EP2407607A1 - Recouvrement de sol - Google Patents

Recouvrement de sol Download PDF

Info

Publication number
EP2407607A1
EP2407607A1 EP11184604A EP11184604A EP2407607A1 EP 2407607 A1 EP2407607 A1 EP 2407607A1 EP 11184604 A EP11184604 A EP 11184604A EP 11184604 A EP11184604 A EP 11184604A EP 2407607 A1 EP2407607 A1 EP 2407607A1
Authority
EP
European Patent Office
Prior art keywords
floorboards
floor
locking
joint
locking system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11184604A
Other languages
German (de)
English (en)
Inventor
Darko Pervan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valinge Innovation AB
Original Assignee
Valinge Innovation AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valinge Innovation AB filed Critical Valinge Innovation AB
Publication of EP2407607A1 publication Critical patent/EP2407607A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/02005Construction of joints, e.g. dividing strips
    • E04F15/02033Joints with beveled or recessed upper edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M3/00Manufacture or reconditioning of specific semi-finished or finished articles
    • B27M3/04Manufacture or reconditioning of specific semi-finished or finished articles of flooring elements, e.g. parqueting blocks
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/04Flooring or floor layers composed of a number of similar elements only of wood or with a top layer of wood, e.g. with wooden or metal connecting members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/01Joining sheets, plates or panels with edges in abutting relationship
    • E04F2201/0107Joining sheets, plates or panels with edges in abutting relationship by moving the sheets, plates or panels substantially in their own plane, perpendicular to the abutting edges
    • E04F2201/0115Joining sheets, plates or panels with edges in abutting relationship by moving the sheets, plates or panels substantially in their own plane, perpendicular to the abutting edges with snap action of the edge connectors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/01Joining sheets, plates or panels with edges in abutting relationship
    • E04F2201/0153Joining sheets, plates or panels with edges in abutting relationship by rotating the sheets, plates or panels around an axis which is parallel to the abutting edges, possibly combined with a sliding movement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/02Non-undercut connections, e.g. tongue and groove connections
    • E04F2201/025Non-undercut connections, e.g. tongue and groove connections with tongue and grooves alternating transversally in the direction of the thickness of the panel, e.g. multiple tongue and grooves oriented parallel to each other
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/02Non-undercut connections, e.g. tongue and groove connections
    • E04F2201/026Non-undercut connections, e.g. tongue and groove connections with rabbets, e.g. being stepped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/04Other details of tongues or grooves
    • E04F2201/041Tongues or grooves with slits or cuts for expansion or flexibility
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/05Separate connectors or inserts, e.g. pegs, pins, keys or strips

Definitions

  • the invention relates generally to the technical field of locking systems for floorboards.
  • the invention concerns on the one hand a locking system for floorboards which can be joined mechanically and, on the other hand, floorboards and floor systems provided with such a locking system and a production method to produce such floor-boards. More specifically, the invention relates above all to locking systems, which enable laying of mainly, floating floors in large continuous surfaces and laying with floorboards that exhibit considerable changes in shape after installation.
  • the present invention is particularly suited for use in floating wooden floors and laminate floors, such as massive wooden floors, parquet floors, floors with a surface of veneer, laminate floors with a surface layer of high pressure laminate or direct laminate and the like.
  • the visible surface of the installed floorboard is called “front side”
  • the opposite side of the floorboard facing the subfloor is called “rear side”
  • floor surface is meant the major outer flat part of the floorboard, which is opposite to the rear side and which is located in one single plane. Bevels, grooves and similar decorative features are parts of the front side but they are not parts of the floor surface.
  • laminate floor is meant a floor having a surface, which consists of melamine impregnated paper, which has been compressed under pressure and heat.
  • Horizontal plane relates to a plane, which is extended parallel to the outer part of the floor surface.
  • Very plane relates to a plane perpendicular to the horizontal plane.
  • joint edge The outer parts of the floorboard at the edge of the floorboard between the front side and the rear side are called “joint edge” .
  • joint edge portion is meant a part of the joint edge of the floorboard.
  • joint or locking system are meant cooperating connecting means, which interconnect the floorboards vertically and/or horizontally.
  • mechanical locking system is meant that joining can take place without glue. Mechanical locking systems can in many cases also be joined by glue.
  • vertical locking is meant locking parallel to the vertical plane. As a rule, vertical locking consists of a tongue, which cooperates with a tongue groove.
  • horizontal locking is meant locking parallel to the horizontal plane.
  • joint opening is meant a groove which is defined by two joint edges of two joined floor-boards and which is open to the front side.
  • joint gap is meant the minimum distance between two joint edge portions of two joined floorboards within an area, which is defined by the front side and the upper part of the tongue next to the front side.
  • open joint gap is meant a joint gap, which is open towards the front side.
  • visible joint gap is meant a joint gap, which is visible to the naked eye from the front side for a person walking on the floor, or a joint gap, which is larger than the general requirements on joint gaps established by the industry for various floor types.
  • continuous floating floor surface is meant a floor surface, which is installed in one piece without expansion joints.
  • Floating floors of this kind are usually joined by means of glued tongue and groove joints.
  • the boards In laying, the boards are brought together horizontally, a projecting tongue along the joint edge of one board being inserted into a tongue groove along the joint edge of an adjoining board.
  • the tongue and groove joint positions and locks the floorboards vertically and the glue locks the boards horizontally.
  • the same method is used on both long side and short side, and the boards are usually laid in parallel rows long side against long side and short side against short side.
  • floorboards In addition to such traditional floating floors, which are joined by means of glued tongue and groove joints, floorboards have been developed in recent years, which do not require the use of glue but which are instead joined mechanically by means of so-called mechanical locking systems.
  • These systems comprise locking means, which lock the boards mechanically horizontally and vertically without glue.
  • the vertical locking means are generally formed as a tongue, which cooperates with a tongue grove.
  • the horizontal locking means consist of a locking element, which cooperates with a locking groove.
  • the locking element could be formed on a strip extending from the lower part of the tongue groove or it could be formed on the tongue.
  • the mechanical locking systems can be formed by machining the core of the board.
  • parts of the locking system such as the tongue and/or the strip can be made of a separate material, which is integrated with the floorboard, i.e. already joined with the floorboard in connection with the manufacture thereof at the factory.
  • the floorboards can be joined mechanically by various combinations of angling, snapping-in, vertical change of position such as the so-called vertical folding and insertion along the joint edge. All of these installation methods, except vertical folding, require that one side of the floorboard, the long or short side, could be displaced in locked position.
  • a lot of locking systems on the market are produced with a small play between the locking element and the locking grove in order to facilitate displacement.
  • the intention is to produce floor-boards, which are possible to displace, and which at the same time are connected to each other with a fit, which is as tight as possible.
  • a very small displacement play of for instance 0,01-0,05 mm is often sufficient to reduce the friction between wood fibres considerably.
  • Wooden and laminate floors are also joined by gluing or nailing to the subfloor. Such gluing/nailing counteracts movements due to moisture and keeps the floorboards joined.
  • the movement of the floorboards occurs about a centre in each floorboard. Swelling and shrinking can occur by merely the respective floorboards, and thus not the entire floor surface, changing in shape.
  • Floorboards that are joined by gluing/nailing to the subfloor do not require any locking systems at all. However, they can have traditional tongue and groove joints, which facilitate vertical positioning. They can also have mechanical locking systems, which lock and position the floorboards vertically and/or horizontally in connection with laying.
  • the advantage of floating flooring is that a change in shape due to different degrees of relative humidity RH can occur concealed under baseboards and the floorboards can, although they swell and shrink, be joined without visible joint gaps. Installation can, especially by using mechanical locking systems, take place quickly and easily and the floor can be taken up and be laid once more in a different place.
  • the drawback is that the continuous floor surface must as a rule be limited even in the cases where the floor consists of relatively dimensionally stable floorboards, such as laminate floor with a fibreboard core or wooden floors composed of several layers with different fibre directions. The reason is that such dimensionally stable floors as a rule have a change in dimension, which is about 0.1% corresponding to about 1 mm per meter when the RH varies between 25% in winter and 85% in summer.
  • Such a floor will, for example, over a distance of ten meters shrink and swell about 10 mm.
  • a large floor surface must be divided into smaller surfaces with expansion strips, for example, every tenth or fifteenth meter. Without such a division, it is a risk that the floor when shrinking will change in shape so that it will no longer be covered by baseboards.
  • the load on the locking system will be great since great loads must be transferred when a large continuous surface is moving. The load will be particularly great in passages between different rooms.
  • expansion joint profiles should be installed on surfaces greater than 12 m in the direction of the length of the individual flooring planks and on surfaces greater than 8 m in the width direction. Such profiles should also be installed in doorways between rooms. Similar installation guidelines are used by producers of floating floors with a surface of wood. Expansion joint profiles are generally aluminium or plastic section fixed on the floor surface between two separate floor units. They collect dirt, give an unwanted appearance and are rather expensive. Due to these limitations on maximum floor surfaces, laminate floorings have only reached a small market share in commercial applications such as hotels, airports, and large shopping areas.
  • Unstable floors such as homogenous wooden floors, may exhibit still greater changes in shape.
  • the factors that above all affect the change in shape of homogenous wooden floors are fibre direction and kind of wood.
  • a homogenous oak floor is very stable along the fibre direction, i.e. in the longitudinal direction of the floorboard. In the transverse direction, the movement can be 3% corresponding to 30 mm per meter or more as the RH varies during the year.
  • Other kinds of wood exhibit still greater changes in shape.
  • Floorboards exhibiting great changes in shape can as a rule not be installed floating. Even if such an installation would be possible, the continuous floor surface must be restricted significantly.
  • the advantage of gluing/nailing to the subfloor is that large continuous floor surfaces can be provided without expansion joint profiles and the floor can take up great loads.
  • a further advantage is that the floor-boards do not require any vertical and horizontal locking systems, and they can be installed in advanced patterns with, for example, long sides joined to short sides. This method of installation involving attachment to the subfloor has, however, a number of considerable drawbacks.
  • the main drawback is that as the floorboards shrink, a visible joint gap arises between the boards.
  • the joint gap can be relatively large, especially when the floor-boards are made of moisture sensitive wood materials. Homogenous wooden floors that are nailed to a subfloor can have joint gaps of 3-5 mm.
  • the distance between the boards can be irregularly distributed with several small and some large gaps, and these gaps are not always parallel.
  • the joint gap can vary over the length of the floorboard.
  • the large joint gaps contain a great deal of dirt, which penetrates down to the tongue and prevents the floorboards from taking their original position in swelling.
  • the installation methods are time-consuming, and in many cases the subfloor must be adjusted to allow gluing/ nailing to the subfloor.
  • the present invention relates to locking systems, floorboards and floors which make it possible to install floating floors in large continuous surfaces and with floorboards that exhibit great dimensional changes as the relative humidity (RH) changes.
  • the invention also relates to production methods and production equipment to produce such floors.
  • a first object of the present invention is to provide a floating floor of rectangular floorboards with mechanical locking systems, in which floor the size, pattern of laying and locking system of the floorboards cooperate and allow movements between the floorboards.
  • the individual floorboards can change in shape after installation, i.e. shrink and swell due to changes in the relative humidity. This can occur in such a manner that the change in shape of the entire floor surface can be reduced or preferably be eliminated while at the same time the floorboards remain locked to each other without large visible joint gaps.
  • a second object is to provide locking systems, which allow a considerable movement between floorboards without large and deep dirt-collecting joint gaps and/or where open joint gaps could be excluded.
  • Such locking systems are particularly suited for moisture sensitive materials, such as wood, but also when large floating floors are installed using wide and/or long floorboards.
  • the terms long side and short side are used in the description to facilitate understanding.
  • the boards can according to the invention also be square or alternately square and rectangular, and optionally also exhibit different patterns and angles between opposite sides.
  • the present invention comprises a floating floor, which consists of rectangular floorboards, which are joined by a mechanical locking system.
  • the joined floorboards have a horizontal plane, which is parallel to the floor surface, and a vertical plane, which is perpendicular to the horizontal plane.
  • the locking system has mechanically cooperating locking means for vertical joining parallel to the vertical plane and for horizontal joining parallel to the horizontal plane of a first and a second joint edge.
  • the vertical locking means consist of a tongue, which cooperates with a groove, and the horizontal consist of a locking element with a locking surface cooperating with a locking groove.
  • the floor is characterized in that the format, installation pattern and locking system of the floorboards are designed in such a manner that a floor surface of 1 * 1 meter can change in shape in at least one direction at least 1 mm when the floorboards are pressed together or pulled apart. This change in shape can occur without visible joint gaps.
  • the present invention comprises a locking system for mechanical joining of floorboards, in which locking system the joined floor-boards have a horizontal plane which is parallel to the floor surface and a vertical plane which is perpendicular to the horizontal plane.
  • the locking system has mechanically cooperating locking means for vertical joining parallel to the vertical plane and for horizontal joining parallel to the horizontal plane of a first and a second joint edge.
  • the vertical locking means consist of a tongue, which cooperates with a groove and the horizontal of a locking element with a locking surface, which cooperates with a locking groove.
  • the first and the second joint edge have upper and lower joint edge portions located between the tongue and the floor surface. The upper joint edge portions are closer to the floor surface than the lower.
  • the locking system is characterised in that, when the floorboards are joined and pressed against each other, the two upper joint edge portions are spaced from each other and one of the upper joint edge portions in the first joint edge overlaps a lower joint edge portion in the second joint edge.
  • the floor consists of rather small floorboards and many joints, which could compensate swelling and shrinking.
  • the production tolerances should be rather small since well-defined plays and joint openings are generally required to produce a high quality floor according to the invention.
  • a set of tools consists preferably of one or more milling tools which are arranged and dimensioned to machine a locking system in a manner known to those skilled in the art.
  • the most used equipment is an end tenor, double or single, where a chain and a belt are used to move the floorboard with great accuracy along a well defined feeding direction.
  • Pressure shoes and support unites are used in many applications together with the chain and the belt mainly to prevent vertical deviations. Horizontal deviation of the floorboard is only prevented by the chain and the belt.
  • a third object of the present invention is to provide equipment and production methods which make it possible to produce floorboards and mechanical locking systems with an end tenor but with better precision than what is possible to accomplish with known technology.
  • the present invention therefore also comprises equipment for production of building panels especially floorboards.
  • the equipment consists of a chain, a belt, a pressure shoe and a tool set.
  • the chain and the belt are arranged to displace the floorboard relative the tool set and the pressure shoe, in a feeding direction.
  • the pressure shoe is arranged to press towards the rear side of the floorboard.
  • the tool set is arranged to form an edge portion of the floorboard when the floorboard is displaced relative the tool set.
  • One of the tools of the tool set forms a guiding surface in the floorboard.
  • the pressure shoe has a guiding device, which cooperates with the guiding surface and prevents deviations in a direction perpendicular to the feeding direction and parallel to the rear side of the floorboard.
  • a grove could be formed on the rear side of a floorboard and that a ruler could be inserted into the groove to guide the floorboards when they are displaced by a belt that moves the boards on a table. It is not known that special guiding surfaces and guiding devices could be used in an end tenor where a pressure shoe cooperates with a chain.
  • a fourth object of the present invention is to provide a large semi-floating floor of rectangular floor-boards with mechanical locking systems, in which floor the format, installation pattern and locking system of the floorboards are designed in such a manner that a large semi-floating continuous surface, with length or width exceeding 12 m, could be installed without expansion joints.
  • Figs 1a-b illustrate floorboards which are of a first type A and a second type B according to the invention and whose long sides 4a and 4b in this embodiment have a length which is 3 times the length of the short sides 5a, 5b.
  • the long sides 4a, 4b of the floorboards have vertical and horizontal connecting means, and the short sides 5a, 5b of the floorboards have horizontal connecting means.
  • the two types are identical except that the location of the locking means is mirror-inverted.
  • the locking means allow joining of long side 4a to long side 4b by at least inward angling and long side 4a to short side 5a by inward angling, and also short side 5b to long side 4b by a vertical motion.
  • Joining of both long sides 4a, 4b and short sides 5a, 5b in a herringbone pattern or in parallel rows can in this embodiment take place merely by an angular motion along the long sides 4a, 4b.
  • the long sides 4a, 4b of the floorboards have connecting means, which in this embodiment consist of a strip 6, a tongue groove 9 and a tongue 10.
  • the short sides 5a also have a strip 6 and a tongue groove 9 whereas the short sides 5b have no tongue 10.
  • the two types of floorboards need not be of the same format and the locking means can also have different shapes, provided that as stated above they can be joined long side against short side.
  • the connecting means can be made of the same material, or of different materials, or be made of the same material but with different material properties.
  • the connecting means can be made of plastic or metal. They can also be made of the same material as the floorboard, but be subjected to a treatment modifying their properties, such as impregnation or the like.
  • the short sides 5b can have a tongue and the floorboards can then be joined in prior-art manner in a diamond pattern by different combinations of angular motion and snap motions. Short sides could also have a separate flexible tongue, which during locking could be displaced horizontally.
  • Fig. 2a shows the connecting means of two floor-boards 1, 1' that are joined to each other.
  • the floorboards have a surface layer 31 of laminate, a core 30 of, for instance, HDF, which is softer and more compressible than the surface layer 31, and a balancing layer 32.
  • the vertical locking D1 consists of a tongue groove 9, which cooperates with a tongue 10.
  • the horizontal locking D2 consists of a strip 6 with a locking element 8, which cooperates with a locking groove 12. This locking system can be joined by inward angling along upper joint edges. It could also be modified in such a way that it could be locked by horizontal snapping.
  • the locking element 8 and the locking groove 12 have cooperating locking surfaces 15, 14.
  • the floorboards can, when joined and pressed against each other in the horizontal direction D2, assume a position where there is a play 20 between the locking surfaces 14, 15.
  • Figure 2 b show that when the floorboards are pulled apart in the opposite direction, and when the locking surfaces 14, 15 are in complete contact and pressed against each other, a joint gap 21 arises in the front side between the upper joint edges.
  • the play between the locking surfaces 14, 15 are according to the invention defined as equal to the displacement of the upper joint edges when these edges are pressed together and pulled apart as described above.
  • This play in the locking system is the maximum floor movement that takes place when the floorboards are pressed together and pulled apart with a pressure and pulling force adapted to the strength of the edge portions and the locking system.
  • the play and joint gap can be, for example, 0.05-0.10 mm.
  • Joint gaps which are about 0.1 mm, are considered acceptable. They are difficult to see and normal dirt particles are too big to penetrate into the locking system through such small joint gaps.
  • joint gaps up to 0,20 mm with a play of for example 0,25 mm could be accepted, especially if play and joint gaps are measured when a considerable pressure and pulling force is used. This maximum joint gap will occur in extreme conditions only when the humidity is very low, for example below 20% and when the load on the floor is very high. In normal condition and applications the joint gap in such a floor could be 0,10 mm or less.
  • Fig. 2c shows floorboards with, for instance, a core 30 of fibreboard, such as HDF, and a surface layer of laminate or veneer, which has a maximum dimensional change of about 0.1%, i.e. 1 mm per meter.
  • the floor-boards are installed in parallel rows. In this embodiment, they are narrow and short with a size of, for example, 0.5 * 0.08 m. If the play is 0.1 mm, 12 floorboards with their 12 joints over a floor length of one meter will allow a movement in the transverse direction D2 B of 1.2 mm, which is more than the maximum dimensional change of the floor. Thus the entire movement may occur by the floorboards moving relative to each other, and the outer dimensions of the floor can be unchanged.
  • the two short side joints can only compensate for a movement of 0.2 mm per meter.
  • installation can suitably occur, contrary to the present recommended installation principles, with the long sides of the floorboards parallel to the width direction of the room and perpendicular to the length direction thereof.
  • a large continuous floating floor surface without large visible joint gaps can thus be provided with narrow floorboards which have a locking system with play and which are joined in parallel rows perpendicular to the length direction of the floor surface.
  • the locking system, the floorboards and the installation pattern according to the invention should thus be adjusted so that a floor surface of 1 * 1 m can expand and be pressed together about 1 mm or more in at least one direction without damaging the locking system or the floorboards.
  • a mechanical locking system in a floating floor which is installed in home settings should have a mechanical locking system that withstands tensile load and compression corresponding to at least 200 kg per meter of floor length. More specifically, it should preferably be possible to achieve the above change in shape without visible joint gaps when the floor surface above is subjected to a compressive or tensile load of 200 kg in any direction and when the floor-boards are conditioned in normal relative humidity of about 45%.
  • the strength of a mechanical locking system is of great importance in large continuous floating floor surfaces.
  • Such large continuous surfaces are defined as a floor surface with length and/or width exceeding 12 m.
  • Very large continuous surfaces are defined as floor surfaces with length and/or width exceeding 20 m.
  • Dimensionally stable floorboards such as laminate floors, which show average joint gaps exceeding 0,2 mm, when a tensile load of 200 kg/m is applied, are generally not suitable to use in a large high quality floating floor.
  • the invention could be used to install continuous floating floors with a length and/or width exceeding 20 m or even 40 m. In principle there are no limitations. Continuous floating floors with a surface of 10.000 m 2 or more could be installed according to invention.
  • Fig. 5d illustrates a suitable testing method in order to ensure that the floorboards are sufficiently mobile in the joined state and that the locking system is strong enough to be used in a large continuous floating floor surface where the floor is a Semi Floating Floor.
  • 9 samples with 10 joints and with a length L of 100 mm (10% of 1 meter) have been joined along their respective long sides so as to correspond to a floor length TL of about 1 meter.
  • the amount of joints, in this example 10 joints is referred to as Nj.
  • the boards are subjected to compressive and tensile load using a force F corresponding to 20 kg (200 N), which is 10% of 200 kg.
  • the change in length of the floor length TL hereafter referred to as ⁇ TL, should be measured.
  • This testing method will also measure dimensional changes of the floorboard. Such dimensional changes are in most floorboards extremely small compared to the play. As mentioned before, due to compression of top edges and eventually some very small dimensional changes of the floor board itself, the average joint gap will always be smaller than the average play AP.
  • Lower or higher force F could be used to design floorboards, installation patterns and locking systems which could be used as Semi Floating Floors.
  • a force F of 100 kg (1000 N) per meter could be sufficient.
  • a force F of 250 - 300 kg or more could be used.
  • Mechanical locking systems could be designed with a locking force of 1000 kg or more.
  • the joint gap in such locking systems could be limited to 0, 2 mm even when a force F of 400 - 500 kg is applied.
  • the pushback effect caused by the locking element 8, the locking surfaces 15, 14 and the locking strip 6 could be measured by increasing and decreasing the force F in steps of for example 100 kg.
  • a mechanical locking system with a high pushback effect is an advantage in a semi-floating floor.
  • ⁇ TL1 should be at least 75% of ⁇ TL2. In some applications even 50% could be sufficient.
  • Fig. 2e shows a m 2 floor surface which consists of the above-described floorboards installed in a herringbone pattern long side against short side and shows the position of the floorboards when, for instance, in summer they have swelled to their maximum dimension.
  • Fig. 2f shows the position of the floorboards when, for instance, in winter, they have shrunk. The locking system with the inherent play then results in a joint gap 21 between all joint edges of the floorboards. Since the floorboards are installed in a herringbone pattern, the play of the long sides will help to reduce the dimensional changes of the floor in all directions.
  • Fig. 2e shows a m 2 floor surface which consists of the above-described floorboards installed in a herringbone pattern long side against short side and shows the position of the floorboards when, for instance, in summer they have swelled to their maximum dimension.
  • Fig. 2f shows the position of the floorboards when, for instance, in winter, they have shrunk.
  • the critical direction is the diagonal directions D2 C and D2 D of the floor where 7 joint gaps must be adjusted so as to withstand a shrinkage over a distance of 1.4 m.
  • This can be used to determine the optimal direction of laying in a large floor.
  • a joint gap of 0.2 mm will completely eliminate the movement of the floor in all directions.
  • the invention also allows partition walls to be attached to an installed floating floor, which can reduce the installation time.
  • a floor with a surface of veneer or laminate and with a core of a fibreboard-based panel can be manufactured so as to be highly dimensionally stable and have a maximum dimensional change in home settings of about 0.5 - 1.0 mm per meter.
  • Such semi-floating floors can be installed in spaces of unlimited size, and the maximum play can be limited to about 0.1 mm also in the cases where the floorboards have a width of preferably about 120 mm.
  • still smaller floorboards, for instance 0.4 * 0.06 m are still more favourable and can manage large surfaces also when they are made of materials that are less stable in shape.
  • the invention thus suggests a new type of semi-floating floor where the individual floorboards are capable of moving and where the outer dimensions of the floor need not be changed.
  • This can be achieved by optimal utilisation of the size of the boards, the mobility of the locking system using a small play and a small joint gap, and the installation pattern of the floor-boards.
  • a suitable combination of play, joint gap, size of the floorboard, installation pattern and direction of laying of the floorboards can thus be used in order to wholly or partly eliminate movements in a floating floor.
  • Much larger continuous floating floors can be installed than is possible today, and the maximum movement of the floor can be reduced to the about 10 mm that apply to current technology, or be completely eliminated.
  • the play 20 and the joint gap 21 in dimensionally stable floors should preferably be about 0.1 - 0.2 mm.
  • An especially preferred embodiment according to the invention is a semi-floating floor with the following characteristics:
  • the surface layer is laminate or wood veneer
  • the core of the floorboard is a wood based board such as MDF or HDF
  • the change in floor length ⁇ TL is at least 1,0 mm when a force F of 100 kg/m is used
  • the change in floor length ⁇ TL is at least 1,5 mm when a force F of 200 kg/m is used
  • average joint gaps do not exceed 0,15 mm when the force F is 100 kg/m and they do not exceed 0,20 mm when the force F is 200 kg/m.
  • Fig. 3a shows a second embodiment, which can be used to counteract the problems caused by movements due to moisture in floating floors.
  • the floorboard has a surface 31 of direct laminate and a core of HDF.
  • a layer 33 which consists of melamine impregnated wood fibres. This layer forms, when the surface layer is laminated to HDF and when melamine penetrates into the core and joins the surface layer to the HDF core.
  • the HDF core 30 is softer and more compressible than the laminate surface 31 and the melamine layer 33.
  • the surface layer 31 of laminate and, where appropriate, also parts of, or the entire, melamine layer 33 under the surface layer can be removed so that a decorative groove 133 forms in the shape of a shallow joint opening JO 1.
  • This joint opening resembles a large joint gap in homogeneous wooden floors.
  • the groove 133 can be made on one joint edge only, and it can be coloured, coated or impregnated in such a manner that the joint gap becomes less visible.
  • Such decorative grooves or joint openings can have, for example, a width JO 1 of, for example, 1 - 3 mm and a depth of 0.2 - 0.5 mm.
  • the width of JO 1 could preferably be rather small about 0,5 - 1,0 mm
  • the upper joint edges 16, 17 can be compressed.
  • Such compression can be 0.1 mm in HDF.
  • Such a possibility of compression can replace the above-mentioned play and can allow a movement without a joint gap.
  • Chemical processing as mentioned above can also change the properties of the joint edge portion and help to improve the possibilities of compression.
  • the first and second embodiment can be combined. With a play of 0.1 mm and a possibility of compression of 0.1 mm, a total movement of 0.2 mm can be provided with a visible joint gap of 0.1 mm only.
  • Compression can also be used between the active locking surfaces 15, 14 in the locking element 8 and in the locking groove 12.
  • the separation of the floorboards is prevented when the locking surfaces 14, 15 are in contact with each other and no substantial compression occurs.
  • the locking surfaces When subjected to additional tensile load in extreme climatic conditions, for instance when the RH falls below 25%, the locking surfaces will be compressed. This compression is facilitated if the contact surface CS of the locking surfaces 14, 15 are small. It is advantageous if this contact surface CS in normal floor thickness 8 - 15 mm is about 1 mm or less. With this technique, floorboards can be manufactured with a play and joint gap of about 0.1 mm.
  • FIG. 3b illustrates a third embodiment.
  • Figure 3c and 3d are enlargements of the joint edges in figure 3b .
  • the floorboard 1' has, in an area in the joint edge which is defined by the upper parts of the tongue 10 and the groove 9 and the floor surface 31, an upper joint edge portion 18 and a lower joint edge portion 17, and the floorboard 1 has in a corresponding area an upper joint edge portion 19 and a lower joint edge portion 16.
  • the lower joint edge portions 16, 17 will come into contact with each other. This is shown in figure 3d .
  • the upper joint edge portions 18, 19 are spaced from each other, and one upper joint edge portion 18 of one floorboard 1' overlaps the lower joint edge portion 16 of the other floorboard 1.
  • the locking system has a play 20 of for instance 0.2 mm between the locking surfaces 14, 15. If the overlap in this pressed-together position is 0.2 mm, the boards can, when being pulled apart, separate from each other 0.2 mm without a visible joint gap being seen from the surface. This embodiment will not have an open joint gap because the joint gap will be covered by the overlapping joint edge portion 18. This is shown in figure 3c . It is an advantage if the locking element 8 and the locking grove 12 are such that the possible separation i.e. the play is slightly smaller then the overlapping. Preferably a small overlapping, for example 0,05 mm should exist in the joint even when the floorboards are pulled apart and a pulling force F is applied to the joint.
  • the joint edges will be stronger since the lower edge portion 16 will support the upper edge portion 18.
  • the decorative groove 133 can be made very shallow and all dirt collecting in the groove can easily be removed by a vacuum cleaner in connection with normal cleaning. No dirt or moisture can penetrate into the locking system and down to the tongue 12.
  • This technique involving overlapping joint edge portions can, of course, be combined with the two other embodiments on the same side or on long and short sides.
  • the long side could for instance have a locking system according to the first embodiment and the short side according to the second.
  • the visible and open joint gap can be 0.1 mm, the compression 0.1 mm and the overlap 0.1 mm.
  • the floorboards' possibility of moving will then be 0.3 mm all together and this considerable movement can be combined with a small visible open joint gap and a limited horizontal extent of the overlapping joint edge portion 18 that does not have to constitute a weakening of the joint edge.
  • Such a locking system which thus can provide a considerable possibility of movement without visible joint gaps, can be used in all the applications described above.
  • the locking system is especially suitable for use in broad floor-boards, on the short sides, when the floorboards are installed in parallel rows and the like, i.e.
  • the vertical extent of the overlapping joint edge portion i.e. the depth GD of the joint opening, is less than 0.1 times the floor thickness T.
  • An especially preferred embodiment according to the invention is a semi-floating floor with the following characteristics:
  • the surface layer is laminate or wood veneer
  • the core of the floorboard is a wood based board such as MDF or HDF
  • the floor thickness T is 6 - 9 mm
  • the overlapping OL is smaller than the average play AP when a force F of 100 kg/m is used.
  • the overlapping OL on the short sides could be equal or larger than the overlapping on the long sides.
  • Figure 3e show an embodiment where the joint opening JO 1 is very small or nonexistent when the floorboards are pressed together.
  • This joint opening will be substantially of the same size as the average play AP.
  • the decorative groove could for example be coloured in some suitable design matching the floor surface and a play will not cause an open joint gap.
  • a very small overlapping OL of some 0,1 mm (0,01*T-0,02*T) only and slightly smaller average play AP could give sufficient floor movement and this could be combined with a moisture resistant high quality joint.
  • the play will also facilitate locking, unlocking and displacement in locked position.
  • Such overlapping edge portions could be used in all known mechanical locking systems in order to improve the function of the mechanical locking system.
  • Figs 4a and 4b show how a locking system can be designed so as to allow a floating installation of floor-boards, which consist of a moisture sensitive material.
  • the floorboard is made of homogeneous wood.
  • Fig. 4a shows the locking system in a state subjected to tensile load
  • Fig. 4b shows the locking system in the compressed state.
  • the relative size of the joint openings should not differ much from each other.
  • the smallest joint opening JO 2 should be greater than half the greatest joint opening JO 1.
  • the depth GD should preferably be less than 0.5 * TT, TT being the distance between the floor surface and the upper parts of the tongue/groove. In the case where there is no tongue, GD should be less than 0.2 times the floor thickness T. This facilitates cleaning of the joint opening.
  • JO 1 is about 1 - 5 mm, which corresponds to normal gaps in homogeneous wooden floors.
  • the overlapping joint edge portion should preferably lie close to the floor surface. This allows a shallow joint opening while at the same time vertical locking can occur using a tongue 10 and a groove 9 which are placed essentially in the central parts of the floorboard between the front side and the rear side where the core 30 has good stability.
  • An alternative way of providing a shallow joint opening, which allows movement, is illustrated in Fig. 4c .
  • the upper part of the tongue 10 has been moved up towards the floor surface.
  • the drawback of this solution is that the upper joint edge portion 18 above the tongue 10 will be far too weak.
  • the joint edge portion 18 can easily crack or be deformed.
  • Figs 5a and 5b illustrate the long side joint of three floorboards 1, 1' and 1" with the width W.
  • Fig. 5a shows the floorboards where the RH is low, and Fig. 5b shows them when the RH is high.
  • broad floorboards should preferably have wider joint gaps than narrow ones.
  • JO 2 should suitably be at least about 1% of the floor width W.
  • 100 mm wide floor-boards will then have a smallest joint opening of at least 1 mm.
  • Corresponding joint openings in, for example, 200 mm wide planks should be at least 2 mm.
  • Other combinations can, of course, also be used especially in wooden floors where special requirements are made by different kinds of wood and different climatic conditions.
  • Fig. 6a shows a wooden floor, which consists of several layers of wood.
  • the floorboard may consist of, for example, an upper layer of high-grade wood, such as oak, which constitutes the decorative surface layer 31.
  • the core 30 may consist of, for example, plywood, which is made up of other kinds of wood or by corresponding kinds of wood but of a different quality. Alternatively the core may consist of or wood lamellae.
  • the upper layer 31 has as a rule a different fibre direction than a lower layer. In this embodiment, the overlapping joint edges 18 and 19 are made in the upper layer.
  • the advantage is that the visible joint opening JO 1 will consist of the same kind of wood and fibre direction as the surface layer 31 and the appearance will be identical with that of a homogeneous wooden floor.
  • Figs 6b and 6c illustrate an embodiment where there is a small play 22 between the overlapping joint edge portions 16, 18, which facilitate horizontal movement in the locking system.
  • Fig. 6c shows joining by an angular motion and with the upper joint edge portions 18, 19 in contact with each other.
  • the play 20 between the locking surface 15 of the locking element 8 and the locking groove 12 significantly facilitates joining by inward angling, especially in wooden floors that are not always straight.
  • the overlapping joint portion 18 is made in the tongue side, i.e. in the joint edge having a tongue 10.
  • This overlapping joint portion 18 can also be made in the groove side, i.e. in the joint edge having a groove 9.
  • Figs 6d and 6e illustrate such an embodiment. In Fig. 6d , the boards are pressed together in their inner position, and in Fig. 6e they are pulled out to their outer position.
  • Figs 7a-7b illustrate that it is advantageous if the upper joint edge 18, which overlaps the lower 16, is located on the tongue side 4a.
  • the groove side 4b can then be joined by a vertical motion to a side 4a, which has no tongue, according to Fig. 7b .
  • Such a locking system is especially suitable on the short side.
  • Fig. 7c shows such a locking system in the joined and pressed-together state.
  • Figs 7d and 7e illustrate how the horizontal locking means, for instance in the form of a strip 6 and a locking element 8 and also an upper and lower joint portion 19, 16, can be made by merely one tool TO which has a horizontally operating tool shaft HT and which thus can form the entire joint edge.
  • Such a tool can be mounted, for example, on a circular saw, and a high quality joint system can be made by means of a guide bar.
  • the tool can also saw off the floorboard 1.
  • only a partial dividing of the floorboard 1 is made at the outer portion 24 of the strip 6.
  • the final dividing is made by the floorboard being broken off. This reduces the risk of the tool TO being damaged by contacting a subfloor of, for instance, concrete.
  • This technique can be used to produce a frame or frze FR in a floor, which, for instance, is installed in a herringbone pattern according to Fig. 5c .
  • the tool can also be used to manufacture a locking system of a traditional type without overlapping joint edge portions.
  • Figs 8a-8f illustrate different embodiments.
  • Figs 8a-8c illustrate how the invention can be used in locking systems where the horizontal locking consists of a tongue 10 with a locking element 8 which cooperates with a locking groove 12 made in a groove 9 which is defined by an upper lip 23 and where the locking groove 12 is positioned in the upper lip 23.
  • the groove also has a lower lip 24 which can be removed to allow joining by a vertical motion.
  • Fig. 8d shows a locking system with a separate strip 6, which is made, for instance, of aluminium sheet.
  • Fig. 8e illustrates a locking system that has a separate strip 6 which can be made of a fibreboard-based material or of plastic, metal and like materials.
  • Fig. 8f shows a locking system, which can be joined by horizontal snap action.
  • the tongue 10 has a groove 9' which allows its upper and lower part with the locking elements 8, 8' to bend towards each other in connection with horizontally displacement of the joint edges 4a and 4b towards each other.
  • the upper and lower lip 23, 24 in the groove 9 need not be resilient.
  • the invention can also be used in conventional snap systems where the lips 23, 24 can be resilient.
  • Figs 9a-9d illustrate alternative embodiments of the invention.
  • the inner position of the outer part of the locking element 8 and the locking groove 10 is determined.
  • the outer part of the tongue 10 and the groove 9 cooperate.
  • the front and lower part of the tongue 10 cooperates with the groove 9.
  • a locking element 10' on the lower part of the tongue 10 cooperates with a locking element 9' on the strip 6. It is obvious that several other parts in the locking system can be used according to these principles in order to define the inner position of the floorboards.
  • Figure 10a shows production equipments and production methods according to the invention.
  • the end tenor ET has a chain 40 and a belt 41 which displace the floorboard 1 in a feeding direction FD relative a tool set, which in this embodiment has five tools 51, 52, 53, 54 and 55 and pressure shoes 42.
  • the end tenor could also have two chins and two belts.
  • Figure 10 b is an enlargement of the first tooling station.
  • the first tool 51 in the tool set makes a guiding surface 12 which in this embodiment is a groove and which is mainly formed as the locking groove 12 of the locking system. Of course other groves could be formed preferably in that part of the floorboard where the mechanical locking system will be formed.
  • the pressure shoe 42' has a guiding device 43' which cooperates with the groove 12 and prevents deviations from the feeding direction FD and in a plane parallel to the horizontal plane.
  • Figure 10 c shows the end tenor seen from the feeding direction when the floorboard has passed the first tool 51.
  • the locking groove 12 is used as a guiding surface for the guiding device 43, which is attached to the pressing shoe 42.
  • the figure 10 d shows that the same groove 12 could be used as a guiding surface in all tool stations.
  • Figure 10 d shows how the tongue could be formed with a tool 54. The machining of a particular part of the floorboard 1 can take place when this part, at the same time, is guided by the guiding device 43.
  • Figures 11 a shows another embodiment where the guiding device is attached inside the pressure shoe.
  • the disadvantage is that the board will have a grove in the rear side.
  • Figure 11 b shows another embodiment where one or both outer edges of the floorboard are used as a guiding surface for the guiding device 43, 43'.
  • the end tenor has in this embodiment support units 44, 44' which cooperate with the pressure shoes 42, 42'.
  • the guiding device could alternatively be attached to this support unites 44, 44'.
  • Figures 11c and 11d show how a floorboard could be produced in two steps.
  • the tongue side 10 is formed in step one.
  • the same guiding groove 12 is used in step 2 ( fig. 11d ) when the groove side 9 is formed.
  • Such an end tenor will be very flexible.
  • the advantage is that floorboards of different widths, smaller or larger than the chain width, could be produced.
  • Figures 12a-12c show a preferred embodiment, which guarantees that a semi-floating floor will be installed in the normal position which preferably is a position where the actual joint gap is about 50% of the maximum joint gap. If for instance all floorboards are installed with edges 16, 17 in contact, problems may occur around the walls when the floorboards swell to their maximum size. According to the invention, the locking element and the locking groove could be formed in such a way that the floorboards are automatically guided in the optimal position during installation.
  • Figure 12c shows that the locking element 8 in this embodiment has a locking surface with a high locking angle LA close to 90 degree to the horizontal plane. This locking angle LA is higher than the angle of the tangent line TL to the circle C, which has a centre at the upper joint edges.
  • Figure 12b shows that such a joint geometry will during angling push the floorboard 4a towards the floorboard 4b and bring it into the above-mentioned preferred position with a play between the locking element 8 and the locking groove 12 and a joint gap between the top edges 16, 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Floor Finish (AREA)
  • Road Paving Structures (AREA)
  • Handcart (AREA)
EP11184604A 2004-01-13 2005-01-13 Recouvrement de sol Withdrawn EP2407607A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0400068A SE526596C2 (sv) 2004-01-13 2004-01-13 Flytande golv med mekanisk låssystem som möjliggör rörelse mellan golvskivorna
EP05704704.5A EP1704292B1 (fr) 2004-01-13 2005-01-13 Systeme de couverture de sol

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP05704704.5 Division 2005-01-13

Publications (1)

Publication Number Publication Date
EP2407607A1 true EP2407607A1 (fr) 2012-01-18

Family

ID=31493044

Family Applications (7)

Application Number Title Priority Date Filing Date
EP11184607.7A Active EP2418336B1 (fr) 2004-01-13 2005-01-13 Équipement pour la production de panneaux de construction
EP11184608A Withdrawn EP2420637A1 (fr) 2004-01-13 2005-01-13 Recouvrement de sol
EP11184606.9A Active EP2407608B1 (fr) 2004-01-13 2005-01-13 Système de verrouillage pour recouvrement de sol
EP11184604A Withdrawn EP2407607A1 (fr) 2004-01-13 2005-01-13 Recouvrement de sol
EP11184609.3A Active EP2407289B1 (fr) 2004-01-13 2005-01-13 Recouvrement de sol
EP11184605.1A Active EP2407288B1 (fr) 2004-01-13 2005-01-13 Systèmes de verrouillage pour un recouvrement de sol
EP05704704.5A Active EP1704292B1 (fr) 2004-01-13 2005-01-13 Systeme de couverture de sol

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP11184607.7A Active EP2418336B1 (fr) 2004-01-13 2005-01-13 Équipement pour la production de panneaux de construction
EP11184608A Withdrawn EP2420637A1 (fr) 2004-01-13 2005-01-13 Recouvrement de sol
EP11184606.9A Active EP2407608B1 (fr) 2004-01-13 2005-01-13 Système de verrouillage pour recouvrement de sol

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP11184609.3A Active EP2407289B1 (fr) 2004-01-13 2005-01-13 Recouvrement de sol
EP11184605.1A Active EP2407288B1 (fr) 2004-01-13 2005-01-13 Systèmes de verrouillage pour un recouvrement de sol
EP05704704.5A Active EP1704292B1 (fr) 2004-01-13 2005-01-13 Systeme de couverture de sol

Country Status (18)

Country Link
EP (7) EP2418336B1 (fr)
JP (1) JP4642781B2 (fr)
KR (1) KR101165107B1 (fr)
CN (1) CN100529297C (fr)
AU (1) AU2005205419B8 (fr)
BR (1) BRPI0506430B1 (fr)
CA (1) CA2548420C (fr)
ES (3) ES2424125T3 (fr)
IL (1) IL176176A (fr)
NO (1) NO339393B1 (fr)
NZ (1) NZ548450A (fr)
PL (3) PL2407608T3 (fr)
PT (3) PT2418336E (fr)
RU (1) RU2358075C2 (fr)
SE (1) SE526596C2 (fr)
UA (1) UA89626C2 (fr)
WO (1) WO2005068747A1 (fr)
ZA (1) ZA200605477B (fr)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE525661C2 (sv) 2002-03-20 2005-03-29 Vaelinge Innovation Ab System för bildande av dekorativa fogpartier och golvskivor därför
ES2609056T3 (es) 2002-04-03 2017-04-18 Välinge Innovation AB Método de fijación de una tira a una placa de tarima flotante
US20040206036A1 (en) 2003-02-24 2004-10-21 Valinge Aluminium Ab Floorboard and method for manufacturing thereof
US7886497B2 (en) 2003-12-02 2011-02-15 Valinge Innovation Ab Floorboard, system and method for forming a flooring, and a flooring formed thereof
SE527570C2 (sv) 2004-10-05 2006-04-11 Vaelinge Innovation Ab Anordning och metod för ytbehandling av skivformat ämne samt golvskiva
US8215078B2 (en) 2005-02-15 2012-07-10 Välinge Innovation Belgium BVBA Building panel with compressed edges and method of making same
US20130139478A1 (en) 2005-03-31 2013-06-06 Flooring Industries Limited, Sarl Methods for packaging floor panels, as well as packed set of floor panels
BE1016938A6 (nl) 2005-03-31 2007-10-02 Flooring Ind Ltd Werkwijzen voor het vervaardigen en verpakken van vloerpanelen, inrichtingen hierbij aangewend, alsmede vloerpaneel en verpakte set van vloerpanelen.
US20060260253A1 (en) * 2005-05-23 2006-11-23 Quality Craft Ltd. Laminate flooring panel bevel and method of manufacturing same
SE0600041L (sv) 2006-01-11 2007-07-12 Vaelinge Innovation Ab V-spår
US20070175144A1 (en) 2006-01-11 2007-08-02 Valinge Innovation Ab V-groove
SE530653C2 (sv) * 2006-01-12 2008-07-29 Vaelinge Innovation Ab Fuktsäker golvskiva samt golv med ett elastiskt ytskikt omfattande ett dekorativt spår
BE1017049A6 (nl) 2006-04-06 2007-12-04 Flooring Ind Ltd Werkwijze voor het vervaardigen van vloerpanelen en vloerpaneel.
PT2009197E (pt) * 2006-04-14 2016-06-08 Yekalon Ind Inc Um bloco de pavimento, um sistema de pavimento e um método de colocação destes
BE1017157A3 (nl) 2006-06-02 2008-03-04 Flooring Ind Ltd Vloerbekleding, vloerelement en werkwijze voor het vervaardigen van vloerelementen.
BE1017171A3 (nl) * 2006-06-21 2008-03-04 Flooring Ind Ltd Werkwijze voor het vervaardigen van vloerelementen en vloerelement.
US8323016B2 (en) 2006-09-15 2012-12-04 Valinge Innovation Belgium Bvba Device and method for compressing an edge of a building panel and a building panel with compressed edges
BE1017350A6 (nl) * 2006-10-31 2008-06-03 Flooring Ind Ltd Vloerpaneel en vloerbekleding bestaande uit dergelijke vloerpanelen.
WO2008133377A1 (fr) * 2007-04-27 2008-11-06 Easywood, Inc. Lame de parquet présentant des surfaces renforcées
KR100870496B1 (ko) * 2007-04-27 2008-11-25 주식회사 이지테크 수직 시공 가능한 바닥마감용 마루판재
DE102007035235A1 (de) 2007-07-27 2009-01-29 Wemhöner Anlagen GmbH & Co. KG Verbesserung der Führung von Werkstücken in Bearbeitungsmaschinen zum Bearbeiten von plattenförmigen Körpern für die Holz- und Baustoffindustrie
BE1018426A3 (nl) * 2007-07-31 2010-11-09 Flooring Ind Ltd Vloerbekleding, vloerpaneel, verpakkingseenheid en werkwijze voor het vervaardigen van dergelijke vloerpanelen.
DE102007061035A1 (de) * 2007-12-18 2009-06-25 Kaindl Flooring Gmbh Verkleidungspaneel und daraus gebildete Verkleidung
PL2208835T3 (pl) * 2009-01-16 2012-10-31 Vaelinge Innovation Ab Panel, zwłaszcza panel podłogowy
CN201416252Y (zh) * 2009-01-22 2010-03-03 杨建忠 异形榫接木地板块及其拼花木地板组件和拼花木地板
NL2003019C2 (nl) 2009-06-12 2010-12-15 4Sight Innovation Bv Vloerpaneel en vloerbedekking bestaande uit meerdere van dergelijke vloerpanelen.
BR112012001968B1 (pt) * 2009-07-31 2021-09-28 Välinge Innovation AB Método de produção de sistemas de travamento mecânico em um painel de piso
RU2534578C2 (ru) 2009-07-31 2014-11-27 Велинге Инновейшн Аб Способы и системы для обработки кромок строительных панелей
US11717901B2 (en) 2009-07-31 2023-08-08 Valinge Innovation Ab Methods and arrangements relating to edge machining of building panels
US11725395B2 (en) 2009-09-04 2023-08-15 Välinge Innovation AB Resilient floor
US8365499B2 (en) 2009-09-04 2013-02-05 Valinge Innovation Ab Resilient floor
US8591691B2 (en) 2009-12-17 2013-11-26 Valinge Innovation Ab Methods and arrangements relating to surface forming of building panels
CA3209449A1 (fr) 2010-01-11 2011-07-14 Valinge Innovation Ab Revetement de sol a conception verrouillee
DE102011086846A1 (de) 2011-01-28 2012-08-02 Akzenta Paneele + Profile Gmbh Paneel
UA109938C2 (uk) 2011-05-06 2015-10-26 Механічна фіксуюча система для будівельних панелей
LT3115161T (lt) 2011-08-29 2020-01-10 Ceraloc Innovation Ab Grindų plokščių mechaninio fiksavimo sistema
CN102392519B (zh) * 2011-09-30 2015-08-19 张家铭 按压扣合式锁扣板材及扣合方法
WO2013126900A2 (fr) * 2012-02-23 2013-08-29 Armstrong World Industries, Inc. Système de plancher flottant, panneau de plancher et son procédé d'installation
MY173394A (en) 2012-06-19 2020-01-22 Valinge Innovation Ab A method for dividing a board into a first panel and a second panel, a method of forming a mechanical locking system for a locking a first and a second panel, and building panels
AU2013317701B8 (en) 2012-09-19 2019-11-21 Välinge Innovation AB A panel for covering a surface or support and an associated joint system
EP2754772A1 (fr) * 2013-01-11 2014-07-16 Spanolux N.V. Div. Balterio Ensemble panneau de sol, panneau de sol et éléments d'assemblage pour utilisation dans celui-ci
EA039386B1 (ru) * 2013-01-11 2022-01-21 Велинге Инновейшн Аб Набор строительных панелей
EP3358101B1 (fr) 2013-03-25 2019-11-06 Välinge Innovation AB Panneaux de plancher dotés d'un système de verrouillage mécanique et procédé pour produire un tel système de verrouillage
US9726210B2 (en) 2013-09-16 2017-08-08 Valinge Innovation Ab Assembled product and a method of assembling the product
CN105518316B (zh) 2013-09-16 2019-03-29 瓦林格创新股份有限公司 组合产品和装配该组合产品的方法
WO2015054759A1 (fr) * 2013-10-18 2015-04-23 Ectx S/A Planche stratifiée pour la constitution d'un plancher flottant
CN105873475A (zh) 2014-01-10 2016-08-17 瓦林格创新股份有限公司 家具面板
US9714672B2 (en) 2014-01-10 2017-07-25 Valinge Innovation Ab Panels comprising a mechanical locking device and an assembled product comprising the panels
MX2016014501A (es) 2014-05-09 2017-01-23 Vaelinge Innovation Ab Sistema de bloqueo mecanico para paneles de construccion.
BR112016029151A2 (pt) 2014-07-11 2017-08-22 Vaelinge Innovation Ab painel com um controle deslizante
PL3169532T3 (pl) 2014-07-16 2023-12-18 Välinge Innovation AB Sposób wytwarzania folii termoplastycznej odpornej na ścieranie
PT3567184T (pt) 2014-08-29 2023-03-06 Vaelinge Innovation Ab Sistema de juntas vertical para um painel de cobertura de superfície
RU2709003C2 (ru) 2014-12-19 2019-12-12 Велинге Инновейшн Аб Панели, содержащие запирающее устройство, и собранное изделие, содержащее панели
WO2016171607A1 (fr) 2015-04-21 2016-10-27 Välinge Innovation AB Panneau à coulisse
KR20170141223A (ko) 2015-04-30 2017-12-22 뵈린게 이노베이션 에이비이 체결 디바이스를 갖는 패널
CN104895291A (zh) * 2015-07-03 2015-09-09 大亚(江苏)地板有限公司 地板连环扣
UA125554C2 (uk) 2015-09-22 2022-04-20 Велінге Інновейшн Аб Панелі, що містять механічний фіксуючий пристрій, і зібраний виріб, що містить панелі
ES2894363T3 (es) 2015-12-03 2022-02-14 Vaelinge Innovation Ab Conjunto de paneles que comprende un dispositivo de bloqueo mecánico
EA035583B1 (ru) 2015-12-17 2020-07-10 Велинге Инновейшн Аб Способ изготовления механической замковой системы для панелей
BR112018014151B1 (pt) 2016-01-26 2022-12-27 Vãlinge Innovation Ab Conjunto de painéis compreendendo um dispositivo de bloqueio mecânico
KR20180109957A (ko) 2016-02-04 2018-10-08 뵈린게 이노베이션 에이비이 조립된 제품을 위한 패널들의 세트
CA3011612A1 (fr) 2016-02-09 2017-08-17 Valinge Innovation Ab Ensemble de trois elements en forme de panneau
US10486245B2 (en) 2016-02-09 2019-11-26 Valinge Innovation Ab Element and method for providing dismantling groove
MX2018009631A (es) * 2016-02-15 2018-12-17 Vaelinge Innovation Ab Un metodo para formar un panel para un producto de mobiliario.
BR112019005906B1 (pt) 2016-09-30 2023-02-14 Välinge Innovation AB Conjunto de painéis montados por deslocamento vertical e travados na direção vertical e horizontal
US10724564B2 (en) 2016-10-27 2020-07-28 Valinge Innovation Ab Set of panels with a mechanical locking device
DE102017106329A1 (de) 2017-03-23 2018-09-27 Guido Schulte Bearbeitungsanlage für plattenförmige Werkstücke
DE102017003191A1 (de) * 2017-04-01 2018-10-04 Wabco Europe Bvba Heckspoilereinrichtung für ein Nutzfahrzeug
NL2018781B1 (en) 2017-04-26 2018-11-05 Innovations4Flooring Holding N V Panel and covering
US11506235B2 (en) 2017-05-15 2022-11-22 Valinge Innovation Ab Elements and a locking device for an assembled product
WO2019125291A1 (fr) 2017-12-22 2019-06-27 Välinge Innovation AB Ensemble de panneaux, son procédé d'assemblage et dispositif de verrouillage pour un produit de mobilier
EP3728869B1 (fr) 2017-12-22 2023-01-25 Välinge Innovation AB Ensemble de panneaux, leur procédé d'assemblage et dispositif de verrouillage pour un produit de mobilier
CN111556917A (zh) * 2018-01-09 2020-08-18 瓦林格创新股份有限公司 一组镶板
WO2019182505A1 (fr) 2018-03-23 2019-09-26 Välinge Innovation AB Panneaux comprenant un dispositif de verrouillage mécanique et produit assemblé comprenant les panneaux
CN112119226B (zh) 2018-04-18 2022-05-27 瓦林格创新股份有限公司 具有机械锁定装置的镶板组
CN112262265B (zh) 2018-04-18 2022-12-20 瓦林格创新股份有限公司 对称榫舌和t形交叉组件
US11076691B2 (en) 2018-04-18 2021-08-03 Valinge Innovation Ab Set of panels with a mechanical locking device
EP3781824B1 (fr) 2018-04-18 2024-04-10 Välinge Innovation AB Ensemble de panneaux avec un dispositif de verrouillage mécanique
US11614114B2 (en) 2018-04-19 2023-03-28 Valinge Innovation Ab Panels for an assembled product
BR112021002370A2 (pt) 2018-08-30 2021-05-11 Välinge Innovation AB conjunto de painéis com um dispositivo de travamento mecânico
EP3798385A1 (fr) 2019-09-24 2021-03-31 Välinge Innovation AB Panneau de construction
BE1027634B1 (nl) * 2019-10-08 2021-05-06 Flooring Ind Ltd Sarl Vloerpaneel voor het vormen van een vloerbekleding
BE1028185B1 (nl) 2020-04-03 2021-11-04 Flooring Ind Ltd Sarl Paneel
WO2023012587A1 (fr) * 2021-08-04 2023-02-09 Flooring Industries Limited, Sarl Panneau décoratif comprenant une imitation de coulis
WO2024013623A1 (fr) * 2022-07-14 2024-01-18 Flooring Industries Limited, Sarl Procédé de fabrication de panneaux et panneaux obtenus par celui-ci

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20307580U1 (de) * 2003-05-15 2003-07-10 Schulte Fuehres Josef Fußbodendiele
WO2003089736A1 (fr) * 2002-04-22 2003-10-30 Välinge Innovation AB Panneau de plancher, systemes de revetement de sol et leur procedes de fabrication et d'installation

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT218725B (de) * 1959-01-16 1961-12-27 Jakob Niederguenzl Maschine zur Herstellung von Kleinparkettbrettchen
FR2128182B1 (fr) * 1971-03-10 1975-06-06 Guilliet Ets
GB2256023A (en) * 1991-05-18 1992-11-25 Magnet Holdings Ltd Joint
SE501014C2 (sv) * 1993-05-10 1994-10-17 Tony Pervan Fog för tunna flytande hårda golv
JP2978403B2 (ja) 1994-10-13 1999-11-15 ナショナル住宅産業株式会社 木質床材の接合部構造
SE507737C2 (sv) 1996-11-08 1998-07-06 Golvabia Ab Anordning för sammanfogning av golvbeläggningsmaterial
DE19718319C2 (de) * 1997-04-30 2000-06-21 Erich Manko Parkettelement
SE517183C2 (sv) * 2000-01-24 2002-04-23 Valinge Aluminium Ab Låssystem för mekanisk hopfogning av golvskivor, golvskiva försedd med låssystemet och metod för framställning av sådana golvskivor
AU2001236720A1 (en) 2000-02-05 2001-08-14 Bemis, Guy Compositions useful as inhibitors of erk
WO2001066876A1 (fr) 2000-03-07 2001-09-13 E.F.P. Floor Products Fussböden GmbH Liaison mecanique de panneaux
SE518184C2 (sv) * 2000-03-31 2002-09-03 Perstorp Flooring Ab Golvbeläggningsmaterial innefattande skivformiga golvelement vilka sammanfogas med hjälp av sammankopplingsorgan
DE10031639C2 (de) 2000-06-29 2002-08-14 Hw Ind Gmbh & Co Kg Fussbodenplatte
BE1014345A3 (nl) * 2001-08-14 2003-09-02 Unilin Beheer Bv Vloerpaneel en werkwijze voor het vervaardigen ervan.
DE10159581C1 (de) * 2001-12-05 2003-06-26 Parkett Hinterseer Gmbh Vorrichtung zur Herstellung von Hochkantlamellenparkett geringer Dicke
DE10206877B4 (de) * 2002-02-18 2004-02-05 E.F.P. Floor Products Fussböden GmbH Paneel, insbesondere Fussbodenpaneel
ES2609056T3 (es) 2002-04-03 2017-04-18 Välinge Innovation AB Método de fijación de una tira a una placa de tarima flotante
DE20205538U1 (de) * 2002-04-10 2002-07-04 Ico Gmbh Bodenbelagsprofil mit Verrastung
US7739849B2 (en) * 2002-04-22 2010-06-22 Valinge Innovation Ab Floorboards, flooring systems and methods for manufacturing and installation thereof
DE10224540B4 (de) * 2002-05-31 2007-03-08 Kronotec Ag Fussbodenpaneel
BE1015760A6 (nl) * 2003-06-04 2005-08-02 Flooring Ind Ltd Vloerpaneel en werkwijze voor het vervaardigen van dergelijk vloerpaneel.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003089736A1 (fr) * 2002-04-22 2003-10-30 Välinge Innovation AB Panneau de plancher, systemes de revetement de sol et leur procedes de fabrication et d'installation
DE20307580U1 (de) * 2003-05-15 2003-07-10 Schulte Fuehres Josef Fußbodendiele

Also Published As

Publication number Publication date
NZ548450A (en) 2010-03-26
EP2418336A1 (fr) 2012-02-15
NO339393B1 (no) 2016-12-12
RU2006129282A (ru) 2008-02-20
SE526596C2 (sv) 2005-10-11
AU2005205419A1 (en) 2005-07-28
KR101165107B1 (ko) 2012-07-17
CA2548420A1 (fr) 2005-07-28
CA2548420C (fr) 2013-06-25
PL2407289T3 (pl) 2014-03-31
RU2358075C2 (ru) 2009-06-10
ES2443584T3 (es) 2014-02-19
KR20070003858A (ko) 2007-01-05
EP2418336B1 (fr) 2013-05-08
UA89626C2 (ru) 2010-02-25
EP1704292A1 (fr) 2006-09-27
EP2407288B1 (fr) 2013-05-08
PT2407288E (pt) 2013-07-18
PL2407608T3 (pl) 2013-09-30
JP4642781B2 (ja) 2011-03-02
EP2407608B1 (fr) 2013-05-08
SE0400068L (sv) 2005-07-14
EP2407289A1 (fr) 2012-01-18
PT2418336E (pt) 2013-08-23
JP2007518004A (ja) 2007-07-05
PT2407608E (pt) 2013-08-22
BRPI0506430A (pt) 2006-12-26
AU2005205419B8 (en) 2010-09-09
EP2407608A1 (fr) 2012-01-18
CN100529297C (zh) 2009-08-19
WO2005068747A1 (fr) 2005-07-28
IL176176A (en) 2010-11-30
PL2407288T3 (pl) 2013-09-30
NO20062997L (no) 2006-09-29
BRPI0506430B1 (pt) 2016-09-27
EP2407289B1 (fr) 2013-10-23
ZA200605477B (en) 2007-11-28
ES2422866T3 (es) 2013-09-16
EP1704292B1 (fr) 2013-04-10
ES2424125T3 (es) 2013-09-27
EP2407288A1 (fr) 2012-01-18
SE0400068D0 (sv) 2004-01-13
AU2005205419B2 (en) 2010-08-19
IL176176A0 (en) 2006-10-05
CN1910327A (zh) 2007-02-07
EP2420637A1 (fr) 2012-02-22

Similar Documents

Publication Publication Date Title
US10138637B2 (en) Floor covering and locking systems
EP2407289B1 (fr) Recouvrement de sol
US7762293B2 (en) Equipment for the production of building panels
US6769218B2 (en) Floorboard and locking system therefor
US7677001B2 (en) Flooring systems and methods for installation
US8061104B2 (en) Mechanical locking system for floor panels

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20111011

AC Divisional application: reference to earlier application

Ref document number: 1704292

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR LV YU

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17Q First examination report despatched

Effective date: 20121205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130618