EP2288750B1 - Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit - Google Patents

Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit Download PDF

Info

Publication number
EP2288750B1
EP2288750B1 EP09745789A EP09745789A EP2288750B1 EP 2288750 B1 EP2288750 B1 EP 2288750B1 EP 09745789 A EP09745789 A EP 09745789A EP 09745789 A EP09745789 A EP 09745789A EP 2288750 B1 EP2288750 B1 EP 2288750B1
Authority
EP
European Patent Office
Prior art keywords
polymer
anionic
mol
process according
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09745789A
Other languages
English (en)
French (fr)
Other versions
EP2288750A1 (de
Inventor
Anton Esser
Hans-Joachim HÄHNLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09745789A priority Critical patent/EP2288750B1/de
Publication of EP2288750A1 publication Critical patent/EP2288750A1/de
Application granted granted Critical
Publication of EP2288750B1 publication Critical patent/EP2288750B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/42Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups anionic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic

Definitions

  • the invention relates to a process for the production of paper, cardboard and cardboard with high dry strength by adding water-soluble cationic polymers and anionic polymers to a pulp, draining the pulp and drying the paper products.
  • a dry strength agent may either be applied to the surface of already dried paper or added to a stock prior to sheet formation.
  • the dry strength agents are usually used in the form of a 1 to 10% aqueous solution. If such a solution of a dry strength agent is applied to the surface of a paper, considerable amounts of water must be evaporated during the subsequent drying process. Since the drying step is very energy consuming and since the capacity of the usual drying equipment on paper machines is usually not so large that you can drive at the maximum possible production speed of the paper machine, the production speed of the paper machine must be lowered so that dried dry-treated paper dried sufficiently becomes.
  • Suitable water-soluble anionic polymers are, for example, homopolymers or copolymers of ethylenically unsaturated C 3 - to C 5 -carboxylic acids.
  • the copolymers contain, for example, from 35 to 99% by weight of an ethylenically unsaturated C 3 - to C 5 -carboxylic acid, for example acrylic acid, in copolymerized form.
  • WO-A-2004/061235 is a process for the production of paper, especially tissue, with particularly high wet and / or dry strengths known, in which one first adds to the paper a water-soluble cationic polymer which contains at least 1.5meq / g polymer of primary amino functionalities and a molecular weight of at least 10,000 daltons. Particularly emphasized here are partially and fully hydrolyzed homopolymers of N-vinylformamide. Subsequently, a water-soluble anionic polymer is added which contains anionic and / or aldehydic groups.
  • the method is mainly the variability of the two-component systems described in terms of various paper properties, including wet and dry strength, exposed.
  • DE 10 2005 029 010 teaches a method of making paper by separately adding a vinylamine moiety-containing polymer and a water-soluble polymeric anionic compound to the stock.
  • the anionic copolymer is composed of the monomers N-vinylcarboxamide and acrylic acid, wherein the acrylic acid content of the monomer composition is 30%. Such acrylic acid contents render the copolymer water-soluble.
  • From the CA 1 110 019 discloses a process for the production of paper with high dry strength, in which one adds to the paper stock first a water-soluble cationic polymer and then a water-soluble anionic polymer.
  • the anionic polymers are acrylamide / acrylic acid copolymers having an acrylic acid content of 2-30 mol%.
  • the US 5,185,062 teaches a papermaking process in which a mineral slurry, first a mineral filler, then a high molecular weight cationic polymer and then a water soluble anionic polymer of average molecular weight, is added to a cellulose slurry.
  • the anionic polymers are polymers based on acrylic acid or copolymers which contain at least 65 mol% of anionically ionizable radicals.
  • the US 2003/0188840 teaches the addition of a mixture of a water-soluble anionic resin and a water-soluble cationic or amphoteric starch in the papermaking process.
  • anionic polymers copolymers based on acrylamide / acrylic acid are used, which are water-soluble.
  • the US 5,338,406 teaches a process for producing high dry strength paper using a polyelectrolyte complex formed from a water-soluble cationic polymer and a water-soluble anionic polymer.
  • the invention has for its object to provide a further process for the production of paper with high dry strength and lowest possible wet strength available, the dry strength of the paper products over the prior art is further improved as possible.
  • the object is achieved according to the invention by a process for the production of paper, paperboard and cardboard with high dry strength by separately adding a water-soluble cationic polymer and an anionic polymer to a paper stock, dewatering the paper stock and drying the paper products, if the anionic polymer is an aqueous dispersion a water-insoluble polymer having an acid group content of 0.1 to 10 mol% or an anionic aqueous dispersion of a nonionic polymer.
  • the cationic polymer is added to the pulp in the form of dilute aqueous solutions having a polymer content of, for example, from 0.1 to 10% by weight
  • the addition of the anionic polymer is always carried out as an aqueous dispersion.
  • the polymer concentration The aqueous dispersion can be varied within a wide range.
  • the aqueous dispersions are preferably metered in diluted form; for example, the polymer concentration of the anionic dispersions is 0.5 to 10% by weight.
  • the water-dispersed anionic polymers are practically insoluble in water. For example, at a pH of 7.0 under normal conditions (20 ° C., 1013 mbar) at most 2.5 g of polymer / liter of water, usually at most 0.5 g / l and preferably not more than 0.1 g, dissolve / l.
  • the dispersions are anionic due to the content of acid groups in the polymer.
  • the water-insoluble polymer has a content of acid groups of 0.1 to 10 mol%, usually 0.5 to 9 mol% and preferably 0.5 to 6 mol%, in particular 2 to 6 mol%.
  • the content of acid groups in the anionic polymer is usually 2 to 4 mol%.
  • the acid groups of the anionic polymer are, for example, selected from carboxyl, sulfonic acid and phosphonic acid groups. Particularly preferred are carboxyl groups.
  • the anionic polymers contain z. B. at least 40 mol%, preferably at least 60 mol% and in particular at least 80 mol% of at least one monomer of group (a) copolymerized. These monomers are practically water-insoluble or, when homopolymerized, result in water-insoluble polymers.
  • the anionic polymers preferably contain as monomer of group (a) mixtures of (i) a C 1 - to C 20 -alkyl acrylate and / or a C 1 - to C 20 -alkyl methacrylate and (ii) styrene, ⁇ -methylstyrene, p- Methylstyrene, ⁇ -butylstyrene, 4-n-butylstyrene, butadiene and / or isoprene copolymerized in a weight ratio of 10:90 to 90: 10.
  • Examples of individual monomers of group (a) of the anionic polymers are acrylic acid and methacrylic acid esters of saturated monohydric C 1 -C 20 -alcohols such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, isopropyl acrylate, n-butyl Butyl acrylate, sec-butyl acrylate, tert-butyl acrylate, n-butyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, n-pentyl acrylate, n-pentyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, 2-ethylhexyl acryl
  • esters of acrylic acid and of methacrylic acid with saturated, monohydric C 1 - to C 10 -alcohols are preferably used.
  • Mixtures of these monomers are also used in the preparation of the anionic polymers, for example mixtures of n-butyl acrylate and ethyl acrylate or mixtures of n-butyl acrylate and at least one propyl acrylate.
  • Preferred monomers of group (a) are C 1 -C 20 -alkyl (meth) acrylates and mixtures of alkyl (meth) acrylates with vinylaromatics, in particular styrene and / or double bonds containing hydrocarbons, in particular butadiene, or mixtures of such hydrocarbons with vinylaromatics , in particular styrene.
  • Particularly preferred monomers of group (a) of the anionic polymers are n-butyl acrylate, styrene and acrylonitrile, which can each be used alone or in a mixture.
  • the weight ratio of alkyl acrylates or alkyl methacrylates to vinyl aromatics and / or to double-bond hydrocarbons such as butadiene may be, for example, 10:90 to 90:10, preferably 20:80 to 80:20.
  • anionic monomers of group (b) of the anionic polymers are ethylenically unsaturated C 3 - to C 8 -carboxylic acids such as acrylic acid, methacrylic acid, dimethacrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, methylenemalonic acid, allylacetic acid, vinylacetic acid and crotonic acid .
  • monomers containing sulfo groups such as vinylsulfonic acid, acrylamido-2-methylpropanesulfonic acid and styrenesulfonic acid and vinylphosphonic acid.
  • the monomers of this group can be used alone or in admixture with each other, in partially or completely neutralized form in the copolymerization.
  • neutralization for example, alkali metal or alkaline earth metal bases, ammonia, amines and / or alkanolamines are used. Examples of these are sodium hydroxide solution, potassium hydroxide solution, soda, potash, sodium bicarbonate, magnesium oxide, calcium hydroxide, calcium oxide, triethanolamine, ethanolamine, morpholine, diethylenetriamine or tetraethylenepentamine.
  • the water-insoluble anionic polymers may optionally contain as further monomers (c) at least one monomer from the group of C 1 to C 10 hydroxyalkyl acrylates, C 1 to C 10 hydroxyalkyl methacyrylates, acrylamide, methacrylamide, NC 1 to C 20 alkylacrylamides and NC 1 to C 20 alkyl methacrylamides included. If these monomers are used to modify the anionic polymers, it is preferable to use acrylamide or methacrylamide.
  • the amounts of polymerized monomers (c) in the anionic polymer are up to, for example, 20 mol%, preferably up to 10 mol% and, if these monomers are used in the polymerization, in the range of 1 to 5 mol%.
  • Suitable monomers of group (d) are compounds having at least two ethylenically unsaturated double bonds in the molecule. Such compounds are also referred to as crosslinkers. They contain, for example, 2 to 6, preferably 2 to 4 and usually 2 or 3 free-radically polymerizable double bonds in the molecule. The double bonds may be, for example, the following groups: acrylic, methacrylic, vinyl ether, vinyl ester, allyl ether and allyl ester groups. Examples of crosslinkers are 1,2-ethanediol di (meth) acrylate, (the notation "... (meth) acrylate” or "(meth) acrylic acid” here and in the following text means both "...
  • Allyl acrylate, divinylbenzene, 1,4-butanediol diacrylate and 1,6-hexanediol diacrylate are preferred. If a crosslinker is used to modify the polymers, the amounts polymerized in are up to 2 mol%. They are, for example, in the range of 0.001 to 2, preferably 0.01 to 1 mol%.
  • the water-insoluble anionic polymers preferably comprise, as monomers (a), mixtures of 20-50 mol% of styrene and 30-80 mol% of at least one alkyl methacrylate and / or at least one alkyl acrylate in copolymerized form. If appropriate, they may additionally contain up to 30 mol% of methacrylonitrile or acrylonitrile in copolymerized form. If appropriate, such polymers may also be modified with the amounts of methacrylamide and / or acrylamide stated above under monomers of group (c).
  • anionic polymers which comprise at least 80 mol% of at least one monomer of group (a) in copolymerized form. They contain, as monomer of group (a), mixtures of (i) a C 1 - to C 20 -alkyl acrylate and / or a C 1 - to C 20 -alkyl methacrylate and (ii) styrene, ⁇ -methylstyrene, p-methylstyrene, ⁇ -Butylstyrol, 4-n-butylstyrene, butadiene and / or isoprene in a weight ratio of 10: 90 to 90: 10 copolymerized.
  • the preparation of the anionic polymers is usually carried out by emulsion polymerization. It is therefore in the anionic polymers are emulsion polymers.
  • the preparation of aqueous polymer dispersions by the process of free-radical emulsion polymerization is known per se (cf. Houben-Weyl, Methods of Organic Chemistry, Volume XIV, Macromolecular Materials, Georg Thieme Verlag, Stuttgart 1961, pages 133ff ).
  • ionic and / or nonionic emulsifiers and / or protective colloids or stabilizers are used as surface-active compounds.
  • the surface-active substance is usually used in amounts of from 0.1 to 10% by weight, in particular from 0.2 to 3% by weight, based on the monomers to be polymerized.
  • Common emulsifiers are z. B. ammonium or alkali metal salts of higher fatty alcohol sulfates, such as Na-n-lauryl sulfate, fatty alcohol phosphates, ethoxylated C 8 - to C 10 alkylphenols having a degree of ethoxylation of 3 to 30 and ethoxylated C 8 - to C 25 -fatty alcohols having a degree of ethoxylation of 5 to 50. Also conceivable are mixtures of nonionic and ionic emulsifiers. Also suitable are phosphate- or sulfate-containing, ethoxylated and / or propoxylated alkylhenols and / or fatty alcohols. Other suitable emulsifiers are in Houben-Weyl, Methods of Organic Chemistry, Volume XIV, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 209 listed.
  • Water-soluble initiators for the emulsion polymerization for the preparation of anionic polymers are, for.
  • red-ox reduction-oxidation initiator systems
  • peroxides for example combinations of peroxides, hydroperoxides or hydrogen peroxide with reducing agents such as ascorbic acid or sodium bisulfite.
  • reducing agents such as ascorbic acid or sodium bisulfite.
  • These initiator systems may additionally contain metal ions such as iron (II) ions.
  • the amount of initiators is generally 0.1 to 10 wt .-%, preferably 0.5 to 5 wt .-%, based on the monomers to be polymerized. Several different initiators can also be used in the emulsion polymerization.
  • regulators may be used, e.g. in amounts of from 0 to 3 parts by weight, based on 100 parts by weight of the monomers to be polymerized. This reduces the molecular weight of the resulting polymers. Suitable regulators are z.
  • the emulsion polymerization for the preparation of the anionic polymers is generally carried out at 30 to 130 ° C, preferably at 50 to 100 ° C.
  • the polymerization medium may consist of water only, as well as of mixtures of water and thus miscible liquids such as methanol. Preferably, only water is used.
  • the emulsion polymerization can be carried out both as a batch process and in the form of a feed process, including a stepwise or gradient procedure.
  • the feed process in which one submits a portion of the polymerization, heated to the polymerization, polymerized and then the rest of the polymerization, usually over several spatially separate feeds, one or more of which monomers in pure or in emulsified form, continuously , gradually or with the addition of a concentration gradient while maintaining the polymerization of the polymerization zone supplies.
  • the polymerization can also z. B. be presented for better adjustment of the particle size of a polymer seed.
  • the manner in which the initiator is added to the polymerization vessel in the course of the free radical aqueous emulsion polymerization is known to one of ordinary skill in the art. It can be introduced both completely into the polymerization vessel, or used continuously or in stages according to its consumption in the course of the free radical aqueous emulsion polymerization. In detail, this depends on the chemical nature of the initiator system as well as on the polymerization temperature. Preferably, a part is initially charged and the remainder supplied according to the consumption of the polymerization.
  • To remove the residual monomers is usually also after the end of the actual emulsion polymerization, ie after a conversion of the monomers of at least 95%, added again at least one initiator and the reaction mixture heated for a certain time to the polymerization or an overlying temperature.
  • the individual components can be added to the reactor in the feed process from above, in the side or from below through the reactor bottom.
  • the acid groups contained in the anionic polymer can still be at least partially or completely neutralized.
  • This can be done, for example, with oxides, hydroxides, carbonates or bicarbonates of alkali metals or alkaline earth metals, preferably with hydroxides to which any one or more counterions may be associated, eg Li + , Na + , K + , Cs + , Mg 2+ , Ca 2 + or Ba 2+ .
  • Also suitable for neutralization are ammonia or amines. Preference is given to aqueous ammonium hydroxide, sodium hydroxide or potassium hydroxide solutions.
  • aqueous dispersions of the anionic polymer are generally obtained with solids contents of 15 to 75 wt .-%, preferably from 40 to 75 wt .-%.
  • the molecular weight M w of the anionic polymers is, for example, in the range of 100,000 to 1 million daltons. If the polymers have a gel phase, a molecular weight determination is not readily possible. The molar masses are then above the above-mentioned range.
  • the glass transition temperature Tg of the anionic polymers is for example in the range of -30 to 100 ° C, preferably in the range of -5 to 70 ° C and particularly preferably in the range of 0 to 40 ° C (measured by the DSC method according to DIN EN ISO 11357).
  • the particle size of the dispersed anionic polymers is preferably in the range of 10 to 1000 nm, more preferably in the range of 50 to 300 nm (measured using a Malvern ® Autosizer 2 C).
  • the anionic polymers may optionally contain polymerized small amounts of cationic monomer units, so that there are amphoteric polymers, but the total charge of the polymers must be anionic.
  • the net anionic charge is less than -0.2 meq / g. It is usually in the range of -0.5 to -2.0 meq / g.
  • polymer dispersions of nonionic monomers which are emulsified with the aid of anionic surfactants or emulsifiers are also suitable as anionic polymers are.
  • the surfactants or emulsifiers are used for this application, for example, in amounts of 1 to 15 wt .-%, based on the total dispersion.
  • Suitable cationic polymers are all water-soluble cationic polymers mentioned in the cited prior art. It is z. B. to amino or ammonium compounds carrying compounds. The amino groups may be primary, secondary, tertiary or quaternary groups. For the polymer are in the main polymers, polyaddition compounds or polycondensates into consideration, wherein the polymers may have a linear or branched structure up to hyperbranched or dendritic structures. Furthermore, graft polymers are also applicable.
  • the cationic polymers are referred to in the present context as water-soluble, if their solubility in water under normal conditions (20 ° C, 1013 mbar) and pH 7.0, for example, at least 10% by weight.
  • the molecular weights M w of the cationic polymers are, for example, at least 1000. For example, they are mostly in the range of 5,000 to 5 million.
  • the charge densities of the cationic polymers are, for example, 0.5 to 23 meq / g of polymer, preferably 3 to 22 meq / g of polymer and most often 6 to 20 meq / g of polymer.
  • Suitable monomers are furthermore N-vinylimidazoles, alkylvinylimidazoles, in particular methylvinylimidazoles such as 1-vinyl-2-methylimidazole, 3-vinylimidazole N-oxide, 2- and 4-vinylpyridines, 2- and 4-vinylpyridine N-oxides and betainic derivatives and Quaternization products of these monomers.
  • Monomers or monomer mixtures in which the number average of m in the above formula is at least 2.1, usually 2.1 to 8, are preferred. They are obtainable by reacting an ethylenically unsaturated carboxylic acid with an oligoalkyleneimine, preferably in the form of an oligomer mixture. The resulting product may optionally be converted with a mineral acid HY in the acid addition salt.
  • Such monomers can be polymerized in an aqueous medium in the presence of an initiator which initiates a free radical polymerization to cationic homo- and copolymers.
  • the abovementioned monomers can be polymerized alone to form water-soluble cationic homopolymers or together with at least one other neutral monomer to form water-soluble cationic copolymers or with at least one acid group-containing monomer to form amphoteric copolymers which carry a total cationic charge in a molar excess of copolymerized cationic monomers.
  • Suitable neutral monomers which are copolymerized with the abovementioned cationic monomers for the preparation of cationic polymers are, for example, esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with C 1 -C 30 -alkanols, C 2 -C 30 -alkanediols, Amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and their N-alkyl and N, N-dialkyl derivatives, esters of vinyl alcohol and allyl alcohol with saturated C 1 -C 30 monocarboxylic acids, vinyl aromatics, vinyl halides, vinylidene halides, C 2 -C 8 monoolefins and Mixtures thereof.
  • Suitable comonomers are e.g. Methyl (meth) acrylate, methylethacrylate, ethyl (meth) acrylate, ethylethacrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, tert-butylethacrylate, n-octyl (meth) acrylate, 1,1,3,3-tetramethylbutyl (meth) acrylate, ethylhexyl (meth) acrylate and mixtures thereof.
  • acrylamide, substituted acrylamides, methacrylamide, substituted methacrylamides such as, for example, acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N- (n-butyl) ( meth) acrylamide, tert-butyl (meth) acrylamide, n-octyl (meth) acrylamide, 1,1,3,3-tetramethylbutyl (meth) acrylamide and ethylhexyl (meth) acrylamide and also acrylonitrile and methacrylonitrile and mixtures of the stated monomers.
  • Further monomers for modifying the cationic polymers are 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, etc., and mixtures thereof.
  • N-vinyllactams and derivatives thereof which contain, for example, one or more C 1 -C 6 -alkyl substituents, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec. Butyl, tert-butyl, etc. may have.
  • N-vinylpyrrolidone N-vinylpiperidone, N-vinylcaprolactam
  • N-vinyl-5-methyl-2-pyrrolidone N-vinyl-5-ethyl-2-pyrrolidone
  • N-vinyl-6-methyl-2-piperidone N-vinyl-6-ethyl-2-piperidone
  • N-vinyl-7-methyl-2-caprolactam N-vinyl-7-ethyl-2-caprolactam, etc.
  • Suitable comonomers for the copolymerization with the abovementioned cationic monomers are furthermore ethylene, propylene, isobutylene, butadiene, styrene, ⁇ -methylstyrene, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and mixtures thereof.
  • Another group of comonomers are ethylenically unsaturated compounds bearing a moiety from which an amino group can be formed in a polymer-analogous reaction.
  • These include, for example, N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide, N-vinylpropionamide, N-vinyl-N-methylpropionamide and N-vinylbutyramide and mixtures thereof.
  • the polymers formed therefrom can, as in EP-A-0438744 described, by acidic or basic hydrolysis in vinylamine and amidine units (formulas IV - VII) containing polymers are transferred
  • the substituents R 1 , R 2 are H, C 1 - to C 6 -alkyl and X is an anion equivalent of an acid, preferably a mineral acid.
  • polyvinylamines polyvinyl-methylamines or polyvinylethylamines are formed during the hydrolysis.
  • the monomers of this group may be polymerized in any manner with the cationic monomers and / or the above-mentioned comonomers.
  • Cationic polymers should also be understood as meaning amphoteric polymers which carry a total cationic charge.
  • the content of cationic groups is, for example, at least 5 mol% higher than the content of anionic groups in the polymer.
  • Such polymers are z. B. accessible by copolymerizing a cationic monomer such as N, N-Dimethylaminoethylacrylamid in the form of the free base, partially neutralized with an acid or in quaternized form with at least one acid group-containing monomer, wherein the cationic monomer is used in a molar excess so that the resulting polymers carry a cationic total charge.
  • the hydrolysis of the copolymers can be carried out in the presence of acids or bases or else enzymatically.
  • the vinylamine groups formed from the vinylcarboxamide units are present in salt form.
  • the hydrolysis of vinylcarboxylic acid amide copolymers is described in U.S. Pat EP-A-0 438 744 , Page 8, line 20 to page 10, line 3, described in detail. The statements made there apply correspondingly to the preparation of the amphoteric polymers to be used according to the invention having a total cationic charge.
  • These polymers have, for example, K values (determined according to H. Fikentscher in 5% aqueous saline solution at pH 7, a polymer concentration of 0.5% by weight and a temperature of 25 ° C.) in the range from 20 to 250, preferably 50 to 150.
  • the cationic homopolymers and copolymers can be prepared by solution, precipitation, suspension or emulsion polymerization. Preference is given to solution polymerization in aqueous media.
  • Suitable aqueous media are water and mixtures of water and at least one water-miscible solvent, e.g. As an alcohol such as methanol, ethanol, n-propanol, etc.
  • the polymerization temperatures are preferably in a range of about 30 to 200 ° C, more preferably 40 to 110 ° C.
  • the polymerization is usually carried out under atmospheric pressure, but it can also proceed under reduced or elevated pressure.
  • a suitable pressure range is between 0.1 and 5 bar.
  • the monomers can be polymerized by means of free-radical initiators.
  • the peroxo and / or azo compounds customary for this purpose can be used, for example alkali or ammonium peroxydisulfates, diacetyl peroxide, dibenzoyl peroxide, succinyl peroxide, di-tert-butyl peroxide, tert-butyl perbenzoate, tert-butyl perpivalate, tert-butyl peroxy-2-ethylhexanoate, tert-butyl permalate, cumene hydroperoxide, diisopropyl peroxydicarbamate, bis (o-toluoyl) peroxide, didecanoyl peroxide, dioctanoyl peroxide, dilauroyl peroxide, tert-butyl perisobutyrate, tert-butyl peracetate, di-tert-amyl peroxide tert-butyl hydroperoxide
  • initiator mixtures or redox initiator systems such as, for example, ascorbic acid / iron (II) sulfate / sodium peroxodisulfate, tert-butyl hydroperoxide / sodium disulfite, tert-butyl hydroperoxide / sodium hydroxymethanesulfinate, H 2 O 2 / Cu-I or iron II -Links.
  • the polymerization can be carried out in the presence of at least one regulator.
  • a regulator the usual compounds known in the art, such.
  • B. sulfur compounds for. As mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid, sodium hypophosphite, formic acid or dodecyl mercaptan and Tribromchlormethan or other compounds which act regulating the molecular weight of the polymers obtained, are used.
  • Cationic polymers such as polyvinylamines and their copolymers can also be prepared by Hofmann degradation of polyacrylamide or polymethacrylamide and their copolymers, cf. H. Tanaka, Journal of Polymer Science: Polymer Chemistry Edition 17,1239-1245 (1979 ) and EI Achari, X. Coqueret, A. Lablache-Combier, C. Loucheux, Makromol. Chem., Vol. 194, 1879-1891 (1993 ).
  • cationic polymers can be modified by carrying out the polymerization of the cationic monomers and, if appropriate, of the mixtures of cationic monomers and the comonomers in the presence of at least one crosslinker.
  • a crosslinker is understood as meaning those monomers which contain at least two double bonds in the molecule, eg.
  • methylenebisacrylamide glycol diacrylate, glycol dimethacrylate, glycerol triacrylate, pentaerythritol triallyl ether, at least two times with acrylic acid and / or methacrylic acid esterified polyalkylene glycols or polyols such as pentaerythritol, soba or glucose. If at least one crosslinker is used in the copolymerization, the amounts used, for example, up to 2 mol%, z. B. 0.001 to 1 mol%.
  • Suitable cationic compounds are polymers which can be produced by polyaddition reactions, in particular polymers based on aziridines. Both homopolymers can be formed but also graft polymers which are produced by grafting aziridines to other polymers. Again, it may be advantageous during or after the polyaddition add crosslinkers having at least 2 groups that can react with the aziridines or the amino groups formed, such as. For example, epichlorohydrin or dihaloalkanes. Crosslinker (s. Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, 1992, chapter on aziridines ).
  • Preferred polymers of this type are based on ethyleneimine, e.g. B. produced by polymerization of ethyleneimine homopolymers of ethyleneimine or grafted with ethyleneimine polymers such as polyamidoamines.
  • Suitable cationic polymers are reaction products of dialkylamines with epichlorohydrin or with di- or multifunctional epoxides such.
  • cationic polymers are also polycondensates, eg. B. homo- or copolymers of lysine, arginine and histidine. They can be used as homopolymers or as copolymers with other natural or synthetic amino acids or lactams. For example, glycine, alanine, valine, leucine, phenylalanine, tryptophan, proline, asparagine, glutamine, serine, threonine or else caprolactam are suitable for the copolymerization.
  • cationic polymers it is also possible to use condensates of difunctional carboxylic acids with polyfunctional amines, the polyfunctional amines bearing at least 2 primary amino groups and at least one further less reactive, ie secondary, tertiary or quaternary amino group.
  • examples are the polycondensation products of diethylenetriamine or triethylenetetramine with adipic, malonic, glutaric, oxalic or succinic acid.
  • amino groups carrying polysaccharides such as B. Chitosan are suitable as cationic polymers.
  • graft polymers which carry primary or secondary amino groups, can be modified by means of reactive oligoethyleneimines as in the older one EP application 07 150 232.2 described.
  • graft polymers are described whose graft base is selected from the group of polymers comprising vinylamine units, polyamines, polyamidoamines and polymers of ethylenically unsaturated acids, and which contain exclusively oligoalkyleneimine side chains as side chains.
  • the preparation of graft polymers with Oligoalkylenimintimketten done by grafting on one of said grafting at least one Oligoalkylenimin containing a terminal Aziridinruppe.
  • Wood pulp includes, for example, groundwood, thermomechanical pulp (TMP), chemo-thermo-mechanical pulp (CTMP), pressure groundwood, semi-pulp, high yield pulp, and refiner mechanical pulp (RMP).
  • TMP thermomechanical pulp
  • CMP chemo-thermo-mechanical pulp
  • RMP refiner mechanical pulp
  • pulp for example, sulphate, sulphite and soda pulps come into consideration.
  • unbleached pulp also referred to as unbleached kraft pulp
  • Suitable annual plants for the production of pulps are, for example, rice, wheat, sugar cane and kenaf.
  • waste paper is mostly used, which is used either alone or in admixture with other fibers or it is based on fiber blends of a primary material and recycled coated Committee, z. B. bleached pine sulfate in admixture with recycled coated broke.
  • the process according to the invention is of technical interest for the production of paper and paperboard because it significantly increases the strength properties of the recycled fibers and is of particular importance for improving the strength properties of graphic papers and packaging papers.
  • the papers obtainable by the process according to the invention surprisingly have a higher dry strength than those according to the process of WO 2006/056381 manufacturable papers.
  • the pH of the stock suspension is, for example, in the range of 4.5 to 8, usually 6 to 7.5.
  • an acid such as sulfuric acid or aluminum sulphate.
  • the cationic polymer is preferably first metered to the paper stock.
  • the cationic polymer can be added to the thick material (fiber concentration> 15 g / l, for example in the range from 25 to 40 g / l up to 60 g / l) or preferably to a thin material (fiber concentration ⁇ 15 g / l, eg in in the range of 5 to 12 g / l).
  • the point of addition is preferably in front of the screens, but may also be between a shearing stage and a screen or afterwards.
  • the anionic component is usually added to the paper stock only after the cationic component has been added, but it can also be metered into the paper stock at the same time, but separately from the cationic component. Furthermore, it is also possible first to add the anionic and subsequently the cationic component.
  • Particularly advantageous is a process variant in which the pulp is heated to a temperature of at least 40 ° C, e.g. 45 to 55 ° C, preferably heated to at least 50 ° C and then dosed first the water-soluble cationic polymer and then or simultaneously, but separately, the water-insoluble anionic polymer.
  • a temperature of at least 40 ° C e.g. 45 to 55 ° C
  • the water-soluble anionic polymer preferably heated to at least 50 ° C
  • the water-soluble cationic polymer used is preferably a polymer containing vinylamine units.
  • the cationic polymer is used, for example, in an amount of 0.03 to 2.0 wt .-%, preferably 0.1 to 0.5 wt .-%, based on dry pulp.
  • the water-insoluble anionic polymer is e.g. in an amount of 0.5 to 10 wt .-%, preferably 1 to 6 wt .-%, in particular from 2.5 to 5.5 wt .-%, based on dry pulp, used.
  • the weight ratio of water-soluble cationic polymer to water-insoluble anionic polymer is, for example, 1: 5 to 1:20, based on the solids content, and is preferably in the range of 1:10 to 1:15, and more preferably in the range of 1:10 to 1:12.
  • the process chemicals commonly used in papermaking can be used in the usual amounts, for.
  • dehydrating agents other dry strength such as starch, pigments, fillers, optical brighteners, defoamers, biocides and paper dyes.
  • the percentages in the examples are by weight unless otherwise specified.
  • the K value of the polymers was calculated according to Fikentscher, Cellulose Chemistry, Vol. 13, 58-64 and 71-74 (1932 ) at a temperature of 20 ° C in 5 wt .-% aqueous saline solutions at a pH of 7 and a polymer concentration of 0.5%.
  • K k 1000.
  • This polymer was prepared by hydrolysis of a poly-N-vinylformamide with hydrochloric acid.
  • the degree of hydrolysis of the polymer was 50 mole%, i. the polymer contained 50 mole% of N-vinylformamide units and 50 mole% of vinylamine units in salt form.
  • the K value of the water-soluble cationic polymer was 90.
  • the water-soluble cationic polymer contained 70 mol% of N-vinylformamide units and 30 mol% of vinylamine units in salt form.
  • the K value of the water-soluble cationic polymer was 90.
  • a 0.5% aqueous pulp suspension was prepared.
  • the pH of the suspension was 7.1, the freeness of the substance 50 ° Schopper-Riegler (° SR).
  • the stock suspension was then divided into 8 equal parts and in Examples 1 to 3 and in Comparative Examples 1 to 5 under the conditions specified in the Examples and Comparative Examples on a Rapid Köthen sheet former according to ISO 5269/2 sheets of a basis weight of 120 gsm processed.
  • the stock was heated to a temperature of 50 ° C.
  • polymer B polymer, based on dry pulp.
  • the dispersion of an anionic acrylate resin (solid content 50%) obtainable by the suspension polymerization of 68 mol% of n-butyl acrylate, 14 mol% of styrene, 14 mol% of acrylonitrile and 4 mol% of acrylic acid was increased by a factor 10 diluted.
  • the mean particle size of the dispersed polymer particles was 192 nm.
  • the dilute dispersion was metered into the pulp suspension heated to 50 ° C. with gentle stirring. The used
  • Acrylate resin amount was 5% (polymer solid) based on dry pulp. After an exposure time of 1 minute leaves were formed, which were then dried at 90 ° C for 7 minutes.
  • the dilute dispersion the temperature of which was about 20 ° C.
  • the amount of acrylate used was 5% (polymer solid), based on dry pulp. After an exposure time of 1 minute leaves were formed, which were then dried at 90 ° C for 7 minutes.
  • the dispersion of an anionic acrylate resin (solids content 50%) obtainable by the suspension polymerization of 68 mol% of n-butyl acrylate, 14 mol% of styrene, 14 mol% of acrylonitrile and 4 mol% of acrylic acid was diluted by a factor of 10. The diluted dispersion was then added to the pulp suspension with gentle stirring. The amount of acrylate used was 5% (polymer solid), based on dry pulp. The mean particle size of the dispersed particles was 192 nm. The pulp suspension pretreated with the dispersion was then heated to 50 ° C. To the heated stock suspension was metered 0.25% polymer B (polymer solid, based on dry pulp). After an exposure time of 1 minute leaves were formed, which were then dried at 90 ° C for 7 minutes.
  • Comparative Examples 2 to 4 were according to Example 1 of WO 2006/056381 carried out.
  • a sample of the stock suspension described above was mixed at a fabric temperature of 22 ° C. with 0.25% of polymer A (polymer solid, based on dry pulp). After a residence time of 5 minutes, 0.25% of a water-soluble copolymer of 30% acrylic acid and 70% vinylformamide was added. The copolymer was in the form of a sodium salt and had a K value of 90. After an exposure time of 1 minute, leaves were formed, which were then dried at 90 ° C. for 7 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe von wasserlöslichen kationischen Polymerisaten und anionischen Polymerisaten zu einem Papierstoff, Entwässern des Papierstoffs und Trocknen der Papierprodukte.
  • Um die Trockenfestigkeit von Papier zu erhöhen, kann man einen Trockenverfestiger entweder auf die Oberfläche eines bereits getrockneten Papiers auftragen oder einem Papierstoff vor der Blattbildung zusetzen. Die Trockenverfestiger werden üblicherweise in Form einer 1 bis 10%igen wässrigen Lösung angewendet. Trägt man eine solche Lösung eines Trockenverfestigers auf die Oberfläche eines Papiers auf, so sind bei dem anschließenden Trocknungsprozess beträchtliche Mengen an Wasser zu verdampfen. Da der Trocknungsschritt sehr energieaufwendig ist und da die Kapazität der üblichen Trocknungseinrichtungen an Papiermaschinen meistens nicht so groß ist, dass man bei der maximal möglichen Produktionsgeschwindigkeit der Papiermaschine fahren kann, muss die Produktionsgeschwindigkeit der Papiermaschine erniedrigt werden, damit das trockenfest ausgerüstete Papier in ausreichendem Maße getrocknet wird.
  • Setzt man den Trockenverfestiger dagegen einem Papierstoff vor der Blattbildung zu, so muss das ausgerüstete Papier nur einmal getrocknet werden. Aus der DE-A-35 06 832 ist ein Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit bekannt, bei dem man zum Papierstoff zunächst ein wasserlösliches kationisches Polymerisat und anschließend ein wasserlösliches anionisches Polymerisat zugibt. Als wasserlösliche kationische Polymerisate werden in den Beispielen Polyethylenimin, Polyvinylamin, Polydiallyldimethylammoniumchlorid und mit Epichlorhydrin vernetzte Kondensationsprodukte aus Adipinsäure und Diethylentriamin beschrieben. Als wasserlösliche anionische Polymerisate kommen beispielsweise Homo- oder Copolymerisate von ethylenisch ungesättigten C3- bis C5-Carbonsäuren in Betracht. Die Copolymerisate enthalten beispielsweise 35 bis 99 Gew.-% einer ethylenisch ungesättigten C3- bis C5-Carbonsäure wie beispielsweise Acrylsäure, einpolymerisiert.
  • Aus WO-A-2004/061235 ist ein Verfahren zur Herstellung von Papier, insbesondere Tissue, mit besonders hohen Nass- und/oder Trockenfestigkeiten bekannt, bei dem man zum Papierstoff zunächst ein wasserlösliches kationisches Polymerisat zugibt, das mindestens 1,5meq/g Polymer an primären Aminofunktionalitäten enthält und ein Molekulargewicht von wenigstens 10.000 Dalton aufweist. Besonders hervorgehoben werden hierbei partiell und vollständig hydrolysierte Homopolymerisate des N-Vinylformamids. Anschließend wird ein wasserlösliches anionisches Polymerisat zugegeben, dass anionische und/oder aldehydische Gruppen enthält. Als Vorteil dieses Verfahrens wird vor allem die Variabilität der beschriebenen Zweikomponentensysteme im Hinblick auf verschiedene Papiereigenschaften, darunter Nass- und Trockenfestigkeit, herausgestellt.
  • DE 10 2005 029 010 lehrt ein Verfahren zur Herstellung von Papier durch getrennte Zugabe eines Vinylamineinheiten enthaltenden Polymers und einer wasserlöslichen polymeren anionischen Verbindung zum Papierstoff. Das anionische Copolymer ist dabei aus den Monomeren N-Vinylcarbonsäureamid und Acrylsäure aufgebaut, wobei der Acrylsäuregehalt der Monomerzusammensetzung 30% beträgt. Derartige Acrylsäuregehalte machen das Copolymer wasserlöslich.
  • Aus der CA 1 110 019 ist ein Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit bekannt, bei dem man zum Papierstoff zunächst ein wasserlösliches kationisches Polymerisat und danach ein wasserlösliches anionisches Polymerisat, zugibt. Die anionischen Polymere sind Acrylamid/Acrylsäure-Copolymere mit einem Acrylsäureanteil von 2-30 Mol%.
  • Die US 5,185,062 lehrt einen Papierherstellprozess, bei dem zu einer Celluloseslurry zuerst ein mineralischer Füllstoff, dann ein hochmolekulares kationisches Polymer und anschließend ein wasserlösliches anionisches Polymer mittleren Molekulargewichtes zugegeben wird. Die anionischen Polymere sind Polymere auf Basis von Acrylsäure bzw. Copolymere, die mindestens 65 Mol% anionisch ionisierbare Reste enthalten.
  • Die US 2003/0188840 lehrt die Zugabe einer Mischung eines wasserlöslichen anionischen Harzes und einer wasserlöslichen kationischen oder amphoteren Stärke im Papierherstellprozess. Als anionische Polymere werden Copolymere auf Basis von Acrylamid/Acrylsäure eingesetzt, die wasserlöslich sind.
  • Die US 5,338,406 lehrt ein Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit, unter Einsatz eines Polyelektrolytkomplexes, der aus einem wasserlöslichen kationischen Polymer und einem wasserlöslich anionischen Polymer gebildet wurde.
  • Aus der WO-A-2006/056381 ist ein Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch getrennte Zugabe eines wasserlöslichen Vinylamineinheiten enthaltenden Polymers und einer wasserlöslichen polymeren anionischen Verbindung zu einem Papierstoff, Entwässern des Papierstoffs und Trocknen der Papierprodukte bekannt, wobei man als polymere anionische Verbindung mindestens ein waserlösiches Copolymerisat einsetzt, das erhältlich ist durch Copolymerisieren von
    mindestens eines N-Vinylcarbonsäureamids der Formel
    Figure imgb0001
    in der R1, R2 = H oder C1- bis C6-Alkyl bedeuten,
    mindestens eines Säuregruppen enthaltenden monoethylenisch ungesättigten Monomeren und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen und gegebenenfalls
    anderen monoethylenisch ungesättigten Monomeren, und gegebenenfalls Verbindungen, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweisen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein weiteres Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit und möglichst niedriger Nassfestigkeit zur Verfügung zu stellen, wobei die Trockenfestigkeit der Papierprodukte gegenüber dem Stand der Technik möglichst weiter verbessert ist.
  • Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch getrennte Zugabe eines wasserlöslichen kationischen Polymerisats und eines anionischen Polymersats zu einem Papierstoff, Entwässern des Papierstoffs und Trocknen der Papierprodukte, wenn man als anionisches Polymerisat eine wässrige Dispersion eines wasserunlöslichen Polymeren mit einem Gehalt an Säuregruppen von 0,1 bis 10 Mol-% oder eine anionisch eingestellte wässrige Dispersion eines nichtionischen Polymerisats einsetzt.
  • Während das kationische Polymer dem Papierstoff in Form von verdünnten wässrigen Lösungen mit einem Polymergehalt von z.B. 0,1 bis 10 Gew.-% zugesetzt wird, erfolgt die Zugabe des anionischen Polymerisats immer als wässrige Dispersion. Die Polymerkonzentration der wässrigen Dispersion kann dabei innerhalb eines weiten Bereichs variiert werden. Vorzugsweise dosiert man die wässrigen Dispersionen in verdünnter Form, beispielsweise beträgt die Polymerkonzentration der anionischen Dispersionen 0,5 bis 10 Gew.-%.
  • Anionische Polymere
  • Die in Wasser dispergierten anionischen Polymerisate sind in Wasser praktisch unlöslich. So lösen sich beispielsweise bei einem pH-Wert von 7,0 unter Normalbedingungen (20 °C, 1013 mbar) höchstens 2,5 g Polymer/Liter Wasser, meistens höchstens 0,5 g/l und vorzugsweise nicht mehr als 0,1 g/l. Die Dispersionen sind aufgrund des Gehalts an Säuregruppen im Polymerisat anionisch. Das wasserunlösliche Polymer weist einen Gehalt an Säuregruppen von 0,1 bis 10 Mol-%, meistens 0,5 bis 9 Mol-% und vorzugsweise 0,5 bis 6 Mol-%, insbesondere 2 bis 6 Mol-% auf. Der Gehalt an Säuregruppen im anionischen Polymerisat beträgt meistens 2 bis 4 Mol-%.
  • Die Säuregruppen des anionischen Polymerisats sind beispielsweise ausgewählt sind unter Carboxyl-, Sulfonsäure- und Phosphonsäuregruppen. Besonders bevorzugt sind hierbei Carboxylgruppen.
  • Die anionischen Polymerisate enthalten beispielsweise
    1. (a) mindestens ein Monomer aus der Gruppe von C1- bis C20-Alkylacrylaten, C1 - bis C20-Alkylmethacrylaten, Vinylestem von bis zu 20 C-Atome enthaltenden gesättigten Carbonsäuren, Vinylaromaten mit bis zu 20 C-Atomen, ethylenisch ungesättigten Nitrilen, Vinylethern von 1 bis 10 C-Atome enthaltenden gesättigten, einwertigen Alkoholen, Vinylhalogeniden und aliphatischen Kohlenwasserstoffen mit 2 bis 8 C-Atomen und ein oder zwei Doppelbindungen,
    2. (b) mindestens ein anionisches Monomer aus der Gruppe der ethylenisch ungesättigten C3- bis C8-Carbonsäuren, Vinylsulfonsäure, Acrylamido-2-methylpropansulfonsäure, Styrolsulfonsäure, Vinylphosphonsäure sowie deren Salze und gegebenenfalls
    3. (c) mindestens ein Monomer aus der Gruppe der C1- bis C10-Hydroxyalkylacyrylate, C1- bis C10-Hydroxyalkylmethacyrylate, Acrylamid, Methacrylamid, N-C1-bis C20-Alkylacrylamide und N-C1-bis C20-Alkylmethacrylamide und gegebenenfalls
    4. (d) mindestens eine Monomer mit mindestens zwei ethylenisch ungesättigten Doppelbindungen im Molekül
      einpolymerisiert.
  • Die anionischen Polymerisate enthalten z. B. mindestens 40 Mol-%, vorzugsweise mindestens 60 Mol-% und insbesondere mindestens 80 Mol-% mindestens eines Monomers der Gruppe (a) einpolymerisiert. Diese Monomeren sind praktisch wasserunlöslich bzw. ergeben bei einer damit durchgeführten Homopolymerisation wasserunlösliche Polymerisate.
  • Die anionischen Polymerisate enthalten vorzugsweise als Monomer der Gruppe (a) Mischungen aus (i) einem C1- bis C20-Alkylacrylat und/oder einem C1- bis C20-Alkylmethacrylat und (ii) Styrol, α-Methylstyrol, p-Methylstyrol, α-Butylstyrol, 4-n-Butylstyrol, Butadien und/oder Isopren im Gewichtsverhältnis 10 : 90 bis 90 : 10 einpolymerisiert.
  • Beispiele für einzelne Monomere der Gruppe (a) der anionischen Polymerisate sind Acrylsäure- und Methacrylsäureester von gesättigten, einwertigen C1- bis C20-Alkoholen wie Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, n-Propylacrylat, n-Propylmethacrylat, Isopropylacrylat, n-Butylacrylat, sec.-Butylacrylat, tert.-Butylacrylat, n-Butylmethacrylat, sec.-Butylmethacrylat, tert.-Butylmethacrylat, n-Pentylacrylat, n-Pentylmethacrylat, n-Hexylacrylat, n-Hexylmethacrylat, Cyclohexylacrylat, Cyclohexylmethacrylat, 2-Ethylhexylacrylat, 2-Ethylhexylmethacrylat, n-Octylacrylat, n-Octylmethacrylat, n-Decylacrylat, n-Decylmethacrylat, Dodecylacrylat, Dodecylmethacrylat, Laurylacrylat, Laurylmethacrylat, Palmitylacrylat, Palmitylmethacrylat, Stearylacrylat und Stearylmethacrylat. Bevorzugt werden von diesen Monomeren die Ester der Acrylsäure und der Methacrylsäure mit gesättigten, einwertigen C1- bis C10-Alkoholen eingesetzt. Auch Mischungen dieser Monomeren werden bei der Herstellung der anionischen Polymeren eingesetzt, z.B. Mischungen aus n-Butylacrylat und Ethylacrylat oder Mischungen aus n-Butylacrylat und mindestens einem Propylacrylat.
  • Weitere Monomere der Gruppe (a) der anionischen Poylmerisate sind:
    • Vinylester von gesättigten Carbonsäuren mit 1 bis 20 C-Atomen z. B. Vinyllaurat, Vinylstearat, Vinylpropionat, Versaticsäurevinylester und Vinylacetat,
    • vinylaromatische Verbindungen wie Styrol, α-Methylstyrol, p-Methylstyrol, α-Butylstyrol, 4-n-Butylstyrol und 4-n-Decylstyrol,
    • Nitrile wie Acrylnitril und Methacrylnitril, Vinylhalogenide wie mit Chlor, Fluor oder Brom substituierte ethylenisch ungesättigte Verbindungen, bevorzugt Vinylchlorid und Vinylidenchlorid,
    • Vinylether, z. B. Vinylether von 1 bis 4 C-Atome enthaltenden gesättigten Alkoholen wie Vinylmethylether. Vinylethylether, Vinyl-n-propylether, Vinylisopropylether, Vinyl-n-butylether oder Vinylisobutylether sowie
    • eine oder zwei olefinische Doppelbindungen aufweisende aliphatische Kohlenwasserstoffe mit 2 bis 8 C-Atomen wie Ethylen, Propylen, Butadien, Isopren und Chloropren.
  • Bevorzugte Monomere der Gruppe (a) sind C1-C20-Alkyl(meth)acrylate und Mischungen der Alkyl(meth)acrylate mit Vinylaromaten, insbesondere Styrol und/oder zwei Doppelbindungen aufweisende Kohlenwasserstoffe, insbesondere Butadien, oder Gemische von derartigen Kohlenwasserstoffen mit Vinylaromaten, insbesondere Styrol. Besonders bevorzugte Monomere der Gruppe (a) der anionischen Polymerisate sind n-Butylacrylat, Styrol und Acrylnitril, die jeweils allein oder in Mischung eingesetzt werden können. Im Fall von Monomermischungen kann das Gewichtsverhältnis von Alkylacrylaten oder Alkylmethacrylaten zu Vinylaromaten und/oder zu zwei Doppelbindungen aufweisenden Kohlenwasserstoffen wie Butadien beipsielsweise 10 : 90 bis 90 : 10, vorzugsweise 20 : 80 bis 80 : 20 betragen.
  • Beispiele für anionische Monomere der Gruppe (b) der anionischen Polymerisate sind ethylenisch ungesättigten C3- bis C8-Carbonsäuren wie beispielsweise Acrylsäure, Methacrylsäure, Dimethacrylsäure, Ethacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure, Mesaconsäure, Citraconsäure, Methylenmalonsäure, Allylessigsäure, Vinylessigsäure und Crotonsäure. Als Monomere der Gruppe (b) eignen sich außerdem Sulfogruppen enthaltende Monomere wie Vinylsulfonsäure, Acrylamido-2-methyl-propansulfonsäure und Styrolsulfonsäure sowie Vinylphosphonsäure. Die Monomeren dieser Gruppe können allein oder in Mischung miteinander, in teilweise oder in vollständig neutralisierter Form bei der Copolymerisation eingesetzt werden. Zur Neutralisation verwendet man beispielsweise Alkalimetall- oder Erdalkalimetallbasen, Ammoniak, Amine und/oder Alkanolamine. Beispiele hierfür sind Natronlauge, Kalilauge, Soda, Pottasche, Natriumhydrogencarbonat, Magnesiumoxid, Calciumhydroxid, Calciumoxid, Triethanolamin, Ethanolamin, Morpholin, Diethylentriamin oder Tetraethylenpentamin.
  • Die wasserunlöslichen anionischen Polymerisate können gegebenenfalls als weitere Monomere (c) mindestens ein Monomer aus der Gruppe der C1- bis C10-Hydroxyalkylacyrylate, C1- bis C10-Hydroxyalkylmethacyrylate, Acrylamid, Methacrylamid, N-C1-bis C20-Alkylacrylamide und N-C1-bis C20-AlkylMethacrylamide enthalten. Falls diese Monomeren zur Modifizierung der anionischen Polymerisate eingesetzt werden, so verwendet man vorzugsweise Acrylamid oder Methacrylamid. Die Mengen an einpolymerisierten Monomeren (c) im anionischen Polymerisat betragen bis zu beispielsweise 20 Mol-%, vorzugsweise bis zu 10 Mol-% und liegen, sofern diese Monomeren bei der Polymerisation eingesetzt werden, in dem Bereich von 1 bis 5 Mol-%. Als Monomere der Gruppe (d) kommen Verbindungen mit mindestens zwei ethylenisch ungesättigten Doppelbindungen im Molekül in Betracht. Solche Verbindungen werden auch als Vernetzer bezeichnet. Sie enthalten beispielsweise 2 bis 6, vorzugsweise 2 bis 4 und meistens 2 oder 3 radikalisch polymerisierbare Doppelbindungen im Molekül. Bei den Doppelbindungen kann es sich beispielsweise um folgende Gruppen handeln: Acryl-, Methacryl-, Vinylether-, Vinylester-, Allylether- und Allylestergruppen. Beispiele für Vernetzer sind 1,2-Ethandioldi(meth)acrylat, (die Schreibweise "...(meth)acrylat" bzw. "(Meth)Acrylsäure" bedeutet hier sowie im folgenden Text sowohl "... acrylat" als auch "...methacrylat" bzw. Acrylsäure als auch Methacrylsäure), 1,3-Propandioldi(meth)acrylat, 1,2-Propandioldi(meth)acrylat, 1,4-Butandioldi(meth)acrylat, 1,6-Hexandioldi(meth)acrylat, Neopentylglykoldi(meth)acrylat, Trimethylolpropantrioldi(meth)acrylat, Pentaerythrittetra(meth)acrylat, 1,4-Butandioldivinylether, 1,6-Hexandioldivinylether, 1,4-Cyclohexandioldivinylether, Divinylbenzol, Allylacrylat, Allylmethacrylat, Methallylacrylat, Methallylmethacrylat, (Meth)Acrylsäure but-3-en-2-ylester, (Meth)Acrylsäure but-2-en-1-ylester, (Meth)Acrylsäure 3-methyl-but-2-en-1-ylester, Ester der (Meth)Acrylsäure mit Geraniol, Citronellol, Zimtalkohol, Glycerinmono- oder -diallylether, Trimethylolpropanmono- oder -diallylether, Ethylenglykolmonoallylether, Diethylenglykolmonoallylether, Propylenglykolmonoallylether, Dipropylenglykolmonoallylether, 1,3-Propandiolmonoallylether, 1,4-Butandiolmonoallylether sowie ferner Itaconsäurediallylester. Bevorzugt sind Allylacrylat, Divinylbenzol, 1,4-Butandioldiacrylat und 1,6-Hexandioldiacrylat. Falls ein Vernetzer zur Modifizierung der Polymerisate eingesetzt wird, so betragen die einpolymerisierten Mengen bis zu 2 Mol-%. Sie liegen beispielsweise in dem Bereich von 0,001 bis 2, vorzugsweise 0,01 bis 1 Mol-%.
  • Die wasserunlöslichen anionischen Polymerisate enthalten bevorzugt als Monomere (a) Mischungen aus 20 - 50 Mol.-% Styrol und 30 - 80 Mol.-% mindestens eines Alkylmethacrylats und/oder mindestens eines Alkylacrylat einpolymerisiert. Sie können gegebenenfalls noch bis zu 30 Mol.-% Methacrylnitril oder Acrylnitril einpolymerisiert enthalten. Solche Polymerisate können gegebenenfalls noch mit den oben unter Monomeren der Gruppe (c) angegebenen Mengen an Methacrylamid und/oder Acrylamid modifiziert sein.
  • Vorzugsweise in Betracht kommende anionische Polymerisate enthalten
    1. (a) mindestens 60 Mol-% mindestens eines Monomers aus der Gruppe bestehend aus einem C1- bis C20-Alkylacrylat, einem C1- bis C20-Alkylmethacrylat, Vinylacetat, Vinylpropionat, Styrol, α-Methylstyrol, p-Methylstyrol, α-Butylstyrol, 4-n-Butylstyrol, 4-n-Decylstyrol, Acrylnitril, Methacrylnitril, Butadien und Isopren und
    2. (b) 0,5 bis 9 Mol-% mindestens eines anionischen Monomers aus der Gruppe der ethylenisch ungesättigten C3- bis C5-Carbonsäuren
    einpolymerisiert.
  • Besonders bevorzugt sind anionischen Polymerisate, die mindestens 80 Mol-% mindestens eines Monomers der Gruppe (a) einpolymerisiert enthalten. Sie enthalten meistens als Monomer der Gruppe (a) Mischungen aus (i) einem C1- bis C20-Alkylacrylat und/oder einem C1- bis C20-Alkylmethacrylat und (ii) Styrol, α-Methylstyrol, p-Methylstyrol, α-Butylstyrol, 4-n-Butylstyrol, Butadien und/oder Isopren im Gewichtsverhältnis 10 : 90 bis 90 : 10 einpolymerisiert.
  • Die Herstellung der anionischen Polymerisate erfolgt in der Regel durch Emulsionspolymerisation. Es handelt sich daher bei den anionischen Polymerisaten um Emulsionspolymerisate. Die Herstellung wäßriger Polymerisatdispersionen nach dem Verfahren der radikalischen Emulsionspolymerisation ist an sich bekannt (vgl. Houben-Weyl, Methoden der organischen Chemie, Band XIV, Makromolekulare Stoffe, Georg Thieme Verlag, Stuttgart 1961, Seiten 133ff).
  • Bei der Emulsionspolymerisation zur Herstellung der anionischen Polymerisate werden ionische und/oder nicht-ionische Emulgatoren und/oder Schutzkolloide bzw. Stabilisatoren als grenzflächenaktive Verbindungen verwendet. Die grenzflächenaktive Substanz wird üblicherweise in Mengen von 0,1 bis 10 Gew.-%, insbesondere von 0,2 bis 3 Gew.-%, bezogen auf die zu polymerisierenden Monomeren, verwendet.
  • Gebräuchliche Emulgatoren sind z. B. Ammonium- oder Alkalimetallsalze höherer Fettalkoholsulfate, wie Na-n-Laurylsulfat, Fettalkoholphosphate, ethoxylierte C8- bis C10-Alkylphenole mit einem Ethoxylierungsgrad von 3 bis 30 sowie ethoxylierte C8- bis C25-Fettalkohole mit einem Ethoxylierungsgrad von 5 bis 50. Denkbar sind auch Gemische aus nichtionischen und ionischen Emulgatoren. Ferner geeignet sind phosphat- oder sulfatgruppenhaltige, ethoxylierte und/oder propoxylierte Alkylhenole und/oder Fettalkohole. Weitere geeignete Emulgatoren sind in Houben-Weyl, Methoden der organischen Chemie, Band XIV, Makromolekulare Stoffe, Georg Thieme Verlag, Stuttgart, 1961, Seiten 192 bis 209, aufgeführt.
  • Wasserlösliche Initiatoren für die Emulsionspolymerisation zur Herstellung der anionischen Polymerisate sind z. B. Ammonium- und Alkalimetallsalze der Peroxidischwefelsäure, z. B. Natriumperoxodisulfat, Wasserstoffperoxid oder organische Peroxide, z. B. tert-Butylhydroperoxid.
  • Geeignet sind auch sogenannte Reduktions-Oxidations(Red-Ox)-Initiator Systeme, beispielsweise Kombinationen von Peroxiden, Hydroperoxiden oder Wasserstoffperoxid mit Reduktionsmitteln wie Ascorbinsäure oder Natriumbisulfit. Diese Initiatorsysteme können noch zusätzlich Metallionen wie Eisen-(II)-Ionen enthalten.
  • Die Menge der Initiatoren beträgt im allgemeinen 0,1 bis 10 Gew.-%, bevorzugt 0,5 bis 5 Gew.-%, bezogen auf die zu polymerisierenden Monomeren. Es können auch mehrere verschiedene Initiatoren bei der Emulsionspolymerisation Verwendung finden.
  • Bei der Emulsionspolymerisation können gegebenenfalls Regler eingesetzt werden, z.B. in Mengen von 0 bis 3 Gew.-Teile, bezogen auf 100 Gew.-Teile der zu polymerisierenden Monomeren. Dadurch wird die Molmasse der entstehenden Polymeren verringert. Geeignete Regler sind z. B. Verbindungen mit einer Thiolgruppe wie tert.-Butylmercaptan, Thioglycolsäureethylacrylester, Mercaptoethanol, Mercaptopropyltrimethoxysilan oder tert.-Dodecylmercaptan oder Regler ohne Thiolgruppe, insbesondere z. B. Terpinolen.
  • Die Emulsionspolymerisation zur Herstellung der anionischen Polymerisate erfolgt in der Regel bei 30 bis 130 °C, vorzugsweise bei 50 bis 100 °C. Das Polymerisationsmedium kann sowohl nur aus Wasser, als auch aus Mischungen aus Wasser und damit mischbaren Flüssigkeiten wie Methanol bestehen. Vorzugsweise wird nur Wasser verwendet. Die Emulsionspolymerisation kann sowohl als Batchprozeß als auch in Form eines Zulaufverfahrens, einschließlich Stufen- oder Gradientenfahrweise, durchgeführt werden. Bevorzugt ist das Zulaufverfahren, bei dem man einen Teil des Polymerisationsansatzes vorlegt, auf die Polymerisationstemperatur erhitzt, anpolymerisiert und anschließend den Rest des Polymerisationsansatzes, üblicherweise über mehrere räumlich getrennte Zuläufe, von denen einer oder mehrere die Monomeren in reiner oder in emulgierter Form enthalten, kontinuierlich, stufenweise oder unter Überlagerung eines Konzentrationsgefälles unter Aufrechterhaltung der Polymerisation der Polymerisationszone zuführt. Bei der Polymerisation kann auch z. B. zur besseren Einstellung der Teilchengröße eine Polymersaat vorgelegt werden.
  • Die Art und Weise, in der der Initiator im Verlauf der radikalischen wässrigen Emulsionspolymerisation dem Polymerisationsgefäß zugegeben wird, ist dem Durchschnittsfachmann bekannt. Es kann sowohl vollständig in das Polymerisationsgefäß vorgelegt, als auch nach Maßgabe seines Verbrauchs im Verlauf der radikalischen wässrigen Emulsionspolymerisation kontinuierlich oder stufenweise eingesetzt werden. Im Einzelnen hängt dies von der chemischen Natur des Initiatorsystems als auch von der Polymerisationstemperatur ab. Vorzugsweise wird ein Teil vorgelegt und der Rest nach Maßgabe des Verbrauchs der Polymerisationszone zugeführt.
  • Zur Entfernung der Restmonomeren wird üblicherweise auch nach dem Ende der eigentlichen Emulsionspolymerisation, d. h. nach einem Umsatz der Monomeren von mindestens 95 %, erneut mindestens ein Initiator zugesetzt und das Reaktionsgemisch eine bestimmte Zeit auf die Polymerisationstemperatur oder eine darüber liegende Temperatur erhitzt.
  • Die einzelnen Komponenten können dem Reaktor beim Zulaufverfahren von oben, in der Seite oder von unten durch den Reaktorboden zugegeben werden.
  • Im Anschluss an die (Co)Polymerisation können die im anionischen Polymerisat enthaltenen Säuregruppen noch zumindest teilweise oder vollständig neutralisiert werden. Dies kann beispielsweise erfolgen mit Oxiden, Hydroxiden, Carbonaten oder Hydrogencarbonaten von Alkalimetallen oder Erdalkalimetallen, bevorzugt mit Hydroxiden, denen ein beliebiges Gegenion oder mehrere assoziiert sein kann, z.B. Li+, Na+, K+, Cs+, Mg2+, Ca2+ oder Ba2+. Weiterhin zur Neutralisierung geeignet sind Ammoniak oder Amine. Bevorzugt sind wässrige Ammoniumhydroxid-, Natriumhydroxid- oder Kaliumhydroxidlösungen.
  • Bei der Emulsionspolymerisation werden wässrige Dispersionen des anionischen Polymerisates in der Regel mit Feststoffgehalten von 15 bis 75 Gew.-%, bevorzugt von 40 bis 75 Gew.-% erhalten. Die Molmasse Mw der anionischen Polymeren liegt beispielsweise in dem Bereich von 100 000 bis 1 Million Dalton. Sofern die Polymeren eine Gelphase aufweisen, ist eine Molmassenbestimmung nicht ohne weiteres möglich. Die Molmassen liegen dann oberhalb des vorstehend genannten Bereichs.
  • Die Glasübergangstemperatur Tg der anionischen Polymerisate liegt beispielsweise im Bereich von -30 bis 100 °C, bevorzugt im Bereich von -5 bis 70 °C und besonders bevorzugt im Bereich von 0 bis 40 °C (gemessen nach der DSC-Methode nach DIN EN ISO 11357).
  • Die Partikelgröße der dispergierten anionischen Polymerisate liegt vorzugsweise im Bereich von 10 bis 1000 nm, besonders bevorzugt im Bereich von 50 bis 300 nm (gemessen mit einem Malvern® Autosizer 2 C).
  • Die anionischen Polymerisate können gegebenenfalls geringe Mengen an kationischen Monomereinheiten einpolymerisiert enthalten, so dass amphotere Polymere vorliegen, wobei die Gesamtladung der Polymeren aber anionisch sein muss. Die netto anionische Ladung beträgt beispielsweise weniger als -0,2 meq/g. Sie liegt meistens in dem Bereich von -0,5 bis -2,0 meq/g. Als anionische Polymere eignen sich darüber hinaus noch Polymerdispersionen von nichtionischen Monomeren, die mit Hilfe von anionischen Tensiden oder Emulgatoren (solche Verbindungen wurden oben bei der Emulsionspolymerisation zur Herstellung von anionischen Poylmeren beschrieben) emulgiert sind. Die Tenside oder Emulgatoren werden für diese Anwendung beispielsweise in Mengen von 1 bis 15 Gew.-%, bezogen auf die gesamte Dispersion, eingesetzt.
  • Kationische Polymere
  • Als kationische Polymere kommen alle im eingangs zitierten Stand der Technik genannten wasserlöslichen kationischen Polymeren in Betracht. Es handelt sich dabei z. B. um Amino- bzw. Ammoniumgruppen tragende Verbindungen. Bei den Aminogruppen kann es sich um primäre, sekundäre, tertiäre oder quarternäre Gruppen handeln. Für die Polymer kommen im wesentliche Polymerisate, Polyadditionsverbindungen oder Polykondensate in Betracht, wobei die Polymere eine lineare oder verzweigte Struktur bis hin zu hyperverzweigten oder dendritischen Strukturen aufweisen können. Weiterhin sind auch Pfropfpolymere anwendbar. Die kationischen Polymeren werden im vorliegenden Zusammenhang als wasserlöslich bezeichnet, wenn ihre Löslichkeit in Wasser unter Normalbedingungen (20 °C, 1013 mbar) und pH 7,0 beispielsweise mindestens 10 Gew-% beträgt.
  • Die Molmassen Mw der kationischen Polymeren betragen z.B. mindestens 1000. Sie liegen beispielsweise meistens in dem Bereich von 5000 bis 5 Millionen. Die Ladungsdichten der kationischen Polymeren betragen beispielsweise 0,5 bis 23 meq/g Polymer, vorzugsweise 3 bis 22 meq/g Polymer und meistens 6 bis 20 meq/g Polymer.
  • Geeignete Monomere zur Herstellung von kationischen Polymerisaten sind beispielsweise:
    • Ester von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Aminoalkoholen, vorzugsweise C2-C12-Aminoalkoholen. Diese können am Aminstickstoff C1-C8-monoalkyliert oder dialkyliert sein. Als Säurekomponente dieser Ester eignen sich z. B. Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure, Itaconsäure, Crotonsäure, Maleinsäureanhydrid, Monobutylmaleat und Gemische davon. Bevorzugt werden Acrylsäure, Methacrylsäure und deren Gemische eingesetzt. Dazu zählen beispielsweise N-Methylaminomethyl(meth)acrylat, N-Methylaminoethyl(meth)acrylat, N,N-Dimethylaminomethyl(meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethylaminoethyl(meth)acrylat, N,N-Dimethylaminopropyl(meth)acrylat, N,N-Diethylaminopropyl(meth)acrylat und N,N-Dimethylaminocyclohexyl(meth)acrylat.
    • Ebenfalls geeignet sind die Quarternierungsprodukte der vorstehenden Verbindungen mit C1-C8 Alkylchloriden, C1-C8-Dialkylsulfaten, C1-C16-Epoxiden oder Benzylchlorid.
  • Darüber hinaus sind als weitere Monomere N-[2-(Dimethylamino)ethyl]acrylamid, N-[2-(Dimethylamino)ethyl]methacrylamid, N-[3-(Dimethylamino)propyl]acrylamid, N-[3-(Dimethylamino)propyl]methacrylamid, N-[4-(Dimethylamino)butyl]acrylamid, N-[4-(Dimethylamino)butyl]methacrylamid, N-[2-(Diethylamino)ethyl]acrylamid, N-[2-(Diethylamino)ethyl]methacrylamid und Mischungen davon geeignet.
  • Ebenfalls geeignet sind die Quarternierungsprodukte der vorstehenden Verbindungen mit C1-C8 Alkylchlorid, C1-C8-Dialkylsulfat, C1-C16-Epoxiden oder Benzylchlorid.
  • Geeignete Monomere sind weiterhin N-Vinylimidazole, Alkylvinylimidazole, insbesondere Methylvinylimidazole wie 1-Vinyl-2-methylimidazol, 3-Vinylimidazol-N-oxid, 2- und 4-Vinylpyridine, 2- und 4-Vinylpyridin-N-oxide sowie betainische Derivate und Quaternisierungsprodukte dieser Monomere.
  • Weitere geeignete Monomere sind Allylamin, Dialkyldiallylammoniumchloride, insbesondere Dimethyldiallylammoniumchlorid und Diethyldiallylammoniumchlorid sowie die aus der WO-A-01/36500 bekannten Alkylenimineinheiten enthaltenden Monomere der Formel
    Figure imgb0002
    worin
  • R
    für Wasserstoff oder C1- bis C4-Alkyl steht,
    -[Al-]m
    eine lineare oder verzweigte Oligoalkyleniminkette mit m Alkylenimineinheiten bedeutet,
    m
    für eine ganze Zahl im Bereich von 1 bis 20 steht, und das Zahlenmittel m in den Oligoalkyleniminketten wenigstens 1,5 beträgt,
    Y
    das Anionäquivalent einer Mineralsäure bedeutet und
    n
    für eine Zahl von 1 ≤ n ≤ m steht.
  • Monomere bzw. Monomergemische, bei denen in der oben angegebenen Formel das Zahlenmittel von m wenigstens 2,1, meistens 2,1 bis 8 beträgt, sind bevorzugt. Sie sind dadurch erhältlich, dass man eine ethylenisch ungesättigte Carbonsäure mit einem Oligoalkylenimin, vorzugsweise in Form eines Oligomerengemisches, umsetzt. Das dabei anfallende Produkt kann gegebenenfalls mit einer Mineralsäure HY in das Säureadditionssalz überführt werden. Solche Monomere können in einem wässrigen Medium in Gegenwart eines Initiators, der eine radikalische Polymerisation auslöst, zu kationischen Homo- und Copolymerisaten polymerisiert werden.
  • Weitere geeignete kationische Monomere sind aus der älteren EP-Anmeldung 07 117 909.7 bekannt. Es handelt sich hierbei um Alkylenimineinheiten enthaltende Aminoalkylvinylether der Formel

            H2C = CH-O-X- NH - [Al-]n-H     (III),

    worin
  • [Al-]n
    für eine lineare oder verzweigte Oligoalkyleniminkette mit n Alkylenimineinheiten steht,
    n
    eine Zahl von mindestens 1 bedeutet und
    X
    für eine geradkettige oder verzweigte C2- bis C6-Alkylengruppe steht sowie
  • Salze der Monomeren III mit Mineralsäuren oder organischen Säuren und Quaternierungsprodukte der Monomeren III mit Alkylhalogeniden oder Dialkylsulfaten. Diese Verbindungen sind durch Addition von Alkyleniminen an Amino-C2- bis C6-alkylvinylether zugänglich.
  • Die zuvor genannten Monomere können allein zu wasserlöslichen kationischen Homopolymeren oder zusammen mit mindestens einem anderen neutralen Monomeren zu wasserlöslichen kationischen Copolymerisaten oder mit mindestens einem Säuregruppen aufweisenden Monomeren zu amphoteren Copolymerisaten, die bei einem molaren Überschuß an einpolymerisierten kationischen Monomeren eine kationische Gesamtladung tragen, polymerisiert werden.
  • Als neutrale Monomere, die mit den obengenannten kationischen Monomeren zur Herstellung von kationischen Polymerisaten copolymerisiert werden, eignen sich beispielsweise Ester von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit C1-C30-Alkanolen, C2-C30-Alkandiolen, Amide α,β-ethylenisch ungesättigter Monocarbonsäuren und deren N-Alkyl- und N,N-Dialkylderivate, Ester von Vinylalkohol und Allylalkohol mit gesättigten C1-C30-Monocarbonsäuren, Vinylaromaten, Vinylhalogenide, Vinylidenhalogenide, C2- C8-Monoolefine und Mischungen davon.
  • Weitere geeignete Comonomere sind z.B. Methyl(meth)acrylat, Methylethacrylat, Ethyl(meth)acrylat, Ethylethacrylat, n-Butyl(meth)acrylat, Isobutyl(meth)acrylat, tert.-Butyl(meth)acrylat, tert.-Butylethacrylat, n-Octyl(meth)acrylat, 1,1,3,3-Tetramethylbutyl(meth)acrylat, Ethylhexyl(meth)acrylat und Mischungen davon.
  • Geeignet sind außerdem Acrylamid, substituierte Acrylamide, Methacrylamid, substituierte Methacrylamide wie beispielsweise Acrylsäureamid, Methacrylsäureamid, N-Methyl(meth)acrylamid, N-Ethyl(meth)acrylamid, N-Propyl(meth)acrylamid, N-(n-Butyl)(meth)acrylamid, tert.-Butyl(meth)acrylamid, n-Octyl(meth)acrylamid, 1,1,3,3-Tetramethylbutyl(meth)acrylamid und Ethylhexyl(meth)acrylamid sowie Acrylnitril und Methacrylnitril und Mischungen der genannten Monomeren.
  • Weitere Monomere zur Modifizierung der kationischen Polymerisate sind 2-Hydroxyethyl(meth)acrylat, 2-Hydroxyethylethacrylat, 2-Hydroxypropyl(meth)acrylat, 3-Hydroxypropyl(meth)acrylat, 3-Hydroxybutyl(meth)acrylat, 4-Hydroxybutyl(meth)acrylat, 6-Hydroxyhexyl(meth)acrylat etc. und Mischungen davon.
  • Weitere geeignete Monomere für die Copolymerisation mit den obengenannten kationischen Monomeren sind N-Vinyllactame und deren Derivate, die z.B. einen oder mehrere C1-C6-Alkylsubstituenten, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec.-Butyl, tert.-Butyl etc. aufweisen können. Dazu zählen z.B. N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinyl-5-methyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl-2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2-caprolactam etc.
  • Geeignete Comonomere für die Copolymerisation mit den obengenannten kationischen Monomeren sind weiterhin Ethylen, Propylen, Isobutylen, Butadien, Styrol, α-Methylstyrol, Vinylchlorid, Vinylidenchlorid, Vinylfluorid, Vinylidenfluorid und Mischungen davon.
  • Eine weitere Gruppe von Comonomeren sind ethylenisch ungesättigte Verbindungen, die eine Gruppierung tragen, aus der in einer polymeranalogen Reaktion eine Aminogruppe gebildet werden kann. Hierzu zählen beispielsweise N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N-Vinyl-N-ethylacetamid, N-Vinylpropionamid, N-Vinyl-N-methylpropionamid und N-Vinylbutyramid und Mischungen davon. Die daraus gebildeten Polymere können, wie in EP-A-0438744 beschrieben, durch saure oder basische Hydrolysen in Vinylamin- und Amidineinheiten (Formeln IV - VII) enthaltende Polymere überführt werden
    Figure imgb0003
    Figure imgb0004
  • In den Formeln IV - VII stehen die Substituenten R1, R2 für H, C1- bis C6-Alkyl und X für ein Anionäquivalent einer Säure, vorzugsweise einer Mineralsäure.
  • Bei der Hydrolyse entstehen beispielsweise Polyvinylamine, Poylvinyl-methylamine bzw. Polyvinylethylamine. Die Monomeren dieser Gruppe können in beliebiger Weise mit den kationischen Monomeren und/oder den obengenannten Comonomeren polymerisiert werden.
  • Unter kationischen Polymerisaten sollen auch amphotere Polymerisate verstanden werden, die eine kationische Gesamtladung tragen. Bei den amphoteren Polymerisaten liegt der Gehalt an kationischen Gruppen beispielsweise um mindestens 5 Mol-% über dem Gehalt an anionischen Gruppen im Polymerisat. Solche Polymerisate sind z. B. dadurch zugänglich, dass man ein kationisches Monomer wie N,N-Dimethylaminoethylacrylamid in Form der freien Base, in partiell mit einer Säure neutralisierten oder in quaternierter Form mit mindestens einem Säuregruppen enthaltendem Monomeren copolymerisiert, wobei das kationische Monomer in einem molaren Überschuß eingesetzt wird, damit die entstehenden Polymeren eine kationische Gesamtladung tragen.
  • Amphotere Polymerisate sind auch erhältlich durch Copolymerisieren von
    • (a) mindestens einem N-Vinylcarbonsäureamid der Formel
      Figure imgb0005
      in der R1, R2 = H oder C1- bis C6-Alkyl bedeuten,
    • (b) mindestens einer monoethylenisch ungesättigten Carbonsäure mit 3 bis 8 C-Atomen im Molekül und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen und gegebenenfalls
    • (c) anderen monoethylenisch ungesättigten Monomeren, und gegebenenfalls
    • (d) Verbindungen, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweisen,
    und anschließend teilweise oder vollständige Abspaltung von Gruppen -CO-R1 aus den in das Copolymerisat einpolymerisierten Monomeren der Formel I unter Bildung von Aminogruppen, wobei der Gehalt an kationischen Gruppen wie Aminogruppen im Copolymerisat mindestens 5 Mol-% über dem Gehalt an einpolymerisierten Säuregruppen der Monomere (b) beträgt. Bei der Hydrolyse von N-Vinylcarbonsäureamidpolymeren entstehen in einer sekundären Reaktion Amidineinheiten, indem Vinylamineinheiten mit einer benachbarten Vinylformamideinheit reagieren. Im Folgenden bedeutet die Angabe von Vinylamineinheiten in den amphoteren Copolymerisaten immer die Summe aus Vinylamin- und Amidineinheiten.
  • Die so erhältlichen amphoteren Verbindungen enthalten beispielsweise
    1. (a) gegebenenfalls nicht hydrolysierte Einheiten der Formel I
    2. (b) Vinylamineinheiten und Amidineinheiten, wobei der Gehalt an Amino- plus Amidingruppen im Copolymerisat mindestens 5 Mol-% über dem Gehalt an einpolymerisierten Säuregruppen enthaltenden Monomeren liegt,
    3. (c) Einheiten eines Säuregruppen enthaltenden monoethylenisch ungesättigten Monomeren und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen,
    4. (d) 0 bis 30 Mol-% Einheiten mindestens eines anderen monoethylenisch ungesättigten Monomeren und
    5. (e) 0 bis 2 Mol-% mindestens einer Verbindung, die mindestens zwei ethylenisch ungesättigte Doppelbindungen in Molekül aufweist.
  • Die Hydrolyse der Copolymerisate kann in Gegenwart von Säuren oder Basen oder auch enzymatisch durchgeführt werden. Bei der Hydrolyse mit Säuren liegen die aus den Vinylcarbonsäureamideinheiten entstehenden Vinylamingruppen in Salzform vor. Die Hydrolyse von Vinylcarbonsäureamidcopolymerisaten ist in der EP-A-0 438 744 , Seite 8, Zeile 20 bis Seite 10, Zeile 3, ausführlich beschrieben. Die dort gemachten Ausführungen gelten entsprechend für die Herstellung der erfindungsgemäß einzusetzenden amphoteren Polymeren mit einer kationischen Gesamtladung.
  • Diese Polymeren haben beispielsweise K-Werte (bestimmt nach H. Fikentscher in 5 %iger wässriger Kochsalzlösung bei pH 7, einer Polymerkonzentration von 0,5 Gew.-% und einer Temperatur von 25°C) in dem Bereich von 20 bis 250, vorzugsweise 50 bis 150.
  • Die Herstellung der kationischen Homo- und Copolymerisate kann durch Lösungs-, Fällungs-, Suspensions- oder Emulsionspolymerisation erfolgen. Bevorzugt ist die Lösungspolymerisation in wässrigen Medien. Geeignete wässrige Medien sind Wasser und Gemische aus Wasser und mindestens einem wassermischbaren Lösungsmittel, z. B. einem Alkohol, wie Methanol, Ethanol, n-Propanol, etc.
  • Die Polymerisationstemperaturen liegen vorzugsweise in einem Bereich von etwa 30 bis 200 °C, besonders bevorzugt 40 bis 110 °C. Die Polymerisation erfolgt üblicherweise unter atmosphärischem Druck, sie kann jedoch auch unter vermindertem oder erhöhtem Druck ablaufen. Ein geeigneter Druckbereich liegt zwischen 0,1 und 5 bar. Zur Herstellung der Polymerisate können die Monomeren mit Hilfe von Radikale bildenden Initiatoren polymerisiert werden.
  • Als Initiatoren für die radikalische Polymerisation können die hierfür üblichen Peroxo-und/oder Azo-Verbindungen eingesetzt werden, beispielsweise Alkali- oder Ammoniumperoxidisulfate, Diacetylperoxid, Dibenzoylperoxid, Succinylperoxid, Di-tert.-butylperoxid, tert.-Butylperbenzoat, tert.-Butylperpivalat, tert.-Butylperoxy-2-ethylhexanoat, tert.-Butylpermaleinat, Cumolhydroperoxid, Diisopropylperoxidicarbamat, Bis-(o-toluoyl)-peroxid, Didecanoylperoxid, Dioctanoylperoxid, Dilauroylperoxid, tert.-Butylperisobutyrat, tert.-Butylperacetat, Di-tert.-Amylperoxid, tert.-Butylhydroperoxid, Azo-bis-isobutyronitril, Azo-bis-(2-amidinopropan)dihydrochlorid oder 2-2'-Azo-bis-(2-methyl-butyronitril). Geeignet sind auch Initiatormischungen oder Redox-Initiator-Systeme, wie z.B. Ascorbinsäure/Eisen(II)sulfat/Natriumperoxodisulfat, tert.-Butylhydroperoxid/Natriumdisulfit, tert.-Butylhydroperoxid/Natriumhydroxymethansulfinat, H2O2/Cu-I- oder Eisen-II-Verbindungen.
  • Zur Einstellung des Molekulargewichts kann die Polymerisation in Gegenwart wenigstens eines Reglers erfolgen. Als Regler können die üblichen, dem Fachmann bekannten Verbindungen, wie z. B. Schwefelverbindungen, z. B. Mercaptoethanol, 2-Ethylhexylthioglycolat, Thioglycolsäure, Natriumhypophosphit, Ameisensäure oder Dodecylmercaptan sowie Tribromchlormethan oder andere Verbindungen, die regelnd auf das Molekulargewicht der erhaltenen Polymerisate wirken, eingesetzt werden.
  • Kationische Polymere wie Polyvinylamine und deren Copolymere, können auch durch Hofmann-Abbau von Polyacrylamid oder Polymethacrylamid und deren Copolymeren hergestellt werden, vgl. H. Tanaka, Journal of Polymer Science: Polymer Chemistry Edition 17,1239-1245 (1979) und EI Achari, X. Coqueret, A. Lablache-Combier, C. Loucheux, Makromol. Chem., Vol. 194, 1879-1891 (1993).
  • Alle vorgenannten kationischen Polymerisate können dadurch modifiziert werden, dass man die Polymerisation der kationischen Monomeren und gegebenenfalls der Mischungen aus kationischen Monomeren und den Comonomeren in Gegenwart mindestens eines Vernetzers durchführt. Wie bereits bei den anionischen Polymeren beschrieben, werden unter einem Vernetzer solche Monomere verstanden, die mindestens zwei Doppelbindungen im Molekül enthalten, z. B. Methylenbisacrylamid, Glykoldiacrylat, Glykoldimethacrylat, Glycerintriacrylat, Pentaerythrittriallylether, mindestens zweifach mit Acrylsäure und/oder Methacrylsäure veresterte Polyalkylenglykole oder Polyole wie Pentaerythrit, Sobit oder Glukose. Falls mindestens ein Vernetzer bei der Copolymerisation eingesetzt wird, so betragen die angewendeten Mengen beispielsweise bis zu 2 Mol-%, z. B. 0,001 bis 1 Mol-%.
  • Weiterhin können die kationischen Polymerisate durch den nachträglichen Zusatz von Vernetzern modifiziert werden, d.h. durch den Zusatz von Verbindungen, die mindestens 2 gegenüber Aminogruppen reaktive Gruppen aufweisen, wie z. B.
    • Di-und Polyglycidylverbindungen,
    • Di- und Polyhalogenverbindungen,
    • Verbindungen mit 2 oder mehr Isocyantgruppen, eventuell blockierte Kohlensäurederivate,
    • Verbindungen, die 2 oder mehrer Doppelbindungen aufweisen, die für eine Michael-Addition geeignet sind,
    • Di-und Polyaldehyde,
    • monoethylenisch ungesättigte Carbonsäuren, deren Ester und Anhydride.
  • Als kationische Verbindungen kommen außerdem Polymere in Betracht, die durch Polyadditionsreaktionen erzeugt werden können wie insbesondere Polymere auf Basis von Aziridinen. Dabei können sowohl Homopolymere entstehen aber auch Pfropfpolymerisate, die durch Pfropfung von Aziridinen auf andere Polymere erzeugt werden. Auch hier kann es vorteilhaft sein, während der oder nach der Polyaddition Vernetzer zuzusetzen, die mindestens 2 Gruppen aufweisen, die mit den Aziridinen oder den gebildeten Aminogruppen reagieren können, wie z. B. Epichlorhydrin oder Dihalogenalkane. Vernetzer (s. Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, 1992, Kapitel über Aziridine).
  • Bevorzugte Polymere dieser Art basieren auf Ethylenimin, z. B. durch Polymerisation von Ethylenimin hergestellte Homopolymerisate von Ethylenimin oder mit Ethylenimin gepfropfte Polymere wie Polyamidoamine.
  • Weitere geeignete kationische Polymere sind Umsetzungsprodukte von Dialkylaminen mit Epichlorhydrin oder mit di- oder multifunktionellen Epoxiden wie z. B. Umsetzungsprodukte von Dimethylamin mit Epichlorhydrin.
  • Als kationische Polymere eignen sich auch Polykondensate, z. B. Homo- oder Copolymere von Lysin, Arginin und Histidin. Sie können als Homopolymere oder als Copolymeren mit anderen natürlichen oder synthetischen Aminosäuren oder Lactamen eingesetzt werden. Beispielsweise eignen sich zur Copolymerisation Glycin, Alanin, Valin, Leucin, Phenylalanin, Tryptophan, Prolin,Asparagin, Glutamin, Serin, Threonin oder auch Caprolactam.
  • Als kationische Polymerisate können weiterhin Kondensate von difunktionellen Carbonsäuren mit multifunktionellen Aminen eingesetzt werden, wobei die multifunktionellen Amine mindestens 2 primäre Aminogruppen und mindestens eine weitere weniger reaktive, d.h. sekundäre, tertiäre oder quaternäre Aminogruppe tragen. Beispiele sind die Polykondensationsprodukte von Diethylentriamin oder Triethylentetramin mit Adipin- , Malon, Glutar- , Oxal- oder Bernsteinsäure.
  • Auch Aminogruppen tragende Polysaccharide wie z. B. Chitosan sind als kationische Polymerisate geeignet.
  • Weiterhin können alle vorstehend beschriebenen Polymere, die primäre oder sekundäre Aminogruppen tragen, mittels reaktiven Oligoethyleniminen modifiziert werden wie in der älteren EP-Anmeldung 07 150 232.2 beschrieben. In dieser Anmeldung werden Pfropfpolymere beschrieben, deren Pfropfgrundlage ausgewählt ist aus der Gruppe von Vinylamineinheiten aufweisenden Polymeren, Polyaminen, Polyamidoaminen und Polymerisaten ethylenisch ungesättigter Säuren, und die als Seitenketten ausschließlich Oligoalkyleniminseitenketten enthalten. Die Herstellung von Pfropfpolymeren mit Oligoalkyleniminseitenketten geschieht dadurch, dass man auf eine der genannten Pfropfgrundlagen mindestens ein Oligoalkylenimin pfropft, das eine terminale Aziridingruppe enthält.
  • Papierherstellung
  • Als Faserstoffe zur Herstellung der Pulpen kommen sämtliche dafür gebräuchlichen Qualitäten in Betracht, z. B. Holzstoff, gebleichter und ungebleichter Zellstoff sowie Papierstoffe aus allen Einjahrespflanzen. Zu Holzstoff gehören beispielsweise Holzschliff, thermomechanischer Stoff (TMP), chemo-thermomechanischer Stoff (CTMP), Druckschliff, Halbzellstoff, Hochausbeute-Zellstoff und Refiner Mechanical Pulp (RMP). Als Zellstoff kommen beispielsweise Sulfat-, Sulfit- und Natronzellstoffe in Betracht. Vorzugsweise verwendet man ungebleichten Zellstoff, der auch als ungebleichter Kraftzellstoff bezeichnet wird. Geeignete Einjahrespflanzen zur Herstellung von Papierstoffen sind beispielsweise Reis, Weizen, Zuckerrohr und Kenaf. Zur Herstellung der Pulpen wird meistens Altpapier verwendet, das entweder allein oder in Mischung mit anderen Faserstoffen eingesetzt wird oder man geht von Fasermischungen aus einem Primärstoff und zurückgeführtem gestrichenem Ausschuss aus, z. B. gebleichtes Kiefernsulfat in Mischung mit zurückgeführtem gestrichenem Ausschuss. Das erfindungsgemäße Verfahren ist für die Herstellung von Papier und Pappe aus Altpapier von technischem Interesse, weil es die Festigkeitseigenschaften der zurückgeführten Fasern deutlich erhöht und hat besondere Bedeutung für die Verbesserung von Festigkeitseigenschaften von graphischen Papieren und von Verpackungspapieren. Die nach dem erfindungsgemäßen Verfahren erhältlichen Papiere haben überraschenderweise eine höhere Trockenfestigkeit als die nach dem Verfahren der WO 2006/056381 herstellbaren Papiere.
  • Der pH-Wert der Stoffsuspension liegt beispielsweise in dem Bereich von 4,5 bis 8, meistens bei 6 bis 7,5. Zur Einstellung des pH-Wertes kann man beispielsweise eine Säure wie Schwefelsäure oder Aluminiumsulfat verwenden.
  • Bei dem erfindungsgemäßen Verfahren wird vorzugsweise zunächst das kationische Polymerisat zum Papierstoff dosiert. Die Zugabe des kationischen Polymeren kann dabei zum Dickstoff (Faserkonzentration >15 g/l, z.B. in dem Bereich von 25 bis 40 g/l bis zu 60 g/l) oder vorzugsweise zu einem Dünnstoff (Faserkonzentration <15 g/l, z.B. in dem Bereich von 5 bis 12 g/l) erfolgen. Die Zugabestelle liegt vorzugsweise vor den Sieben, kann jedoch auch zwischen einer Scherstufe und einem Screen oder danach liegen. Die anionische Komponente wird meistens erst nach der Zugabe der kationischen Komponente zum Papierstoff zugegeben, kann aber auch gleichzeitig, jedoch getrennt von der kationischen Komponente zum Papierstoff dosiert werden. Weiterhin ist es auch möglich zuerst die anionische und nachfolgend die kationische Komponente zuzugeben.
  • Besonders vorteilhaft ist eine Verfahrensvariante, bei der man den Papierstoff auf eine Temperatur von mindestens 40 °C, z.B. 45 bis 55 °C, vorzugsweise auf mindestens 50 °C erhitzt und dann erst das wasserlösliche kationische Polymerisat und danach oder gleichzeitig, jedoch getrennt voneinander, das wasserunlösliche anionische Polymerisat dosiert. Man kann jedoch auch in den auf mindestens 40 °C erhitzen Papierstoff zunächst das wasserunlösliche anionische Polymerisat und danach das wasserlösliche kationische Polymerisat dosieren. Vorzugsweise verwendet man als wasserlösliches kationisches Polymerisat ein Vinylamineinheiten aufweisendes Polymerisat.
  • Das kationische Polymer wird beispielsweise in einer Menge von 0,03 bis 2,0 Gew.-%, vorzugsweise 0,1 bis 0,5 Gew.-%, bezogen auf trockenen Papierstoff, eingesetzt. Das wasserunlösliche anionische Polymerisat wird z.B. in einer Menge von 0,5 bis 10 Gew.-%, vorzugsweise 1 bis 6 Gew.-%, insbesondere von 2,5 bis 5,5 Gew.-%, bezogen auf trockenen Papierstoff, eingesetzt.
  • Das Gewichtsverhältnis von wasserlöslichem kationischen Polymer zu wasserunlöslichem anionischen Polymer beträgt, bezogen auf den Feststoffgehalt, beispielsweise 1 : 5 bis 1 : 20 und liegt vorzugsweise in dem Bereich von 1 : 10 bis 1 : 15 und besonders bevorzugt in dem Bereich von 1 : 10 bis 1:12.
  • Bei dem erfindungsgemäßen Verfahren können die üblicherweise bei der Papierherstellung verwendeten Prozeßchemikalien in den üblichen Mengen eingesetzt werden, z. B. Retentionsmittel, Entwässerungsmittel, andere Trockenverfestiger wie beispielsweise Stärke, Pigmente, Füllstoffe, optische Aufheller, Entschäumer, Biozide und Papierfarbstoffe.
  • Die Prozentangaben in den Beispielen bedeuten, falls nichts anderes angegeben ist, Gewichtsprozent. Der K-Wert der Polymerisate wurde nach Fikentscher, CelluloseChemie, Band 13, 58 - 64 und 71 - 74 (1932) bei einer Temperatur von 20°C in 5 gew.-%igen wässrigen Kochsalzlösungen bei einem pH-Wert von 7 und einer Polymerkonzentration von 0,5% bestimmt. Dabei bedeutet K = k 1000.
  • Für die einzelnen Tests wurden in Laborversuchen Blätter in einem Rapid-Köthen-Laborblattbildner hergestellt. Die Trockenreißlänge wurde gemäß DIN 53 112, Blatt 1 bestimmt. Die Ermittlung des CMT-Wertes erfolgte nach DIN 53 143, der Trockenberstdruck wurde nach DIN 53 141 ermittelt.
  • Beispiele
  • In den Beispielen und Vergleichsbeispielen wurden folgende Polymerisate getestet:
  • Kationisches Polymer A
  • Dieses Polymer wurde durch Hydrolyse eines Poly-N-Vinylformamids mit Salzsäure hergestellt. Der Hydrolysegrad des Polymeren betrug 50 Mol-%, d.h. das Polymer enthielt 50 Mol-% N-Vinylformamideinheiten und 50 Mol-% Vinylamineinheiten in Salzform. Der K-Wert des wasserlöslichen kationischen Polymeren betrug 90.
  • Kationisches Polymer B
  • Herstellung wie unter Polymer A beschrieben, jedoch mit der Ausnahme, dass der Hydrolysegrad des Polymeren 30 Mol-% betrug. Das wasserlösliche kationische Polymer enthielt 70 Mol-% N-Vinylformamideinheiten und 30 Mol-% Vinylamineinheiten in Salzform. Der K-Wert des wasserlöslichen kationischen Polymeren betrug 90.
  • Herstellung einer Papierstoffsuspension
  • Aus 100% gemischtem Altpapier wurde eine 0,5%ige wässrige Stoffsuspension hergestellt. Der pH-Wert der Suspension betrug 7,1, der Mahlgrad des Stoffs 50° Schopper-Riegler (°SR). Die Stoffsuspension wurde dann in 8 gleiche Teile geteilt und in den Beispielen 1 bis 3 sowie in den Vergleichsbeispielen 1 bis 5 unter den in den Beispielen und Vergleichsbeispielen jeweils angegebenen Bedingungen auf einem Rapid-Köthen-Blattbildner nach ISO 5269/2 zu Blättern einer Flächenmasse von 120 g/qm verarbeitet.
  • Beispiel 1
  • Der Papierstoff wurde auf eine Temperatur von 50 °C erhitzt. Zu der so erhitzten Stoffsuspension gab man 0,25 % Polymer B (Polymer fest, bezogen auf trockenen Faserstoff). Nach einer Einwirkzeit von 5 Minuten wurde die Dispersion eines anionischen Acrylatharzes (Feststoffgehalt 50%) erhältlich durch die Suspensionspolymerisation von 68 mol-% n-Butylacrylat, 14 mol-% Styrol, 14 mol-% Acrylnitril und 4 mol-% Acrylsäure um einen Faktor 10 verdünnt. Die mittlere Teilchengröße der dispergierten Polymerteilchen betrug 192 nm. Anschließend dosierte man die verdünnte Dispersion unter leichtem Rühren zu der auf 50 °C erhitzten Faserstoffsuspension. Die eingesetzte
  • Acrylatharzmenge betrugt 5 % (Polymer fest), bezogen auf trockenen Faserstoff. Nach einer Einwirkungszeit von 1 Minute wurden Blätter gebildet, die man anschließend 7 Minuten bei 90°C trocknete.
  • Beispiel 2
  • Eine weitere Probe der oben beschriebenen Papierstoffsuspension wurde bei einer Stofftemperatur von 22 °C mit 0,25 % Polymer B (Polymer fest, bezogen auf trockenen Faserstoff) behandelt. Nach einer Verweilzeit von 5 Minuten wurde die Dispersion eines anionischen Acrylatharzes (Feststoffgehalt 50%) erhältlich durch die Suspensionspolymerisation von 68 mol-% n-Butylacrylat, 14 mol-% Styrol, 14 mol-% Acrylnitril und 4 mol-% Acrylsäure um einen Faktor 10 verdünnt. Die mittlere Teilchengröße der dispergierten Polymerteilchen betrug 192 nm. Anschließend dosierte man die verdünnte Dispersion, deren Temperatur etwa 20 °C betrug, unter leichtem Rühren zu der Faserstoffsuspension, die eine Temperatur von 22 °C hatte. Die eingesetzte Acrylatharzmenge betrug 5 % (Polymer fest), bezogen auf trockenen Faserstoff. Nach einer Einwirkungszeit von 1 Minute wurden Blätter gebildet, die man anschließend 7 Minuten bei 90°C trocknete.
  • Beispiel 3
  • Die Dispersion eines anionischen Acrylatharzes (Feststoffgehalt 50%) erhältlich durch die Suspensionspolymerisation von 68 mol-% n-Butylacrylat, 14 mol-% Styrol, 14 mol-% Acrylnitril und 4 mol-% Acrylsäure wurde um einen Faktor 10 verdünnt. Anschließend gab man die verdünnte Dispersion unter leichtem Rühren zu der Faserstoffsuspension. Die eingesetzte Acrylatharzmenge betrug 5 % (Polymer fest), bezogen auf trockenen Faserstoff. Die mittlere Teilchengröße der dispergierten Teilchen betrug 192 nm. Die mit der Dispersion vorbehandelte Faserstoffsuspension wurde anschließend auf 50 °C erhitzt. Zu der erhitzten Stoffsuspension dosierte man 0,25 % Polymer B (Polymer fest, bezogen auf trockenen Faserstoff). Nach einer Einwirkungszeit von 1 Minute wurden Blätter gebildet, die man anschließend 7 Minuten bei 90 °C getrocknete.
  • Vergleichsbeispiel 1
  • Aus der oben beschriebenen Stoffsuspension, die eine Temperatur von 20 °C hatte, wurde ohne weitere Zusätze ein Blatt gebildet.
  • Die Vergleichsbeispiele 2 bis 4 wurden gemäß Beispiel 1 der WO 2006/056381 durchgeführt.
  • Vergleichsbeispiel 2
  • Eine Probe der oben beschriebenen Papierstoffsuspension wurde bei einer Stofftemperatur von 22 °C mit 0,25 % Polymer A (Polymer fest, bezogen auf trockenen Faserstoff) versetzt. Nach einer Verweilzeit von 5 Minuten wurden 0,25 % eines wasserlöslichen Copolymerisats aus 30 % Acrylsäure und 70 % Vinylformamid zugegeben. Das Copolymer lag in Form eines Natriumsalzes vor und hatte einen K-Wert von 90. Nach einer Einwirkungszeit von 1 Minute wurden Blätter gebildet, die man anschließend 7 Minuten bei 90 °C trocknete.
  • Vergleichsbeispiel 3
  • Eine weitere Probe der oben beschriebenen Papierstoffsuspension wurde bei einer Stofftemperatur von 22 °C mit 0,25 % Polymer B (Polymer fest, bezogen auf trockenen Faserstoff) versetzt. Nach einer Verweilzeit von 5 Minuten wurden 0,5 % eines wasserlöslichen Copolymerisats aus 30% Acrylsäure und 70% Vinylformamid zugegeben. Das Copolymer lag in Form eines Natriumsalzes vor und hatte einen K-Wert von 90. Nach einer Einwirkungszeit von 1 Minute wurden Blätter gebildet, die man anschließend 7 Minuten bei 90°C trocknete.
  • Vergleichsbeispiel 4
  • Eine weitere Probe der oben beschriebenen Papierstoffsuspension wurde bei einer Stofftemperatur von 22 °C mit 1 % Polymer B (Polymer fest, bezogen auf trockenen Faserstoff) versetzt. Nach einer Verweilzeit von 5 Minuten wurden 1 % eines wasserlöslichen Copolymerisats aus 30% Acrylsäure und 70% Vinylformamid zugegeben. Das Copolymer lag in Form eines Natriumsalzes vor und hatte einen K-Wert von 90. Nach einer Einwirkungszeit von 1 Minute wurden Blätter gebildet, die man anschließend 7 Minuten bei 90°C trocknete.
  • Vergleichsbeispiel 5
  • Eine weitere Probe der oben beschriebenen Papierstoffsuspension wurde bei einer Stofftemperatur von 50 °C mit 0,25 % Polymer B (Polymer fest, bezogen auf trockenen Faserstoff) versetzt. Nach einer Verweilzeit von 5 Minuten wurden 0,5 % eines wasserlöslichen Copolymerisats aus 30 % Acrylsäure und 70 % Vinylformamid zugegeben. Das Copolymer lag in Form eines Natriumsalzes vor und hatte einen K-Wert von 90. Nach einer Einwirkungszeit von 1 Minute wurden Blätter gebildet, die man anschließend 7 Minuten bei 90 °C trocknete.
  • Prüfung der nach den Beispielen 1 bis 3 sowie den Vergleichsbeispielen 1 bis 5 hergestellten Papierblätter
  • Nach einer Lagerzeit der nach den Beispielen und Vergleichsbeispielen hergestellten Blätter im Klimaraum bei konstant 23 °C und 50 % Luftfeuchtigkeit für 12 Stunden wurde jeweils die Trockenreißlänge der Blätter nach DIN 54540 ermittelt. Die Bestimmung des CMT-Wertes der klimatisierten Blätter erfolgte nach DIN 53 143, der Trockenberstdruck der Blätter wurde nach DIN 53 141 ermittelt. Die Ergebnisse sind in Tabelle 1 angegeben.
  • Tabelle 1
    Beispiel Trockenreisslänge (m) Berstdruck [kPa] CMT30 [N]
    1 5213 532 251
    2 4844 474 233
    3 5134 511 235
    Vergleichsbeispiel 1 3598 307 141
    Vergleichsbeispiel 2 4011 361 176
    Vergleichsbeispiel 3 4678 401 217
    Vergleichsbeispiel 4 4768 443 231
    Vergleichsbeispiel 5 4489 383 211

Claims (14)

  1. Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch getrennte Zugabe eines wasserlöslichen kationischen Polymerisats und eines anionischen Polymerisats zu einem Papierstoff, Entwässern des Papierstoffs und Trocknen der Papierprodukte, dadurch gekennzeichnet, dass man als anionisches Polymerisat eine wässrige Dispersion eines wasserunlöslichen Polymeren mit einem Gehalt an Säuregruppen von 0,1 bis-10 Mol-% oder eine anionisch eingestellte wässrige Dispersion eines nichtionischen Polymerisats einsetzt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das wasserunlösliche Polymer einen Gehalt an Säuregruppen von 0,1 bis 9 Mol-% aufweist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das wasserunlösliche Polymer einen Gehalt an Säuregruppen von 0,5 bis 6 Mol-% aufweist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das wasserlösliche Polymer einen Gehalt an Säuregruppen von 2 bis 6 Mol-% aufweist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Säuregruppen ausgewählt sind unter Carboxyl-, Sulfonsäure- und Phosphonsäuregruppen.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die anionischen Polymerisate
    (a) mindestens ein Monomer aus der Gruppe von C1- bis C20-Alkylacrylaten, C1- bis C20-Alkylmethacrylaten, Vinylestern von bis zu 20 C-Atome enthaltenden gesättigten Carbonsäuren, Vinylaromaten mit bis zu 20 C-Atomen, ethylenisch ungesättigten Nitrilen, Vinylethern von 1 bis 10 C-Atome enthaltenden gesättigten, einwertigen Alkoholen, Vinylhalogeniden und aliphatischen Kohlenwasserstoffen mit 2 bis 8 C-Atomen und ein oder zwei Doppelbindungen,
    (b) mindestens ein anionisches Monomer aus der Gruppe der ethylenisch ungesättigten C3- bis C8-Carbonsäuren, Vinylsulfonsäure, Acrylamido-2-methylpropansulfonsäure, Styrolsulfonsäure, Vinylphosphonsäure sowie deren Salze und gegebenenfalls
    (c) mindestens ein Monomer aus der Gruppe der C1- bis C10-Hydroxyalkylacyrylate, C1- bis C10-Hydroxyalkylmethacyrylate, Acrylamid, Methacrylamid, N-C1-bis C20-Alkylacrylamide und N-C1-bis C20-AlkylMethacrylamide und gegebenenfalls
    (d) mindestens eine Monomer mit mindestens zwei ethylenisch ungesättigten Doppelbindungen im Molekül
    einpolymerisiert enthalten.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die anionischen Polymerisate
    (a) mindestens 60 Mol-% mindestens eines Monomers aus der Gruppe bestehend aus einem C1- bis C20-Alkylacrylat, einem C1- bis C20-Alkylmethacrylat, Vinylacetat, Vinylpropionat, Styrol, α-Methylstyrol, p-Methylstyrol, α-Butylstyrol, 4-n-Butylstyrol, 4-n-Decylstyrol, Acrylnitril, Methacrylnitril, Butadien und Isopren,
    (b) 0,5 bis 9 Mol-% mindestens eines anionischen Monomers aus der Gruppe der ethylenisch ungesättigten C3- bis C5-Carbonsäuren
    einpolymerisiert enthalten.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die anionischen Polymerisate mindestens 80 Mol-% mindestens eines Monomers der Gruppe (a) einpolymerisiert enthalten.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die anionischen Polymerisate als Monomer der Gruppe (a) Mischungen aus (i) einem C1- bis C20-Alkylacrylat und/oder einem C1- bis C20-Alkylmethacrylat und (ii) Styrol, α-Methylstyrol, p-Methylstyrol, α-Butylstyrol, 4-n-Butylstyrol, Butadien und/oder Isopren im Gewichtsverhältnis 10 : 90 bis 90 : 10 einpolymerisiert enthalten.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die anionischen Polymerisate eine Glastemperatur Tg von -30 bis 100 °C (gemessen nach DIN EN ISO 11357) haben.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die anionischen Polymerisate eine Glastemperatur von -5 bis 70 °C haben.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Temperatur des Papierstoffs mindestens 40 °C beträgt.
  13. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Temperatur des Papierstoffs mindestens 50 °C beträgt.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man als wasserlösliches kationisches Polymerisat ein Vinylamineinheiten aufweisendes Polymerisat einsetzt.
EP09745789A 2008-05-15 2009-05-14 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit Not-in-force EP2288750B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09745789A EP2288750B1 (de) 2008-05-15 2009-05-14 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP08156244 2008-05-15
EP09150237 2009-01-08
PCT/EP2009/055837 WO2009138457A1 (de) 2008-05-15 2009-05-14 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP09745789A EP2288750B1 (de) 2008-05-15 2009-05-14 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit

Publications (2)

Publication Number Publication Date
EP2288750A1 EP2288750A1 (de) 2011-03-02
EP2288750B1 true EP2288750B1 (de) 2012-09-05

Family

ID=40874744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09745789A Not-in-force EP2288750B1 (de) 2008-05-15 2009-05-14 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit

Country Status (8)

Country Link
US (1) US8597466B2 (de)
EP (1) EP2288750B1 (de)
JP (1) JP2011521114A (de)
KR (1) KR20110013480A (de)
CN (1) CN102027170B (de)
CA (1) CA2722237A1 (de)
PT (1) PT2288750E (de)
WO (1) WO2009138457A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2373745T1 (sl) * 2008-12-03 2019-09-30 Omya International Ag Vodne gošče polnil iz finih delcev, postopek za njihovo pripravo in njihova uporaba za izdelavo papirjev, ki vsebuejo polnila
US8529732B2 (en) 2009-02-05 2013-09-10 Basf Se Method for producing paper, card and board with high dry strength
WO2010145956A1 (de) 2009-06-16 2010-12-23 Basf Se Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
CA2777115C (en) 2009-10-20 2018-06-12 Basf Se Method for producing paper, paperboard and cardboard having high dry strength
FI125713B (fi) * 2010-10-01 2016-01-15 Upm Kymmene Corp Menetelmä märän paperirainan ajettavuuden parantamiseksi ja paperi
WO2013081955A1 (en) 2011-12-01 2013-06-06 Buckman Laboratories International, Inc. Method and system for producing market pulp and products thereof
CN104583493B (zh) * 2012-08-22 2019-06-07 巴斯夫欧洲公司 生产纸、卡片和纸板的方法
FI125714B (en) 2012-11-12 2016-01-15 Kemira Oyj Process for the treatment of fiber pulp for the manufacture of paper, cardboard or the like and product
CN104452463B (zh) 2013-09-12 2017-01-04 艺康美国股份有限公司 造纸方法以及组合物
CN104452455B (zh) 2013-09-12 2019-04-05 艺康美国股份有限公司 造纸助剂组合物以及增加成纸灰分保留的方法
EP3527652B1 (de) 2013-12-30 2022-08-10 Green Products & Technologies, L.L.C. Synthetische base und zugehörige verfahren
FR3016363B1 (fr) * 2014-01-15 2017-05-26 Snf Sas Solution aqueuse de copolymeres cationiques derives d'acrylamide, procede de preparation et utilisation
WO2015144428A1 (de) * 2014-03-28 2015-10-01 Basf Se Verfahren zur herstellung von wellpappenkarton
FI127348B (en) 2014-08-18 2018-04-13 Kemira Oyj Strength substance, its use and method for increasing strength properties of paper
CN107223171A (zh) * 2014-12-16 2017-09-29 巴斯夫欧洲公司 制造纸和纸板的方法
TW201739983A (zh) * 2016-01-14 2017-11-16 亞齊羅馬Ip公司 丙烯酸酯共聚物之用途、使用其之具有纖維素纖維之基材之製造方法及其基板
KR20220123391A (ko) * 2019-12-30 2022-09-06 케미라 오와이제이 중합체 분산액, 이의 용도 및 이의 제조 방법

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE443818B (sv) * 1978-04-24 1986-03-10 Mitsubishi Chem Ind Forfarande for framstellning av papper med forbettrad torrstyrka
DE3506832A1 (de) * 1985-02-27 1986-08-28 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von papier mit hoher trockenfestigkeit
JPH01183598A (ja) * 1988-01-18 1989-07-21 Showa Denko Kk 紙・板紙の抄造方法
US5338406A (en) * 1988-10-03 1994-08-16 Hercules Incorporated Dry strength additive for paper
DE4001808A1 (de) 1990-01-23 1991-07-25 Basf Ag Verwendung von wasserloeslichen copolymerisaten aus monoethylenisch ungesaettigten carbonsaeuren und n-vinylamiden als wasserbehandlungsmittel
US5185062A (en) * 1991-01-25 1993-02-09 Nalco Chemical Company Papermaking process with improved retention and drainage
JP4048612B2 (ja) * 1998-07-17 2008-02-20 星光Pmc株式会社 機械パルプ含有紙及びその製造方法
ATE321081T1 (de) * 1999-03-12 2006-04-15 Wasserlösliche oder wasserdispergierbare polymere salze
JP3199065B2 (ja) * 1999-09-09 2001-08-13 日本ピー・エム・シー株式会社 紙の内添サイジング方法
US6723204B2 (en) * 2002-04-08 2004-04-20 Hercules Incorporated Process for increasing the dry strength of paper
PL205556B1 (pl) * 2002-04-09 2010-05-31 Fpinnovations Kompozycja do stosowania w produkcji papieru, zawiesina wypełniacza do stosowania w produkcji papieru, pulpa wsadowa do produkcji papieru, sposób wytwarzania zawiesiny wypełniacza do stosowania w produkcji papieru, sposób wytwarzania papieru oraz papier
US20040118540A1 (en) 2002-12-20 2004-06-24 Kimberly-Clark Worlwide, Inc. Bicomponent strengtheninig system for paper
DE102004056551A1 (de) * 2004-11-23 2006-05-24 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
JP4837032B2 (ja) * 2005-05-16 2011-12-14 アクゾ ノーベル ナムローゼ フェンノートシャップ 紙の製造方法
DE102005029010A1 (de) * 2005-06-21 2006-12-28 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton
JP2007277795A (ja) * 2006-03-14 2007-10-25 Nippon Paper Industries Co Ltd 抄紙方法および紙
PT1999314T (pt) * 2006-03-16 2017-05-26 Basf Se Processo para a produção de papel, cartão e papelão com uma elevada resistência mecânica a seco
CN101605940B (zh) 2007-02-08 2012-12-05 巴斯夫欧洲公司 用于涂纸浆液的水溶性粘合剂
EP2164906B2 (de) 2007-07-05 2016-11-30 Omya International AG Wässrige anschlämmungen von feinteiligen füllstoffen, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von papieren mit hohem füllstoffgehalt und hoher trockenfestigkeit
WO2009004080A2 (de) 2007-07-05 2009-01-08 Basf Se Verfahren zur herstellung von wässrigen anschlämmungen von feinteiligen füllstoffen und ihre verwendung zur herstellung von papieren mit hohem füllstoffgehalt und hoher trockenfestigkeit
CA2692301C (en) 2007-07-05 2017-06-27 Basf Se Preparation of aqueous slurries of finely divided fillers and their use for the production of papers having a high filler content and high dry strength
WO2009004078A1 (de) 2007-07-05 2009-01-08 Basf Se Wässrige anschlämmungen von feinteiligen füllstoffen, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von papieren mit hohem füllstoffgehalt und hoher trockenfestigkeit
SI2373745T1 (sl) * 2008-12-03 2019-09-30 Omya International Ag Vodne gošče polnil iz finih delcev, postopek za njihovo pripravo in njihova uporaba za izdelavo papirjev, ki vsebuejo polnila

Also Published As

Publication number Publication date
CA2722237A1 (en) 2009-11-19
CN102027170A (zh) 2011-04-20
EP2288750A1 (de) 2011-03-02
US20110048660A1 (en) 2011-03-03
US8597466B2 (en) 2013-12-03
WO2009138457A1 (de) 2009-11-19
PT2288750E (pt) 2012-09-26
KR20110013480A (ko) 2011-02-09
JP2011521114A (ja) 2011-07-21
CN102027170B (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
EP2288750B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2491177B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2393982B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2315875B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP2443284B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP2304106B1 (de) Herstellung von papier
EP1819877B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2164906B1 (de) Wässrige anschlämmungen von feinteiligen füllstoffen, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von papieren mit hohem füllstoffgehalt und hoher trockenfestigkeit
EP2164907B1 (de) Wässrige anschlämmungen von feinteiligen füllstoffen, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von papieren mit hohem füllstoffgehalt und hoher trockenfestigkeit
EP2373745B1 (de) Wässrige anschlämmungen von feinteiligen füllstoffen, verfahren zu ihrer herstellung und ihre verwendung zur herstellung füllstoffhaltiger papiere
EP2443282A1 (de) Verfahren zur reduktion von ablagerungen in der trockenpartie bei der herstellung von papier, pappe und karton
EP2723943B1 (de) Verfahren zur herstellung von papier, pappe und karton
WO2017021483A1 (de) Verfahren zur herstellung von papier
EP2888404B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP3234259A1 (de) Verfahren zur herstellung von papier und karton
EP3207178A1 (de) Verfestigungszusammensetzung für papier und karton

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110805

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 574213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120919

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004635

Country of ref document: DE

Effective date: 20121025

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130531

Year of fee payment: 5

Ref country code: CH

Payment date: 20130524

Year of fee payment: 5

Ref country code: SE

Payment date: 20130528

Year of fee payment: 5

26N No opposition filed

Effective date: 20130606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130621

Year of fee payment: 5

Ref country code: PT

Payment date: 20130424

Year of fee payment: 5

Ref country code: IT

Payment date: 20130527

Year of fee payment: 5

Ref country code: FI

Payment date: 20130522

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130626

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009004635

Country of ref document: DE

Effective date: 20130606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130731

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130514

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20141114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009004635

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141114

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140514

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140515

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009004635

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140514

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140514

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 574213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130514

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090514

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531