EP2404681B1 - Verfahren zur herstellung eines stahldrates - Google Patents

Verfahren zur herstellung eines stahldrates Download PDF

Info

Publication number
EP2404681B1
EP2404681B1 EP10748749.8A EP10748749A EP2404681B1 EP 2404681 B1 EP2404681 B1 EP 2404681B1 EP 10748749 A EP10748749 A EP 10748749A EP 2404681 B1 EP2404681 B1 EP 2404681B1
Authority
EP
European Patent Office
Prior art keywords
steel wire
wire
drawing process
final
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10748749.8A
Other languages
English (en)
French (fr)
Other versions
EP2404681A4 (de
EP2404681A1 (de
Inventor
Yasuyuki Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of EP2404681A1 publication Critical patent/EP2404681A1/de
Publication of EP2404681A4 publication Critical patent/EP2404681A4/de
Application granted granted Critical
Publication of EP2404681B1 publication Critical patent/EP2404681B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3035Pearlite
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/3057Steel characterised by the carbon content having a high carbon content, e.g. greater than 0,8 percent respectively SHT or UHT wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords

Definitions

  • the present invention relates to a method of producing a steel wire (hereinafter, also simply referred to as "production method"), and particularly to a method of producing a steel wire in which the energy which is required for producing steel wire can be reduced.
  • a steel cord composed of, for example, steel wires twisted together is employed.
  • a high carbon steel wire used for this steel wire is conventionally produced by the following processes.
  • Such a high carbon steel wire is made by using, as a raw material, a high carbon steel wire which has a pearlite structure by a Stelmor process having a diameter of about 5.5 mm.
  • a drawing process is applied to the raw material to obtain an intermediate wire having a diameter larger than the final diameter.
  • a dry drawing is generally applied, or in some cases, two drawing processes and a heat treatment therebetween are applied.
  • the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire having a fine pearlite structure.
  • a brass plating process is applied followed by the heat treatment.
  • the heat treated wire is subjected to a drawing as the final drawing process to obtain a steel wire having a desired final diameter and a desired tensile strength.
  • a wet drawing method is generally applied as such a final drawing process.
  • the tensile strength of the steel wire produced by the above process is highly influenced by the composition of the raw materials (mainly the content of carbon) and the amount of drawing in the final drawing process. That is, the higher the content of carbon and the larger the amount of drawing in the final drawing process, a steel wire having the higher tensile strength can be obtained.
  • the content of carbon in a raw material generally used for the production of a wire for steel cords is 0.80 to 0.86% by mass (hereinafter, referred to as "80C material").
  • a technique for a higher strength and a technique for reducing a production cost are demanded.
  • Patent Documents 1 to 4 disclose a technique for increasing tensile strength by increasing the amount of final drawing by using 80C material and by improving the final drawing conditions.
  • Patent Documents 5 and 6 disclose a technique for increasing tensile strength by using a raw material whose carbon content is increased and by adjusting the amount of drawing in the pre-drawing process in which an intermediate wire is produced.
  • Patent Document 6 discloses in comparative example 2 a method according to the preamble of claim 1.
  • Patent document 7 discloses a technique for increasing tensile strength by using a raw material whose carbon content is increased and by adding an alloy element such as Cr.
  • Patent Documents 8 and 9 disclose a technique of producing a steel wire having the same tensile strength as in the case where 80 C material is applied by using a raw material whose carbon content is less than that of 80 C material and by increasing the amount of final drawing.
  • an object of the present invention is to solve the problems in the above described conventional art and to provide a production method in which a steel wire having a good tensile strength can be produced with a small processing energy.
  • an object of the present invention is to provide a production method in which a steel wire having a similar tensile strength as a steel wire obtained by a conventional general production method using a 80 C material can be produced with a small processing energy.
  • the drawing method of the wet drawing is a method in which a wire is pulled out in a lubricating liquid by a capstan.
  • the wire drawing machine requires a difference in speed between the capstan and a wire, i.e., a slip, which becomes a loss of power for production.
  • the dry wire drawing machine used for the pre-drawing is a method in which the speed of one step of the capstan is controlled by one motor, a slip does not occur and a loss of power for production is small.
  • the metal structure of the high-carbon steel wire is preferably pearlite, and further, the diameter of the steel wire obtained by the final drawing process is preferably 0.05 to 0.50 mm. Still further, in the method of producing a steel wire of the present invention, it is preferred that the tensile strength TSf of the steel wire obtained in the final drawing process, the tensile strength TS of the heat treated wire and the ⁇ f satisfy the relation represented by the following formula : TS ⁇ exp 0.24 ⁇ ⁇ f ⁇ TSf ⁇ TS ⁇ exp 0.30 ⁇ ⁇ f , and more preferably, TSf is 2700 to 3300 MPa.
  • a high-carbon steel wire containing 0.90 to 1.05% by mass of carbon be subjected to a drawing to obtain an intermediate wire; the ⁇ f be 2.70 to 3.00; and the TSf be 2700 to 3200 MPa.
  • the method of producing a steel wire of the present invention includes: a pre-drawing process in which a high-carbon steel wire is subjected to a drawing process to obtain an intermediate wire; a heat treatment process in which the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire; and a final drawing process in which the heat treated wire is subjected to a drawing to obtain a steel wire.
  • a high-carbon steel wire containing 0.90 to 1.20% by mass of carbon is used as a raw material, and a raw material in which an alloy element such as Cr, Ni or V is added to the high-carbon steel wire can also be used.
  • the amount of carbon contained in the high-carbon steel wire is less than 0.90% by mass, the amount of processing required in the final drawing process cannot be set much low compared with the case of applying a general 80 C material, and thus the energy-saving effect is small.
  • the amount of carbon contained in the high-carbon steel wire is more than 1.20% by mass, a uniform metal structure in the heat treatment process becomes hard to be obtained, and the drawability of the heat treated wire becomes poor.
  • the amount ⁇ f of drawing is less than 2.50, a tensile strength desired for a cord for reinforcing rubbers or a cord for ropes is hard to be obtained.
  • the amount ⁇ f of drawing is more than 3.10, the energy required for the final drawing becomes large, and an energy-saving effect is hard to be obtained.
  • An electric power need for the final drawing process largely accounts for the energy consumed in the production of a steel wire. For this reason, by adjusting the amount of drawing ⁇ f in the final drawing process, a steel wire having a good tensile strength can be produced with a small processing energy.
  • the amount of drawing needed in the final drawing process in order to obtain the same tensile strength as that of a conventional article can be made small, thereby reducing the energy needed for the production.
  • to make the amount of final drawing small is advantageous for improving the ductility of the steel wire, and accompanying effects such as improvement of productivity due to decrease of breaking of wire and improvement of the quality of steel wire can be expected.
  • the metal structure of the high-carbon steel wire is pearlite. This is because the work hardening rate of the pearlite steel is larger that of martensite steel.
  • the diameter of the steel wire obtained in the final drawing process be 0.05 to 0.50 mm.
  • This range is a desired range of the diameter for a cord for reinforcing rubbers or a cord for ropes, and by using this range, a steel wire having a good tensile strength can be produced with a small processing energy.
  • the tensile strength TSf of the steel wire obtained in the final drawing process, the tensile strength TS of the heat treated wire and the ⁇ f satisfy the relation represented by the following formula : TS ⁇ exp 0.24 ⁇ ⁇ f ⁇ TSf ⁇ TS ⁇ exp 0.30 ⁇ ⁇ f , and more preferably, the TSf is 2700 to 3300 MPa.
  • the tensile strength of the steel wire is less than 2700 MPa, the strength of the steel wire for a cord for reinforcing rubbers or a cord for ropes may be insufficient, and on the other hand, when the tensile strength of the steel wire is more than 3300 MPa, it is needed that the amount of processing in the final drawing process be set large even when the carbon content is increased, and thus the energy-saving effect may be small.
  • a high-carbon steel wire containing 0.90 to 1.05% by mass of carbon be subjected to a drawing to obtain an intermediate wire; the amount ⁇ f of drawing be 2.70 to 3.00; and the tensile strength of the steel wire obtained in the final drawing process be 2700 to 3200 MPa.
  • the upper limit of the amount of carbon contained in the high-carbon steel wire is 1.05, it becomes easy to obtain a uniform metal structure in the heat treatment process.
  • the method of producing a steel wire of the present invention can be employed for a method of producing a cord for a steel cord for reinforcing rubber articles or a cord for a wire rope.
  • a high-carbon steel wire (102 C material) having a diameter of 5.5 mm and containing 1.02% by mass of carbon was subjected to a drawing to produce an intermediate wire (pre-drawing process).
  • the pre-drawing process was conducted without an intermediate heat treatment.
  • the obtained intermediate wire was subjected to a patenting heat treatment to produce a heat treated wire (heat treatment process, heat treatment plating).
  • the heat treated wire was subjected to a drawing (final drawing process), to obtain a steel wire of Example 1 having a diameter of 0.19 mm and having a tensile strength TSf of 3000 MPa.
  • the metal structure of the high-carbon steel wire used is a virtually uniform pearlite structure.
  • Example 2 A steel wire of Example 2 having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • a steel wire of Conventional Example having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • a steel wire of Comparative Example 1 having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • a 90 C material was processed using the production conditions shown in the Conventional Example to obtain a steel wire of Comparative Example 2 having a diameter of 0.19 mm and having a TSf of 3350 MPa.
  • Example 1 Conventional Example Comparative Example 1 Comparative Example 2 Comparative Example 3 Raw material diameter 1.02% by mass (102 C material) 5.5mm 0.92% by mass (90 C material) 5.5mm 0.82% by mass (80 C material) 5.5mm 0.72% by mass (70 C material) 5.5mm 0.92% by mass (90 C material) 5.5mm 0.92% by mass (90 C material) 5.5mm Intermediate wire diameter (mm) 0.70 0.85 0.93 1.03 0.93 0.90 Amount ⁇ of drawing 4.12 3.73 3.55 3.35 3.55 3.62 TS (MPa) 1430 1370 1300 1200 1340 1350 Final diameter of steel wire (mm) 0.19 0.19 0.19 0.19 0.19 Amount ⁇ f of drawing 2.61 3.00 3.18 3.38 3.18 3.11 TSf (MPa) 1430 1370 1300 1200 1340 1350 Final diameter of steel wire (mm) 0.19 0.19 0.19 0.19 0.19 Amount ⁇ f of drawing 2.61 3.00 3.18 3.38 3.18 3.11 TSf (MPa) 1430

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (6)

  1. Verfahren zur Herstellung eines Stahldrahtes, wobei das Verfahren umfasst: einen Vor-Ziehprozess, in welchem ein hochkohlenstoffhaltiger Stahldraht, enthaltend von 0,90 bis 1,20 Masse-% Kohlenstoff, einem Ziehen unterzogen ist, um ein Zwischendraht zu erhalten; einen Wärmebehandlungsprozess, in welchem der Zwischendraht einer patentierten Wärmebehandlung unterzogen ist, um einen wärmebehandelten Draht zu erhalten; und einen Endziehprozess, in welchem der wärmebehandelte Draht einem Ziehen unterzogen ist, um einen Stahldraht zu erhalten, dadurch gekennzeichnet, dass der Ziehbetrag εf im Endziehprozess, welcher die Beziehung erfüllt, welche von der folgenden Formel dargestellt ist: εf = 2 ln D 0 / Df ,
    Figure imgb0009
    wobei Df den Enddurchmesser des Stahldrahts darstellt, welcher im Endziehprozess erhalten wird, D0 den Durchmesser des wärmebehandelten Drahtes vor dem Endziehprozess und In den natürlichen Logarithmus darstellt, 2,60 bis 3,00 beträgt.
  2. Verfahren zur Herstellung eines Stahldrahtes nach Anspruch 1, wobei die Metallstruktur des hochkohlenstoffhaltigen Stahldrahtes Perlit ist.
  3. Verfahren zur Herstellung eines Stahldrahtes nach Anspruch 1, wobei der Durchmesser eines Stahldrahtes, welcher im Endziehprozess erhalten wird, zwischen 0,05 und 0,50 mm beträgt.
  4. Verfahren zur Herstellung eines Stahldrahtes nach Anspruch 2, wobei die Zugfestigkeit TSf des Stahldrahtes, welcher im Endziehprozess erhalten wird, die Zugfestigkeit TS des wärmebehandelten Drahtes und εf die Beziehung erfüllen, welche durch die folgende Formel dargestellt ist: TS × exp 0,24 × εf TSf TS × exp 0,30 × εf .
    Figure imgb0010
  5. Verfahren zur Herstellung eines Stahldrahtes nach Anspruch 4, wobei TSf zwischen 2700 und 3300 MPa beträgt.
  6. Verfahren zur Herstellung eines Stahldrahtes nach Anspruch 4 oder 5, wobei ein hochkohlenstoffhaltiger Draht, enthaltend von 0,90 bis 1,05 Masse-% Kohlenstoff, einem Ziehen unterzogen ist, um einen Zwischendraht zu erhalten; εf 2,70 bis 3,00 beträgt und TSf zwischen 2700 und 3200 MPa beträgt.
EP10748749.8A 2009-03-02 2010-03-02 Verfahren zur herstellung eines stahldrates Not-in-force EP2404681B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009047890 2009-03-02
PCT/JP2010/053352 WO2010101154A1 (ja) 2009-03-02 2010-03-02 鋼線の製造方法

Publications (3)

Publication Number Publication Date
EP2404681A1 EP2404681A1 (de) 2012-01-11
EP2404681A4 EP2404681A4 (de) 2015-12-02
EP2404681B1 true EP2404681B1 (de) 2018-11-07

Family

ID=42709710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10748749.8A Not-in-force EP2404681B1 (de) 2009-03-02 2010-03-02 Verfahren zur herstellung eines stahldrates

Country Status (5)

Country Link
US (1) US20110314888A1 (de)
EP (1) EP2404681B1 (de)
JP (1) JP5701744B2 (de)
CN (1) CN102341194A (de)
WO (1) WO2010101154A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983787A (zh) * 2010-09-14 2011-03-09 江苏赛福天钢绳有限公司 一种低强度低硬度钢丝的制备方法
CN103008385B (zh) * 2012-12-14 2015-03-04 武汉钢铁(集团)公司 用82b盘条生产超高强架空电缆钢芯用钢丝的方法
CN103014508A (zh) * 2012-12-14 2013-04-03 武汉钢铁(集团)公司 一种跨越度≥3500米的架空电缆钢芯用钢丝及生产方法
CN103966417B (zh) * 2013-01-31 2016-04-20 张家港市骏马钢帘线有限公司 一种提高超细高碳钢丝表面质量和拉拔性能的工艺方法
CN103161086B (zh) * 2013-04-07 2015-04-15 江苏法尔胜技术开发中心有限公司 一种微细钢丝绳生产方法
FR3013736B1 (fr) * 2013-11-22 2016-12-09 Michelin & Cie Procede de trefilage et fil obtenu par ce procede de trefilage
CN115161558B (zh) * 2022-07-12 2024-04-16 鞍钢股份有限公司 一种超高强度钢丝帘线用盘条、钢丝、帘线及制造方法
CN115161559B (zh) * 2022-07-12 2024-04-16 鞍钢股份有限公司 一种耐扭转断裂的超高强度钢丝、钢丝用盘条及制造工艺

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125322A (ja) * 1983-12-08 1985-07-04 Shinko Kosen Kogyo Kk 高強度高靭性鋼線の製造法
JPH0755331B2 (ja) * 1991-11-19 1995-06-14 修司 西浦 超高強度極細高炭素鋼線の製造方法
JP2809566B2 (ja) 1992-10-29 1998-10-08 東京製綱株式会社 スチールコード用ワイヤの製造方法
JP3479724B2 (ja) * 1993-11-29 2003-12-15 金井 宏之 ゴム製品補強用金属線
CA2163894C (en) * 1994-03-28 2000-08-08 Seiki Nishida Steel wire rod of high strength and steel wire of high strength excellent in fatigue characteristics
JPH08132128A (ja) 1994-11-01 1996-05-28 Tokyo Seiko Co Ltd ゴム補強用高抗張力スチールワイヤの製造法
JP2920474B2 (ja) 1995-02-08 1999-07-19 東京製綱株式会社 ゴム補強用超高強度スチールワイヤおよびスチールコード
JP2906025B2 (ja) 1995-03-17 1999-06-14 東京製綱株式会社 ゴム製品補強用高強度スチールワイヤおよびスチールコード並びに高強度スチールの製造方法
JP2920478B2 (ja) 1995-05-23 1999-07-19 東京製綱株式会社 ゴム補強用スチールワイヤおよびスチールコード
JP3844267B2 (ja) * 1997-05-21 2006-11-08 株式会社ブリヂストン 鋼線の製造方法
JP3938240B2 (ja) * 1998-02-25 2007-06-27 株式会社ブリヂストン 鋼線及びその製造方法
BE1014394A3 (fr) * 1999-08-12 2003-10-07 Bridgestone Corp Fils d'acier, leur procede de production et pneumatiques utilisant ces fils.
JP3997867B2 (ja) * 2002-09-04 2007-10-24 住友金属工業株式会社 鋼線材とその製造法及び当該鋼線材を用いる鋼線の製造法
US6715331B1 (en) * 2002-12-18 2004-04-06 The Goodyear Tire & Rubber Company Drawing of steel wire
JP2007111767A (ja) * 2005-10-24 2007-05-10 Bridgestone Corp 高強度高炭素鋼線およびその製造方法
KR100717151B1 (ko) * 2005-11-14 2007-05-10 주식회사 효성 고강도 스틸코드 및 그의 제조방법
JP2008069409A (ja) 2006-09-14 2008-03-27 Bridgestone Corp 高強度高炭素鋼線およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2404681A4 (de) 2015-12-02
EP2404681A1 (de) 2012-01-11
US20110314888A1 (en) 2011-12-29
WO2010101154A1 (ja) 2010-09-10
CN102341194A (zh) 2012-02-01
JP5701744B2 (ja) 2015-04-15
JPWO2010101154A1 (ja) 2012-09-10

Similar Documents

Publication Publication Date Title
EP2404681B1 (de) Verfahren zur herstellung eines stahldrates
EP2781649A1 (de) Verfahren zur herstellung eines messing-plattierten stahldrahts und messing-plattierter stahldraht
CN108176720A (zh) 1×7-21.6mm、1860MPa钢绞线生产工艺
JPH08325964A (ja) ゴム補強用スチールワイヤおよびスチールコード
JP3283332B2 (ja) 撚り線加工性の優れた高強度極細鋼線およびその製造方法
JPH11256274A (ja) 疲労特性の優れた高強度極細鋼線
JP3777166B2 (ja) 高強度極細鋼線の製造方法
JP2017128756A (ja) めっき鋼線及びそれを用いたゴム複合体並びにめっき鋼線の製造方法
CN111375713A (zh) 一种高强铝导线的旋锻制备方法
JP3267833B2 (ja) 疲労特性の優れた高強度極細鋼線およびその製造方法
JP2001220649A (ja) 延性及び疲労特性の優れた高強度極細鋼線
JPH08218282A (ja) ゴム補強用超高強度スチールワイヤおよびスチールコード
JP6379999B2 (ja) ゴムとの接着性に優れためっき鋼線およびそれを用いたゴム複合体ならびにその製造方法
JP2009095859A (ja) 捻回特性に優れた鋼線材及びその製造方法
JP2756003B2 (ja) 耐腐食疲労性に優れた高強力スチールコード及びその製造方法
JPH08260096A (ja) ゴム製品補強用高強度スチールワイヤおよびスチールコード並びに高強度スチールの製造方法
JPH11199980A (ja) 高強度極細鋼線
JPH11199979A (ja) 疲労特性の優れた高強度極細鋼線およびその製造方法
JP6724400B2 (ja) 強度と延性のバランスに優れた高強度極細鋼線及びその製造方法
JPH07305285A (ja) ゴム物品の補強に供するスチールコード用素線の製造方法
JPH08209388A (ja) ゴムとの接着性の良好なブラスめっき鋼線
JP5914144B2 (ja) 金属ワイヤの製造方法および金属ワイヤ
JP3037844B2 (ja) ゴム物品補強用スチールコードおよびその製造方法
JP3182984B2 (ja) 高強度極細鋼線の製法
JP4737662B2 (ja) ブラスメッキスチールワイヤの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151103

RIC1 Information provided on ipc code assigned before grant

Ipc: D07B 1/06 20060101ALI20151028BHEP

Ipc: B21C 1/00 20060101AFI20151028BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1061451

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010054920

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1061451

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010054920

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190302

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190302

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200320

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200320

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010054920

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107