stabilized precursor yarn of the previous pass through the application device served as a template for the following pass.
  • the total residence time in the application device was about 7.5 min.
  • the precursor yarn thus treated three times had a density of 1.22 g / m 3 .
  • the originally white precursor yarn had a dark brown to black color after treatment.
  • Example 3 The procedure was as in Example 3, but the maximum electric field strength was set to a constant value of 30 kV / m.
  • yarn there was a partially stabilized polyacrylonitrile Precursorgarn having a density of 1.26 g / cm 3.
  • the treated yarn After passing through the application device, ie after a residence time of 6 min at a Yarn speed of 10 m / h, the treated yarn had a density of 1.40 g / cm 3 .
  • Example 2 In a conventional multi-stage convection oven for stabilizing polyacrylonitrile precursor yarns for the production of carbon fibers, stabilization was carried out on an unstabilized precursor yarn as presented in Example 1. Air was passed through the convection oven. In the first stage of the furnace, a temperature of about 230 ° C was set.
  • the partially stabilized precursor yarn After a residence time of 23 minutes, the partially stabilized precursor yarn left the first furnace stage.
  • the partially stabilized precursor yarn had a dark brown to black color and a density of 1.21 g / cm 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Stabilisierung von Garnen aus Polyacrylnitril.
  • Stabilisierte Multifilamentgarne aus Polyacrylnitril werden bei der Herstellung von Kohlenstofffasern benötigt. Heutige Kohlenstofffasern werden zum überwiegenden Teil aus Polyacrylnitrilfasern, d.h. aus Polyacrylnitril-Precursorgarnen hergestellt. Dabei werden die Polyacrylnitril-Precursorgarne zunächst einer Stabilisierung durch eine Oxidationsbehandlung unterzogen, bevor die stabilisierten Precursorgarne nachfolgend bei Temperaturen von mindestens 1200 °C in Stickstoffatmosphäre karbonisiert und gegebenenfalls in einem weiteren Schritt bei Temperaturen bis ca. 2800 °C graphitisiert werden, um so daraus Kohlenstofffasern zu erhalten.
  • Als Stabilisierung von Polyacrylnitril-Precursorgarnen wird allgemein die Umwandlung der Garne über chemische Stabilisierungsreaktionen, insbesondere über Zyklisierungsreaktionen und Dehydrierungsreaktionen, von einem thermoplastischen Zustand in einen oxidierten, unschmelzbaren und gleichzeitig flammfesten Zustand verstanden. Die Stabilisierung erfolgt heute in der Regel in konventionellen Konvektionsöfen bei Temperaturen zwischen 200 und 300 °C und unter einer sauerstoffhaltigen Atmosphäre (siehe z.B. F. Fourné: "Synthetische Fasern", Carl Hanser Verlag München Wien 1995, Kapitel 5.7). Dabei findet über eine exotherme Reaktion eine schrittweise Umwandlung des Precursorgarns von einer thermoplastischen in eine oxidierte, unschmelzbare Faser statt (J.-B. Donnet, R. C. Bansal: "Carbon Fibers", Marcel Dekker, Inc., New York and Basel 1984, Seiten 14-23). Visuell ist die Umwandlung anhand einer charakteristischen Verfärbung des zunächst weißen Garns über gelb nach braun und schließlich schwarz zu erkennen. Die Stabilisierung kann dabei auch in mehreren Schritten bzw. Stufen erfolgen, bei denen zunehmende Stabilisierungsgrade erreicht werden. Mit zunehmender Stabilisierung nimmt auch die Dichte des Garns zu, beispielsweise von 1,19 g/cm3 auf 1,40 g/cm3, wobei die Änderungen in der Dichte mit zunehmender Stabilisierung ausgeprägter werden.
  • Bei den exothermen chemischen Reaktionen zur Umwandlung bzw. Stabilisierung des Polyacrylnitril-Precursors kann so viel Wärme entstehen, dass es zu einem Schmelzen oder einer thermischen Zersetzung des Garns kommt. Im konventionellen Stabilisierungsprozess durchläuft das Garn daher verschieden temperierte Ofenstufen, worüber eine langsame Erwärmung des Garns eingestellt und so eine ausreichende Abführung der exothermen Wärme aus dem Garnmaterial erreicht werden kann. So kann die Stabilisierung beispielsweise in einem konventionellen Konvektionsofen mit drei Ofenstufen erfolgen, wobei in der ersten Stufe bei Temperaturen im Bereich von 200 bis 300°C in der Regel eine Verweilzeit von mindestens 20 min erforderlich ist, um die Stabilisierung soweit auszuführen, dass die Dichte des Precursorgarns um ca. 0,03 g/cm3 erhöht wird. Ähnliche Verweilzeiten werden auch in den übrigen Ofenstufen benötigt, so dass im konventionellen Prozess insgesamt eine Verweilzeit von mindestens etwa einer Stunde für die Stabilisierung erforderlich ist. Die Stabilisierung erfordert gleichzeitig vergleichsweise langsame Prozessgeschwindigkeiten, wodurch bei der kontinuierlichen Herstellung von Kohlenstofffasern die Stabilisierung zum geschwindigkeitsbestimmenden Prozessschritt wird. Gleichzeitig sind wegen der niedrigen Prozessgeschwindigkeiten und wegen der notwendigen langen Verweilzeiten, die je nach Prozessführung auch bis zu ca. 2,5 Std. betragen können, große Stabilisierungsöfen erforderlich. Daher besteht der Wunsch nach Verfahren zur Stabilisierung von Polyacrylnitril-Precursorgarnen, die kürzere Verweilzeiten und/oder höhere Prozessgeschwindigkeiten erlauben.
  • Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur Stabilisierung von Garnen aus Polyacrylnitril zur Verfügung zu stellen, bei dem die Nachteile der Verfahren des Stands der Technik zumindest reduziert sind und das die Stabilisierung von Polyacrylnitril-Precursorgarnen zur Herstellung von Kohlenstofffasern bei höheren Prozessgeschwindigkeiten und/oder geringeren Verweilzeiten erlaubt.
  • Die erfindungsgemäße Aufgabe wird durch ein Verfahren zur Stabilisierung von Garnen aus Polyacrylnitril durch chemische Stabilisierungsreaktionen gelöst, welches die folgenden Schritte umfasst:
    • Vorlegen eines Precursorgarns auf Basis eines Polyacrylnitrilpolymers,
    • Bereitstellen einer Applikationsvorrichtung zur Behandlung des Precursorgarns mit hochfrequenten elektromagnetischen Wellen, umfassend einen Applikator mit einem Applikationsraum, Mittel zur Erzeugung der hochfrequenten elektromagnetischen Wellen sowie Mittel zur Einspeisung der hochfrequenten elektromagnetischen Wellen in den Applikationsraum,
    • Erzeugen eines Feldes der hochfrequenten elektromagnetischen Wellen im Applikationsraum, welches Bereiche mit minimaler elektrischer Feldstärke und Bereiche mit maximaler elektrischer Feldstärke aufweist und Einstellen der maximalen elektrischen Feldstärke im Applikationsraum im Bereich von 3 bis 150 kV/m,
    • kontinuierliches Einführen des Precusorgarns in und Hindurchführen des Precursorgarns durch den Applikationsraum und durch das Feld der hochfrequenten elektromagnetischen Wellen, dabei
    • Einleiten eines Prozessgases in den Applikationsraum und Hindurchleiten des Prozessgases durch den Applikationsraum mit einer Strömungsgeschwindigkeit relativ zu dem den Applikationsraum durchlaufenden Precursorgarn von mindestens 0,1 m/s, wobei die Temperatur des Prozessgases so im Bereich zwischen 150 und 300°C eingestellt wird, dass sie oberhalb der kritischen Minimaltemperatur Tkrit und unterhalb der Maximaltemperatur Tmax liegt und wobei die kritische Minimaltemperatur Tkrit diejenige Temperatur ist, oberhalb derer die hochfrequenten elektromagnetischen Wellen in das den Applikationsraum durchlaufende Precursorgarn einkoppeln und die chemischen Stabilisierungsreaktionen ablaufen, und die Maximaltemperatur Tmax diejenige Temperatur, die um 20°C unterhalb der Zersetzungstemperatur des in den Applikationsraum eingeführten Precursorgarns liegt.
  • Im Rahmen der vorliegenden Erfindung handelt es sich bei dem im erfindungsgemäßen Verfahren vorgelegten Precursorgarn auf Basis eines Polyacrylnitrilpolymeren um ein Garn, welches mindestens 85 % polymerisiertes Acrylnitril enthält. Das Polyacrylnitrilpolymer kann auch Anteile von Comonomeren wie z.B. von Vinylacetat, Acrylsäuremethylester, Methacrylsäuremethylester, Vinylchlorid, Vinylidenchlorid, Styrol oder Itaconsäure (-ester) enthalten.
  • Das vorgelegte thermoplastische Polyacrylnitril-Precursorgarn kann ein Garn sein, das noch keinerlei Stabilisierung unterworfen wurde. Bei dem vorgelegten Precursorgarn kann es sich jedoch auch um ein Polyacrylnitrilgarn handeln, das bereits einer teilweisen Stabilisierung unterzogen wurde, wobei dann im erfindungsgemäßen Verfahren die Stabilisierung weiter fortschreitet. Andererseits ist das erfindungsgemäße Verfahren nicht darauf beschränkt, dass das vorgelegte Precursorgarn vollständig mittels des erfindungsgemäßen Verfahrens stabilisiert wird, sondern es kann auch so durchgeführt werden, dass das Garn nur bis zu einem bestimmten Grad stabilisiert wird. Das erfindungsgemäße Verfahren ist also geeignet, ein unbehandeltes Precursorgarn aus Polyacrylnitril teilweise oder auch vollständig zu stabilisieren. Ebenso umfasst das erfindungsgemäße Verfahren die weitere teilweise oder die vollständige Stabilisierung eines bereits teilweise stabilisierten Precursorgarns. Dabei kann die vorherige Teilstabilisierung und/oder eine nachgeschaltete Vervollständigung der Stabilisierung ebenfalls unter Anwendung des erfindungsgemäßen Verfahrens erfolgen oder auch nach bekannten Verfahren in konventionellen Konvektionsöfen.
  • Bei Durchführung des erfindungsgemäßen Verfahrens werden z.B. in einem Magnetron hochfrequente elektromagnetische Wellen erzeugt, die über geeignete Mittel, vorzugsweise über einen Hohlleiter oder einen Koaxialleiter in den Applikationsraum geführt werden. Der Applikator weist einen in der Regel kanalförmigen Applikationsraum mit einer Wandung aus einem leitfähigen Material auf, der von dem zu stabilisierenden Precursorgarn durchlaufen wird und in den die elektromagnetischen Wellen eingespeist werden. Die den Applikationsraum umgebende Wandung kann beispielsweise eine durchgehende Metallwandung sein. Es ist jedoch auch möglich, die Wandung aus einem leitfähigen gitterförmigen Material auszubilden. Vorzugsweise besitzt der Applikationsraum quer zur Durchführungsrichtung des Precursorgarns und damit quer zur Ausbreitungssrichtung der elektromagnetischen Wellen eine kreisförmige, ovale oder rechteckige Kontur. In einer besonders bevorzugten Ausführungsform handelt es sich bei dem Applikator um einen Rechteckhohlleiter.
  • In einer ebenfalls bevorzugten Ausführungsform umfasst der Applikationsraum des Weiteren in seinem von der Wandung umgebenen Innenraum ein leitfähiges Element, bei dem es sich vorzugsweise um einen Metallstab handelt. Hierbei ist von Vorteil, wenn sich das leitfähige Element koaxial zur Längsachse des Applikationsraums erstreckt, d.h. in Ausbreitungssrichtung der elektromagnetischen Wellen, wodurch ein Koaxialleiter ausgebildet wird. Besonders bevorzugt ist das leitfähige Element dabei im Zentrum des Applikationsraums angeordnet. Bei derartigen Koaxialleitern ist es von Vorteil, wenn der Applikationsraum quer zur Ausbreitungssrichtung der elektromagnetischen Wellen eine kreisförmige Kontur aufweist.
  • Der Applikationsraum kann an seinem Eintrittsende, an dem das Precursorgarn in den Applikator eintritt und/oder an seinem Austrittsende, aus dem das Precursorgarn den Applikator verlässt, Blenden aufweisen, durch die das Precursorgarn hindurchgeführt wird. Durch diese Blenden werden die hochfrequenten elektromagnetischen Wellen im Applikationsraum gehalten.
  • Der Wellenleiter, über den die hochfrequenten elektromagnetischen Wellen von z.B. einem Magnetron in den Applikator geführt werden, kann z.B. ein Rohr sein, das über ein Kniestück mit dem Applikationsraum verbunden ist, wobei das zu stabilisierende Precursorgarn im Bereich des Kniestücks durch dessen Wand in den Applikationsraum geführt wird.
  • Im Applikator, d.h. im Applikationsraum bilden die eingespeisten hochfrequenten elektromagnetischen Wellen eine durch die Geometrie des Applikationsraums definierte Feldstruktur mit Wellenmaxima und Wellenminima, d.h. mit Bereichen maximaler elektrischer Feldstärke und Bereichen minimaler elektrischer Feldstärke aus. Erfindungsgemäß wird im Applikationsraum die maximale elektrische Feldstärke der hochfrequenten elektromagnetischen Wellen auf ein Niveau im Bereich von 3 bis 150 kV/m eingestellt. Das Niveau der Feldstärke bezieht sich dabei auf den unbeschickten Zustand des Applikators, d:h. auf einen Zustand, bei dem das zu stabilisierende Precursorgarn den Applikator nicht durchläuft. In Versuchen hat es sich im Hinblick auf die im Precursorgarn bei der Stabilisierung ablaufenden Umwandlungsreaktionen als günstig herausgestellt, wenn im Applikationsraum eine maximale elektrische Feldstärke der hochfrequenten elektromagnetischen Wellen im Bereich von 5 bis 50 kV/m erzeugt wird. Hierbei zeigte sich gleichzeitig, dass bei Precursorgarnen, die bereits zu einem Teil stabilisiert sind, Feldstärken im oberen Bereich eingestellt werden können, wohingegen bei Garnen, die noch nicht einer (Teil-) Stabilisierung unterzogen wurden, eher geringere Feldstärken einzustellen sind, um zu heftige exotherme Umwandlungsreaktionen zu vermeiden, die zu einer Zerstörung des Precursorgarns führen können.
  • Für die Durchführung des erfindungsgemäßen Verfahrens sind hochfrequente elektromagnetische Wellen einer Frequenz von 300 MHz bis 300 GHz bevorzugt, die allgemein als Mikrowellen bezeichnet werden. Besonders bevorzugt sind Mikrowellen im Bereich von 300 MHz bis 45 GHz und in einer besonderen Ausführungsform Mikrowellen im Bereich von 900 MHz bis 5,8 GHz Standardmäßig werden Mikrowellen mit einer Frequenz von 915 MHz und 2,45 GHz verwendet, die für die Durchführung des erfindungsgemäßen Verfahrens bestens geeignet sind.
  • Wesentlich bei der Durchführung des erfindungsgemäßen Verfahrens ist, dass ein Prozessgas in den Applikationsraum eingeführt wird und diesen durchströmt und dass die Temperatur des Prozessgases im Applikationsraum so im Bereich zwischen 150 und 300°C eingestellt wird, dass sie oberhalb der kritischen Minimaltemperatur Tkrit und unterhalb der Maximaltemperatur Tmax liegt. Bei dem Prozessgas kann es sich in einer Ausführungsform des erfindungsgemäßen Verfahrens um ein inertes Gas handeln, beispielsweise um Stickstoff, Argon oder Helium. Vorzugsweise wird Stickstoff als inertes Gas verwendet. In einer weiteren bevorzugten Ausführungsform handelt es sich bei dem im erfindungsgemäßen Verfahren eingesetzten Prozessgas um ein sauerstoffhaltiges Gas. Es hat sich gezeigt, dass sich bei der Stabilisierung mittels eines sauerstoffhaltigen Gases höhere Kohlenstoffausbeuten erzielen lassen. Dabei wird unter einem sauerstoffhaltigen Gas ein Gas verstanden, das molekularen Sauerstoff enthält, wobei die Konzentration des molekularen Sauerstoffs im sauerstoffhaltigen Gas bevorzugt weniger als 80 Vol.-% beträgt. Ganz besonders bevorzugt handelt es sich bei dem sauerstoffhaltigen Gas um Luft.
  • Im Zusammenhang mit der vorliegenden Erfindung ist unter der kritischen Minimaltemperatur Tkrit diejenige Temperatur zu verstehen, oberhalb derer die hochfrequenten elektromagnetischen Wellen in das die Applikationsvorrichtung durchlaufenden Precursorgarn in genügendem Maße einkoppeln, d.h. oberhalb derer die elektromagnetischen Wellen in genügendem Maße vom Garn absorbiert werden, und die Umwandlungsreaktionen stattfinden. Es hat sich nämlich gezeigt, dass die das Precursorgarn im Applikationsraum umgebende Atmosphäre und damit das den Applikationsraum durchlaufende Precursorgarn selbst eine bestimmte Schwellentemperatur, d.h. die kritische Minimaltemperatur überschreiten muss, damit die hochfrequenten elektromagnetischen Wellen in das Precursorgarn so stark einkoppeln, dass die Umwandlungsreaktionen bzw. chemischen Stabilisierungsreaktionen, d.h. insbesondere Zyklisierungsreaktionen, Dehhydrierungsreaktionen und Oxidationsreaktionen zur Stabilisierung des Garns ablaufen können. Unterhalb der kritischen Minimaltemperatur kann es zwar bereits zu einem Einkoppeln der hochfrequenten elektromagnetischen Wellen in das Garn kommen, jedoch führen die eingekoppelten elektromagnetischen Wellen noch nicht zu einer zur Initiierung der Umwandlungsreaktionen ausreichenden Temperaturerhöhung im Garn, da gleichzeitig durch das relativ zum Garn strömende Prozessgas eine Abkühlung des Garn erfolgt.
  • Die kritische Minimaltemperatur Tkrit kann dabei auf einfachem Wege für das jeweils durch die Applikationsvorrichtung geführte Precursorgarn ermittelt werden. Wie ausgeführt werden oberhalb der kritischen Minimaltemperatur die elektromagnetischen Wellen vom Precursorgarn in ausreichendem Maße absorbiert und infolge der daraus resultierenden Temperaturerhöhung im Garn die zur Stabilisierung des Garns führenden Umwandlungsreaktionen initiiert. Hierdurch wird unter anderem HCN-Gas frei. Das HCN-Gas kann mittels üblicher Analysenmethoden wie z.B. über Gaschromatographie, Massenspektroskopie oder mittels elektrochemischer HCN-Sensoren im Gasaustritt gemessen werden, über den das in den Applikator eingeführte Prozessgas aus dem Applikator abgeführt wird. Unter der minimalen Temperatur wird also im Rahmen der vorliegenden Erfindung diejenige Temperatur verstanden, oberhalb derer die elektromagnetischen Wellen so stark einkoppeln bzw. so stark vom Garn absorbiert werden, dass die Umwandlungsreaktionen im Garn, d.h. insbesondere die Zyklisierungsreaktion, stattfinden und infolgedessen HCN-Gas frei wird. Alternativ kann das Stattfinden der Umwandlungsreaktionen anhand der mit der HCN-Abspaltung einhergehenden Zyklisierung mittels IR-Spektroskopie detektiert werden.
  • Unter der Maximaltemperatur Tmax ist im Rahmen der vorliegenden Erfindung diejenige Temperatur zu verstehen, die um 20°C unterhalb der Zersetzungstemperatur des in die Applikationsvorrichtung eingeführten Precursorgarns liegt. Für eine sichere kontinuierliche Prozessführung ist es erforderlich, dass die maximal im Applikationsraum vorherrschenden Temperaturen weit genug unterhalb der Zersetzungstemperatur des in die Applikationsvorrichtung eingeführten Garns liegen. Höhere Temperaturen würden zu einer Erhöhung der Gefahr des Zersetzens des Garns und des Fadenabrisses und damit zu einer Unterbrechung des Prozesses führen. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weist das Prozessgas im Applikationsraum eine Temperatur im Bereich zwischen (Tkrit + 20°C) und (Tmax - 20°C) auf. Die Zersetzungstemperatur kann auf einfache Weise über thermogravimetrische Messungen ermittelt werden. Dabei ist die Zersetzungstemperatur diejenige Temperatur, bei der eine Probe des im erfindungsgemäßen Verfahrens vorgelegten Precursorgarns innerhalb einer Zeit von weniger als 5 Minuten 5 % seiner Masse verliert.
  • Die jeweilige kritische Minimaltemperatur Tkrit sowie die Maximaltemperatur Tmax ist abhängig vom Precursormaterial, d.h. beispielsweise von konkreten Polyacrylnitrilpolymer. Dabei können bei dem erfindungsgemäßen Verfahren die üblicherweise für Zwecke der Kohlenstofffaserherstellung verwendeten Polyacrylnitril-Precursorgarne eingesetzt werden. Die kritische Minimaltemperatur sowie die Maximaltemperatur kann darüber hinaus durch gegebenenfalls dem Polyacrylnitril zugesetzte Additive beeinflusst werden. So kann das Precursorgarn in einer vorteilhaften Ausgestaltung Additive enthalten, die eine Verbesserung der Absorptionsfähigkeit des Precursorgarns gegenüber hochfrequenten elektromagnetischen Wellen bewirken. Besonders bevorzugt handelt es sich bei diesen Additiven um Polyethylenglykol, Ruß oder Kohlenstoffnanoröhrchen.
  • Die kritische Minimaltemperatur sowie die Maximaltemperatur sind darüber hinaus auch abhängig vom Stabilisierungsgrad des im erfindungsgemäßen Verfahren vorgelegten Precursorgarns. So zeigt sich, dass sich mit zunehmendem Stabilisierungsgrad die kritische Minimaltemperatur zu höheren Werten hin verschiebt. Ebenso zeigt sich, dass eine zunehmende Stabilisierung sich in Richtung einer zunehmenden thermischen Stabilität und daraus resultierend in zunehmenden Zersetzungstemperaturen auswirkt und damit auch in ansteigenden Maximaltemperaturen im Sinne der vorliegenden Erfindung.
  • Die Einstellung der Temperatur des den Applikationsraum durchströmenden Prozessgases kann beispielsweise durch Zuführung eines auf die erforderliche Temperatur erhitzten Gases in einen wärmeisolierten Applikationsraum erfolgen. Ebenso kann ein zunächst auf ein niedrigeres Temperaturniveau temperiertes Prozessgas im Applikationsraum oder in einem dem Applikationsraum vorgeschalteten Wärmetauscher z.B. mittels geeigneter Heizelemente oder mittels IR-Strahlung auf die erforderliche Temperatur aufgeheizt werden. Natürlich ist auch eine Kombination verschiedener Methoden möglich, um die erforderliche Temperatur des Prozessgases im Applikationsraum einzustellen.
  • Bei der Stabilisierung von Precursorgarnen aus Polyacrylnitril finden Umwandlungsreaktionen wie z.B. Zyklisierungsreaktionen oder Dehydrierungsreaktionen statt, bei denen eine Umwandlung der Garne von einem thermoplastischen in letztlich ein thermisch vernetztes Garn und damit in einen unschmelzbaren und gleichzeitig flammfesten Zustand erfolgt. Dabei findet die bereits zuvor beschriebene charakteristische Verfärbung des Garns statt. Die ablaufenden Umwandlungsreaktionen zeigen eine stark exotherme Wärmetönung, und es kommt infolge der Stabilisierung zu einem Schrumpfen des Garns sowie zu einem Gewichtsverlust des Garns, verbunden mit der Bildung flüchtiger Abbauprodukte wie z.B. HCN, NH3 oder H2O. Gleichzeitig findet eine Erhöhung der Dichte des Precursorgarns statt. So ist z.B. für einen Precursor auf Basis eines Polyacrylnitrilpolymers festzustellen, dass die Dichte von beispielsweise ursprünglich ca. 1,19 g/cm3 durch die Stabilisierung letztlich auf einen Wert von bis zu ca. 1,40 g/cm3 ansteigt. Der Grad der Stabilisierung lässt sich somit auch anhand der Dichte des Precursormaterials bestimmen.
  • Im erfindungsgemäßen Verfahren hat das in den Applikationsraum eingespeiste Prozessgas zum einen die Aufgabe, am Garn ein Temperaturniveau zu gewährleisten, bei dem eine ausreichende Einkopplung der hochfrequenten elektromagnetischen Wellen in das Garn erfolgt. Darüber hinaus kommt dem Prozessgas die Aufgabe zu, zum einen die bei den Umwandlungsreaktionen freiwerdenden flüchtigen Abbauprodukte wie z.B. HCN, NH3 oder H2O, zum anderen aber auch die entstehende Reaktionswärme abzutransportieren und für ein Temperaturniveau insbesondere im Bereich des Precursorgarns zu sorgen, das unterhalb der Maximaltemperatur Tmax liegt. Im bevorzugten Fall, dass als Prozessgas ein sauerstoffhaltiges Gas eingesetzt wird, hat dieses Gas schließlich auch die Aufgabe, für die zur Stabilisierung führenden Umwandlungs- bzw. Oxidationsreaktionen im Precursorgarn die erforderliche Menge an Sauerstoff zur Verfügung zu stellen. Daher wird im erfindungsgemäßen Verfahren das Prozessgas so durch den Applikationsraum geführt, dass es relativ zu dem den Applikationsraum durchlaufenden Precursorgarn eine Strömungsgeschwindigkeit von mindestens 0,1 m/s aufweist. Die Strömungsgeschwindigkeit ist dabei oberhalb von 0,1 m/s relativ zum Precursorgarn so einzustellen, dass die zuvor genannten Anforderungen erfüllt werden. Andererseits sind hinsichtlich der Strömungsgeschwindigkeit insoweit nach oben hin Grenzen gesetzt, da eine zu hohe Strömungsgeschwindigkeit des Gases zu Instabilitäten im Fadenlauf des Precursorgarns führen und damit die Gefahr von Fadenbrüchen bzw. des Abreißen des Garns besteht.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Prozessgas so in den Applikationsraum eingeführt und aus diesem abgeführt, dass es den Applikationsraum senkrecht zum Precursorgarn durchströmt, wobei die Strömungsgeschwindigkeit senkrecht zum Precursorgarn im Bereich von 0,1 bis 2 m/s liegt. In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Prozessgas so in den Applikationsraum eingeführt und aus diesem abgeführt, dass das Prozessgas den Applikationsraum parallel zum Precursorgarn im Gleichstrom oder im Gegenstrom zur Transportrichtung des Precursorgarns mit einer auf den freien Querschnitt des Applikationsraums bezogenen mittleren Strömungsgeschwindigkeit von 0,1 bis 20 m/s relativ zu dem den Applikationsraum durchlaufenden Precursorgarn durchströmt. Besonders bevorzugt liegt die Strömungsgeschwindigkeit im Bereich zwischen 0,5 und 5 m/s.
  • Um dem bei der Stabilisierung auftretenden Schrumpf entgegenzuwirken und um eine Orientierung der Polyacrylnitrilmoleküle zu erhalten bzw. zu erreichen, ist es erforderlich, dass das Precursorgarn im Applikator unter einer definierten Spannung gehalten wird. Vorzugsweise wird das Precursorgarn unter einer Fadenspannung im Bereich von 0,125 bis 5 cN/tex durch den Applikator geführt. Besonders bevorzugt ist eine Fadenspannung im Bereich von 0,5 bis 3,5 cN/tex.
  • Um einerseits eine ausreichende Stabilisierung bzw. Teilstabilisierung zu erreichen, andererseits aber Prozessbedingungen hinsichtlich z.B. der Feldstärke im Applikationsraum, der Temperatur des Prozessgases oder dessen Strömungsgeschwindigkeit einstellen zu können, die einen stabilen Fadenlauf und einen stabilen Prozess ermöglichen, beträgt die Verweilzeit des Precursorgarns im Applikationsraum mindestens 20 s. Eine Obergrenze der Verweilzeit resultiert dabei aus z.B. dem gewünschten Stabilisierungsgrad, der nach Durchlaufen des Garns durch den Applikator erreicht werden soll oder auch aus gerätetechnischen Randbedingungen etwa hinsichtlich der darstellbaren Länge des Applikators.
  • Um genügend lange Verweilzeiten zum Erreichen hoher Stabilisierungsgrade zu realisieren, besteht zum einen die Möglichkeit, einen einzelnen Applikator entsprechen lang auszuführen. In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird das Precursorgarn nacheinander durch mehrere, d.h. durch mindestens zwei hintereinander angeordnete Applikationsvorrichtungen kontinuierlich hindurchgeführt. Dabei kann jede dieser Applikationsvorrichtungen mit eigenen Mitteln zur Erzeugung eines Feldes hochfrequenter elektromagnetischer Wellen ausgestattet sein, es ist jedoch auch möglich, dass alle Applikationsvorrichtungen z.B. einen gemeinsamen Mikrowellengenerator aufweisen. Generell bietet die Hintereinanderschaltung mehrerer Applikationsvorrichtungen den Vorteil, dass in jeder der Applikationsvorrichtungen unter Berücksichtigung z.B. des aktuellen Stabilisierungsgrades des die jeweilige Applikationsvorrichtung durchlaufenden Precursorgarns eine unabhängige Anpassung hinsichtlich der optimalen Prozessparameter erfolgen kann, wie z.B. hinsichtlich der Feldstärke, der Temperatur, der Strömungsgeschwindigkeit des Prozessgases, des Sauerstoffanteils des gegebenenfalls eingesetzten sauerstoffhaltigen Gases, der Verweilzeit, der Fadenspannung usw..
  • In der Anwendung ist die Frequenz z.B. der Mikrowellen technisch durch die Verfügbarkeit günstiger leistungsstarker Quellen auf bestimmte Bereiche festgelegt. Gleichzeitig ist die Feldverteilung im Applikationsraum durch dessen Geometrie und durch die Frequenz und die Leistung der eingespeisten elektromagnetischen Wellen bestimmt. Hierbei kommt es im Applikationsraum zur Ausprägung von Feldmaxima, deren Abstand unter anderem von der Geometrie des Applikationsraums bestimmt ist.
  • In einem kontinuierlichen Prozess mit ausreichenden Verweilzeiten im Applikationsraum durchläuft das zu stabilisierende Precursorgarn im Applikationsraum in einem durch die Garngeschwindigkeit vorgegebenen Rhythmus die stehenden Feldmaxima. Dabei findet je nach mittlerer Feldstärke und Temperatur des Prozessgases im Bereich der Maxima eine ausgeprägte Erwärmung bzw. Erhitzung des Garns statt und im Bereich der Minima durch das die Faser anströmende Prozessgas eine Abkühlung. Bei relativ niedrigen Fasergeschwindigkeiten und insbesondere bei Precursorgarnen, an denen noch keine oder nur in geringem Maße eine Stabilisierung erfolgt ist, kann dies dazu führen, dass der Stabilisierungsprozess in einen instabilen Bereich gerät. Auf der einen Seite kann es im Bereich der Maxima durch die hohe Intensität der eingekoppelten elektromagnetischen Wellen in starkem Maße zu den beschriebenen exotherm ablaufenden Umwandlungsreaktionen kommen, die ihrerseits zu einer Temperaturerhöhung im Garnmaterial führen. Hieraus resultiert wiederum eine verbesserte Einkopplung der elektromagnetischen Wellen und damit eine Intensivierung der exothermen Reaktionen, verbunden mit einer weiteren Erhöhung der Temperatur im Garn. Auf der anderen Seite kann über das anströmende Prozessgas entstehende Wärme nur in begrenztem Umfang abgeführt werden, so dass der Stabilisierungsprozess instabil wird. Eine Stabilisierung des Prozesses kann in solchen Fällen beispielsweise über eine zeitliche Veränderung der Feldstärke erreicht werden.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weist daher die Feldstärke im Applikationsraum eine sich über der Zeit periodisch verändernde Intensität auf, wobei die Periodendauer vornehmlich durch die Garngeschwindigkeit und durch den Abstand der stehenden Feldmaxima bestimmt ist. Besonders bevorzugt ändert sich die Intensität sinusförmig oder in Form von Pulsen, wobei bei einer gepulsten Intensitätsänderung die Feldstärke sich beispielsweise zwischen zwei von Null verschiedenen Niveaus oder zwischen Null und einem von Null verschiedenen Niveau ändern kann.
  • Die Erfindung wird anhand der nachfolgenden Figur sowie anhand der nachfolgenden Beispiele näher erläutert:
    • In Figur 1 ist eine Applikationsvorrichtung 1 dargestellt, wie sie zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist. Die Applikationsvorrichtung 1 weist einen Applikator 2 mit einem Applikationsraum 3 auf, der über einen Heizmantel 4 auf die erforderliche Temperatur temperiert werden kann. An seinem Eintrittsende 5 ist der Applikator 2 mit einem Kniestück oder Rohrkrümmer 6 verbunden, über den die in einem Magnetron 7 erzeugten hochfrequenten elektromagnetischen Wellen in den Applikationsraum 3 eingeleitet werden.
  • Das zu stabilisierende Polyacrylnitril-Precursorgarn 8 wird von einer Spule 9 abgezogen, nach Umschlingung einer Umlenkrolle 10 über eine Blendenöffnung 11 im Kniestück 6 in den Applikator 2 eingeführt und durch den Applikationsraum 3 hindurchgeführt. Nach Durchlaufen des Applikationsraums 3 verlässt das im Applikator 2 behandelte Precursorgarn 8 über ein mit dem Austrittsende 12 des Applikators 2 verbundenes Kniestück 13 durch eine Blendenöffnung 14 die Applikationsvorrichtung 1. Nach Umschlingung einer weiteren Umlenkrolle 15 wird das behandelte, d.h. das zumindest teilweise stabilisierte Garn 16 auf einer Spule 17 aufgewickelt. Die Fadenspannung des Precursorgarns kann durch die Antriebsgeschwindigkeiten der Umlenkrollen 10, 15 eingestellt werden.
  • Über einen Eintrittsstutzen 18 wird das im erfindungsgemäßen Verfahren benötigte Prozessgas in den Applikationsraum 3 eingeführt und durchläuft im dargestellten Fall im Gleichstrom zum Precursorgarn 8 den Applikationsraum 3. Über einen am Kniestück 13 angebrachten Austrittsstutzen 19 wird das Prozessgas zusammen mit den flüchtigen Abbauprodukten, die infolge der im Applikationsraum 3 im Garn 8 ablaufenden Umwandlungsreaktionen entstanden sind, aus dem Applikator 2 abgeführt.
  • Das Kniestück 13 am Austrittsende 12 des Applikators 2 ist im dargestellten Fall mit einem Rohrstück 20 verbunden, das an seinem freien Ende mit einer Metallplatte 21 verschlossen ist. Hierdurch wird erreicht, dass die elektromagnetischen Wellen in den Applikationsraum 3 zurückreflektiert werden.
  • Beispiel 1:
  • Es wurde ein unbehandeltes Precursorgarn aus Polyacrylnitril vorgelegt, wie es zur Herstellung von Kohlenstofffasern geeignet ist, wobei das Precursorgarn 12000 Filamente mit einem Filamentdurchmesser von ca. 8 µm aufwies. Die Dichte des Precursorgarns betrug 1,18 g/cm3.
  • Die verwendete Applikationsvorrichtung zur Mikrowellenbehandlung entsprach im Aufbau der in Figur 1 dargestellten Vorrichtung. In einem Mikrowellengenerator wurden Mikrowellen mit einer Wellenlänge von 2,45 GHz erzeugt und über einen mit dem Mikrowellengenerator verbundenen Rechteckhohlleiter über ein Kniestück in den Applikationsraum (Rechteckhohlleiter des Typs R 26) geführt, der eine Länge von 120 cm aufwies. In den Rechteckhohlleiter wurde über einen seitlich angebrachten Stutzen Heißluft mit einer Temperatur von 190°C zugeführt und im Gleichstrom zum Precursorgarn durch den Applikationsraum geführt, wobei der Volumenstrom so bemessen war, dass sich im Applikationsraum eine mittlere Strömungsgeschwindigkeit von 2 m/s ergab. Der Applikationsraum wurde durch in der Wand angeordnete Heizelemente auf eine Temperatur von 170 °C temperiert, so dass im Applikationsraum eine Lufttemperatur von 170 °C herrschte. Im Applikationsraum wurde eine maximale elektrische Feldstärke von 30 kV/m eingestellt.
  • Im Bereich des Kniestücks wurde das Polyacrylnitril-Precursorgam in die Applikationsvorrichtung eingeführt und durchlief den Applikator kontinuierlich mit einer Geschwindigkeit von 30 m/h und unter einer Fadenspannung von 0,9 cN/tex. Im Bereich eines mit dem Auslass des Applikators verbundenen Kniestücks wurde das Garn aus der Applikationsvorrichtung herausgeführt.
  • Bereits nach einer Verweilzeit von 2,4 min konnte anhand einer deutlich erkennbaren Gelbfärbung des Garns ein Fortschritt hinsichtlich der Garnstabilisierung festgestellt werden. Die Dichte des Garns war auf 1,19 g/cm3 angestiegen.
  • Beispiel 2:
  • Es wurde dieselbe Applikationsvorrichtung wie in Beispiel 1 verwendet. Auch die Verfahrensparameter waren dieselben wie im Beispiel 1. Anstelle des unbehandelten Precursorgarns wurde jedoch ein Polyacrylnitril-Precursorgam vorgelegt, welches bereits in einem konventionellen Prozess in einem Konvektionsofen einer teilweisen Stabilisierung unterzogen worden war. Das in diesem Beispiel vorgelegte Garns hatte eine Dichte von 1,19 g/cm3 und wies eine gelbe Färbung auf.
  • Nach Durchlaufen der Applikationsvorrichtung war die Dichte des Garns auf 1,20 g/cm3 angestiegen und das Garn hatte eine dunkelbraune Farbe angenommen.
  • Beispiel 3:
  • Es wurde dieselbe Applikationsvorrichtung wie in Beispiel 1 verwendet, wobei der Applikator jedoch abweichend von Beispiel 1 eine Länge von 1,0 m aufwies. Als Precursorgarn wurde ein teilweise stabilisiertes Garn vorgelegt, das aufgrund der Teilstabilisierung eine Dichte von 1,21 g/cm3 und eine dunkelbraune bis schwarze Farbe aufwies. Abweichend von den Verfahrensbedingungen des Beispiels 1 wurde die Temperatur der zugeführten Heißluft und die Temperatur der in der Wand des Applikators angeordneten Heizelemente auf 170°C eingestellt, so dass die Heißluft im Applikationsraum ebenfalls eine Temperatur von 170°C aufwies. Die Fadengeschwindigkeit betrug 10 m/h, die Fadenspannung 1,25 cN/tex.
  • Es wurde im Applikationsraum ein pulsierendes Mikrowellenfeld durch Ein-/Ausschaltung des Magnetron eingestellt, bei dem die maximale elektrische Feldstärke 25 kV/m (15 s) und Null kV/m (6 s) pulste.
  • Bereits nach einem einfachen Durchlauf, d.h. nach einer Verweilzeit von ca. 6 min, hatte sich die Farbe des die Applikationsvorrichtung verlassenden Garns in Richtung einer schwarzen Färbung verändert. Die Dichte hatte sich 1,24 g/cm3 erhöht.
  • Beispiel 4:
  • Es wurde eine Applikationsvorrichtung wie in Beispiel 1 verwendet, wobei auch dieselben Verfahrensparameter wie im Beispiel 1 eingestellt wurde. Als Precursorgarn wurde das Garn verwendet, das auch in Beispiel 1 eingesetzt wurde. Abweichend von Beispiel 1 wurde das Garn jedoch mehrfach hintereinander in der Applikationsvorrichtung behandelt, indem es insgesamt dreimal durch die Applikationsvorrichtung geführt wurde. Dabei diente das teilweise stabilisierte Precursorgarn des vorherigen Durchlaufs durch die Applikationsvorrichtung als Vorlage für den folgenden Durchlauf.
  • Die Gesamtverweilzeit in der Applikationsvorrichtung betrug ca. 7,5 min. Das so dreimal behandelte Precursorgarn hatte eine Dichte von 1,22 g/m3. Das ursprünglich weiße Precursorgarn hatte nach der Behandlung eine dunkelbraune bis schwarze Farbe.
  • Beispiel 5:
  • Es wurde wie in Beispiel 3 vorgegangen, jedoch wurde die maximale elektrische Feldstärke konstant auf einen Wert von 30 kV/m eingestellt. Bei dem in diesem Beispiel vorgelegten Garn handelte es sich um ein teilweise stabilisiertes Polyacrylnitril-Precursorgarn mit einer Dichte von 1,26 g/cm3. Nach Durchlaufen der Applikationsvorrichtung, d.h. nach einer Verweilzeit von 6 min bei einer Fadengeschwindigkeit von 10 m/h, hatte das behandelte Garn eine Dichte von 1,40 g/cm3.
  • Vergileichsbeispiel 1:
  • In einem konventionellen mehrstufigen Konvektionsofen zur Stabilisierung von Polyacrylnitril-Precursorgarnen für die Herstellung von Kohlenstofffasern wurde an einem nicht stabilisierten Precursorgarn, wie es in Beispiel 1 vorgelegt worden war, eine Stabilisierung vorgenommen. Durch den Konvektionsofen wurde Luft hindurchgeleitet. In der ersten Stufe des Ofens wurde eine Temperatur von ca. 230°C eingestellt.
  • Nach einer Verweilzeit von 23 min verließ das teilweise stabilisierten Precursorgarn die erste Ofenstufe. Das teilweise stabilisierte Precursorgarn hatte eine dunkelbraune bis schwarze Farbe und eine Dichte von 1,21 g/cm3.

Claims (14)

  1. Verfahren zur Stabilisierung von Garnen aus Polyacrylnitril durch chemische Stabilisierungsreaktionen, umfassend die folgenden Schritte:
    - Vorlegen eines Precursorgarns auf Basis eines Polyacrylnitrilpolymers,
    - Bereitstellen einer Applikationsvorrichtung zur Behandlung des Precursorgarns mit hochfrequenten elektromagnetischen Wellen, umfassend einen Applikator mit einem Applikationsraum, Mittel zur Erzeugung der hochfrequenten elektromagnetischen Wellen sowie Mittel zur Einspeisung der hochfrequenten elektromagnetischen Wellen in den Applikationsraum,
    - Erzeugen eines Feldes der hochfrequenten elektromagnetischen Wellen im Applikationsraum, welches Bereiche mit minimaler elektrischer Feldstärke und Bereiche mit maximaler elektrischer Feldstärke aufweist und Einstellen der maximalen elektrischen Feldstärke im Applikationsraum im Bereich von 3 bis 150 kV/m,
    - kontinuierliches Einführen des Precursorgarns in und Hindurchführen des Precursorgarns durch den Applikationsraum und durch das Feld der hochfrequenten elektromagnetischen Wellen, dabei
    - Einleiten eines Prozessgases in den Applikationsraum und Hindurchleiten des Prozessgases durch den Applikationsraum mit einer Strömungsgeschwindigkeit relativ zu dem den Applikationsraum durchlaufenden Precursorgarn von mindestens 0,1 m/s, wobei die Temperatur des Prozessgases so im Bereich zwischen 150 und 300°C eingestellt wird, dass sie oberhalb der kritischen Minimaltemperatur Tkrit und unterhalb der Maximaltemperatur Tmax liegt, und wobei die kritische Minimaltemperatur Tkrit diejenige Temperatur ist, oberhalb derer die hochfrequenten elektromagnetischen Wellen in das den Applikationsraum durchlaufende Precursorgarn einkoppeln und die chemischen Stabilisierungsreaktionen ablaufen, und die Maximaltemperatur Tmax diejenige Temperatur, die um 20°C unterhalb der Zersetzungstemperatur des in die Applikationsvorrichtung eingeführten Precursorgarns liegt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im Applikationsraum eine maximale elektrische Feldstärke der hochfrequenten elektromagnetischen Wellen von 5 bis 50 kV/m erzeugt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Precursorgarn unter einer Fadenspannung im Bereich von 0,125 bis 5 cN/tex durch den Applikator geführt wird.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Prozessgas den Applikationsraum senkrecht zum Precursorgarn mit einer Strömungsgeschwindigkeit von 0,1 bis 2 m/s durchströmt.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Prozessgas den Applikationsraum parallel zum Precursorgarn mit einer auf den freien Querschnitt des Applikationsraums bezogenen mittleren Strömungsgeschwindigkeit von 0,1 bis 20 m/s relativ zu dem den Applikationsraum durchlaufenden Precursorgarn durchströmt.
  6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Prozessgas ein sauerstoffhaltiges Gas ist.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das sauerstoffhaltige Gas Luft ist.
  8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Precursorgarn Additive zur Verbesserung der Absorptionsfähigkeit des Precursorgarns gegenüber hochfrequenten elektromagnetischen Wellen enthält.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass es sich bei den Additiven um Polyethylenglykol, Ruß oder Kohlenstoffnanoröhrchen handelt.
  10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die hochfrequenten elektromagnetischen Wellen Mikrowellen mit einer Frequenz im Bereich von 0,3 bis 45 GHz sind.
  11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Verweilzeit des Precursorgarns im Applikationsraum mindestens 20 s beträgt.
  12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Prozessgas im Applikationsraum eine Temperatur im Bereich zwischen (Tkrit + 20°C) und (Tmax - 20°C) aufweist.
  13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Feldstärke im Applikationsraum eine mit der Zeit sich periodisch verändernde Intensität aufweist.
  14. Verfahren nach einem oder mehreren der Ansprüche 1 bis13, dadurch gekennzeichnet, dass das Precursorgarn durch mindestens zwei hintereinander angeordnete Applikationsvorrichtungen geführt wird.
EP10749843.8A 2009-09-11 2010-08-31 Stabilisierung von polyacrylnitril-precursorgarnen Active EP2475812B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10749843.8A EP2475812B1 (de) 2009-09-11 2010-08-31 Stabilisierung von polyacrylnitril-precursorgarnen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09170059 2009-09-11
PCT/EP2010/062674 WO2011029745A1 (de) 2009-09-11 2010-08-31 Stabilisierung von polyacrylnitril-precursorgarnen
EP10749843.8A EP2475812B1 (de) 2009-09-11 2010-08-31 Stabilisierung von polyacrylnitril-precursorgarnen

Publications (2)

Publication Number Publication Date
EP2475812A1 EP2475812A1 (de) 2012-07-18
EP2475812B1 true EP2475812B1 (de) 2013-06-05

Family

ID=41719242

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10749843.8A Active EP2475812B1 (de) 2009-09-11 2010-08-31 Stabilisierung von polyacrylnitril-precursorgarnen

Country Status (13)

Country Link
US (1) US20120137446A1 (de)
EP (1) EP2475812B1 (de)
JP (1) JP5538545B2 (de)
CN (1) CN102612576B (de)
AR (1) AR078361A1 (de)
AU (1) AU2010294347B2 (de)
BR (1) BR112012005159A2 (de)
CA (1) CA2772580A1 (de)
DK (1) DK2475812T3 (de)
ES (1) ES2426612T3 (de)
PT (1) PT2475812E (de)
TW (1) TWI480443B (de)
WO (1) WO2011029745A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10834820B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Industrial control system cable
US9727511B2 (en) 2011-12-30 2017-08-08 Bedrock Automation Platforms Inc. Input/output module with multi-channel switching capability
US9600434B1 (en) 2011-12-30 2017-03-21 Bedrock Automation Platforms, Inc. Switch fabric having a serial communications interface and a parallel communications interface
WO2013144123A1 (de) 2012-03-28 2013-10-03 Toho Tenax Europe Gmbh Schmelzbares ligninderivat und daraus hergestellte ligninderivatfaser
US9725829B2 (en) * 2013-03-15 2017-08-08 Ut-Battelle, Llc Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby
US9409337B2 (en) 2013-11-08 2016-08-09 Georgia Tech Research Corporation Polyacrylonitrile/cellulose nano-structure fibers
US20170275786A1 (en) * 2014-10-08 2017-09-28 Georgia Tech Research Corporation High strength and high modulus carbon fibers
TWI695099B (zh) * 2018-01-29 2020-06-01 永虹先進材料股份有限公司 氧化纖維
TWI695096B (zh) * 2018-01-29 2020-06-01 永虹先進材料股份有限公司 氧化纖維製造方法
TWI665349B (zh) * 2018-01-29 2019-07-11 永虹先進材料股份有限公司 Fiber pre-oxidation equipment
CN109944057A (zh) * 2019-03-08 2019-06-28 常熟市翔鹰特纤有限公司 一种聚丙烯腈长丝微波致密化装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370141A (en) * 1981-05-18 1983-01-25 Celanese Corporation Process for the thermal stabilization of acrylic fibers
JPS59125912A (ja) * 1982-12-27 1984-07-20 Mitsubishi Rayon Co Ltd 炭素繊維の製法
US4473372A (en) * 1983-05-12 1984-09-25 Celanese Corporation Process for the stabilization of acrylic fibers
DE3424343A1 (de) * 1984-07-03 1986-01-16 Bayer Ag, 5090 Leverkusen Verfahren und vorrichtung zum trockenspinnen
JPS61231223A (ja) * 1985-03-30 1986-10-15 Sumitomo Metal Ind Ltd 炭素繊維の連続製造方法
KR20060133974A (ko) * 2003-10-16 2006-12-27 더 유니버시티 오브 아크론 탄소 나노섬유 기판 상의 탄소 나노튜브
CN1241979C (zh) * 2004-10-11 2006-02-15 东华大学 一种基于碳纳米管的复合材料纤维及其制备方法
US7534854B1 (en) * 2005-03-29 2009-05-19 Ut-Battelle, Llc Apparatus and method for oxidation and stabilization of polymeric materials
US7937924B2 (en) * 2005-11-16 2011-05-10 Lorica International, Inc. Fire retardant compositions and methods and apparatuses for making the same
EP1845179B1 (de) * 2006-04-15 2010-07-28 Toho Tenax Co., Ltd. Verfahren zur kontinuierlichen Herstellung von Kohlenstofffasern
EP2080775B1 (de) * 2006-10-18 2015-07-29 Toray Industries, Inc. Polyacrylnitrilpolymer, verfahren zur herstellung des polymers, verfahren zur herstellung einer vorläuferfaser für eine kohlenstofffaser und verfahren zur herstellung der kohlenstofffaser
CN101820985B (zh) * 2007-10-11 2013-01-16 东邦特耐克丝株式会社 碳素空心纤维及其制造方法
RU2416682C1 (ru) * 2009-07-28 2011-04-20 Марина Владимировна Соболева Способ стабилизации углеродсодержащего волокна и способ получения углеродного волокна

Also Published As

Publication number Publication date
TW201129743A (en) 2011-09-01
CN102612576A (zh) 2012-07-25
CN102612576B (zh) 2014-01-15
ES2426612T3 (es) 2013-10-24
BR112012005159A2 (pt) 2016-05-03
EP2475812A1 (de) 2012-07-18
DK2475812T3 (da) 2013-09-08
US20120137446A1 (en) 2012-06-07
PT2475812E (pt) 2013-09-03
WO2011029745A1 (de) 2011-03-17
CA2772580A1 (en) 2011-03-17
JP2013504696A (ja) 2013-02-07
AR078361A1 (es) 2011-11-02
AU2010294347B2 (en) 2014-06-26
TWI480443B (zh) 2015-04-11
AU2010294347A1 (en) 2012-03-08
JP5538545B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
EP2475812B1 (de) Stabilisierung von polyacrylnitril-precursorgarnen
DE2614391C3 (de) Verfahren und Vorrichtung zur Herstellung von Kohlenstofffasern
EP1845179B1 (de) Verfahren zur kontinuierlichen Herstellung von Kohlenstofffasern
DE2614415B2 (de) Verfahren zur herstellung von kohlenstoff-fasern
EP0044534A2 (de) Hochmodul-Polyacrylnitrilfäden und -fasern sowie Verfahren zu ihrer Herstellung
DE2128907A1 (de) Verfahren zum Graphitisieren von Fasermaterial
EP3931381B1 (de) Verfahren zur ionisierenden bestrahlung von textilen polyacrylnitrilfasern und deren verwendung als carbonfaserpräkursor
DE4143105A1 (de) Verfahren zur herstellung von para-aramidfasern mit hoher festigkeit und hohem modul durch mikrowellentemperung
DE3435120A1 (de) Verfahren zur veredelung kohlenstoffhaltiger zwischenfasern
WO2017076964A1 (de) Anlage zur herstellung von kohlenstofffasern
DE2925950C3 (de) Verfahren und Vorrichtung zur Unschmelzbarmachung von Pechfasern
DE2019382C3 (de) Verfahren zur Herstellung nicht graphitischer Kohlenstoffasern und deren Verwendung
EP3864202A1 (de) Verfahren und vorrichtung zur stabilisierung von präkursorfasern oder -folien für die herstellung von carbonfasern oder -folien
DE19937727A1 (de) Polyester-Stapelfasern und Verfahren zu deren Herstellung
DE3138893A1 (de) "fasermaterial auf polyacrylbasis sowie herstellungsverfahren hierfuer"
DE2015820A1 (de) Verfahren zur Herstellung von Fäden und Garnen aus Kohlenstoff oder Graphit
WO2009049981A1 (de) Kohlenstoff-hohlfasern und verfahren zu ihrer herstellung
DE68928911T2 (de) Verfahren zur Herstellung von Kohlenstoffasern, oder ihren Ausgangsfasern, mittels Vorstreckung
DE2211639A1 (de) Verfahren zur herstellung von kohlenstoff-faeden
EP3568509A1 (de) Kontinuierliches verfahren zur herstellung eines thermisch stabilisierten multifilamentgarns, multifilamentgarn und faser
DE1939388A1 (de) Stabilisierte endlose,stark orientierte Acrylfasern und Verfahren zu ihrer Herstellung
DE3602330A1 (de) Verfahren und vorrichtung zur herstellung von graphitfasern
DE2130600C3 (de) Verfahren zur Herstellung von carbonisiertem und gegebenenfalls graphitisiertem Fasermaterial
DE1959984A1 (de) Verfahren und Vorrichtung zur Herstellung von Kohlefaeden
EP0091567A2 (de) Verfahren zur Herstellung thermostabiler Fasern und Fäden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: D06M 10/06 20060101ALI20130109BHEP

Ipc: D01F 9/22 20060101ALI20130109BHEP

Ipc: D06M 10/04 20060101ALI20130109BHEP

Ipc: D01F 6/18 20060101AFI20130109BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 615745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010003604

Country of ref document: DE

Effective date: 20130801

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20130828

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2426612

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130906

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130605

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130905

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

BERE Be: lapsed

Owner name: TOHO TENAX EUROPE G.M.B.H.

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

26N No opposition filed

Effective date: 20140306

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010003604

Country of ref document: DE

Effective date: 20140306

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E019578

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170831

Year of fee payment: 8

Ref country code: GB

Payment date: 20170821

Year of fee payment: 8

Ref country code: ES

Payment date: 20170912

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170822

Year of fee payment: 8

Ref country code: PT

Payment date: 20170726

Year of fee payment: 8

Ref country code: AT

Payment date: 20170822

Year of fee payment: 8

Ref country code: DK

Payment date: 20170817

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20180201

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130605

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 615745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240820

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240820

Year of fee payment: 15