EP2443284B2 - Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton - Google Patents

Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton Download PDF

Info

Publication number
EP2443284B2
EP2443284B2 EP10724788.4A EP10724788A EP2443284B2 EP 2443284 B2 EP2443284 B2 EP 2443284B2 EP 10724788 A EP10724788 A EP 10724788A EP 2443284 B2 EP2443284 B2 EP 2443284B2
Authority
EP
European Patent Office
Prior art keywords
polymer
water
paper
units
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10724788.4A
Other languages
English (en)
French (fr)
Other versions
EP2443284A1 (de
EP2443284B1 (de
Inventor
Christian Jehn-Rendu
Ellen KRÜGER
Hans-Joachim HÄHNLE
Martin Rübenacker
Norbert Schall
Thomas MÜHLENBERND
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42647475&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2443284(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to PL10724788T priority Critical patent/PL2443284T5/pl
Priority to EP10724788.4A priority patent/EP2443284B2/de
Publication of EP2443284A1 publication Critical patent/EP2443284A1/de
Publication of EP2443284B1 publication Critical patent/EP2443284B1/de
Application granted granted Critical
Publication of EP2443284B2 publication Critical patent/EP2443284B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/66Salts, e.g. alums
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/71Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes
    • D21H17/74Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes of organic and inorganic material

Definitions

  • the invention relates to a process for the production of paper, paperboard and cardboard with high dry strength by adding (a) at least one trivalent cation, (b) at least one water-soluble cationic polymer selected from the group of (i) polymers containing vinylamine units and (ii) ethyleneimine units containing polymers and (c) at least one water-soluble amphoteric polymer to form a paper stock, dewatering the paper stock with sheet formation and drying the paper product obtained, wherein the (i) vinylamine-containing polymer and (c) at least one water-soluble amphoteric polymer as in claims 1 and 2 are defined.
  • JP 54-030913 a process for producing paper with high dry strength is known in which an aluminum sulfate solution is first added to the paper stock. A water-soluble amphoteric polymer is then metered in. The paper stock is then dewatered on the paper machine to form sheets, and the paper products are dried.
  • suitable amphoteric polymers are copolymers of acrylamide, acrylic acid and dimethylaminoethyl (meth) acrylate.
  • a process for producing paper with high dry strength in which first a water-soluble cationic polymer is added to the paper stock and then a water-soluble anionic polymer is added.
  • Suitable anionic polymers are, for example, homopolymers or copolymers of ethylenically unsaturated C 3 -C 5 carboxylic acids.
  • the copolymers contain at least 35% by weight of an ethylenically unsaturated C 3 -C 5 carboxylic acid (for example acrylic acid) in copolymerized form.
  • the cationic polymers described in the examples are polyethyleneimine, polyvinylamine, polydiallyldimethylammonium chloride and condensation products of adipic acid and diethylenetriamine reacted with epichlorohydrin.
  • the use of partially hydrolyzed homo- and copolymers of N-vinylformamide has also been considered.
  • the JP 02-112498 relates to a process for the production of corrugated cardboard, in which alum, a polyallylamine and an anionic or amphoteric polymer are added to a fiber suspension.
  • the combination results in papers with a high strength.
  • JP 05-272092 describes a process for the production of paper with high dry strength, in which an aluminum sulfate solution is first added to the paper stock, and then a water-soluble amphoteric polymer with high molecular weight is metered in, then the paper stock is dewatered on the paper machine with sheet formation and the paper products are dried.
  • amphoteric polymers which are mentioned are copolymers of acrylamide, acrylic acid, dimethylaminoethyl (meth) acrylate, (meth) acrylamide and sodium (meth) allyl sulfonate. These amphoteric polymers are characterized by very high molecular weights and low solution viscosities.
  • JP 08-269891 A variant of the in JP 05-272092 procedure is described in JP 08-269891 disclosed.
  • an aluminum sulfate solution is also first added to the paper stock, and then a water-soluble amphoteric polymer with a high molecular weight is added, then the paper stock is dewatered on the paper machine to form sheets and the paper products are dried.
  • the amphoteric polymers used are, for example, copolymers of acrylamide, acrylic acid, dimethylaminoethyl methacrylate, (meth) acrylamide, sodium (meth) allyl sulfonate and a crosslinker such as methylenebisacrylamide or triallylamine. These amphoteric polymers have a very high molecular weight and one opposite JP 05-272092 further reduced solution viscosity.
  • the EP 0 659 780 A1 describes a process for the preparation of polymers with a weight average molecular weight of 1,500,000 to 10,000,000 (a) and a weight average root mean square radius of 30 to 150 nm (b), the ratio (b) / (a)) 0 , 00004, and their use as a solidifying agent.
  • WO 98/06898 A1 describes a process for paper manufacture in which a cationic starch or a cationic wet strength agent and a water-soluble amphoteric polymer are added to the paper stock.
  • This amphoteric polymer is made up of the nonionic monomers acrylamide and methacrylamide, an anionic monomer, a cationic monomer and a crosslinker, the amount of anionic and cationic monomer not being more than 9% by weight of the total monomers used in the amphoteric polymer.
  • the JP-A-1999-140787 relates to a process for the production of corrugated cardboard, whereby to improve the strength properties of a paper product to the paper stock 0.05 to 0.5% by weight, based on dry paper stock, of a polyvinylamine obtained by hydrolysis of polyvinylformamide with a degree of hydrolysis of 25 to 100 % is accessible, is added in combination with an anionic polyacrylamide, the paper stock is then dewatered with sheet formation and the paper dries.
  • the EP 0 919 578 A1 relates to amphoteric polymers (type B), which are produced by means of a two-stage polymerization.
  • a polymer (type A) is produced by the copolymerization of methallylsulfonic acid with other vinyl monomers, then, in the presence of the type A polymer, a further polymerization of vinyl monomers to form the type B polymer takes place, the type A polymers having a molecular weight of 1,000 to 5,000,000 and the type B polymers have a molecular weight of 100,000 to 10,000,000.
  • the JP 2001-279595 relates to a process for the production of paper with high strength, wherein a mixture of a cationic, anionic or amphoteric polyacrylamide with a water-soluble aluminum compound is added to the fibers. A further polyacrylamide is then metered in. This not only increases strength, but also improves drainage at the same time.
  • a paper product with improved strength properties which can be obtained by applying a polyvinylamine and a polymeric anionic compound which can form a polyelectrolyte complex with polyvinylamine, or a polymeric compound with aldehyde functions such as polysaccharides containing aldehyde groups, to the surface of a paper product. Not only is an improvement in the dry and wet strength of the paper obtained, but a sizing effect of the treatment agents is also observed.
  • JP 2005-023434 describes a process for the production of paper with high strength, which is obtained by metering two polymers.
  • the first polymer is a branched amphoteric polyacrylamide.
  • As the second polymer a copolymer of a cationic vinyl monomer can be considered as the main monomer.
  • WO 2006/120235 A1 describes a process for producing papers with a filler content of at least 15% by weight, in which the filler and fibers are treated together with cationic and anionic polymers. The treatment takes place alternately with cationic and anionic polymers and comprises at least three steps.
  • EP 1 849 803 A1 is also known a paper additive for strengthening that is obtained as a water-soluble polymer by polymerizing (meth) acrylamide, an ⁇ , ⁇ -unsaturated mono- or dicarboxylic acid or salts thereof, a cationic monomer and a crosslinking monomer. In a second stage, the remaining residual monomer is polymerized with further persulfate catalyst.
  • the present invention was therefore based on the object of providing a further process for the production of paper, paperboard and cardboard with high dry strength, in which the dry strength properties of the paper products are further improved compared to those of known products, and in which at the same time faster drainage of the Paper stock is made possible.
  • the stated components of the consolidation system can be added to the paper stock in any order or as a mixture of two or more components.
  • trivalent metal or semimetal cations are suitable as trivalent cations in the process according to the invention.
  • Preferred metal cations are Al 3+ , Zr 3+ and Fe 3+ .
  • Al 3+ is very particularly preferred.
  • the metal and semi-metal cations are used in the form of their salts.
  • Al 3+ this can be used, for example, in the form of aluminum sulfate, polyaluminium chloride or aluminum lactate.
  • any mixtures of the trivalent metal cations mentioned can also be used, but only one trivalent metal cation is preferably used in the process according to the invention.
  • different salts of this metal cation can be used in any mixtures.
  • a trivalent metal cation is used in one of the salt forms described.
  • the trivalent cations are usually added to the paper stock in amounts between 3 and 100 mol per ton of dry paper, preferably in the range from 10 to 30 mol per ton of dry paper.
  • the water-soluble cationic polymer (b) is selected from the group of (i) polymers containing vinylamine units and (ii) polymers containing ethyleneimine units.
  • the cationic polymers (b) are water-soluble.
  • the solubility in water under normal conditions (20 ° C., 1013 mbar) and pH 7.0 is, for example, at least 5% by weight, preferably at least 10% by weight.
  • the charge density of the cationic polymers (without counterion) is, for example, at least 1.0 meq / g and is preferably in the range from 4 to 10 meq / g.
  • the water-soluble cationic polymers (b) usually have average molecular weights in the range from 10,000 to 10,000,000 Daltons, preferably in the range from 20,000 to 5,000,000 Daltons, particularly preferably in the range from 40,000 to 3,000,000 Daltons.
  • Polymers (i) containing vinylamine units are known, cf. those mentioned in relation to the prior art DE 35 06 832 A1 and DE 10 2004 056 551 A1 .
  • polymers containing (i) vinylamine units preference is given to using the reaction products which are obtainable by polymerizing N-vinylformamide and subsequent cleavage of formyl groups from the vinylformamide units polymerized into the polymer with the formation of amino groups.
  • Examples of monomers of the formula (I) are N-vinylformamide, N-vinyl-N-methylformamide, N-vinyl acetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide, N-vinyl propionamide and N-vinyl-N -methylpropionamide and N-vinylbutyramide.
  • the monomers of group (a) can be used alone or as a mixture in the copolymerization with the monomers of the other groups.
  • Preferred monomer of this group is N-vinylformamide.
  • polymers can optionally be modified by copolymerizing the N-vinylcarboxamides (1.) together with (2.) at least one other monoethylenically unsaturated monomer and then hydrolyzing the copolymers to form amino groups. If anionic monomers are used in the copolymerization, the hydrolysis of the polymerized vinylcarboxamide units is carried out to such an extent that the molar excess of amine units over the anionic units in the polymer is at least 5 mol%.
  • Examples of monomers of group (2) are esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with C 1 -C 30 alkanols, C 2 -C 30 alkanediols and C 2 -C 30 amino alcohols, amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and their N-alkyl and N, N-dialkyl derivatives, nitriles of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids, esters of vinyl alcohol and allyl alcohol with C 1 -C 30 monocarboxylic acids, N-vinyl lactams, nitrogen-containing heterocycles with ⁇ , ⁇ -ethylenically unsaturated double bonds, vinyl aromatics, vinyl halides, vinylidene halides, C 2 -C 8 monoolefins and mixtures thereof.
  • Suitable representatives are e.g. Methyl (meth) acrylate (in which (meth) acrylate in the context of the present invention means both acrylate and methacrylate), methyl ethacrylate, ethyl (meth) acrylate, ethyl ethacrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert.
  • Suitable additional monomers of group (2.) are also the esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols, preferably C 2 -C 12 -amino alcohols. These can be C 1 -C 8 monoalkylated or dialkylated on the amine nitrogen.
  • Acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid, maleic anhydride, monobutyl maleate and mixtures thereof are suitable as acid components of these esters.
  • Acrylic acid, methacrylic acid and mixtures thereof are preferably used.
  • N-methylaminomethyl (meth) acrylate N-methylaminoethyl (meth) acrylate, N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N , N-dimethylaminopropyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate and N, N-dimethylaminocyclohexyl (meth) acrylate.
  • Also suitable as monomers of group (2.) are 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl ethacrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, and mixtures thereof.
  • Suitable additional monomers of group (2.) are also acrylic acid amide, methacrylic acid amide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, n-propyl (meth) acrylamide, N- (n-butyl) (meth) acrylamide , tert-butyl (meth) acrylamide, n-octyl (meth) acrylamide, 1,1,3,3-tetramethylbutyl (meth) acrylamide, ethylhexyl (meth) acrylamide, and mixtures thereof.
  • monomers of group (2) are nitriles of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids, such as, for example, acrylonitrile and methacrylonitrile.
  • the presence of units of these monomers in the copolymer leads to products which have amidine units during or after the hydrolysis, cf. e.g. EP 0 528 409 A1 or DE 43 28 975 A1 .
  • amidine units are formed in a secondary reaction in that vinylamine units react with an adjacent vinylformamide unit or - if a nitrile group is present as an adjacent group in the polymer - with it.
  • the specification of vinylamine units in the amphoteric copolymers or in unmodified homopolymers or copolymers always means the sum of vinylamine and amidine units.
  • Suitable monomers of group (2.) are also N-vinyl lactams and their derivatives, which can have, for example, one or more C 1 -C 6 -alkyl substituents (as defined above). These include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam and mixtures thereof.
  • N-vinylimidazoles and alkylvinylimidazoles are suitable as monomers of group (2.), in particular methylvinylimidazoles such as, for example, 1-vinyl-2-methylimidazole, 3-vinylimidazole-N-oxide, 2- and 4-vinylpyridine-N-oxides, and betaine derivatives and quaternization products these monomers as well as ethylene, propylene, isobutylene, butadiene, styrene, ⁇ -methylstyrene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and Mixtures thereof.
  • methylvinylimidazoles such as, for example, 1-vinyl-2-methylimidazole, 3-vinylimidazole-N-oxide, 2- and 4-vinylpyridine-N-oxides, and betaine derivatives and quaternization products these monomers as well as
  • the aforementioned monomers can be used individually or in the form of any mixtures. They are typically used in amounts of 1 to 90 mol%, preferably 10 to 80 mol% and particularly preferably 10 to 60 mol%.
  • other monoethylenically unsaturated monomers of group (2.) also include anionic monomers, which are referred to above as monomers (2.1). If appropriate, they can be copolymerized with the neutral and / or cationic monomers (2.2) described above. However, the amount of anionic monomers (2.1) is at most 45 mol%, so that the amphoteric copolymer formed has an overall cationic charge.
  • anionic monomers of group (2.1) are ethylenically unsaturated C 3 to C 8 carboxylic acids such as acrylic acid, methacrylic acid, dimethacrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, methylenemalonic acid, allylacetic acid, vinylacetic acid and crotonic acid.
  • Suitable monomers of this group are also monomers containing sulfonic groups, such as vinylsulfonic acid, acrylamido-2-methylpropanesulfonic acid and styrene sulfonic acid, and monomers containing phosphonic groups, such as vinylphosphonic acid.
  • the monomers of this group can be used alone or in a mixture with one another, in partially or completely neutralized form, in the copolymerization.
  • alkali metal or alkaline earth metal bases, ammonia, amines and / or alkanolamines are used for neutralization.
  • Examples are caustic soda, potassium hydroxide, soda, potash, sodium hydrogen carbonate, magnesium oxide, calcium hydroxide, calcium oxide, triethanolamine, ethanolamine, morpholine, diethylenetriamine or tetraethylene pentamine.
  • a further modification of the copolymers is possible by using monomers of group (3.) which contain at least two double bonds in the molecule, e.g. Triallylamine, methylenebisacrylamide, glycol diacrylate, glycol dimethacrylate, glycerol triacrylate, pentaerythritol triallyl ether, polyalkylene glycols esterified at least twice with acrylic acid and / or methacrylic acid, or polyols such as pentaerythritol, sobitol or glucose. These are so-called crosslinkers. If at least one monomer from the above group is used in the polymerization, the amounts used are up to 2 mol%, e.g. 0.001 to 1 mole percent.
  • controllers known from the literature can be used, e.g. Sulfur compounds such as mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid and dodecyl mercaptan and sodium hypophosphite, formic acid or tribromochloromethane and terpinolene.
  • the polymers (i) containing vinylamine units also include hydrolyzed graft polymers of, for example, N-vinylformamide on polyalkylene glycols, polyvinyl acetate, polyvinyl alcohol, polyvinylformamides, polysaccharides such as starch, oligosaccharides or monosaccharides.
  • the graft polymers can be obtained by free-radical polymerizing, for example, N-vinylformamide in an aqueous medium in the presence of at least one of the graft bases mentioned, optionally together with other copolymerizable monomers, and then hydrolyzing the grafted vinylformamide units in a known manner to give vinylamine units.
  • the hydrolysis of the copolymers described above can be carried out in the presence of acids or bases or else enzymatically.
  • the vinylamine groups formed from the vinylcarboxamide units are present in salt form.
  • the hydrolysis of vinylcarboxamide copolymers is in the EP 0 438 744 A1 , Page 8, line 20 to page 10, line 3, described in detail. The statements made there apply accordingly to the preparation of the purely cationic and / or amphoteric polymers containing vinylamine units to be used according to the invention and having an overall cationic charge.
  • the above-described homopolymers and copolymers (i) containing vinylamine units can be prepared by solution, precipitation, suspension or emulsion polymerization.
  • Solution polymerization in aqueous media is preferred.
  • Suitable aqueous media are water and mixtures of water and at least one water-miscible solvent, for example an alcohol such as methanol, ethanol, n-propanol or isopropanol.
  • the polymers (ii) containing ethyleneimine units include all polymers obtainable by polymerizing ethyleneimine in the presence of acids, Lewis acids or haloalkanes, such as homopolymers of ethyleneimine or graft polymers of ethyleneimine, cf. U.S. 2,182,306 or U.S. 3,203,910 . These polymers can optionally be subsequently subjected to crosslinking.
  • Suitable crosslinkers are, for example, all multifunctional compounds which contain groups reactive toward primary amino groups, for example multifunctional epoxides such as bisglycidyl ethers of oligo- or polyethylene oxides or other multifunctional alcohols such as glycerol or sugars, multifunctional carboxylic esters, multifunctional isocyanates, multifunctional acrylic or methacrylic esters - or methacrylic acid amides, epichlorohydrin, multifunctional acid halides, multifunctional nitriles, ⁇ , ⁇ -chlorohydrin ethers of oligo- or polyethylene oxides or of other multifunctional alcohols such as glycerol or sugars, divinyl sulfone, maleic anhydride or ⁇ -halo-acid chlorides, ⁇ -halogenoalkanes, in particular, multifunctional haloalkanes, ⁇ -dichlorocarboxylic acid chlorides, multifunctional haloalkanes.
  • Further crosslinkers are
  • Polymers containing ethyleneimine units are, for example, from EP 0 411 400 A1 , DE 24 34 816 A1 and U.S. 4,066,494 known.
  • a method for producing such compounds is for example in DE 24 34 816 A1 described, where ⁇ , ⁇ -chlorohydrin ethers of oligo- or polyethylene oxides as crosslinkers application Find.
  • Reaction products of polyethyleneimines with monocarboxylic acids to form amidated polyethyleneimines are from the WO 94/12560 A1 known.
  • Michael addition products of polyethyleneimines with ethylenically unsaturated acids, salts, esters, amides or nitriles of monoethylenically unsaturated carboxylic acids are the subject of the WO 94/14873 A1 .
  • Phosphonomethylated polyethyleneimines are extensively described in WO 97/25367 A1 described.
  • Carboxylated polyethyleneimines can be obtained, for example, with the aid of a stretchers synthesis by reacting polyethyleneimines with formaldehyde and ammonia / hydrogen cyanide and hydrolyzing the reaction products.
  • Alkoxylated polyethyleneimines can be prepared by reacting polyethyleneimines with alkylene oxides such as ethylene oxide and / or propylene oxide.
  • the water-soluble cationic polymer (b) used can be the (i) polymers containing vinylamine units or (ii) polymers containing ethyleneimine units in each case alone. It is of course also possible to use any mixture of (i) polymer containing vinylamine units and (ii) polymer containing ethyleneimine units. In such a mixture the weight ratio of (i) polymers containing vinylamine units to (ii) polymers containing ethyleneimine units is, for example, 10: 1 to 1:10, preferably in the range from 5: 1 to 1: 5, and particularly preferably in the range from 2: 1 to 1: 2.
  • the at least one water-soluble cationic polymer (b) is particularly preferred in the process according to the invention for producing paper, for example in an amount of 0.01 to 2.0% by weight, preferably 0.03 to 1.0% by weight 0.1 to 0.5% by weight, based in each case on dry paper stock, are used.
  • amphoteric polymers (c) are water-soluble.
  • the solubility in water under normal conditions (20 ° C., 1013 mbar) and pH 7.0 is, for example, at least 5% by weight, preferably at least 10% by weight.
  • water-soluble amphoteric polymers (c) can also contain crosslinkers and / or regulators.
  • crosslinkers and regulators are also those which are already used in the water-soluble cationic polymers (b).
  • Examples of monomers whose polymers contain structural units (A) are esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with C 2 -C 30 -amino alcohols, amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and their N-alkyl and N, N-dialkyl derivatives, nitrogen-containing heterocycles with ⁇ , ⁇ -ethylenically unsaturated double bonds and mixtures thereof.
  • Suitable monomers of this group are the esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols, preferably C 2 -C 12 -amino alcohols. These can be C 1 -C 8 monoalkylated or dialkylated on the amine nitrogen.
  • Acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid, maleic anhydride, monobutyl maleate and mixtures thereof are suitable as acid components of these esters.
  • Acrylic acid, methacrylic acid and mixtures thereof are preferably used.
  • N-methylaminomethyl (meth) acrylate N-methylaminoethyl (meth) acrylate, N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N , N-dimethylaminopropyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate and N, N-dimethylaminocyclohexyl (meth) acrylate.
  • N-vinylimidazoles and alkylvinylimidazoles are also suitable as monomers, in particular methylvinylimidazoles such as 1-vinyl-2-methylimidazole, 3-vinylimidazole-N-oxide, 2- and 4-vinylpyridine-N-oxides and betaine derivatives and quaternization products of these monomers and mixtures from that.
  • the particular quaternary compounds of the aforementioned monomers are also suitable.
  • the quaternary compounds of the monomers are obtained by reacting the monomers with known quaternizing agents, for example with methyl chloride, benzyl chloride, ethyl chloride, butyl bromide, dimethyl sulfate and diethyl sulfate or alkyl epoxides.
  • the monomers of this group can be used alone or in a mixture with one another, in partially or completely neutralized form, in the copolymerization.
  • Alkali metal or alkaline earth metal bases, ammonia, amines and / or alkanolamines, for example, are used for neutralization. Examples are caustic soda, potassium hydroxide, soda, potash, sodium hydrogen carbonate, magnesium oxide, calcium hydroxide, calcium oxide, triethanolamine, ethanolamine, morpholine, diethylenetriamine or tetraethylene pentamine.
  • Monomers whose polymers contain structural units (C) are monomers of the formula (I), esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with C 1 -C 30 alkanols and C 2 -C 30 alkanediols, (meth) acrylamides, nitriles of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids, esters of vinyl alcohol and allyl alcohol with C 1 -C 30 monocarboxylic acids, N-vinyl lactams and mixtures thereof.
  • Monomers of the formula (I) are, for example, N-vinylformamide, N-vinyl-N-methylformamide, N-vinyl acetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide, N-vinyl propionamide and N-vinyl-N- methylpropionamide and N-vinylbutyramide.
  • These monomers can be used alone or in a mixture in the copolymerization with the monomers of the other groups.
  • Preferred monomer of this group is N-vinylformamide.
  • Suitable representatives of this monomer group are e.g. Methyl (meth) acrylate, methyl ethacrylate, ethyl (meth) acrylate, ethyl ethacrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, tert-butyl ethacrylate, n-octyl (meth) acrylate, 1,1,3,3-tetramethylbutyl (meth) acrylate, ethylhexyl (meth) acrylate, and mixtures thereof.
  • Also suitable as monomers of this group are 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl ethacrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate , 6-hydroxyhexyl (meth) acrylate and mixtures thereof.
  • Suitable additional monomers are also acrylic acid amide, methacrylic acid amide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, n-propyl (meth) acrylamide, N- (n-butyl) (meth) acrylamide, tert-butyl ( meth) acrylamide, n-octyl (meth) acrylamide, 1,1,3,3-tetramethylbutyl (meth) acrylamide, ethylhexyl (meth) acrylamide, and mixtures thereof.
  • nitriles of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids such as acrylonitrile and methacrylonitrile are suitable.
  • Suitable monomers of this group are also N-vinyllactams and their derivatives, which can have, for example, one or more C 1 -C 6 -alkyl substituents (as defined above). These include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam and mixtures thereof.
  • the proportion of monomers whose polymers contain the structural units (C) is usually at least 50% by weight in the water-soluble amphoteric polymer, based on the total weight of the monomers used to prepare the water-soluble polymer (c).
  • the proportion of monomers whose polymers contain the structural units (C) is preferably at least 60% by weight, particularly preferably at least 75% by weight and particularly preferably at least 85% by weight, but not more than 98% by weight , in each case based on the total weight of the monomers which are used to produce the water-soluble polymer (c).
  • the molar ratio of the monomers whose polymers contain the structural units (A) to those whose polymers contain the structural units (B) is usually in the range from 5: 1 to 1: 5, preferably 2: 1 to 1: 2 and is particularly preferably 1: 1.
  • amphoteric polymers (c) are known in the literature, as is their preparation.
  • the amphoteric polymers can be prepared by radical polymerization of the aforementioned monomers in solution, as gel polymerization, precipitation polymerization, water-in-water polymerization, water-in-oil polymerization or by spray polymerization.
  • JP 54-030913 The production is carried out in JP 54-030913 , the disclosure of which is expressly referred to at this point.
  • the water-soluble amphoteric polymers (c) used are preferably those as in EP 0 659 780 A1 , EP 0 919 578 A1 , EP 1 849 803 A1 , JP 08-269891 , JP 2005-023434 and JP 2001-1279595 disclosed.
  • the at least one water-soluble amphoteric polymer (c) is particularly preferred in the process according to the invention for producing paper, for example in an amount of 0.01 to 2.0% by weight, preferably 0.03 to 1.0% by weight 0.1 to 0.5% by weight, based in each case on dry paper stock, are used.
  • the present invention also relates to the papers produced by the process described above, as well as cardboard and cardboard.
  • Wood pulp includes, for example, ground wood, thermomechanical pulp (TMP), chemothermomechanical pulp (CTMP), pressure pulp, semi-pulp, high-yield pulp, and refiner mechanical pulp (RMP).
  • TMP thermomechanical pulp
  • CMP chemothermomechanical pulp
  • RMP refiner mechanical pulp
  • sulfate, sulfite and soda cellulose can be used as the pulp.
  • unbleached pulp also known as unbleached kraft pulp
  • Suitable annual plants for the production of paper stocks are, for example, rice, wheat, sugar cane and kenaf.
  • the process according to the invention is particularly suitable for the production of dry-resistant papers from waste paper (including deinked waste paper) which is used either alone or in a mixture with other fibrous materials.
  • waste paper including deinked waste paper
  • the process according to the invention is of technical interest for the production of paper, paperboard and cardboard from waste paper and in special cases also from deinked waste paper, because it significantly increases the strength properties of the recycled fibers. It is of particular importance for improving the strength properties of graphic papers and packaging papers.
  • the pH of the pulp suspension is, for example, in the range from 4.5 to 8, mostly from 6 to 7.5.
  • an acid such as sulfuric acid or aluminum sulfate can be used to adjust the pH.
  • the order in which components (a), (b) and (c) are added is arbitrary, and the components can be added to the fiber suspension individually or in any mixture.
  • the cationic components namely the (a) trivalent cations in the form of a salt and (b) water-soluble cationic polymers, are first metered into the paper stock.
  • the cationic components (a) and (b) can be added separately or as a mixture to the thick stock (fiber concentration> 15 g / l, for example in the range from 25 to 40 g / l to 60 g / l) or preferably in the Thin material (fiber concentration ⁇ 15 g / l, e.g.
  • the addition point is preferably in front of the sieves, but it can also be between a shear stage and a screen or after it.
  • the addition of the cationic components (a) and (b) to the paper stock can, as described above, take place one after the other, simultaneously or also as a mixture of (a) and (b). If, in the case of water-soluble component (b), a mixture of (i) polymers containing vinylamine units and (ii) polymers containing ethyleneimine units is used, it is also possible to meter them in succession, simultaneously or as a mixture of (i) and (ii).
  • the water-soluble amphoteric polymer (c) is usually only added to the paper stock after the addition of the cationic components (a) and (b), but can also be added to the paper stock at the same time and also in a mixture with (a) and (b).
  • water-soluble amphoteric polymer (c) first and then the cationic components (a) and (b) or first to add one of the cationic components (a) or (b) to the paper stock, then the water-soluble amphoteric polymer (c) and then add the other cationic component (a) or (b).
  • the (a) trivalent cation is preferably added first in the form of a salt, then the (b) water-soluble cationic polymer and then the (c) water-soluble amphoteric polymer.
  • the (a) trivalent cation is added first in the form of a salt, then the (c) water-soluble amphoteric polymer and finally the (b) water-soluble cationic polymer.
  • a mixture of (a) is added first trivalent cation in the form of a salt and the (c) water-soluble amphoteric polymer to the paper stock. Then the (b) water-soluble cationic polymer is metered in.
  • the process chemicals usually used in papermaking can be used in the usual amounts, e.g. Retention aids, drainage aids, other dry strength agents such as starch, pigments, fillers, optical brighteners, defoamers, biocides and paper dyes.
  • the process according to the invention gives papers with a dry-strength finish whose dry strength has an increased dry strength compared with papers produced by known processes.
  • the drainage rate is improved in the method according to the invention compared to known methods.
  • the K value of the polymers was determined according to Fikentscher, CelluloseChemie, Volume 13, 58-64 and 71-74 (1932 ) at a temperature of 25 ° C in 5 wt .-% aqueous saline solutions at a pH of 7 and a polymer concentration of 0.5%.
  • K k * 1000.
  • Alum (technical aluminum sulfate powder [Al 2 (SO 4 ) 3 ⁇ 14H 2 O])
  • Amphoteric polyacrylamide, solids content 19.2% by weight (Harmide® RB 217 from Harima)
  • Amphoteric polyacrylamide solids content 20% by weight (Polystron® PS-GE 200 R from Arakawa)
  • Amphoteric polyacrylamide solids content 20% by weight (Polystron® PS-GE 300 S from Arakawa)
  • Anionic polyacrylamide molecular weight approx. 600,000 Dalton, solids content 16% by weight (Luredur® PR 8284 from BASF SE)
  • Polyallylamine molecular weight about 15,000 Dalton, solids content 93% by weight (PAA-HCI-3S from Nittobo)
  • a paper made from 100% recovered paper (mixture of the types: 1.02, 1.04, 4.01) was whipped free of specks with drinking water at a consistency of 4% in a laboratory pulper and ground to a freeness of 40 ° SR in a laboratory refiner. This substance was then diluted with drinking water to a consistency of 0.7%.
  • the trivalent cations and polymers indicated in the tables were added successively to the paper stock described above with stirring.
  • the polymer concentration of the aqueous solutions of the cationic and anionic polymers was 1% each, and that of the trivalent cation in aqueous solution was 10% each.
  • 0.27% of a commercially available defoamer (Afranil® SLO from BASF SE) was used in all of the examples and comparative examples.
  • the table shows the amounts of the trivalent cations and polymers used in each case in percent by weight, based on the solids content of the paper stock. After the last addition of a water-soluble polymer to the paper stock, enough stock was removed (approx.

Landscapes

  • Paper (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe (a) mindestens eines trivalenten Kations, (b) mindestens eines wasserlöslichen kationischen Polymeren ausgewählt aus der Gruppe der (i) Vinylamineinheiten enthaltenden Polymeren und (ii) Ethylenimineinheiten enthaltenden Polymeren und (c) mindestens eines wasserlöslichen amphoteren Polymeren zu einem Papierstoff, Entwässern des Papierstoffs unter Blattbildung und Trocknen des erhaltenen Papierproduktes, wobei das (i) Vinylamineinheiten enthaltende Polymer und das (c) mindestens eine wasserlösliche amphotere Polymer wie in den Ansprüchen 1 und 2 definiert sind.
  • Aus der Literatur sind bereits zahlreiche Papiere mit hoher Trockenfestigkeit sowie die Verfahren zu ihrer Herstellung bekannt.
  • Aus JP 54-030913 ist ein Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit bekannt, bei dem zum Papierstoff zunächst eine Aluminiumsulfatlösung zugegeben wird. Danach wird ein wasserlösliches amphoteres Polymerisat zudosiert. Anschließend wird der Papierstoff auf der Papiermaschine unter Blattbildung entwässert, und die Papierprodukte getrocknet. Als amphoteres Polymerisat kommen beispielsweise Copolymere von Acrylamid, Acrylsäure und Dimethylaminoethyl(meth)acrylat in Frage.
  • Aus der DE 35 06 832 A1 ist ein Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit bekannt, bei dem man zum Papierstoff zunächst ein wasserlösliches kationisches Polymerisat und anschließend ein wasserlösliches anionisches Polymerisat zugibt. Als anionische Polymerisate kommen beispielsweise Homo- oder Copolymerisate von ethylenisch ungesättigten C3 - C5-Carbonsäuren in Betracht. Die Copolymerisate enthalten mindestens 35 Gew.-% einer ethylenisch ungesättigten C3 - C5-Carbonsäure (z.B. Acrylsäure) einpolymerisiert. Als kationische Polymerisate werden in den Beispielen Polyethylenimin, Polyvinylamin, Polydiallyldimethylammoniumchlorid und mit Epichlorhydrin umgesetzte Kondensationsprodukte aus Adipinsäure und Diethylentriamin beschrieben. Auch die Verwendung von partiell hydrolysierten Homo- und Copolymerisaten des N-Vinylformamids ist in Betracht gezogen worden.
  • Die JP 02-112498 betrifft ein Verfahren zur Herstellung von Wellpappe, wobei man Alaun, eine Polyallylamin und einen anionisches oder amphoteres Polymer zu einer Fasersuspension dosiert. Die Kombination ergibt Papiere mit einer hohen Festigkeit.
  • In JP 05-272092 wird ein Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit beschrieben, in dem man zum Papierstoff zunächst eine Aluminiumsulfatlösung zugibt, und danach ein wasserlösliches amphoteres Polymerisat mit hohem Molekulargewicht zudosiert, anschließend den Papierstoff auf der Papiermaschine unter Blattbildung entwässert und die Papierprodukte trocknet. Als amphotere Polymerisate werden beispielsweise Copolymere aus Acrylamid, Acrylsäure, Dimethylaminoethyl-(meth)acrylat, (Meth)acrylamid und Natrium(meth)allylsulfonat genannt. Diese amphoteren Polymerisate zeichnen sich durch sehr hoch Molekulargewichte und geringe Lösungsviskositäten aus.
  • Eine Variante des in JP 05-272092 beschrieben Verfahrens ist in JP 08-269891 offenbart. Bei diesem Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit wird zum Papierstoff ebenfalls zunächst eine Aluminiumsulfatlösung zugegeben, und danach ein wasserlösliches amphoteres Polymerisat mit einem hohen Molekulargewicht zudosiert, anschließend wird der Papierstoff auf der Papiermaschine unter Blattbildung entwässert und die Papierprodukte getrocknet. Als amphotere Polymerisate werden beispielsweise Copolymere aus Acrylamid, Acrylsäure, Dimethylaminoethylmethacrylate, (Meth)acrylamid, Natrium(meth)allylsulfonat und einem Vernetzter wie Methylenbisacrylamide oder Triallylamin verwendet. Diese amphoteren Polymerisate haben ein sehr hohes Molekulargewicht und eine gegenüber JP 05-272092 weiter reduzierte Lösungsviskosität.
  • Die EP 0 659 780 A1 beschreibt ein Verfahren zur Herstellung von Polymeren mit einem gewichtsmittleren Molekulargewicht von 1 500 000 bis 10 000 000 (a) und einem gewichtsmittleren quadratischen Mittelwert-Radius von 30 bis 150 nm (b), wobei das Verhältnis (b)/(a) ≤ 0,00004 ist, sowie deren Anwendung als Verfestigungsmittel.
  • WO 98/06898 A1 beschreibt ein Verfahren zur Papierherstellung, bei dem dem Papierstoff eine kationische Stärke oder ein kationisches Nassfestmittel und ein wasserlösliches amphoteres Polymer zugesetzt wird. Dieses amphotere Polymer ist aufgebaut aus den nicht ionischen Monomeren Acrylamid und Methacrylamid, einem anionischen Monomer, einem kationischen Monomer und einem Vernetzer, wobei die Menge von anionischem und kationischem Monomer nicht mehr als 9 Gew.-% der gesamten im amphoteren Polymer verwendeten Monomere ausmacht.
  • Die JP-A-1999-140787 betrifft ein Verfahren zur Herstellung von Wellpappe, wobei man zur Verbesserung der Festigkeitseigenschaften eines Papierprodukts zum Papierstoff 0,05 bis 0,5 Gew.-%, bezogen auf trockenen Papierstoff, eines Polyvinylamins, das durch Hydrolyse von Polyvinylformamid mit einem Hydrolysegrad von 25 bis 100% zugänglich ist, in Kombination mit einem anionischen Polyacrylamid zugibt, den Papierstoff dann unter Blattbildung entwässert und das Papier trocknet.
  • Die EP 0 919 578 A1 betrifft amphotere Polymere (Typ B), die mittels einer zweistufigen Polymerisation hergestellt werden. Zunächst wird in einer ersten Stufe ein Polymer (Typ A) hergestellt durch die Copolymerisation von Methallylsulfonsäure mit anderen Vinylmonomeren, dann erfolgt in Gegenwart des Polameren vom Typ A eine weitere Polymerisation von Vinylmonomeren zum Polymer vom Typ B, wobei die Polymere Typ A ein Molekulargewicht von 1 000 bis 5 000 000 und die Polymere Typ B ein Molekulargewicht von 100 000 bis 10 000 000 aufweisen. Weiterhin umfasst diese Schrift die Verwendung der Polymere vom Typ B als Verfestigungsmittel zur Papierherstellung sowie die damit hergestellten Papiere, wobei auch die Möglichkeit einer Kombination mit Alaun und anionischen Polyacrylamiden beschrieben wird. Schließlich wird auch die Möglichkeit der Modifikation der Polymeren vom Typ B durch einen Hofmann Abbau erwähnt.
  • Aus der JP 2001-279595 ist ein Papierprodukt mit verbesserten Festigkeitseigenschaften bekannt, welches durch die Dosierung einer Mischung aus einem amphoteren, kationischen oder anionischen Polymeren und einer wasserlöslichen Aluminiumlösung zu dem Faserstoff erhalten wird.
  • Die JP 2001-279595 betrifft ein Verfahren zur Herstellung von Papier mit hoher Festigkeit, wobei eine Mischung eines kationischen, anionischen oder amphoteren Polyacrylamids mit einer wasserlöslichen Aluminiumverbindung den Fasern zugesetzt wird. Danach erfolgt eine Zudosierung eines weiteren Polyacrylamids. Dadurch wird nicht nur die Festigkeit erhöht, sondern gleichzeitig auch die Entwässerung verbessert.
  • Aus der WO 03/052206 A1 ist ein Papierprodukt mit verbesserten Festigkeitseigenschaften bekannt, das dadurch erhältlich ist, dass man auf die Oberfläche eines Papierprodukts ein Polyvinylamin und eine polymere anionische Verbindung, die mit Polyvinylamin einen Polyelektrolytkomplex bilden kann, oder eine polymere Verbindung mit Aldehydfunktionen wie Aldehydgruppen enthaltende Polysaccharide aufbringt. Man erhält nicht nur eine Verbesserung der Trocken- und Nassfestigkeit des Papiers, sondern beobachtet auch eine Leimungswirkung der Behandlungsmittel.
  • In JP 2005-023434 wird ein Verfahren zur Herstellung von Papier mit hoher Festigkeit beschrieben, welches durch die Dosierung von zwei Polymeren erhalten wird. Bei dem ersten Polymeren handelt es sich um ein verzweigtes amphoteres Polyacrylamid. Als zweites Polymer kommt ein Copolymer eines kationischen Vinylmonomeren als Hauptmonomer in Betracht.
  • In der DE 10 2004 056 551 A1 wird ein weiteres Verfahren zur Verbesserung der Trockenfestigkeit von Papier offenbart. Bei diesem Verfahren erfolgt eine getrennte Zugabe eines Vinylamineinheiten enthaltenden Polymeren und einer polymeren anionischen Verbindung zu einem Papierstoff, Entwässern des Papierstoffs und Trocknen der Papierprodukte, wobei man als polymere anionische Verbindung mindestens ein Copolymerisat einsetzt, das erhältlich ist durch Copolymerisieren von
    1. (a) mindestens eines N-Vinylcarbonsäureamids der Formel
      Figure imgb0001
      in der R1, R2 = H oder C1- bis C6-Alkyl bedeuten,
    2. (b) mindestens eines Säuregruppen enthaltenden monoethylenisch ungesättigten Monomeren und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen und gegebenenfalls
    3. (c) anderen monoethylenisch ungesättigten Monomeren, und gegebenenfalls
    4. (d) Verbindungen, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweisen.
  • Aus der WO 2006/075115 A1 ist die Verwendung von Hofmann-Abbauprodukten von Copolymeren des Acrylamids oder Methacrylamids in Kombination mit anionischen Polymeren mit einer anionischen Ladungsdichte von > 0.1 meq/g zur Herstellung von Papier und Karton mit einer hohen Trockenfestigkeit bekannt.
  • In WO 2006/120235 A1 wird ein Verfahren zur Herstellung von Papieren mit einem Füllstoffgehalt von mindestens 15 Gew.-% beschrieben, bei dem Füllstoff und Fasern gemeinsam mit kationischen und anionischen Polymeren behandelt werden. Dabei erfolgt die Behandlung abwechselnd mit kationischen und anionischen Polymeren und umfasst mindestens drei Schritte.
  • Die WO 2006/090076 A1 betrifft ebenfalls ein Verfahren zur Herstellung von Papier und Pappe mit hoher Trockenfestigkeit, wobei dem Papierstoff drei Komponenten zugesetzt werden:
    1. (a) ein Polymer mit primären Aminogruppen und einer Ladungsdichte von > 1,0 meq/g,
    2. (b) ein zweites, anderes kationisches Polymer mit einer Ladungsdichte von > 0,1 meq/g, das durch radikalische Polymerisation von kationischen Monomeren erhältlich ist, und
    3. (c) ein anionisches Polymer mit einer Ladungsdichte von > 0,1 meq/g.
  • Aus EP 1 849 803 A1 ist ebenfalls ein Papieradditiv zur Festigung bekannt, dass als wasserlösliches Polymer durch Polymerisieren von (Meth)acrylamid, einer α,β-ungesättigten Mono- oder Dicarbonsäure oder Salzen davon, einem kationischen Monomer und einem vernetzenden Monomer erhalten wird. In einer zweiten Stufe wird mit weiterem Persulfatkatalysator das verbliebene Restmonomer polymerisiert.
  • Auch wenn schon zahlreiche Verfahren in der Literatur zur Herstellung von Papieren mit hoher Trockenfestigkeit bekannt sind, besteht ein kontinuierlicher Bedarf in der Papierindustrie an neuen, alternativen Verfahren zu den bereits bekannten.
  • Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein weiteres Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit zur Verfügung zu stellen, bei dem die Trockenfestigkeitseigenschaften der Papierprodukte gegenüber denjenigen bekannter Produkte weiter verbessert wird, und bei dem gleichzeitig eine schnellere Entwässerung des Papierstoffs ermöglicht wird.
  • Die Aufgaben werden erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit, durch Zugabe
    1. (a) mindestens eines trivalenten Kations in Form eines Salzes,
    2. (b) mindestens eines wasserlöslichen kationischen Polymeren und (c) mindestens eines wasserlöslichen amphoteren Polymeren
    zum Papierstoff, Entwässern des Papierstoffs unter Blattbildung und anschließende Trocknen der Papierprodukte, wobei das wasserlösliche kationische Polymere (b) ausgewählt ist aus der Gruppe der (i) Vinylamineinheiten enthaltende Polymere und (ii) Ethylenimineinheiten enthaltende Polymere, wobei das (i) Vinylamineinheiten enthaltende Polymer und das (c) mindestens eine wasserlösliche amphotere Polymer wie in den Ansprüchen 1 und 2 definiert sind.
  • Die genannten Komponenten des Verfestigungssystems können in jeder belieben Reihenfolge oder auch als Mischung von zwei oder mehr Komponenten dem Papierstoff zugesetzt werden.
  • Als Trivalente Kationen eignen sich in dem erfindungsgemäßen Verfahren prinzipiell alle dreiwertigen Metall- oder Halbmetallkationen. Bevorzugte Metallkationen sind Al3+, Zr3+ und Fe3+. Ganz besonders bevorzugt ist Al3+.
  • Die Metall- und Halbmetallkationen werden in Form ihrer Salze eingesetzt. Im Falle von Al3+ kann dieses beispielsweise in Form von Aluminiumsulfat, Polyaluminiumchlorid oder Aluminumlactat eingesetzt werden.
  • Selbstverständlich können auch beliebige Mischungen der genannten dreiwertigen Metallkationen eingesetzt werden, bevorzugt wird jedoch nur ein dreiwertiges Metallkation in dem erfindungsgemäßen Verfahren eingesetzt. Darüber hinaus können von diesem Metallkation unterschiedliche Salze in beliebigen Mischungen eingesetzt werden. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein dreiwertiges Metallkation in einer der beschriebenen Salzformen verwendet.
  • Die trivalenten Kationen werden üblicherweise in Mengen zwischen 3 und 100 Mol pro t trockenes Papier dem Papierstoff zugesetzt, bevorzugt im Bereich von 10 bis 30 Mol pro t trockenes Papier.
  • Das wasserlösliche kationische Polymere (b) ist ausgewählt aus der Gruppe der (i) Vinylamineinheiten enthaltende Polymere und (ii) Ethylenimineinheiten enthaltende Polymere.
  • Die kationischen Polymere (b) sind wasserlöslich. Die Löslichkeit in Wasser unter Normalbedingen (20 °C, 1013 mbar) und pH 7,0 beträgt beispielsweise mindestens 5 Gew.-%, vorzugsweise mindestens 10 Gew.-%.
  • Die Ladungsdichte der kationischen Polymeren (ohne Gegenion) beträgt beispielsweise mindestens 1,0 meq/g und liegt vorzugsweise im Bereich von 4 bis 10 meq/g.
  • Die wasserlöslichen kationischen Polymere (b) weisen üblicherweise mittlere Molekulargewichte im Bereich von 10 000 bis 10 000 000 Dalton, bevorzugt im Bereich von 20 000 bis 5 000 000 Dalton, besonders bevorzugt im Bereich von 40 000 bis 3 000 000 Dalton auf.
  • Vinylamineinheiten enthaltende Polymerisate (i) sind bekannt, vgl. die zum Stand der Technik genannte DE 35 06 832 A1 und DE 10 2004 056 551 A1 .
  • Vorzugsweise setzt man als (i) Vinylamineinheiten enthaltende Polymere die Reaktionsprodukte ein, die durch Polymerisieren von N-Vinylformamid und anschließende Abspaltung von Formylgruppen aus den in das Polymerisat einpolymerisierten Vinylformamideinheiten unter Bildung von Aminogruppen erhältlich sind.
  • In einer anderen Ausführungsform der Erfindung sind die Vinylamineinheiten enthaltenden Polymerisate amphoter, wenn sie eine kationische Gesamtladung aufweisen. Der Gehalt an kationischen Gruppen im Polymeren soll dabei mindestens 5 Mol-%, vorzugsweise mindestens 10 Mol-% über dem Gehalt an anionischen Gruppen liegen. Solche Polymere sind erhältlich durch Polymerisieren von
    • (1.) mindestens eines Monomeren der Formel
      Figure imgb0002
      in der R1, R2 = H oder C1- bis C6-Alkyl bedeuten,
    • (2.1) mindestens jeweils eines eine Säurefunktion tragenden Monomeren ausgewählt aus monoethylenisch ungesättigten Sulfonsäuren, monoethylenisch ungesättigten Phosphonsäuren und monoethylenisch ungesättigten Carbonsäuren mit 3 bis 8 C-Atomen im Molekül und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen,
    • (2.2) gegebenenfalls mindestens eines anderen neutralen und/oder eines kationischen Monomeren und
    • (3.) gegebenenfalls mindestens eines vernetzend wirkenden Monomeren mit mindestens zwei Doppelbindungen im Molekül
    und anschließende teilweise oder vollständige Abspaltung der Gruppen -CO-R1 aus den in das Polymerisat einpolymerisierten Einheiten der Monomeren (I) unter Bildung von Aminogruppen, wobei der Gehalt an Aminogruppen im Copolymerisat mindestens 5 Mol-% über dem Gehalt an einpolymerisierten Säuregruppen der Monomere (2.1) beträgt.
  • Von Interesse sind außerdem amphotere Vinylamineinheiten enthaltende Polymere, die eine kationische Gesamtladung tragen und die beispielsweise durch Copolymerisieren von
    • (1.) N-Vinylformamid,
    • (2.1) Acrylsäure, Methacrylsäure und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen und
    • (2.2) gegebenenfalls Acrylnitril und/oder Methacrylnitril
    und anschließende teilweise oder vollständige Abspaltung von Formylgruppen aus dem in das Polymerisat einpolymerisierten N-Vinylformamid unter Bildung von Aminogruppen erhältlich sind, wobei der Gehalt an Aminogruppen im Copolymerisat mindestens 5 Mol-% über dem Gehalt an einpolymerisierten Säuregruppen der Monomere (2.1) beträgt.
  • Beispiele für Monomere der Formel (I) sind N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N-Vinyl-N-ethylacetamid, N-Vinylpropionamid und N-Vinyl-N-methylpropionamid und N-Vinylbutyramid. Die Monomeren der Gruppe (a) können allein oder in Mischung bei der Copolymerisation mit den Monomeren der anderen Gruppen eingesetzt werden. Bevorzugt eingesetztes Monomer dieser Gruppe ist N-Vinylformamid.
  • Diese Polymere können gegebenenfalls modifiziert sein, indem die N-Vinylcarbonsäureamide (1.) zusammen mit (2.) mindestens einem anderen monoethylenisch ungesättigten Monomeren copolymerisiert und die Copolymerisate anschließend unter Bildung von Aminogruppen hydrolysiert werden. Falls bei der Copolymerisation anionische Monomere eingesetzt werden, so wird die Hydrolyse der einpolymerisierten Vinylcarbonsäureamideinheiten so weit geführt, dass der molare Überschuss an Amineinheiten gegenüber den anionischen Einheiten im Polymerisat mindestens 5 Mol-% beträgt.
  • Beispiele für Monomere der Gruppe (2.) sind Ester von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit C1-C30-Alkanolen, C2-C30-Alkandiolen und C2-C30-Aminoalkoholen, Amide von α,β-ethylenisch ungesättigten Monocarbonsäuren und deren N-Alkyl- und N,N-Dialkylderivate, Nitrile von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren, Ester von Vinylalkohol und Allylalkohol mit C1-C30-Monocarbonsäuren, N-Vinyllactame, stickstoffhaltige Heterocyclen mit α,β-ethylenisch ungesättigten Doppelbindungen, Vinylaromaten, Vinylhalogenide, Vinylidenhalogenide, C2-C8-Monoolefine und Mischungen davon.
  • Geeignete Vertreter sind z.B. Methyl(meth)acrylat (worin (Meth)acrylat im Sinne der vorliegenden Erfindung sowohl Acrylat als auch Methacrylat bedeutet), Methylethacrylat, Ethyl(meth)acrylat, Ethylethacrylat, n-Butyl(meth)acrylat, Isobutyl(meth)acrylat, tert.-Butyl(meth)acrylat, tert.-Butylethacrylat, n-Octyl(meth)acrylat, 1,1,3,3-Tetramethylbutyl(meth)acrylat, Ethylhexyl(meth)acrylat und Mischungen davon.
  • Geeignete zusätzliche Monomere der Guppe (2.) sind weiterhin die Ester von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Aminoalkoholen, vorzugsweise C2-C12-Aminoalkoholen. Diese können am Aminstickstoff C1-C8-monoalkyliert oder-dialkyliert sein. Als Säurekomponente dieser Ester eignen sich z.B. Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure, Itaconsäure, Crotonsäure, Maleinsäureanhydrid, Monobutylmaleat und Gemische davon. Bevorzugt werden Acrylsäure, Methacrylsäure und deren Gemische eingesetzt. Dazu zählen beispielsweise N-Methylaminomethyl(meth)acrylat, N-Methylaminoethyl(meth)acrylat, N,N-Dimethylaminomethyl(meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethylaminoethyl(meth)acrylat, N,N-Dimethylaminopropyl(meth)acrylat, N,N-Diethylaminopropyl(meth)acrylat und N,N-Dimethylaminocyclohexyl(meth)acrylat.
  • Weiterhin sind als Monomere der Gruppe (2.) geeignet 2-Hydroxyethyl(meth)acrylat, 2-Hydroxyethylethacrylat, 2-Hydroxypropyl(meth)acrylat, 3-Hydroxypropyl(meth)acrylat, 3-Hydroxybutyl(meth)acrylat, 4-Hydroxybutyl(meth)acrylat, 6-Hydroxyhexyl(meth)acrylat und Mischungen davon.
  • Geeignete zusätzliche Monomere der Gruppe (2.) sind weiterhin Acrylsäureamid, Methacrylsäureamid, N-Methyl(meth)acrylamid, N-Ethyl(meth)acrylamid, n-Propyl(meth)acrylamid, N-(n-Butyl)(meth)acrylamid, tert.-Butyl(meth)acrylamid, n-Octyl(meth)acrylamid, 1,1,3,3-Tetramethylbutyl(meth)acrylamid, Ethylhexyl(meth)acrylamid und Mischungen davon.
  • Darüber hinaus sind als weitere Monomere der Gruppe (2.) N-[2-(Dimethylamino)ethyl]acrylamid, N-[2-(Dimethylamino)ethyl]methacrylamid, N-[3-(Dimethylamino)propyl]acrylamid, N-[3-(Dimethylamino)propyl]methacrylamid, N-[4-(Dimethylamino)butyl]acrylamid, N-[4-(Dimethylamino)butyl]methacrylamid, N-[2-(Diethylamino)ethyl]acrylamid, N-[2-(Diethylamino)ethyl]methacrylamid und Mischungen davon geeignet.
  • Weitere Beispiele für Monomere der Gruppe (2.) sind Nitrile von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren wie beispielsweise Acrylnitril und Methacrylnitril. Die Anwesenheit von Einheiten dieser Monomeren im Copolymerisat führt während bzw. nach der Hydrolyse zu Produkten, die Amidineinheiten aufweisen, vgl. z.B. EP 0 528 409 A1 oder DE 43 28 975 A1 . Bei der Hydrolyse von N-Vinylcarbonsäureamidpolymeren entstehen nämlich in einer sekundären Reaktion Amidineinheiten, indem Vinylamineinheiten mit einer benachbarten Vinylformamideinheit oder- sofern eine Nitrilgruppe als benachbarte Gruppe im Polymerisat vorhanden ist - damit reagieren. Im Folgenden bedeutet die Angabe von Vinylamineinheiten in den amphoteren Copolymerisaten oder in nicht modifizierten Homo- bzw. Copolymerisaten immer die Summe aus Vinylamin- und Amidineinheiten.
  • Geeignete Monomere der Gruppe (2.) sind weiterhin N-Vinyllactame und deren Derivate, die z.B. einen oder mehrere C1-C6-Alkylsubstituenten (wie oben definiert) aufweisen können. Dazu zählen N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinyl-5-methyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl-2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2-caprolactam und deren Mischungen.
  • Weiterhin sind als Monomere der Gruppe (2.) N-Vinylimidazole und Alkylvinylimidazole geeignet, insbesondere Methylvinylimidazole wie beispielsweise 1-Vinyl-2-methylimidazol, 3-VinylimidazolN-oxid, 2- und 4-Vinylpyridin-N-oxide sowie betainische Derivate und Quaternisierungsprodukte dieser Monomere sowie Ethylen, Propylen, Isobutylen, Butadien, Styrol, α-Methylstyrol, Vinylacetat, Vinylpropionat, Vinylchlorid, Vinylidenchlorid, Vinylfluorid, Vinylidenfluorid und Mischungen davon.
  • Die zuvor genannten Monomeren können einzeln oder in Form von beliebigen Mischungen eingesetzt werden. Typischerweise werden sie in Mengen von 1 bis 90 Mol%, bevorzugt 10 bis 80 Mol% und besonders bevorzugt 10 bis 60 Mol% eingesetzt.
  • Zur Herstellung von amphoteren Copoylmerisaten kommen als andere monoethylenisch ungesättigte Monomere der Gruppe (2.) auch anionische Monomere in Betracht, die oben als Monomere (2.1) bezeichnet sind. Sie können gegebenenfalls mit den oben beschriebenen neutralen und/oder kationischen Monomeren (2.2) copolymerisiert werden. Die Menge an anionischen Monomeren (2.1) beträgt jedoch höchstens 45 Mol-%, damit das entstehende amphotere Copolymerisat insgesamt eine kationische Ladung aufweist.
  • Beispiele für anionische Monomere der Gruppe (2.1) sind ethylenisch ungesättigte C3-bis C8-Carbonsäuren wie beispielsweise Acrylsäure, Methacrylsäure, Dimethacrylsäure, Ethacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure, Mesaconsäure, Citraconsäure, Methylenmalonsäure, Allylessigsäure, Vinylessigsäure und Crotonsäure. Als Monomere dieser Gruppe eignen sich außerdem Sulfongruppen enthaltende Monomere wie Vinylsulfonsäure, Acrylamido-2-methylpropansulfonsäure und Styrolsulfonsäure sowie Phosphongruppen enthaltende Monomere wie Vinylphosphonsäure. Die Monomeren dieser Gruppe können allein oder in Mischung miteinander, in teilweise oder in vollständig neutralisierter Form bei der Copolymerisation eingesetzt werden. Zur Neutralisation verwendet man beispielsweise Alkalimetall- oder Erdalkalimetallbasen, Ammoniak, Amine und/oder Alkanolamine. Beispiele hierfür sind Natronlauge, Kalilauge, Soda, Pottasche, Natriumhydrogencarbonat, Magnesiumoxid, Calciumhydroxid, Calciumoxid, Triethanolamin, Ethanolamin, Morpholin, Diethylentriamin oder Tetraethylenpentamin.
  • Eine weitere Modifizierung der Copolymerisate ist dadurch möglich, dass man bei der Copolymerisation Monomere der Gruppe (3.) einsetzt, die mindestens zwei Doppelbindungen im Molekül enthalten, z.B. Triallylamin, Methylenbisacrylamid, Glykoldiacrylat, Glykoldimethacrylat, Glycerintriacrylat, Pentaerythrittriallylether, mindestens zweifach mit Acrylsäure und/oder Methacrylsäure veresterte Polyalkylenglykole oder Polyole wie Pentaerythrit, Sobit oder Glukose. Es handelt sich dabei um sogenannte Vernetzer. Falls mindestens ein Monomer der vorstehenden Gruppe bei der Polymerisation eingesetzt wird, so betragen die angewendeten Mengen bis zu 2 Mol-%, z.B. 0,001 bis 1 Mol-%.
  • Weiterhin kann es zur Modifizierung der Polymeren sinnvoll sein, den Einsatz vorstehender Vernetzter mit dem Zusatz von Reglern zu kombinieren. Eingesetzt werden typischerweise 0,001 bis 5 Mol-%. Anwendung finden können alle literaturbekannten Regler, z.B. Schwefelverbindungen wie Mercaptoethanol, 2-Ethylhexylthioglycolat, Thioglycolsäure und Dodecylmercaptan sowie Natriumhypophosphit, Ameisensäure oder Tribromchlormethan sowie Terpinolen.
  • Zu den Vinylamineinheiten enthaltenden Polymeren (i) gehören auch hydrolysierte Pfropfpolymerisate von beispielsweise N-Vinylformamid auf Polyalkylenglykolen, Polyvinylacetat, Polyvinylalkolhol, Polyvinylformamiden, Polysacchariden wie Stärke, Oligosacchariden oder Monosacchariden. Die Pfropfpolymerisate sind dadurch erhältlich, dass man beispielsweise N-Vinylformamid in wässrigem Medium in Gegenwart mindestens einer der genannten Pfropfgrundlagen gegebenenfalls zusammen mit copolymerisierbaren anderen Monomeren radikalisch polymerisiert und die aufgepfropften Vinylformamideinheiten anschließend in bekannten Weise zu Vinylamineinheiten hydrolysiert.
  • Die Hydrolyse der zuvor beschriebenen Copolymerisate kann in Gegenwart von Säuren oder Basen oder auch enzymatisch durchgeführt werden. Bei der Hydrolyse mit Säuren liegen die aus den Vinylcarbonsäureamideinheiten entstehenden Vinylamingruppen in Salzform vor. Die Hydrolyse von Vinylcarbonsäureamidcopolymerisaten ist in der EP 0 438 744 A1 , Seite 8, Zeile 20 bis Seite 10, Zeile 3, ausführlich beschrieben. Die dort gemachten Ausführungen gelten entsprechend für die Herstellung der erfindungsgemäß einzusetzenden Vinylamineinheiten enthaltenden rein kationischen und/oder amphoteren Polymeren mit einer kationischen Gesamtladung.
  • Die Herstellung der oben beschriebenen Vinylamineinheiten enthaltenden Homo- und Copolymerisate (i) kann durch Lösungs-, Fällungs-, Suspensions- oder Emulsionspolymerisation erfolgen. Bevorzugt ist die Lösungspolymerisation in wässrigen Medien. Geeignete wässrige Medien sind Wasser und Gemische aus Wasser und mindestens einem wassermischbaren Lösungsmittel, z.B. einem Alkohol, wie Methanol, Ethanol, n-Propanol oder Isopropanol.
  • Zu den Ethylenimineinheiten enthaltenden Polymeren (ii) gehören alle Polymere, die durch Polymerisation von Ethylenimin in Gegenwart von Säuren, Lewisäuren oder Halogenalkanen erhältlich sind wie Homopolymerisate des Ethylenimins oder Pfropfpolymerisate von Ethylenimin, vgl. US 2, 182, 306 oder US 3,203,910 . Diese Polymeren können gegebenenfalls nachträglich einer Vernetzung unterworfen werden. Als Vernetzer kommen z.B. alle multifunktionellen Verbindungen in Betracht, die gegenüber primären Aminogruppen reaktive Gruppen enthalten z.B. multifunktionelle Epoxide wie Bisglycidylether von Oligo- oder Polyethylenoxiden oder anderen multifunktionellen Alkoholen wie Gylcerin oder Zuckern, multifunktionelle Carbonsäureester, mulifunktionelle Isocyante, multifunktionelle Acrylsäure- oder Methacrylsäureester, multifunktionelle Acrylsäure - oder Methacrylsäureamide, Epichlorhydrin, multifunktionelle Säurehalogenide, multifunktionelle Nitrile, α, ω-Chlorhydrinether von Oligo- oder Polyethylenoxiden oder von anderen multifunktionellen Alkoholen wie Glycerin oder Zuckern, Divinylsulfon, Maleinsäureanhydrid oder ω-Halogencarbonsäurechloride, multifunktionelle Halogenalkane insbesondere α,ω-Dichloralkane. Weitere Vernetzer sind in WO 97/25367 A1 , Seiten 8 bis16 beschrieben.
  • Ethylenimineinheiten enthaltende Polymere sind beispielsweise aus EP 0 411 400 A1 , DE 24 34 816 A1 und US 4,066,494 bekannt.
  • Als (ii) Ethylenimineinheiten enthaltende Polymere verwendet man z.B. bei dem erfindungsgemäßen Verfahren mindestens ein wasserlösliches kationisches Polymer aus der Gruppe der
    • Homopolymerisate des Ethylenimins,
    • mit mindestens bifunktionellen Vernetzern umgesetzten Polyethylenimine,
    • mit Ethylenimin gepfropften Polyamidoamine, die mit mindestens bifunktionellen Vernetzern umgesetzt sind,
    • Umsetzungsprodukte von Polyethyleniminen mit einbasischen Carbonsäuren zu amidierten Polyethyleniminen,
    • Michaeladditionsprodukte von Polyethyleniminenen an ethylenisch ungesättigte Säuren, Salze, Ester, Amide oder Nitrile von monoethylenisch ungesätitgten Carbonsäuren,
    • phosphonomethylierten Polyethylenimine,
    • carboxylierten Polyethylenimine und
    • alkoxylierten Polyethylenimine.
  • Polymere, die dadurch erhalten werden, dass man zunächst mindestens eine Polycarbonsäure mit mindestens einem Polyamin zu Polyamidoamine kondensiert, dann mit Ethylenimin pfropft und die Umsetzungsprodukte anschließend mit einer der oben genanten Verbindungen vernetzt, gehören zu den bevorzugt in Betracht kommenden Ethylenimineinheiten enthaltenden Verbindungen. Ein Verfahren zur Herstellung solcher Verbindungen ist beispielsweise in DE 24 34 816 A1 beschrieben, wobei α,ω-Chlorhydrinether von Oligo- oder Polyethylenoxiden als Vernetzer Anwendung finden.
  • Besonders bevorzugt sind Produkte der beiden vorstehenden Typen, die einer Ultrafiltration unterzogen und so in ihrer Molekulargewichtsverteilung optimiert wurden. Solche ultrafiltrierten Produkte werden ausführlich in WO 00/67884 A1 und WO 97/25367 A1 beschrieben. Auf diese Publikationen und die darin enthaltende Offenbarung wird an dieser Stelle ausdrücklich Bezug genommen.
  • Umsetzungsprodukte von Polyethyleniminen mit einbasischen Carbonsäuren zu amidierten Polyethyleniminen sind aus der WO 94/12560 A1 bekannt. Michaeladditionsprodukte von Polyethyleniminenen an ethylenisch ungesättigten Säuren, Salzen, Estern, Amiden oder Nitrilen von monoethylenisch ungesätitgten Carbonsäuren sind Gegenstand der WO 94/14873 A1 . Phosphonomethylierte Polyethylenimine werden ausführlich in der WO 97/25367 A1 beschrieben. Carboxylierten Polyethylenimine sind beispielsweise mit Hilfe einer Streckersynthese durch Umsetzung von Polyethyleniminen mit Formaldehyd und Ammoniak/Cyanwasserstoff und Hydrolyse der Umsetzungsprodukte erhältlich. Alkoxylierte Polyethylenimine sind durch Umsetzung von Polyethyleiminen mit Alkylenoxiden wie Ethylenoxid und/oder Propylenoxid herstellbar.
  • In dem erfindungsgemäßen Verfahren kann als wasserlösliches kationisches Polymer (b) die (i) Vinylamineinheiten enthaltenden Polymere oder (ii) Ethylenimineinheiten enthaltenden Polymere jeweils allein eingesetzt werden. Selbstverständlich können auch beliebige Mischung aus (i) Vinylamineinheiten enthaltendem Polymer und (ii) Ethylenimineinheiten enthaltendem Polymer eingesetzt werden. In einer solchen Mischung beträgt das Gewichtsverhältnis von (i) Vinylamineinheiten enthaltenden Polymeren zu (ii) Ethylenimineinheiten enthaltenden Polymeren beispielsweise 10:1 bis 1:10, vorzugsweise im Bereich von 5:1 bis 1:5, und besonders bevorzugt im Bereich von 2:1 bis 1:2.
  • Das mindestens eine wasserlösliche kationische Polymere (b) wird in dem erfindungsgemäßen Verfahren zur Herstellung von Papier beispielsweise in einer Menge von 0,01 bis 2,0 Gew.-%, vorzugsweise 0,03 bis 1,0 Gew.-%, besonders bevorzugt 0,1 bis 0,5 Gew.-%, jeweils bezogen auf trockenen Papierstoff, eingesetzt.
  • Die amphoteren Polymere (c) sind wasserlöslich. Die Löslichkeit in Wasser unter Normalbedingungen (20 °C, 1013 mbar) und pH 7,0 beträgt beispielsweise mindestens 5 Gew.-%, vorzugsweise mindestens 10 Gew.-%.
  • Die in dem erfindungsgemäßen Verfahren einsetzbaren wasserlöslichen amphoteren Polymere (c) sind aus mindestens drei Struktureinheiten aufgebaut:
    1. (A) Struktureinheiten, die eine permanent kationische oder eine in wässrigen Medium protonierbare Gruppe tragen,
    2. (B) Struktureinheiten, die eine in wässrigem Medium deprotonierbare Gruppe tragen, und
    3. (C) nichtionische Struktureinheiten,
    wobei man als Monomere, deren Polymere Struktureinheiten (B) enthalten, Monomere der Formel (II) sowie deren Salze.
    Figure imgb0003
    • wobei R1 = H oder eine C1-C4-Alkylgruppe und
    • n eine ganze Zahl im Bereich von 1 bis 8ist,
    • verwendet.
  • Darüber hinaus können die wasserlöslichen amphoteren Polymere (c) noch Vernetzer und/oder Regler enthalten. Bei derartigen Vernetzern und Reglern handelt es sich ebenfalls um diejenigen, die bereits bei den wasserlöslichen kationischen Polymeren (b) Anwendung finden.
  • Beispiele für Monomere, deren Polymere Struktureinheiten (A) enthalten, sind Ester von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit C2-C30-Aminoalkoholen, Amide von α,β-ethylenisch ungesättigten Monocarbonsäuren und deren N-Alkyl- und N,N-Dialkylderivate, stickstoffhaltige Heterocyclen mit α,β-ethylenisch ungesättigten Doppelbindungen und Mischungen davon.
  • Geeignete Monomere dieser Gruppe sind die Ester von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Aminoalkoholen, vorzugsweise C2-C12-Aminoalkoholen. Diese können am Aminstickstoff C1-C8-monoalkyliert oder-dialkyliert sein. Als Säurekomponente dieser Ester eignen sich z.B. Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure, Itaconsäure, Crotonsäure, Maleinsäureanhydrid, Monobutylmaleat und Gemische davon. Bevorzugt werden Acrylsäure, Methacrylsäure und deren Gemische eingesetzt. Dazu zählen beispielsweise N-Methylaminomethyl(meth)acrylat, N-Methylaminoethyl(meth)acrylat, N,N-Dimethylaminomethyl(meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethylaminoethyl(meth)acrylat, N,N-Dimethylaminopropyl(meth)acrylat, N,N-Diethylaminopropyl(meth)acrylat und N,N-Dimethylaminocyclohexyl(meth)acrylat.
  • Darüber hinaus sind als weitere Monomere dieser Gruppe N-[2-(Dimethylamino)ethyl]acrylamid, N-[2-(Dimethylamino)ethyl]methacrylamid, N-[3-(Dimethylamino)propyl]acrylamid, N-[3-(Dimethylamino)propyl]methacrylamid, N-[4-(Dimethylamino)butyl]acrylamid, N-[4-(Dimethylamino)butyl]methacrylamid, N-[2-(Diethylamino)ethyl]acrylamid, N-[2-(Diethylamino)ethyl]methacrylamid und Mischungen davon geeignet.
  • Weiterhin sind als Monomere N-Vinylimidazole und Alkylvinylimidazole geeignet, insbesondere Methylvinylimidazole wie beispielsweise 1-Vinyl-2-methylimidazol, 3-Vinylimidazol-N-oxid, 2- und 4-Vinylpyridin-N-oxide sowie betainische Derivate und Quaternisierungsprodukte dieser Monomere und Mischungen davon.
  • Von den zuvor genannten Monomeren eignen sich ebenfalls die jeweiligen quartären Verbindungen. Die quartären Verbindungen der Monomere werden erhalten, indem man die Monomere mit bekannten Quaternisierungsmitteln umsetzt, z.B. mit Methylchlorid, Benzylchlorid, Ethylchlorid, Butylbromid, Dimethylsulfat und Diethylsulfat oder Alkylepoxiden.
  • Monomere, deren Polymere Struktureinheiten (B) enthalten, sind solche der Formel (II) sowie deren Salze
    Figure imgb0004
    worin
    • wobei R1 = H oder eine C1-C4-Alkylgruppe und
    • n eine ganze Zahl im Bereich von 1 bis 8 ist,
    • bedeuten,
    • bevorzugt.
  • Die Monomeren dieser Gruppe können allein oder in Mischung miteinander, in teilweise oder in vollständig neutralisierter Form bei der Copolymerisation eingesetzt werden. Zur Neutralisation verwendet man beispielsweise Alkalimetall- oder Erdalkalimetallbasen, Ammoniak, Amine und/oder Alkanolamine. Beispiele hierfür sind Natronlauge, Kalilauge, Soda, Pottasche, Natriumhydrogencarbonat, Magnesiumoxid, Calciumhydroxid, Calciumoxid, Triethanolamin, Ethanolamin, Morpholin, Diethylentriamin oder Tetraethylenpentamin.
  • Monomere, deren Polymere Struktureinheiten (C) enthalten, sind Monomere der Formel (I), Ester von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit C1-C30-Alkanolen und C2-C30-Alkandiolen, (Meth)acrylamide, Nitrile von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren, Ester von Vinylalkohol und Allylalkohol mit C1-C30-Monocarbonsäuren, N-Vinyllactame und Mischungen davon.
  • Monomere der Formel (I) sind beispielsweise N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N-Vinyl-N-ethylacetamid, N-Vinylpropionamid und N-Vinyl-N-methylpropionamid und N-Vinylbutyramid. Diese Monomere können allein oder in Mischung bei der Copolymerisation mit den Monomeren der anderen Gruppen eingesetzt werden. Bevorzugt eingesetztes Monomer dieser Gruppe ist N-Vinylformamid.
  • Geeignete Vertreter dieser Monomergruppe sind z.B. Methyl(meth)acrylat, Methylethacrylat, Ethyl(meth)acrylat, Ethylethacrylat, n-Butyl(meth)acrylat, Isobutyl(meth)acrylat, tert.-Butyl(meth)acrylat, tert.-Butylethacrylat, n-Octyl(meth)acrylat, 1,1,3,3-Tetramethylbutyl(meth)acrylat, Ethylhexyl(meth)acrylat und Mischungen davon.
  • Weiterhin sind als Monomere dieser Gruppe geeignet 2-Hydroxyethyl(meth)acrylat, 2-Hydroxyethylethacrylat, 2-Hydroxypropyl(meth)acrylat, 3-Hydroxypropyl(meth)acrylat, 3-Hydroxybutyl(meth)acrylat, 4-Hydroxybutyl(meth)acrylat, 6-Hydroxyhexyl(meth)acrylat und Mischungen davon.
  • Geeignete zusätzliche Monomere sind weiterhin Acrylsäureamid, Methacrylsäureamid, N-Methyl(meth)acrylamid, N-Ethyl(meth)acrylamid, n-Propyl(meth)acrylamid, N-(n-Butyl)(meth)acrylamid, tert.-Butyl(meth)acrylamid, n-Octyl(meth)acrylamid, 1,1,3,3-Tetramethylbutyl(meth)acrylamid, Ethylhexyl(meth)acrylamid und Mischungen davon.
  • Darüber hinaus eignen sich Nitrile von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren wie beispielsweise Acrylnitril und Methacrylnitril.
  • Geeignete Monomere dieser Gruppe sind weiterhin N-Vinyllactame und deren Derivate, die z.B. einen oder mehrere C1-C6-Alkylsubstituenten (wie oben definiert) aufweisen können. Dazu zählen N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinyl-5-methyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl-2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2-caprolactam und deren Mischungen.
  • Üblicherweise beträgt der Anteil an Monomeren, deren Polymere die Struktureinheiten (C) enthalten, im wasserlöslichen amphoteren Polymeren mindestens 50 Gew.-%, bezogen auf das Gesamtgewicht der Monomeren, die zur Herstellung des wasserlöslichen Polymeren (c) eingesetzt werden. Bevorzugt beträgt der Anteil an Monomeren, deren Polymere die Struktureinheiten (C) enthalten, mindestens 60 Gew.-%, besonders bevorzugt mindestens 75 Gew.-% und insbesondere bevorzugt mindestens 85 Gew.-%, jedoch nicht mehr als 98 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Monomeren, die zur Herstellung des wasserlöslichen Polymweren (c) eingesetzt werden.
  • Das molare Verhältnis der Monomeren, deren Polymere die Struktureinheiten (A) enthalten, zu denjenigen, deren Polymere die Struktureinheiten (B) enthalten, liegt üblicherweise im Bereich von 5:1 bis 1:5, bevorzugt 2:1 bis 1:2 und beträgt besonders bevorzugt 1:1.
  • Derartige wasserlösliche amphotere Polymere (c) sind in der Literatur bekannt, ebenso wie ihre Herstellung. Beispielsweise können die amphoteren Polymere durch radikalische Polymerisation der zuvor genannten Monomere in Lösung, als Gel-Polymerisation, Fällungspolymerisation, Wasser-in-Wasser-Polymerisation, Wasser-in-Öl-Polymerisation oder durch Sprühpolymerisation hergestellt werden.
  • Die Herstellung wird unter anderem in JP 54-030913 beschrieben, auf deren Offenbarung an dieser Stelle ausdrücklich Bezug genommen wird.
  • In dem erfindungsgemäßen Verfahren werden bevorzugt als wasserlösliche amphotere Polymere (c) solche eingesetzt, wie in EP 0 659 780 A1 , EP 0 919 578 A1 , EP 1 849 803 A1 , JP 08-269891 , JP 2005-023434 und JP 2001-1279595 offenbart.
  • Das mindestens eine wasserlösliche amphotere Polymere (c) wird in dem erfindungsgemäßen Verfahren zur Herstellung von Papier beispielsweise in einer Menge von 0,01 bis 2,0 Gew.-%, vorzugsweise 0,03 bis 1,0 Gew.-%, besonders bevorzugt 0,1 bis 0,5 Gew.-%, jeweils bezogen auf trockenen Papierstoff, eingesetzt.
  • Gegenstand der vorliegenden Erfindung sind auch die nach dem zuvor beschriebenen Verfahren hergestellten Papiere, sowie Pappe und Karton.
  • Für die Papierherstellung kommen als Faserstoffe zur Herstellung der Pulpen sämtliche dafür gebräuchlichen Qualitäten in Betracht, z.B. Holzstoff, gebleichter und ungebleichter Zellstoff sowie Papierstoffe aus allen Einjahrespflanzen. Zu Holzstoff gehören beispielsweise Holzschliff, thermomechanischer Stoff (TMP), chemothermomechanischer Stoff (CTMP), Druckschliff, Halbzellstoff, Hochausbeute-Zellstoff und Refiner Mechanical Pulp (RMP). Als Zellstoff kommen beispielsweise Sulfat-, Sulfit- und Natronzellstoffe in Betracht. Beispielsweise verwendet man ungebleichten Zellstoff, der auch als ungebleichter Kraftzellstoff bezeichnet wird. Geeignete Einjahrespflanzen zur Herstellung von Papierstoffen sind beispielsweise Reis, Weizen, Zuckerrohr und Kenaf.
  • Das erfindungsgemäße Verfahren eignet sich insbesondere für die Herstellung von trockenfest ausgerüsteten Papieren aus Altpapier (umfassend deinktem Altpapier), das entweder allein oder in Mischung mit anderen Faserstoffen eingesetzt wird. Man kann auch von Fasermischungen aus einem Primärstoff und zurückgeführtem gestrichenem Ausschuss ausgehen, z.B. gebleichtes Kiefernsulfat in Mischung mit zurückgeführtem gestrichenem Ausschuss. Das erfindungsgemäße Verfahren ist für die Herstellung von Papier, Pappe und Karton aus Altpapier und in speziellen Fällen auch aus deinktem Altpapier von technischem Interesse, weil es die Festigkeitseigenschaften der zurückgeführten Fasern deutlich erhöht. Es hat besondere Bedeutung für die Verbesserung von Festigkeitseigenschaften von graphischen Papieren und von Verpackungspapieren.
  • Der pH-Wert der Stoffsuspension liegt beispielsweise in dem Bereich von 4,5 bis 8, meistens bei 6 bis 7,5. Zur Einstellung des pH-Wertes kann man beispielsweise eine Säure wie Schwefelsäure oder Aluminiumsulfat verwenden.
  • Bei dem erfindungsgemäßen Verfahren ist die Reihenfolge der Zugabe der Komponenten (a), (b) und (c) beliebig, wobei die Komponenten einzeln oder in jeder Mischung zur Fasersuspension zugegeben werden können. Beispielsweise werden in dem erfindungsgemäßen Verfahren zunächst die kationischen Komponenten, nämlich die (a) trivalenten Kationen in Form eines Salzes und (b) wasserlöslichen kationischen Polymere, zum Papierstoff dosiert. Die Zugabe der kationischen Komponenten (a) und (b) kann dabei getrennt oder in Mischung zum Dickstoff (Faserkonzentration > 15 g/l, z.B. in dem Bereich von 25 bis 40 g/l bis zu 60 g/l) oder vorzugsweise in den Dünnstoff (Faserkonzentration < 15 g/l, z.B. in dem Bereich von 5 bis 12 g/l) erfolgen. Die Zugabestelle liegt vorzugsweise vor den Sieben, sie kann jedoch auch zwischen einer Scherstufe und einem screen oder danach liegen. Die Dosierung der kationischen Komponenten (a) und (b) zum Papierstoff kann wie zuvor beschreiben nacheinander, gleichzeitig oder auch als Mischung von (a) und (b) erfolgen. Wird im Falle der wasserlöslichen Komponente (b) eine Mischung aus (i) Vinylamineinheiten enthaltenden Polymeren und (ii) Ethylenimineinheiten enthaltenden Polymeren eingesetzt, so ist ebenfalls möglich, diese nacheinander, gleichzeitig oder als Mischung von (i) und (ii) zu dosieren.
  • Das wasserlösliche amphotere Polymere (c) wird meistens erst nach der Zugabe der kationischen Komponenten (a) und (b) zum Papierstoff zugegeben, kann aber auch gleichzeitig und auch in Mischung mit (a) und (b) zum Papierstoff zugegeben werden.
  • Weiterhin ist es auch möglich, zuerst das wasserlösliche amphotere Polymere (c) und nachfolgend die kationischen Komponenten (a) und (b) zuzugeben oder zunächst eine der kationischen Komponenten (a) oder (b) zum Papierstoff zu dosieren, dann das wasserlösliche amphotere Polymere (c) und anschließend die andere kationische Komponente (a) oder (b) zuzugeben.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird bevorzugt zunächst das (a) trivalente Kation in Form eines Salzes zugegeben, danach das (b) wasserlösliche kationische Polymere und anschließend das (c) wasserlösliche amphotere Polymere.
  • In einer anderen, ebenfalls bevorzugten Variante des erfindungsgemäßen Verfahrens erfolgt zunächst die Zugabe des (a) trivalenten Kations in Form eines Salzes, danach des (c) wasserlöslichen amphotere Polymeren und abschließend des (b) wasserlöslichen kationischen Polymeren.
  • In einer dritten, ebenfalls bevorzugten Ausführungsform erfolgt zuerst die Zugabe einer Mischung des (a) trivalenten Kations in Form eines Salzes und des (c) wasserlöslichen amphoteren Polymeren zum Papierstoff. Anschließend wird das (b) wasserlösliche kationische Polymere zudosiert.
  • Bei dem erfindungsgemäßen Verfahren können die üblicherweise bei der Papierherstellung verwendeten Prozesschemikalien in den üblichen Mengen eingesetzt werden, z.B. Retentionsmittel, Entwässerungsmittel, andere Trockenverfestiger wie beispielsweise Stärke, Pigmente, Füllstoffe, optische Aufheller, Entschäumer, Biozide und Papierfarbstoffe.
  • Nach dem erfindungsgemäßen Verfahren erhält man trockenfest ausgerüstete Papiere, deren Trockenfestigkeit gegenüber Papieren, die nach bekannten Verfahren hergestellt werden, eine erhöhte Trockenfestigkeit aufweisen. Außerdem ist bei dem erfindungsgemäßen Verfahren die Entwässerungsgeschwindigkeit im Vergleich zu bekannten Verfahren verbessert.
  • Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
  • Die Prozentangaben in den Beispielen bedeuten, falls nichts anderes angegeben ist, Gewichtsprozent. Der K-Wert der Polymerisate wurde nach Fikentscher, CelluloseChemie, Band 13, 58 - 64 und 71 - 74 (1932) bei einer Temperatur von 25 °C in 5 gew.-%igen wässrigen Kochsalzlösungen bei einem pH-Wert von 7 und einer Polymerkonzentration von 0,5 % bestimmt. Dabei bedeutet K = k · 1000.
  • Für die einzelnen Tests wurden in Laborversuchen Blätter in einem Rapid-Köthen-Laborblattbildner hergestellt. Die Blätter wurden für 24 Stunden bei 23 °C und einer Luftfeuchtigkeit von 50 % gelagert. Danach wurden folgende Festigkeitsprüfungen durchgeführt:
    • Berstdruck nach DIN ISO 2758 (bis 600 kPa), DIN ISO 2759 (ab 600 kPa)
    • SCT nach DIN 54518 (Bestimmung des Streifenstauchwiderstandes)
    • CMT nach DIN EN 23035 (Bestimmung des Flachstauchwiderstandes)
    • Naßreislänge nach TAPPI T 456
    • Aschegehalt nach TAPPI T 413
    • Entwässerungszeit nach ISO Standard 5267 (bestimmt mit einem Schopper-Riegler-Testgerät, in dem man jeweils 1l der zu prüfenden Faseraufschlämmung mit einer Stoffdichte von 10 g/l darin entwässerte ind die Zeit in Sekunden bestimmte, die für den Durchlauf von 600 ml Filtrat notwendig war)
    Beispiele
  • In den Beispielen wurden folgende Komponenten bzw. Polymere verwendet:
  • Kation 1
  • Alaun (technisches Aluminiumsulfatpulver [Al2(SO4)3·14H2O])
  • Kation 2
  • Polyaluminumchlorid mit 18 % Al2O3 (Sedipur® PAC 18 der Firma BASF SE)
  • Polymer K1
  • Kationisches Polyvinylformamid, zu 30 Mol-% teilhydrolysiert, Molekulargewicht ca. 350 000 Dalton, Feststoffgehalt 16,4 Gew.-% (Luredur® PR 8095 der Firma BASF SE)
  • Polymer K2
  • Kationisches Polyethylenimin, Molekulargewicht ca. 1 000 000 Dalton (Polymin® SK der Firma BASF SE)
  • Polymer K3 (für Referenzbeispiel *)
    • [Tabelle 2a] Markierung als Referenzbeispiel hinzugefügt (siehe Ersatzseite 15)
    • [Tabelle 2b] Markierung als Referenzbeispiel hinzugefügt (siehe Ersatzseite 15)
  • Kationisches Polyvinylamin, Hofmann-Abbau-Produkt, Molekulargewicht ca. 25 000 Dalton, Feststoffgehalt 8 Gew.-% (RSL HF 70D der Firma SNF SAS)
  • Polymer A1
  • Amphoteres Polyacrylamid, Feststoffgehalt 19,2 Gew.-% (Harmide® RB 217 der Firma Harima)
  • Polymer A2
  • Amphoteres Polyacrylamid, Feststoffgehalt 20 Gew.-% (Polystron® PS-GE 200 R der Firma Arakawa)
  • Polymer A3
  • Amphoteres Polyacrylamid, Feststoffgehalt 20 Gew.-% (Polystron® PS-GE 300 S der Firma Arakawa)
  • In den Vergleichsbeispielen wurden gegebenenfalls zusätzlich folgende Vergleichspolymere verwendet:
  • Polymer V1
  • Kationisches Polyacrylamid, Molekulargewicht ca. 1 000 000 Dalton, (Polymin® KE 440 der Firma BASF SE)
  • Polymer V2
  • Anionisches Polyacrylamid, Molekulargewicht ca. 600 000 Dalton, Feststoffgehalt 16 Gew.-% (Luredur® PR 8284 der Firma BASF SE)
  • Polymer V3
  • Polyallylamin, Molekulargewicht ca.15 000 Dalton, Feststoffgehalt 93 Gew.-% (PAA-HCI-3S der Firma Nittobo)
  • Herstellung des Papierstoffs für die Beispiele und Vergleichsbeispiele
  • Ein Papier aus 100 % Altpapier (Mischung der Sorten: 1.02, 1.04, 4.01) wurde mit Trinkwasser bei einer Stoffdichte von 4 % in einem Laborpulper stippenfrei aufgeschlagen und in einem Laborrefiner auf einen Mahlgrad von 40 °SR gemahlen. Dieser Stoff wurde anschließend mit Trinkwasser auf eine Stoffdichte von 0,7 % verdünnt.
  • Entwässerungsprüfung
  • In den Beispielen und Vergleichsbeispielen wurden jeweils 1 Liter des oben beschriebenen Papierstoffs verwendet und jeweils nacheinander mit den in der Tabelle jeweils angegebenen trivalenten Kationen und wasserlöslichen Polymeren unter Rühren versetzt und danach mit Hilfe eines Schopper-Riegler-Entwässerungsprüfers entwässert, wobei man die Zeit in Sekunden für eine Durchflussmenge (Filtrat) von 600 ml bestimmte. Die Konzentration der wasserlöslichen kationischen und amphoteren Polymeren, die jeweils als Trockenverfestigungsmittel für Papier getestet wurden, betrug jeweils 1 %, und die des trivalenten Kations in wässriger Lösung betrug jeweils 10 %. Die Messergebnisse sind in den Tabellen 1, 2a und 2b zusammengefasst, wobei die Angaben für den Berstdruck, SCT und CMT jeweils als Steigerung in % relativ zur Nullwertbestimmung (Vergleich 0) dargestellt sind. Die Werte zur Naßreislänge sind in m angegeben, und zwar als Differenzmessung zur Nullwertbestimmung (Vergleich 0).
  • Blattbildung
  • In den Beispielen und Vergleichsbeispielen wurden dem oben beschriebenen Papierstoff unter Rühren die in den Tabellen angegebenen trivalenten Kationen und Polymere nacheinander zugesetzt. Die Polymerkonzentration der wässrigen Lösungen der kationschen und der anionischen Polymeren betrug jeweils 1 %, und die des trivalenten Kations in wässriger Lösung betrug jeweils 10 %. Darüber hinaus wurden in allen Beispielen und Vergleichsbeispielen 0,27 % eines handelsüblichen Entschäumers (Afranil® SLO der Firma BASF SE) eingesetzt. In der Tabelle sind die jeweils eingesetzten Mengen der trivalenten Kationen und Polymere in Gewichtsprozent, bezogen auf den Festgehalt des Papierstoffs angegeben. Nach der letzten Zugabe eines wasserlöslichen Polymers zum Papierstoff wurde soviel Stoff abgenommen (ca. 500 ml), um auf einem Rapid-Köthen-Blattbildner ein Blatt mit einem Flächengewicht von 120 g/m2 herstellen. Die Blätter wurden, wie im Rapid-Köthen-Verfahren üblich, abgegautscht und 8 Minuten bei 110 °C in einem Trockenzylinder getrocknet. Die Ergebnisse sind in den Tabellen 1, 2a und 2b angegeben, wobei die Angaben für den Berstdruck, SCT und CMT jeweils als Steigerung in % relativ zur Nullwertbestimmung (Vergleich 0) dargestellt sind. Die Werte zur Naßreislänge sind in m angegeben, und zwar ebenfalls als Steigerung zur Nullwertbestimmung (Vergleich 0).
  • Durch die erfindungsgemäßen Versuche Beispiele 1 bis 10 zeigt sich insbesondere die überraschend gute Wirkung des aus drei Komponenten bestehenden Systems auf die Trockenfestigkeit und gleichzeitig auf die Entwässerung. Tabelle 1
    Beispiel Trivalentes Kation Dosierung [%] Kationisches Polymer Dosierung [%] Amphoteres Polymer Dosierung [%] Vergleichs polymer Dosierung [%] Berstdruck Steigerung [%] SCT Steigerung [%] CMT Steigerung [%] Naßreislänge Steigerung
    Vergleich 0 -- -- -- Polymer V1 0,04 -- -- -- --
    Vergleich 1 -- Polymer K1 0,15 -- Polymer V2 0,15 18 16 18 145
    Vergleich 2 Kation 1 0,7 Polymer K1 0,15 -- Polymer V2 0,15 15 13 16 155
    Vergleich 3 Kation 1 0,7 -- Polymer A1 0,3 -- 24 22 13 34
    Beispiel 1 Kation 1 0,7 Polymer K1 0,15 Polymer A1 0,15 -- 24 26 23 92
    Beispiel 2 Kation 2 0,14 Polymer K1 0,15 Polymer A1 0,15 -- 23 21 23 98
    Beispiel 3 Kation 1 0,7 Polymer K1 0,15 Polymer A1 0,15 -- 19 18 22 116
    Beispiel 4 Kation 1 0,7 Polymer K1 0,15 Polymer A1 0,15 -- 22 24 20 131
    Beispiel 5 Kation 1 0,7 Polymer K1 0,15 Polymer A1 0,15 -- 20 23 21 125
    Vergleich 0: Nullwertbestimmung
    Vergleich 1: Vergleich nach DE 10 2004 056 551 A1
    Vergleich 2: Vergleich analog DE 10 2004 056 551 A1 und zusätzlich Vordosierung eines trivalenten Kations
    Vergleich 3: Vergleich nach EP 1849 803 A1
    Beispiel 1: Dosierreihenfolge: Kation 1, Polymer K1, Polymer A1
    Beispiel 2: Dosierreihenfolge: Kation 2, Polymer K1, Polymer A1
    Beispiel 3: Dosierreihenfolge: Polymer K1, Kation 1, Polymer A1
    Beispiel 4: Dosierreihenfolge: Mischung aus Kation 1 und Polymer K1, Polymer A1
    Beispiel 5: Dosierreihenfolge: Kation 1, Polymer A1, Polymer K1
    Tabelle 2a: Dosierung
    Beispiel Trivalentes Kation Dosierung [%] Kationisches Polymer Dosierung [%] Amphoteres Polymer Dosierung [%] Vergleichspolymer Dosierung [%]
    Vergleich 0 -- -- -- Polymer V1 0,04
    Vergleich 4 -- Polymer K1 0,15 -- Polymer V2 0,15
    Vergleich 5 Kation 1 0,5 Polymer K1 0,15 -- Polymer V2 0,15
    Vergleich 6 Kation 1 0,5 -- Polymer A1 0,3 --
    Vergleich 7 Kation 1 0,5 -- Polymer A2 0,3 --
    Vergleich 8 Kation 1 0,5 -- Polymer A3 0,3
    Vergleich 9 Kation 1 0,5 -- -- Polymer V3 0,15
    Polymer V2 0,15
    Vergleich 10 Kation 1 0,5 -- Polymer A1 0,15 Polymer V3 0,15
    Beispiel 6 Kation 1 0,5 Polymer K1 0,15 Polymer A1 0,15 --
    Beispiel 7 Kation 1 0,5 Polymer K1 0,15 Polymer A2 0,15 --
    Beispiel 8 Kation 1 0,5 Polymer K1 0,15 Polymer A3 0,15 --
    Beispiel 9 Kation 1 0,5 Polymer K2 0,15 Polymer A1 0,15 --
    Beispiel 10 * Kation 1 0,5 Polymer K3 0,15 Polymer A1 0,15 --
    Vergleich 1: Nullwertbestimmung
    Vergleich 4: Vergleich nach DE 10 2004 056 551 A1
    Vergleich 5: Vergleich analog DE 10 2004 056 551 A1 und zusätzlich Vordosierung eines trivalenten Kations
    Vergleich 6: Vergleich nach EP 1 849 803 A1
    Vergleich 7: Vergleich nach JP 54-030913 A1
    Vergleich 8: Vergleich nach JP 54-030913 A1
    Vergleich 9: Vergleich nach JP 02-112498 A1
    Vergleich 10: Vergleich analog JP 02-112498 A1
    Beispiele 6 bis 10: Dosierreihenfolge jeweils: trivalentes Kation, kationisches Polymer, amphoteres Polymer
    * = Referenzbeispiel
    Tabelle 2b: Ergebnisse zu Tabelle 2a
    Beispiel Berstdruck Steigerung [%] SCT Steigerung [%] CMT Steigerung [%] Naßreislänge Steigerung [m] Aschegehalt [%] Entwässerungszeit [s]
    Vergleich 0 -- -- -- -- 7,6 58
    Vergleich 4 19 17 10 136 7,8 51
    Vergleich 5 15 8 9 123 8,0 50
    Vergleich 6 24 22 13 34 6,8 78
    Vergleich 7 13 18 14 60 7,1 60
    Vergleich 8 17 25 17 75 7,5 82
    Vergleich 9 7 9 16 98 7,9 50
    Vergleich 10 8 7 9 126 8,2 38
    Beispiel 6 24 26 23 110 8,0 30
    Beispiel 7 22 23 21 140 7,8 33
    Beispiel 8 23 24 23 135 7,9 40
    Beispiel 9 19 20 19 83 8,2 41
    Beispiel 10 * 21 19 20 91 7,9 47
    * = Referenzbeispiel

Claims (12)

  1. Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe
    (a) mindestens eines trivalenten Kations in Form eines Salzes,
    (b) mindestens eines wasserlöslichen kationischen Polymeren und
    (c) mindestens eines wasserlöslichen amphoteren Polymeren zum Papierstoff, Entwässern des Papierstoffs unter Blattbildung und anschließende Trocknung der Papierprodukte, dadurch gekennzeichnet, dass das wasserlösliche kationische Polymere (b) ausgewählt ist aus der Gruppe der (i) Vinylamineinheiten enthaltenden Polymere und (ii) Ethylenimineinheiten enthaltenden Polymere,
    wobei man als (i) Vinylamineinheiten enthaltende Polymere Reaktionsprodukte einsetzt, die erhältlich sind durch Polymerisieren von
    (1.) mindestens eines Monomeren der Formel
    Figure imgb0005
    in der R1, R2 = H oder C1- bis C6-Alkyl bedeuten,
    (2.1) mindestens jeweils eines eine Säurefunktion tragenden Monomeren ausgewählt aus monoethylenisch ungesättigten Sulfonsäuren, monoethylenisch ungesättigten Phosphonsäuren und monoethylenisch ungesättigten Carbonsäuren mit 3 bis 8 C-Atomen im Molekül und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen,
    (2.2) gegebenenfalls mindestens eines anderen neutralen und/oder eines kationischen Monomeren und
    (3.) gegebenenfalls mindestens eines vernetzend wirkenden Monomeren mit mindestens zwei Doppelbindungen im Molekül
    und anschließende teilweise oder vollständige Abspaltung der Gruppen -CO-R1 aus den in das Polymerisat einpolymerisierten Einheiten der Monomeren (I) unter Bildung von Aminogruppen, wobei der Gehalt an Aminogruppen im Copolymerisat mindestens 5 Mol-% über dem Gehalt an einpolymerisierten Säuregruppen der Monomere (2.1) beträgt, und
    man als (c) wasserlösliche amphotere Polymere einsetzt, die aus mindestens drei Struktureinheiten aufgebaut sind:
    (A) Struktureinheiten, die eine permanent kationische oder eine in wässrigen Medium protonierbare Gruppe tragen,
    (B) Struktureinheiten, die eine in wässrigem Medium deprotonierbare Gruppe tragen, und
    (C) nichtionische Struktureinheiten, wobei man als Monomere, deren Polymere Struktureinheiten (B) enthalten, Monomere der Formel (II) sowie deren Salze
    Figure imgb0006
    wobei
    R1 = H oder eine C1-C4-Alkylgruppe und
    n eine ganze Zahl im Bereich von 1 bis 8 ist,
    verwendet.
  2. Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe
    (a) mindestens eines trivalenten Kations in Form eines Salzes,
    (b) mindestens eines wasserlöslichen kationischen Polymeren und
    (c) mindestens eines wasserlöslichen amphoteren Polymeren zum Papierstoff, Entwässern des Papierstoffs unter Blattbildung und anschließende Trocknung der Papierprodukte, dadurch gekennzeichnet, dass das wasserlösliche kationische Polymere (b) ausgewählt ist aus der Gruppe der (i) Vinylamineinheiten enthaltenden Polymere und (ii) Ethylenimineinheiten enthaltenden Polymere,
    wobei man als (i) Vinylamineinheiten enthaltende Polymere die Reaktionsprodukte einsetzt, die erhältlich sind durch Polymerisieren von N-Vinylformamid und anschließende Abspaltung von Formylgruppen aus den in das Polymerisat einpolymerisierten Vinylformamideinheiten unter Bildung von Aminogruppen, und man als (c) wasserlösliche amphotere Polymere einsetzt, die aus mindestens drei Struktureinheiten aufgebaut sind:
    (A) Struktureinheiten, die eine permanent kationische oder eine in wässrigen Medium protonierbare Gruppe tragen,
    (B) Struktureinheiten, die eine in wässrigem Medium deprotonierbare Gruppe tragen, und
    (C) nichtionische Struktureinheiten, und
    wobei man als Monomere, deren Polymere Struktureinheiten (B) enthalten, Monomere der Formel (II) sowie deren Salze
    Figure imgb0007
    wobei
    R1 = H oder eine C1-C4-Alkylgruppe und
    n eine ganze Zahl im Bereich von 1 bis 8 ist,
    verwendet.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das (a) mindestens eine trivalente Kation ausgewählt ist aus Al3+, Zr3+ und Fe3+.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das (a) mindestens eine trivalente Kation in Form eines Salzes Aluminiumsulfat, Polyaluminiumchlorid oder Aluminiumlactat ist.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das (a) mindestens eine trivalente Kation in Form eines Salzes in Mengen zwischen 3 und 100 Mol pro t trockenes Papier dem Papierstoff zugesetzt wird.
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass man als (ii) Ethylenimineinheiten enthaltenden Polymere mindestens ein wasserlösliches kationisches Polymer aus der Gruppe der
    - Homopolymerisate des Ethylenimins,
    - mit mindestens bifunktionellen Vernetzern umgesetzten Polyethylenimine,
    - mit Ethylenimin gepfropften Polyamidoamine, die mit mindestens nellen Vernetzern umgesetzt sind,
    - Umsetzungsprodukte von Polyethyleniminen mit einbasischen Carbonsäuren zu amidierten Polyethyleniminen,
    - Michaeladditionsprodukte von Polyethyleniminenen an ethylenisch ungesättigte Säuren, Salze, Ester, Amide oder Nitrile von monoethylenisch ungesätitgten Carbonsäuren,
    - phosphonomethylierten Polyethylenimine,
    - carboxylierten Polyethylenimine und
    - alkoxylierten Polyethylenimine
    einsetzt.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man als (ii) Ethylenimineinheiten enthaltende Polymere Homopolymerisate des Ethylenimins und/oder mit Ethylenimin gepfropfte und anschließend mit mindestens bifunktionellen Vernetzern umgesetzte Polyamidoamine einsetzt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das (b) mindestens eine wasserlösliche kationische Polymere in einer Menge von 0,01 bis 2,0 Gew.-%, bezogen auf den trockenen Papierstoff, eingesetzt wird.
  9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zunächst das (a) trivalente Kation in Form eines Salzes dem Papierstoff zugegeben wird, danach das (b) wasserlösliche kationische Polymere und anschließend das (c) wasserlösliche amphotere Polymere.
  10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zunächst das (a) trivalente Kation in Form eines Salzes dem Papierstoff zugegeben wird, danach das (c) wasserlösliche amphotere Polymere und anschließend das (b) wasserlösliche kationische Polymere.
  11. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zuerst die Mischung des (a) trivalenten Kations in Form eines Salzes und des (c) wasserlöslichen amphoteren Polymere zum Papierstoff zugegeben wird und anschließend das (b) wasserlösliche kationische Polymere.
  12. Papiere, die nach einem Verfahren gemäß der Ansprüche 1 bis 11 erhältlich sind.
EP10724788.4A 2009-06-16 2010-06-07 Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton Active EP2443284B2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL10724788T PL2443284T5 (pl) 2009-06-16 2010-06-07 Sposób zwiększania wytrzymałości na sucho papieru, tektury i kartonu
EP10724788.4A EP2443284B2 (de) 2009-06-16 2010-06-07 Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09007861 2009-06-16
PCT/EP2010/057890 WO2010145956A1 (de) 2009-06-16 2010-06-07 Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP10724788.4A EP2443284B2 (de) 2009-06-16 2010-06-07 Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton

Publications (3)

Publication Number Publication Date
EP2443284A1 EP2443284A1 (de) 2012-04-25
EP2443284B1 EP2443284B1 (de) 2018-01-17
EP2443284B2 true EP2443284B2 (de) 2020-11-18

Family

ID=42647475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10724788.4A Active EP2443284B2 (de) 2009-06-16 2010-06-07 Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton

Country Status (8)

Country Link
US (1) US8926797B2 (de)
EP (1) EP2443284B2 (de)
JP (1) JP5832426B2 (de)
CN (2) CN104532674A (de)
CA (1) CA2763508C (de)
ES (1) ES2663702T5 (de)
PL (1) PL2443284T5 (de)
WO (1) WO2010145956A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088250B2 (en) 2008-11-26 2012-01-03 Nalco Company Method of increasing filler content in papermaking
PT2462277E (pt) * 2009-08-05 2015-01-02 Int Paper Co Processo para a aplicação de composição contendo um metal trivalente catiónica e desligante e uma folha de polpa de felpa feita a partir da mesma
MY162376A (en) 2009-08-05 2017-06-15 Shell Int Research Method for monitoring a well
US8535482B2 (en) 2009-08-05 2013-09-17 International Paper Company Dry fluff pulp sheet additive
US8454799B2 (en) 2010-05-05 2013-06-04 Basf Se Pulp composition for paper and solid board production
EP2596168B1 (de) * 2010-07-20 2023-06-14 International Paper Company Zusammensetzung mit einem mehrwertigen kationischen metall und einem aminhaltigen antistatikum sowie verfahren zu ihrer herstellung und verwendung
CN103003488B (zh) 2010-07-22 2015-04-15 国际纸业公司 使用阳离子型染料和解胶剂型表面活性剂制造绒毛浆片材的方法和由该方法制得的绒毛浆片材
GB201107885D0 (en) 2011-05-12 2011-06-22 Reckitt Benckiser Nv Improved composition
PT2721214T (pt) * 2011-06-20 2018-04-12 Basf Se Fabrico de papel e cartão
WO2013081955A1 (en) 2011-12-01 2013-06-06 Buckman Laboratories International, Inc. Method and system for producing market pulp and products thereof
CA2862095C (en) * 2012-02-01 2017-04-11 Basf Se Process for the manufacture of paper and paperboard
US9051687B2 (en) 2012-08-22 2015-06-09 Basf Se Production of paper, card and board
ES2600157T3 (es) 2012-09-24 2017-02-07 Basf Se Sistema y procedimiento de fabricación de una espuma in-situ
FI126216B (en) 2013-03-26 2016-08-31 Kemira Oyj Procedure for the manufacture of cardboard
CN104452455B (zh) 2013-09-12 2019-04-05 艺康美国股份有限公司 造纸助剂组合物以及增加成纸灰分保留的方法
CN104452463B (zh) 2013-09-12 2017-01-04 艺康美国股份有限公司 造纸方法以及组合物
US9567708B2 (en) 2014-01-16 2017-02-14 Ecolab Usa Inc. Wet end chemicals for dry end strength in paper
US8894817B1 (en) 2014-01-16 2014-11-25 Ecolab Usa Inc. Wet end chemicals for dry end strength
CN103866630B (zh) * 2014-02-25 2016-10-12 苏州恒康新材料有限公司 一种黄原胶湿强剂及其制备方法
CN106132681B (zh) * 2014-03-28 2018-12-11 巴斯夫欧洲公司 用于制备瓦楞纸板的方法
US9702086B2 (en) 2014-10-06 2017-07-11 Ecolab Usa Inc. Method of increasing paper strength using an amine containing polymer composition
US9920482B2 (en) 2014-10-06 2018-03-20 Ecolab Usa Inc. Method of increasing paper strength
US20170233950A1 (en) * 2014-10-13 2017-08-17 Basf Se Solidifying composition for paper and cardboard
BR112018006369B1 (pt) 2015-10-20 2022-02-08 Basf Se Sistema para a produção de uma espuma in situ, processo para a produção de uma espuma in situ, espuma in situ e métodos para a utilização da espuma in situ
CN106930142B (zh) * 2015-12-31 2020-03-24 艺康美国股份有限公司 干强剂组合物以及提高纸张干强度的方法
FR3048436B1 (fr) 2016-03-03 2018-03-23 S.P.C.M. Sa Procede de fabrication de papier et de carton
CN109072558A (zh) 2016-05-13 2018-12-21 艺康美国股份有限公司 薄纸粉尘减少
CN114673025B (zh) 2016-06-01 2023-12-05 艺康美国股份有限公司 用于在高电荷需求系统中造纸的高效强度方案
AU2018417961B2 (en) * 2018-04-04 2024-03-14 Solenis Technologies Cayman, L.P. Foam assisted application of strength additives to paper products
EP3821072A1 (de) 2018-07-12 2021-05-19 Kemira Oyj Verfahren zur herstellung einer mehrlagigen faserbahn sowie mehrlagige faserbahn
WO2020053379A1 (en) * 2018-09-14 2020-03-19 Solenis Technologies Cayman, L.P. Method for producing paper or cardboard
CN109264875B (zh) * 2018-10-12 2021-09-28 山东理工大学 Per-pamam和pesa无磷复合阻垢剂
US11028538B2 (en) 2019-02-28 2021-06-08 Solenis Technologies, L.P. Composition and method for increasing wet and dry paper strength

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593393A (ja) 1991-09-25 1993-04-16 Nippon P M C Kk 紙の製造法
JP2000022092A (ja) 1998-07-03 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> 単電子メモリ素子
US6132558A (en) 1996-07-09 2000-10-17 Basf Aktiengesellschaft Process for producing paper and cardboard
JP2003181466A (ja) 2001-12-21 2003-07-02 Hymo Corp 製紙排水処理方法
US6616807B1 (en) 1997-04-04 2003-09-09 Basf Aktiengesellschaft Method for producing high dry-strength paper, pulpboard and cardboard
JP2005226174A (ja) 2004-02-10 2005-08-25 Kurita Water Ind Ltd 紙及び板紙の製造方法
JP2005281922A (ja) 2004-03-30 2005-10-13 Kurita Water Ind Ltd 紙及び板紙の製造方法
CA2586076A1 (en) 2004-11-23 2006-06-01 Basf Aktiengesellschaft Production of paper, paperboard, or cardboard having high dry strength using polymeric anionic compound and polymer comprising vinylamine units
WO2006071961A1 (en) 2004-12-29 2006-07-06 Hercules Incorporated Improved retention and drainage in the manufacture of paper

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430913A (en) 1977-08-12 1979-03-07 Arakawa Rinsan Kagaku Kogyo Paper strength enhancing agent
DE3506832A1 (de) * 1985-02-27 1986-08-28 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von papier mit hoher trockenfestigkeit
DE3534273A1 (de) * 1985-09-26 1987-04-02 Basf Ag Verfahren zur herstellung von vinylamin-einheiten enthaltenden wasserloeslichen copolymerisaten und deren verwendung als nass- und trockenverfestigungsmittel fuer papier
JP2731920B2 (ja) 1988-10-14 1998-03-25 ハリマ化成株式会社 製紙方法
JPH03167392A (ja) * 1989-08-09 1991-07-19 Kanzaki Paper Mfg Co Ltd 紙の製造方法
JP3075589B2 (ja) * 1990-06-28 2000-08-14 三井化学株式会社 紙の抄造方法および製紙用添加剤
JP3173113B2 (ja) 1992-03-17 2001-06-04 荒川化学工業株式会社 製紙用添加剤の製造法
DE4241117A1 (de) * 1992-12-07 1994-06-09 Basf Ag Verwendung von hydrolysierten Copolymerisaten aus N-Vinylcarbonsäureamiden und monoethylenisch ungesättigten Carbonsäuren bei der Papierherstellung
JP3487059B2 (ja) 1995-02-01 2004-01-13 荒川化学工業株式会社 製紙用添加剤
JP3273534B2 (ja) * 1995-09-14 2002-04-08 星光化学工業株式会社 製紙用添加剤及び製紙方法
CN1105134C (zh) * 1996-01-08 2003-04-09 Basf公司 水溶性含胺基的缩合物及加合物的制备方法
DE19607674A1 (de) * 1996-02-29 1997-09-04 Basf Ag Verwendung von hydrolysierten Polymerisaten von N-Vinylcarbonsäureamiden als Mittel zur Erhöhung der Trockenfestigkeit von Papier, Pappe und Karton
AU3913197A (en) * 1996-08-15 1998-03-06 Hercules Incorporated Amphoteric polyacrylamides as dry strength additives for paper
JP3151427B2 (ja) 1997-11-06 2001-04-03 株式会社トキワ 段ボール原紙の製造方法
JP4238945B2 (ja) 1999-01-27 2009-03-18 荒川化学工業株式会社 製紙用添加剤および紙の製造方法
JP2001279595A (ja) * 2000-03-30 2001-10-10 Harima Chem Inc 製紙方法
JP2003055454A (ja) * 2001-08-10 2003-02-26 Hymo Corp ポリアルキレンイミン変性物。
JP4465646B2 (ja) 2003-06-30 2010-05-19 荒川化学工業株式会社 製紙用添加剤および当該製紙用添加剤を用いた紙
CN101133211A (zh) * 2004-12-29 2008-02-27 赫尔克里士公司 造纸中留着和滤水的改进
US8308902B2 (en) * 2004-12-29 2012-11-13 Hercules Incorporated Retention and drainage in the manufacture of paper
US20060142432A1 (en) * 2004-12-29 2006-06-29 Harrington John C Retention and drainage in the manufacture of paper
FR2880901B1 (fr) * 2005-01-17 2008-06-20 Snf Sas Soc Par Actions Simpli Procede de fabrication de papier et carton de grande resistance a sec et papiers et cartons ainsi obtenus
JP4891601B2 (ja) * 2005-12-02 2012-03-07 ハリマ化成株式会社 板紙の製造方法
CN101405457B (zh) * 2006-03-16 2011-08-17 巴斯夫欧洲公司 生产具有高干强度的纸、纸板和卡纸板的方法
US7981250B2 (en) * 2006-09-14 2011-07-19 Kemira Oyj Method for paper processing
CN101086148A (zh) * 2007-06-28 2007-12-12 上海东升新材料有限公司 纸用乳液干强剂及其制备方法
CN101397766B (zh) 2007-07-05 2013-05-22 巴斯夫欧洲公司 细碎填料水浆的制备及其用于制造高填料含量和高干强度纸的用途
CA2692299C (en) 2007-07-05 2017-11-21 Basf Se Aqueous slurries of finely divided fillers, a process for their preparation and their use for the production of papers having a high filler content and high dry strength
EP2164908A1 (de) 2007-07-05 2010-03-24 Basf Se Verfahren zur herstellung von wässrigen anschlämmungen von feinteiligen füllstoffen und ihre verwendung zur herstellung von papieren mit hohem füllstoffgehalt und hoher trockenfestigkeit
ES2378425T5 (es) 2007-07-05 2017-05-16 Omya International Ag. Suspensiones acuosas de materiales de relleno finamente divididos, procedimiento para su preparación y su uso para la fabricación de papeles con alto contenido en materiales de relleno y alta resistencia en seco
JP5328796B2 (ja) 2007-10-04 2013-10-30 ビーエーエスエフ ソシエタス・ヨーロピア エチレンイミン単位を含有するアミノアルキルビニルエーテル、その製造方法およびその使用
WO2009080613A1 (de) 2007-12-20 2009-07-02 Basf Se Pfropfpolymere mit oligoalkyleniminseitenketten, verfahren zu ihrer herstellung und ihre verwendung
CA2722237A1 (en) 2008-05-15 2009-11-19 Basf Se Process for the production of paper, board and cardboard having high dry strength
CA2726500C (en) 2008-06-24 2016-09-06 Basf Se Production of paper
CN102124161B (zh) * 2008-08-18 2014-09-10 巴斯夫欧洲公司 增加纸,纸板和卡纸的干强度的方法
WO2011090672A1 (en) * 2009-12-29 2011-07-28 Hercules Incorporated Process to enhancing dry strength of paper by treatment with vinylamine-containing polymers and acrylamide containing polymers
US8454799B2 (en) 2010-05-05 2013-06-04 Basf Se Pulp composition for paper and solid board production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593393A (ja) 1991-09-25 1993-04-16 Nippon P M C Kk 紙の製造法
US6132558A (en) 1996-07-09 2000-10-17 Basf Aktiengesellschaft Process for producing paper and cardboard
US6616807B1 (en) 1997-04-04 2003-09-09 Basf Aktiengesellschaft Method for producing high dry-strength paper, pulpboard and cardboard
JP2000022092A (ja) 1998-07-03 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> 単電子メモリ素子
JP2003181466A (ja) 2001-12-21 2003-07-02 Hymo Corp 製紙排水処理方法
JP2005226174A (ja) 2004-02-10 2005-08-25 Kurita Water Ind Ltd 紙及び板紙の製造方法
JP2005281922A (ja) 2004-03-30 2005-10-13 Kurita Water Ind Ltd 紙及び板紙の製造方法
CA2586076A1 (en) 2004-11-23 2006-06-01 Basf Aktiengesellschaft Production of paper, paperboard, or cardboard having high dry strength using polymeric anionic compound and polymer comprising vinylamine units
WO2006071961A1 (en) 2004-12-29 2006-07-06 Hercules Incorporated Improved retention and drainage in the manufacture of paper

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Extract from Chemguide.co.uk
MOSS, G.P. ET AL: "Glossary of Class Names of Organic Compounds and Reactive Intermediates based on Structure", PURE & APPL CHEM, vol. 67, no. 8/9, 1995

Also Published As

Publication number Publication date
WO2010145956A1 (de) 2010-12-23
JP2012530196A (ja) 2012-11-29
ES2663702T3 (es) 2018-04-16
EP2443284A1 (de) 2012-04-25
CA2763508A1 (en) 2010-12-23
CN102459760A (zh) 2012-05-16
US20120073773A1 (en) 2012-03-29
CA2763508C (en) 2018-07-17
US8926797B2 (en) 2015-01-06
EP2443284B1 (de) 2018-01-17
JP5832426B2 (ja) 2015-12-16
ES2663702T5 (es) 2021-12-16
PL2443284T5 (pl) 2021-04-19
PL2443284T3 (pl) 2018-07-31
CN104532674A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
EP2443284B2 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP2315875B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP2491177B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP1819877B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2288750B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
DE69404680T2 (de) Vernetzte Vinylalkohol/Vinylamin-Copolymere zur Zufügung in die Trockenpartie
EP1999314B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2393982B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
DE69408485T2 (de) Verfahren zur Herstellung von Papier mit erhöhter Festigkeit im nassen und trockenen Zustand
DE3929226A1 (de) Neutralleimungsmittel fuer rohpapiermassen unter verwendung von kationischen kunststoffdispersionen
EP0406461B1 (de) Neue kationische Dispergiermittel enthaltende Papierleimungsmittel
DE4430069A1 (de) Wäßrige, lösungsmittelfreie Dispersionen von kationischen Polymerisaten enthaltende Papierleimungsmittel und Verfahren zur Herstellung von geleimtem Papier unter Verwendung dieser Mittel
EP2443282A1 (de) Verfahren zur reduktion von ablagerungen in der trockenpartie bei der herstellung von papier, pappe und karton
EP3332063B1 (de) Verfahren zur herstellung von papier
EP2723943B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP2888404B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP3234259A1 (de) Verfahren zur herstellung von papier und karton
EP3122937B1 (de) Verfahren zur herstellung von wellpappenkarton
EP1727938B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP3207178A1 (de) Verfestigungszusammensetzung für papier und karton
WO2006136556A2 (de) Verfahren zur herstellung von papier, pappe und karton

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010014574

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D21H0021180000

Ipc: D21H0017370000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: D21H 17/66 20060101ALI20170725BHEP

Ipc: D21H 17/44 20060101ALI20170725BHEP

Ipc: D21H 17/56 20060101ALI20170725BHEP

Ipc: D21H 17/37 20060101AFI20170725BHEP

Ipc: D21H 17/00 20060101ALI20170725BHEP

Ipc: D21H 21/18 20060101ALI20170725BHEP

INTG Intention to grant announced

Effective date: 20170810

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 964512

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010014574

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2663702

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180416

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010014574

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

26 Opposition filed

Opponent name: KEMIRA OYJ

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180607

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180607

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190503 AND 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010014574

Country of ref document: DE

Owner name: SOLENIS TECHNOLOGIES CAYMAN, L.P., GEORGE TOWN, KY

Free format text: FORMER OWNER: BASF SE, 67063 LUDWIGSHAFEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190627

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190521

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190702

Year of fee payment: 10

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

R26 Opposition filed (corrected)

Opponent name: KEMIRA OYJ

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100607

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180117

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

27A Patent maintained in amended form

Effective date: 20201118

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502010014574

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 964512

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200607

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2663702

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20211216

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240521

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20250625

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20250627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20250627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20250625

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20250701

Year of fee payment: 16