US20110314888A1 - Method of producing steel wire - Google Patents

Method of producing steel wire Download PDF

Info

Publication number
US20110314888A1
US20110314888A1 US13/254,308 US201013254308A US2011314888A1 US 20110314888 A1 US20110314888 A1 US 20110314888A1 US 201013254308 A US201013254308 A US 201013254308A US 2011314888 A1 US2011314888 A1 US 2011314888A1
Authority
US
United States
Prior art keywords
steel wire
wire
drawing process
final
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/254,308
Inventor
Yasuyuki Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Assigned to BRIDGESTONE CORPORATION reassignment BRIDGESTONE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABE, YASUYUKI
Publication of US20110314888A1 publication Critical patent/US20110314888A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3035Pearlite
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/3057Steel characterised by the carbon content having a high carbon content, e.g. greater than 0,8 percent respectively SHT or UHT wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords

Definitions

  • the present invention relates to a method of producing a steel wire (hereinafter, also simply referred to as “production method”), and particularly to a method of producing a steel wire in which the energy which is required for producing steel wire can be reduced.
  • a steel cord composed of, for example, steel wires twisted together is employed.
  • a high carbon steel wire used for this steel wire is conventionally produced by the following processes.
  • Such a high carbon steel wire is made by using, as a raw material, a high carbon steel wire which has a pearlite structure by a Stelmor process having a diameter of about 5.5 mm.
  • a drawing process is applied to the raw material to obtain an intermediate wire having a diameter larger than the final diameter.
  • a dry drawing is generally applied, or in some cases, two drawing processes and a heat treatment therebetween are applied.
  • the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire having a fine pearlite structure.
  • a brass plating process is applied followed by the heat treatment.
  • the heat treated wire is subjected to a drawing as the final drawing process to obtain a steel wire having a desired final diameter and a desired tensile strength.
  • a wet drawing method is generally applied as such a final drawing process.
  • the tensile strength of the steel wire produced by the above process is highly influenced by the composition of the raw materials (mainly the content of carbon) and the amount of drawing in the final drawing process. That is, the higher the content of carbon and the larger the amount of drawing in the final drawing process, a steel wire having the higher tensile strength can be obtained.
  • the content of carbon in a raw material generally used for the production of a wire for steel cords is 0.80 to 0.86% by mass (hereinafter, referred to as “80 C material”).
  • 80 C material 0.80 to 0.86% by mass
  • Df represents the final diameter of the steel wire obtained in the final drawing process
  • D0 represents the diameter of the heat treated wire before the final drawing process
  • ln represents natural logarithm
  • Patent Documents 1 to 4 disclose a technique for increasing tensile strength by increasing the amount of final drawing by using 80 C material and by improving the final drawing conditions.
  • Patent Documents 5 and 6 disclose a technique for increasing tensile strength by using a raw material whose carbon content is increased and by adjusting the amount of drawing in the pre-drawing process in which an intermediate wire is produced.
  • Patent document 7 discloses a technique for increasing tensile strength by using a raw material whose carbon content is increased and by adding an alloy element such as Cr.
  • Patent Documents 8 and 9 disclose a technique of producing a steel wire having the same tensile strength as in the case where 80 C material is applied by using a raw material whose carbon content is less than that of 80 C material and by increasing the amount of final drawing.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 8-132128 (Claims and the like)
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 8-218282 (Claims and the like)
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 10-325089 (Claims and the like)
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 11-241280 (Claims and the like)
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 6-136453 (Claims and the like)
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2007-111767 (Claims and the like)
  • Patent Document 7 Japanese Unexamined Patent Application Publication No.
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 8-260096 (Claims and the like)
  • Patent Document 9 Japanese Unexamined Patent Application Publication No. 8-325964 (Claims and the like)
  • an object of the present invention is to solve the problems in the above described conventional art and to provide a production method in which a steel wire having a good tensile strength can be produced with a small processing energy.
  • an object of the present invention is to provide a production method in which a steel wire having a similar tensile strength as a steel wire obtained by a conventional general production method using a 80 C material can be produced with a small processing energy.
  • the drawing method of the wet drawing is a method in which a wire is pulled out in a lubricating liquid by a capstan.
  • the wire drawing machine requires a difference in speed between the capstan and a wire, i.e., a slip, which becomes a loss of power for production.
  • the dry wire drawing machine used for the pre-drawing is a method in which the speed of one step of the capstan is controlled by one motor, a slip does not occur and a loss of power for production is small.
  • the method of producing a steel wire of the present invention is a method of producing a steel wire, the method including: a pre-drawing process in which a high-carbon steel wire containing 0.90 to 1.20% by mass of carbon is subjected to a drawing to obtain an intermediate wire; a heat treatment process in which the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire; and a final drawing process in which the heat treated wire is subjected to a drawing to obtain a steel wire, wherein the amount ⁇ f of drawing in the final drawing process which satisfies the relation represented by the following formula:
  • the metal structure of the high-carbon steel wire is preferably pearlite, and further, the diameter of the steel wire obtained by the final drawing process is preferably 0.05 to 0.50 mm. Still further, in the method of producing a steel wire of the present invention, it is preferred that the tensile strength TSf of the steel wire obtained in the final drawing process, the tensile strength TS of the heat treated wire and the ⁇ f satisfy the relation represented by the following formula:
  • TSf is 2700 to 3300 MPa.
  • a high-carbon steel wire containing 0.90 to 1.05% by mass of carbon be subjected to a drawing to obtain an intermediate wire;
  • the ⁇ f be 2.70 to 3.05; and
  • the TSf be 2700 to 3200 MPa.
  • the method of producing a steel wire of the present invention includes: a pre-drawing process in which a high-carbon steel wire is subjected to a drawing process to obtain an intermediate wire; a heat treatment process in which the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire; and a final drawing process in which the heat treated wire is subjected to a drawing to obtain a steel wire.
  • a high-carbon steel wire containing 0.90 to 1.20% by mass of carbon is used as a raw material, and a raw material in which an alloy element such as Cr, Ni or V is added to the high-carbon steel wire can also be used.
  • the amount of carbon contained in the high-carbon steel wire is less than 0.90% by mass, the amount of processing required in the final drawing process cannot be set much low compared with the case of applying a general 80 C material, and thus the energy-saving effect is small.
  • the amount of carbon contained in the high-carbon steel wire is more than 1.20% by mass, a uniform metal structure in the heat treatment process becomes hard to be obtained, and the drawability of the heat treated wire becomes poor.
  • Df represents the final diameter of the steel wire obtained in the final drawing process
  • D0 represents the diameter of the heat treated wire before the final drawing process
  • ln represents natural logarithm
  • An electric power need for the final drawing process largely accounts for the energy consumed in the production of a steel wire. For this reason, by adjusting the amount of drawing ⁇ f in the final drawing process, a steel wire having a good tensile strength can be produced with a small processing energy.
  • the amount of drawing needed in the final drawing process in order to obtain the same tensile strength as that of a conventional article can be made small, thereby reducing the energy needed for the production.
  • to make the amount of final drawing small is advantageous for improving the ductility of the steel wire, and accompanying effects such as improvement of productivity due to decrease of breaking of wire and improvement of the quality of steel wire can be expected.
  • the metal structure of the high-carbon steel wire is pearlite. This is because the work hardening rate of the pearlite steel is larger that of martensite steel.
  • the diameter of the steel wire obtained in the final drawing process be 0.05 to 0.50 mm.
  • This range is a desired range of the diameter for a cord for reinforcing rubbers or a cord for ropes, and by using this range, a steel wire having a good tensile strength can be produced with a small processing energy.
  • the tensile strength TSf of the steel wire obtained in the final drawing process, the tensile strength TS of the heat treated wire and the ⁇ f satisfy the relation represented by the following formula:
  • the TSf is 2700 to 3300 MPa.
  • the tensile strength of the steel wire is less than 2700 MPa, the strength of the steel wire for a cord for reinforcing rubbers or a cord for ropes may be insufficient, and on the other hand, when the tensile strength of the steel wire is more than 3300 MPa, it is needed that the amount of processing in the final drawing process be set large even when the carbon content is increased, and thus the energy-saving effect may be small.
  • a high-carbon steel wire containing 0.90 to 1.05% by mass of carbon be subjected to a drawing to obtain an intermediate wire; the amount ⁇ f of drawing be 2.70 to 3.05; and the tensile strength of the steel wire obtained in the final drawing process be 2700 to 3200 MPa.
  • the upper limit of the amount of carbon contained in the high-carbon steel wire is 1.05, it becomes easy to obtain a uniform metal structure in the heat treatment process.
  • the method of producing a steel wire of the present invention can be employed for a method of producing a cord for a steel cord for reinforcing rubber articles or a cord for a wire rope.
  • a high-carbon steel wire (102 C material) having a diameter of 5.5 mm and containing 1.02% by mass of carbon was subjected to a drawing to produce an intermediate wire (pre-drawing process).
  • the pre-drawing process was conducted without an intermediate heat treatment.
  • the obtained intermediate wire was subjected to a patenting heat treatment to produce a heat treated wire (heat treatment process, heat treatment plating).
  • the heat treated wire was subjected to a drawing (final drawing process), to obtain a steel wire of Example 1 having a diameter of 0.19 mm and having a tensile strength TSf of 3000 MPa.
  • the metal structure of the high-carbon steel wire used is a virtually uniform pearlite structure.
  • Example 2 A steel wire of Example 2 having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • a steel wire of Conventional Example having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • a steel wire of Comparative Example 1 having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • a 90 C material was processed using the production conditions shown in the Conventional Example to obtain a steel wire of Comparative Example 2 having a diameter of 0.19 mm and having a TSf of 3350 MPa.
  • a steel wire of Comparative Example 3 having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a production method in which a steel having a good tensile strength can be produced with a small processing energy.
The method is a method of producing a steel wire, the method including: a pre-drawing process in which a high-carbon steel wire containing 0.90 to 1.20% by mass of carbon is subjected to a drawing to obtain an intermediate wire; a heat treatment process in which the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire; and a final drawing process in which the heat treated wire is subjected to a drawing to obtain a steel wire, wherein the amount εf of drawing in the final drawing process which satisfies the relation represented by the following formula:

εf=2 ln (D0/Df)
(wherein Df represents the final diameter of the steel wire obtained in the final drawing process, D0 represents the diameter of the heat treated wire before the final drawing process and ln represents natural logarithm) is 2.50 to 3.10.

Description

    TECHNICAL FIELD
  • The present invention relates to a method of producing a steel wire (hereinafter, also simply referred to as “production method”), and particularly to a method of producing a steel wire in which the energy which is required for producing steel wire can be reduced.
  • BACKGROUND ART
  • As a reinforcing member for tires and other rubber articles, a steel cord composed of, for example, steel wires twisted together is employed.
  • A high carbon steel wire used for this steel wire is conventionally produced by the following processes. Such a high carbon steel wire is made by using, as a raw material, a high carbon steel wire which has a pearlite structure by a Stelmor process having a diameter of about 5.5 mm. As a pre-drawing process, a drawing process is applied to the raw material to obtain an intermediate wire having a diameter larger than the final diameter. As the pre-drawing process, a dry drawing is generally applied, or in some cases, two drawing processes and a heat treatment therebetween are applied.
  • Further, as a heat treatment process, the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire having a fine pearlite structure. In a case of producing a wire for reinforcing rubber particles, a brass plating process is applied followed by the heat treatment.
  • Still further, the heat treated wire is subjected to a drawing as the final drawing process to obtain a steel wire having a desired final diameter and a desired tensile strength. As such a final drawing process, a wet drawing method is generally applied.
  • The tensile strength of the steel wire produced by the above process is highly influenced by the composition of the raw materials (mainly the content of carbon) and the amount of drawing in the final drawing process. That is, the higher the content of carbon and the larger the amount of drawing in the final drawing process, a steel wire having the higher tensile strength can be obtained.
  • For example, the content of carbon in a raw material generally used for the production of a wire for steel cords is 0.80 to 0.86% by mass (hereinafter, referred to as “80 C material”). The amount εf of drawing in the final drawing process which satisfies the relation represented by the following formula:

  • εf=2ln(D0/Df)
  • (wherein Df represents the final diameter of the steel wire obtained in the final drawing process, D0 represents the diameter of the heat treated wire before the final drawing process and ln represents natural logarithm) is about 3.2 when such a raw material is used to produce a steel wire having a diameter of 0.23 mm and a tensile strength of about 3200 MPa. For such a general technique, a technique for a higher strength and a technique for reducing a production cost are demanded.
  • The Patent Documents 1 to 4 disclose a technique for increasing tensile strength by increasing the amount of final drawing by using 80 C material and by improving the final drawing conditions. Patent Documents 5 and 6 disclose a technique for increasing tensile strength by using a raw material whose carbon content is increased and by adjusting the amount of drawing in the pre-drawing process in which an intermediate wire is produced. Further, Patent document 7 discloses a technique for increasing tensile strength by using a raw material whose carbon content is increased and by adding an alloy element such as Cr.
  • Still further, Patent Documents 8 and 9 disclose a technique of producing a steel wire having the same tensile strength as in the case where 80 C material is applied by using a raw material whose carbon content is less than that of 80 C material and by increasing the amount of final drawing.
  • Related Art Documents Patent Documents
  • Patent Document 1: Japanese Unexamined Patent Application Publication No. 8-132128 (Claims and the like)
    Patent Document 2: Japanese Unexamined Patent Application Publication No. 8-218282 (Claims and the like)
    Patent Document 3: Japanese Unexamined Patent Application Publication No. 10-325089 (Claims and the like)
    Patent Document 4: Japanese Unexamined Patent Application Publication No. 11-241280 (Claims and the like)
    Patent Document 5: Japanese Unexamined Patent Application Publication No. 6-136453 (Claims and the like)
    Patent Document 6: Japanese Unexamined Patent Application Publication No. 2007-111767 (Claims and the like)
    Patent Document 7: Japanese Unexamined Patent Application Publication No. 2008-69409 (Claims and the like)
    Patent Document 8: Japanese Unexamined Patent Application Publication No. 8-260096 (Claims and the like)
    Patent Document 9: Japanese Unexamined Patent Application Publication No. 8-325964 (Claims and the like)
  • SUMMARY OF THE INVENTION Problems to be Solved by the Invention
  • However, in the techniques in the Patent Documents 1 to 7, the energy required for the production is not taken into account among the current requirement for reduction of energy. In the techniques in the Patent Documents 8 and 9, while the cost of the raw material can be reduced, the energy required for the process is not reduced because the increase in the amount of the final drawing is needed, and a method of producing a steel wire in which a steel wire can be produced with a less processing energy is demanded.
  • Accordingly, an object of the present invention is to solve the problems in the above described conventional art and to provide a production method in which a steel wire having a good tensile strength can be produced with a small processing energy. Specifically, an object of the present invention is to provide a production method in which a steel wire having a similar tensile strength as a steel wire obtained by a conventional general production method using a 80 C material can be produced with a small processing energy.
  • Means for Solving the Problems
  • In order to solve the above problems, the present inventor intensively studied to discover the findings below.
  • That is, although, in the final drawing, a wet slip drawing method is usually employed, the drawing method of the wet drawing is a method in which a wire is pulled out in a lubricating liquid by a capstan. Here, taking into consideration the efficiency of production and equipment, it is preferred that about 20 steps of continuous drawings be conducted simultaneously by one wire drawing machine and the capstan in each of the steps be driven by one motor. However, because of its structure, the wire drawing machine requires a difference in speed between the capstan and a wire, i.e., a slip, which becomes a loss of power for production. On the other hand, the present inventor discovered that since the dry wire drawing machine used for the pre-drawing is a method in which the speed of one step of the capstan is controlled by one motor, a slip does not occur and a loss of power for production is small.
  • In the final wet drawing, because of an extreme pressure lubrication in which a plating on the surface of the wire is in contact by a metal-touch at the interface of the dice, the frictional coefficient is large. On the other hand, since, in the dry drawing, a powdery lubricant is introduced into the interface of a dice and a fluid lubricating state is generated by dissolving the lubricant, the frictional coefficient is thought to be small. For this reason, the power consumption in wet drawing is larger than that in dry drawing. The present inventor thus studied intensively further based on such findings to discover that a steel wire having a good tensile strength can be produced with a small processing energy by adjusting the amount εf of drawing in the final drawing process, thereby completing the present invention.
  • That is, the method of producing a steel wire of the present invention is a method of producing a steel wire, the method including: a pre-drawing process in which a high-carbon steel wire containing 0.90 to 1.20% by mass of carbon is subjected to a drawing to obtain an intermediate wire; a heat treatment process in which the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire; and a final drawing process in which the heat treated wire is subjected to a drawing to obtain a steel wire, wherein the amount εf of drawing in the final drawing process which satisfies the relation represented by the following formula:

  • εf=2 ln (D0/Df)
  • (wherein Df represents the final diameter of the steel wire obtained in the final drawing process, D0 represents the diameter of the heat treated wire before the final drawing process and ln represents natural logarithm) is 2.50 to 3.10.
  • In the method of producing a steel wire of the present invention, the metal structure of the high-carbon steel wire is preferably pearlite, and further, the diameter of the steel wire obtained by the final drawing process is preferably 0.05 to 0.50 mm. Still further, in the method of producing a steel wire of the present invention, it is preferred that the tensile strength TSf of the steel wire obtained in the final drawing process, the tensile strength TS of the heat treated wire and the εf satisfy the relation represented by the following formula:

  • TS×exp(0.24×εf)<TSf<TS×exp(0.30×εf)
  • , and more preferably, TSf is 2700 to 3300 MPa.
  • In the method of producing a steel wire of the present invention, it is preferred that a high-carbon steel wire containing 0.90 to 1.05% by mass of carbon be subjected to a drawing to obtain an intermediate wire; the εf be 2.70 to 3.05; and the TSf be 2700 to 3200 MPa.
  • Effect of the Invention
  • By the present invention, a production method in which a steel wire having a good tensile strength can be produced with a small processing energy can be provided.
  • Modes for Carrying out the Invention
  • Modes of the present invention will now be specifically described.
  • The method of producing a steel wire of the present invention includes: a pre-drawing process in which a high-carbon steel wire is subjected to a drawing process to obtain an intermediate wire; a heat treatment process in which the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire; and a final drawing process in which the heat treated wire is subjected to a drawing to obtain a steel wire.
  • In the method of producing a steel wire of the present invention, a high-carbon steel wire containing 0.90 to 1.20% by mass of carbon is used as a raw material, and a raw material in which an alloy element such as Cr, Ni or V is added to the high-carbon steel wire can also be used. When the amount of carbon contained in the high-carbon steel wire is less than 0.90% by mass, the amount of processing required in the final drawing process cannot be set much low compared with the case of applying a general 80 C material, and thus the energy-saving effect is small. On the other hand, when the amount of carbon contained in the high-carbon steel wire is more than 1.20% by mass, a uniform metal structure in the heat treatment process becomes hard to be obtained, and the drawability of the heat treated wire becomes poor.
  • Further, in the method of producing a steel wire of the present invention, the amount εf of drawing in the final drawing process which satisfies the relation represented by the following formula:

  • εf=2ln(D0/Df)
  • (wherein Df represents the final diameter of the steel wire obtained in the final drawing process, D0 represents the diameter of the heat treated wire before the final drawing process and ln represents natural logarithm) is 2.50 to 3.10, preferably 2.60 to 3.00. When the amount εf of drawing is less than 2.50, a tensile strength desired for a cord for reinforcing rubbers or a cord for ropes is hard to be obtained. On the other hand, when the amount εf of drawing is more than 3.10, the energy required for the final drawing becomes large, and an energy-saving effect is hard to be obtained.
  • An electric power need for the final drawing process largely accounts for the energy consumed in the production of a steel wire. For this reason, by adjusting the amount of drawing εf in the final drawing process, a steel wire having a good tensile strength can be produced with a small processing energy. By using a raw material whose carbon content is larger than that of a 80 C material, the amount of drawing needed in the final drawing process in order to obtain the same tensile strength as that of a conventional article can be made small, thereby reducing the energy needed for the production. Further, to make the amount of final drawing small is advantageous for improving the ductility of the steel wire, and accompanying effects such as improvement of productivity due to decrease of breaking of wire and improvement of the quality of steel wire can be expected.
  • In the method of producing a steel wire of the present invention, it is preferred that the metal structure of the high-carbon steel wire is pearlite. This is because the work hardening rate of the pearlite steel is larger that of martensite steel.
  • In the method of producing a steel wire of the present invention, it is preferred that the diameter of the steel wire obtained in the final drawing process be 0.05 to 0.50 mm. This range is a desired range of the diameter for a cord for reinforcing rubbers or a cord for ropes, and by using this range, a steel wire having a good tensile strength can be produced with a small processing energy.
  • In the method of producing a steel wire of the present invention, it is preferred that, in a pearlite steel, the tensile strength TSf of the steel wire obtained in the final drawing process, the tensile strength TS of the heat treated wire and the εf satisfy the relation represented by the following formula:

  • TS×exp(0.24×εf)<TSf<TS×exp(0.30×εf)
  • , and more preferably, the TSf is 2700 to 3300 MPa. When the tensile strength of the steel wire is less than 2700 MPa, the strength of the steel wire for a cord for reinforcing rubbers or a cord for ropes may be insufficient, and on the other hand, when the tensile strength of the steel wire is more than 3300 MPa, it is needed that the amount of processing in the final drawing process be set large even when the carbon content is increased, and thus the energy-saving effect may be small.
  • Further, in the method of producing a steel wire of the present invention, it is preferred that a high-carbon steel wire containing 0.90 to 1.05% by mass of carbon be subjected to a drawing to obtain an intermediate wire; the amount εf of drawing be 2.70 to 3.05; and the tensile strength of the steel wire obtained in the final drawing process be 2700 to 3200 MPa. By this, a steel wire having a good tensile strength can be produced with a small processing energy. By setting the upper limit of the amount of carbon contained in the high-carbon steel wire to 1.05, it becomes easy to obtain a uniform metal structure in the heat treatment process.
  • In the present invention, only the carbon content in the high-carbon steel wire, the amount εf of drawing and the tensile strength of the steel wire obtained in the final drawing process are essential, and other processing methods, processing conditions or the like in each of the processes can be employed appropriately accordance with an ordinary method as required, and not particularly restricted.
  • The method of producing a steel wire of the present invention can be employed for a method of producing a cord for a steel cord for reinforcing rubber articles or a cord for a wire rope.
  • EXAMPLES
  • The present invention will now be further described in detail by way of examples thereof, and the present invention is not limited thereto in any way.
  • Example 1
  • A high-carbon steel wire (102 C material) having a diameter of 5.5 mm and containing 1.02% by mass of carbon was subjected to a drawing to produce an intermediate wire (pre-drawing process). The pre-drawing process was conducted without an intermediate heat treatment. The obtained intermediate wire was subjected to a patenting heat treatment to produce a heat treated wire (heat treatment process, heat treatment plating). The heat treated wire was subjected to a drawing (final drawing process), to obtain a steel wire of Example 1 having a diameter of 0.19 mm and having a tensile strength TSf of 3000 MPa. The metal structure of the high-carbon steel wire used is a virtually uniform pearlite structure.
  • In the Table 1 below, production conditions of the above Example 1 as well as the diameter of the intermediate wire (mm), the amount ε of drawing in the pre-drawing process, the tensile strength of the heat treated wire (TS, unit; MPa), the final diameter of the steel wire obtained in the final drawing process (mm), the amount εf of drawing in the final drawing process and the tensile strength of the steel wire obtained in the final drawing process (TSf, unit; MPa) were shown. In the Table 1, the carbon content (% by mass), diameter (mm) of the raw materials used and the abbreviation of the materials were shown. The amount ε of drawing is represented by the following formula:

  • ε=2 ln(D1/D2)
  • (wherein D1 represents the diameter of the wire before the pre-drawing process, D2 represents the diameter of the intermediate wire obtained in the pre-drawing process and ln represents natural logarithm).
  • Example 2
  • A steel wire of Example 2 having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • Conventional Example
  • A steel wire of Conventional Example having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • Comparative Example 1
  • A steel wire of Comparative Example 1 having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • Comparative Example 2
  • A 90 C material was processed using the production conditions shown in the Conventional Example to obtain a steel wire of Comparative Example 2 having a diameter of 0.19 mm and having a TSf of 3350 MPa.
  • Comparative Example 3
  • A steel wire of Comparative Example 3 having a diameter of 0.19 mm and having a TSf of 3000 MPa was obtained in the same manner as in Example 1 except that the production conditions shown in the Table 1 below were used.
  • TABLE 1
    Conventional Comparative Comparative Comparative
    Example 1 Example 2 Example Example 1 Example 2 Example 3
    Raw material 1.02% by 0.92% by 0.82% by 0.72% by 0.92% by 0.92% by
    diameter mass (102 C mass (90 C mass (80 C mass (70 C mass (90 C mass (90 C
    material) material) material) material) material) material)
    5.5 mm 5.5 mm 5.5 mm 5.5 mm 5.5 mm 5.5 mm
    Intermediate 0.70 0.85 0.93 1.03 0.93 0.90
    wire diameter
    (mm)
    Amount ε of 4.12 3.73 3.55 3.35 3.55 3.62
    drawing
    TS 1430 1370 1300 1200 1340 1350
    (MPa)
    Final diameter 0.19 0.19 0.19 0.19 0.19 0.19
    of steel wire
    (mm)
    Amount εf of 2.61 3.00 3.18 3.38 3.18 3.11
    drawing
    TSf 3000 3000 3000 3000 3350 3000
    (MPa)
  • The required energy for producing 1 t of each of the steel wires in Examples 1, 2, Conventional Example and Comparative Examples 1 to 3 (energy in each of the processes and the total energy) was calculated respectively. The results are shown in Table 2 below using an index setting the total energy in the case of using a 80 C material to 1000. In the Table 2, the smaller the value, the smaller the required energy.
  • TABLE 2
    Example Example Conventional Comparative Comparative Comparative
    1 2 Example Example 1 Example 2 Example 3
    Pre-drawing 409 358 327 290 334 343
    process
    (index)
    Heat 150 150 150 150 150 150
    treatment
    process
    (index)
    Final drawing 374 468 523 562 534 502
    process
    (index)
    Total (index) 933 976 1000 1002 1018 1005
  • While in the Conventional Example and the Comparative Examples 1 to 3, the rate of energy required in the final drawing process is large, since, in Examples 1 and 2, the energy required in the final drawing process of the high-carbon steel wire can be reduced, the energy required in the production can be reduced, and thus a steel wire having a good tensile strength could be produced with a small processing energy. In the above, the steel wires having a diameter of 0.19 mm and having a tensile strength of 3000 and 3350 MPa were exemplified. However, the same effect can be obtained in the production of a steel wire having a different diameter or a different tensile strength.

Claims (6)

1. A method of producing a steel wire, the method including: a pre-drawing process in which a high-carbon steel wire containing 0.90 to 1.20% by mass of carbon is subjected to a drawing to obtain an intermediate wire; a heat treatment process in which the intermediate wire is subjected to a patenting heat treatment to obtain a heat treated wire; and a final drawing process in which the heat treated wire is subjected to a drawing to obtain a steel wire, wherein the amount εf of drawing in the final drawing process which satisfies the relation represented by the following formula:

εf=2 ln (D0/Df)
(wherein Df represents the final diameter of the steel wire obtained in the final drawing process, D0 represents the diameter of the heat treated wire before the final drawing process and ln represents natural logarithm) is 2.50 to 3.10.
2. The method of producing a steel wire of claim 1, wherein the metal structure of the high-carbon steel wire is pearlite.
3. The method of producing a steel wire of claim 1, wherein the diameter of a steel wire obtained in the final drawing process is 0.05 to 0.50 mm.
4. The method of producing a steel wire of claim 2, wherein the tensile strength TSf of the steel wire obtained in the final drawing process, the tensile strength TS of the heat treated wire and the εf satisfy the relation represented by the following formula:

TS×exp(0.24×εf)<TSf<TS×exp(0.30×εf).
5. The method of producing a steel wire of claim 4, wherein the TSf is 2700 to 3300 MPa.
6. The method of producing a steel wire of claim 4, wherein a high-carbon steel wire containing 0.90 to 1.05% by mass of carbon is subjected to a drawing to obtain an intermediate wire; the εf is 2.70 to 3.05; and the TSf is 2700 to 3200 MPa.
US13/254,308 2009-03-02 2010-03-02 Method of producing steel wire Abandoned US20110314888A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-047890 2009-03-02
JP2009047890 2009-03-02
PCT/JP2010/053352 WO2010101154A1 (en) 2009-03-02 2010-03-02 Method of producing steel wire

Publications (1)

Publication Number Publication Date
US20110314888A1 true US20110314888A1 (en) 2011-12-29

Family

ID=42709710

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/254,308 Abandoned US20110314888A1 (en) 2009-03-02 2010-03-02 Method of producing steel wire

Country Status (5)

Country Link
US (1) US20110314888A1 (en)
EP (1) EP2404681B1 (en)
JP (1) JP5701744B2 (en)
CN (1) CN102341194A (en)
WO (1) WO2010101154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161558A (en) * 2022-07-12 2022-10-11 鞍钢股份有限公司 Wire rod for ultrahigh-strength steel cord, steel wire, cord and manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983787A (en) * 2010-09-14 2011-03-09 江苏赛福天钢绳有限公司 Preparation method of low-strength low-hardness steel wire
CN103014508A (en) * 2012-12-14 2013-04-03 武汉钢铁(集团)公司 Steel wire for aerial cable steel core with spanning degree not smaller than 3500m and production method thereof
CN103008385B (en) * 2012-12-14 2015-03-04 武汉钢铁(集团)公司 Method for producing steel wire for steel core of ultrahigh-strength overhead cable by using 82B steel wire rod
CN103966417B (en) * 2013-01-31 2016-04-20 张家港市骏马钢帘线有限公司 A kind of processing method improving ultra-fine high-carbon steel wire surface quality and drawing property
CN103161086B (en) * 2013-04-07 2015-04-15 江苏法尔胜技术开发中心有限公司 Production method of minuteness steel wire rope
FR3013736B1 (en) * 2013-11-22 2016-12-09 Michelin & Cie TREFILING METHOD AND WIRE OBTAINED BY THIS TREFILING METHOD
CN115161559B (en) * 2022-07-12 2024-04-16 鞍钢股份有限公司 Torsion fracture resistant ultra-high strength steel wire, wire rod for steel wire and manufacturing process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725689A (en) * 1994-03-28 1998-03-10 Nippon Steel Corporation Steel wire of high strength excellent in fatigue characteristics
US6565675B1 (en) * 1999-08-12 2003-05-20 Bridgestone Corporation Steel wire and method of producing the same and pneumatic tire using the same
US6715331B1 (en) * 2002-12-18 2004-04-06 The Goodyear Tire & Rubber Company Drawing of steel wire

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125322A (en) * 1983-12-08 1985-07-04 Shinko Kosen Kogyo Kk Production of high-strength high-toughness steel wire
JPH0755331B2 (en) * 1991-11-19 1995-06-14 修司 西浦 Ultra-high strength ultra-thin high-carbon steel wire manufacturing method
JP2809566B2 (en) 1992-10-29 1998-10-08 東京製綱株式会社 Manufacturing method of wire for steel cord
JP3479724B2 (en) * 1993-11-29 2003-12-15 金井 宏之 Metal wire for rubber product reinforcement
JPH08132128A (en) 1994-11-01 1996-05-28 Tokyo Seiko Co Ltd Manufacture of high tensile strength steel wire for reinforcing rubber
JP2920474B2 (en) 1995-02-08 1999-07-19 東京製綱株式会社 Ultra-high strength steel wire and steel cord for rubber reinforcement
JP2906025B2 (en) 1995-03-17 1999-06-14 東京製綱株式会社 High strength steel wire and steel cord for reinforcing rubber products and method for producing high strength steel
JP2920478B2 (en) 1995-05-23 1999-07-19 東京製綱株式会社 Steel wire and steel cord for rubber reinforcement
JP3844267B2 (en) * 1997-05-21 2006-11-08 株式会社ブリヂストン Steel wire manufacturing method
JP3938240B2 (en) 1998-02-25 2007-06-27 株式会社ブリヂストン Steel wire and manufacturing method thereof
JP3997867B2 (en) * 2002-09-04 2007-10-24 住友金属工業株式会社 Steel wire, method for producing the same, and method for producing steel wire using the steel wire
JP2007111767A (en) 2005-10-24 2007-05-10 Bridgestone Corp High-strength high-carbon steel wire and method of manufacturing the same
KR100717151B1 (en) * 2005-11-14 2007-05-10 주식회사 효성 A high tensile steel cord and manufacturing method thereof
JP2008069409A (en) 2006-09-14 2008-03-27 Bridgestone Corp High strength high carbon steel wire and producing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725689A (en) * 1994-03-28 1998-03-10 Nippon Steel Corporation Steel wire of high strength excellent in fatigue characteristics
US6565675B1 (en) * 1999-08-12 2003-05-20 Bridgestone Corporation Steel wire and method of producing the same and pneumatic tire using the same
US6715331B1 (en) * 2002-12-18 2004-04-06 The Goodyear Tire & Rubber Company Drawing of steel wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161558A (en) * 2022-07-12 2022-10-11 鞍钢股份有限公司 Wire rod for ultrahigh-strength steel cord, steel wire, cord and manufacturing method

Also Published As

Publication number Publication date
EP2404681B1 (en) 2018-11-07
EP2404681A1 (en) 2012-01-11
JP5701744B2 (en) 2015-04-15
WO2010101154A1 (en) 2010-09-10
EP2404681A4 (en) 2015-12-02
JPWO2010101154A1 (en) 2012-09-10
CN102341194A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US20110314888A1 (en) Method of producing steel wire
CN103352381A (en) Production method of high-strength steel rope
CN106216427A (en) The production method of 1 × 7 21.6mm, 1860MPa high strength steel strand
CN103930614A (en) Method for manufacturing brass-plated steel wire and brass-plated steel wire
CN108176720A (en) 1 × 7-21.6mm, 1860MPa cable production line techniques
CN112439799B (en) Production method of ultra-fine and ultra-high-strength synchronous belt steel cord
CN107739978A (en) A kind of durable elevator wire rope production method of high-speed silent
JP6199569B2 (en) Manufacturing method of high strength steel wire
JPH08325964A (en) Steel wire and steel cord for rubber reinforcement
JP2007029965A (en) High carbon steel wire, method for producing the same, and high strength pc steel twisted wire
JP2011219829A (en) High carbon steel wire rod and method for producing the same
KR19990064402A (en) High Strength Steel Cords for Pneumatic Tires
CN112853782A (en) High-strength high-elongation prestressed steel strand and manufacturing method thereof
JP2920474B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
JP2017128756A (en) Plated steel wire and rubber composite using the same and manufacturing method of plated steel wire
JP2906025B2 (en) High strength steel wire and steel cord for reinforcing rubber products and method for producing high strength steel
KR100584727B1 (en) A method for manufacturing stranding wire for tire steel cord
JP2016044370A (en) Ultrafine plated steel wire excellent in adhesiveness to rubber and rubber composite including the same
JP6379999B2 (en) Plating steel wire excellent in adhesion to rubber, rubber composite using the same, and method for producing the same
JPS60204865A (en) High-carbon steel wire rod for hyperfine wire having high strength, toughness and ductility
JP2001001033A (en) Production of steel wire
JP2002011520A (en) Method for drawing steel wire and steel wire for rubber article reinforcement
JPH062039A (en) Production of extra fine wire of medium carbon steel
JP5914144B2 (en) Metal wire manufacturing method and metal wire
JPH1133617A (en) Manufacture of tough steel wire for reinforcing rubber and tough steel code

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIDGESTONE CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABE, YASUYUKI;REEL/FRAME:026921/0777

Effective date: 20110901

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION