EP2171741B1 - Herstellungsverfahren für entladungslampen - Google Patents

Herstellungsverfahren für entladungslampen Download PDF

Info

Publication number
EP2171741B1
EP2171741B1 EP07802456A EP07802456A EP2171741B1 EP 2171741 B1 EP2171741 B1 EP 2171741B1 EP 07802456 A EP07802456 A EP 07802456A EP 07802456 A EP07802456 A EP 07802456A EP 2171741 B1 EP2171741 B1 EP 2171741B1
Authority
EP
European Patent Office
Prior art keywords
gas
discharge vessel
discharge
filling
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07802456A
Other languages
English (en)
French (fr)
Other versions
EP2171741A1 (de
Inventor
Lothar Hitzschke
Frank Vollkommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2171741A1 publication Critical patent/EP2171741A1/de
Application granted granted Critical
Publication of EP2171741B1 publication Critical patent/EP2171741B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/265Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps
    • H01J9/266Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps specially adapted for gas-discharge lamps
    • H01J9/268Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps specially adapted for gas-discharge lamps the vessel being flat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/395Filling vessels

Definitions

  • the present invention relates to a method of manufacturing a discharge lamp.
  • Discharge lamps have a closed and a discharge gas-containing discharge vessel. Accordingly, a method for producing discharge lamps comprises introducing the discharge gas and closing the discharge vessel.
  • the DE 101 47 727 A1 shows a continuous furnace for joining discharge vessel parts and filling the joined discharge vessels.
  • the discharge vessel parts are introduced into an atmosphere with the discharge gas, added in this atmosphere and thereby also closed.
  • the DE 102 25 612 A1 shows a chamber for joining and closing of discharge vessel parts.
  • the chamber comprising the discharge vessel parts is flooded with the discharge gas under moderate overpressure, so that the discharge vessel parts are surrounded by the discharge gas.
  • the object of the invention is to provide a method advantageous for filling and closing a discharge vessel for producing a discharge lamp.
  • the invention relates to a method for producing a discharge lamp comprising the steps of: adding and filling an open discharge vessel of the discharge lamp with a first gas in an environment of the first gas, characterized by the subsequent step: adding a second gas to the first gas in the joined discharge vessel by a separate from the outer environment of the discharge vessel feed volume.
  • the invention is based on the consideration that the pumping and filling of a discharge vessel via a pump tube is associated with a high outlay: For the pumping a certain amount of time is required to achieve the desired purity, a considerable pumping capacity must be used, corresponding systems are complex and therefore expensive. Especially with large discharge vessels, such as those for flat radiator with a large diagonal, it is difficult to ensure the desired purity due to the large inner surface of the discharge vessel (adhere to the adsorbate). In addition, some discharge lamps break during pumping.
  • the invention is further motivated by the idea that the joining, ie connecting, of discharge vessel parts and the filling of discharge vessels with a gas can be carried out simultaneously.
  • the invention is based on the finding that with discharge vessels, which are accordingly filled and closed in a discharge gas atmosphere, for example when joining discharge lamp parts under a neon / xenon atmosphere in a continuous furnace, typically a part of the discharge gas escapes into the environment and thus lost goes.
  • a discharge gas atmosphere typically a part of the discharge gas escapes into the environment and thus lost goes.
  • the discharge gas typically includes several components, such as helium, neon, argon and xenon.
  • the idea of the invention is now that ultimately for the Discharge gas desired components to a first gas and a second gas and first to fill an open discharge vessel in an environment of the first gas. Finally, the discharge gas is completed by the targeted introduction of the second gas into the discharge vessel after the discharge vessel is joined and at least partially closed.
  • a feed volume is used that is separated from the environment of the discharge vessel, ie not alone forms the environment.
  • an exchange of the interior of the discharge vessel with the complete environment of the discharge vessel is not used, but limits the second gas to a certain volume and thus used selectively.
  • environment is meant here so the outer environment of the discharge vessel, not the discharge space therein.
  • the feed volume is outside the discharge vessel, but only a small part of its environment and separated from the rest of the environment.
  • the second case it lies in the discharge vessel and is already separated thereby and by a further limitation of the external environment. In both cases, it is about the second gas targeted and not too large amounts or under Avoid spreading into the environment.
  • the discharge vessel is preferably but not necessarily completely sealed gas-tight.
  • a comparatively small hole could remain in the discharge vessel wall, through which the second gas is introduced. It can also be opened again.
  • the discharge vessel can be closed and already contain the separate volume with the second gas.
  • the invention enables a targeted introduction of certain discharge gas components with the second gas.
  • the second gas and the first gas should thus differ according to the invention, in particular, the components with which a filling in one or from a complete environment of the discharge vessel is favorable, all or at least substantially associated with the first gas and correspondingly other components in which a targeted introduction of particular advantage, especially the second gas are assigned.
  • This can also be quantified on the basis of the partial pressure of the discharge gas components: It is preferred if the second gas has a component whose partial pressure in the discharge gas is at least 70% due to the second gas, more preferably at least 90% or even 98% , In other words, the discharge gas should contain at least one component which essentially or virtually exclusively originates from the filling step with the second gas.
  • the preferably comparatively large opening of the discharge vessel before joining allows rapid filling of the discharge vessel with the first gas or even rinsing with this, in particular with still separated discharge vessel parts.
  • this can be cleaned and also other impurities can be kept away - even in the form of undesirable gases.
  • An elaborate evacuation of a chamber, as in the vacuum furnace, can be dispensed with here.
  • the partial pressures of the components of this gas in the discharge vessel are dependent on the temperature of the gas during closing. If for certain components of the discharge gas conditional manufacturing tolerances are avoided, these components can be added to the second gas.
  • a continuous furnace for the first filling step and to use the first gas in a continuous furnace also for cleaning the discharge vessel and also for keeping away impurities.
  • a flow of the first gas and the discharge vessel is established in the continuous furnace.
  • no recovery of the first gas may have to be carried out, even with high conversions.
  • continuous furnaces do not need to be constantly heated from a cooled state, such as on batch furnaces, which is time and energy consuming; especially for large ovens for large lamps.
  • the discharge gas may contain components which make it difficult or even prevent analysis of the discharge gas by means of spectroscopy.
  • Discharge gas components which are not to be analyzed with can be introduced into the discharge vessel with the second gas.
  • a spectral analysis of the first gas is carried out in the discharge vessel.
  • neon has a much higher excitation energy than xenon, so that impurities can be detected by spectroscopy of the discharge radiation. Due to the relatively low excitation energy, xenon would usually interfere with this.
  • Such a spectroscopic examination can be carried out, for example, by means of auxiliary electrodes, for example simple metal strips, outside the furnace and after the first filling step by ignition of a local discharge.
  • the auxiliary electrodes can then be removed again so that they do not disturb the further manufacturing process and are not present on the finished lamp.
  • the second gas is introduced into the discharge vessel via a filler neck.
  • the filler neck for example, can already be applied to a discharge vessel part prior to closing the discharge vessel and preferably still be closed before and also after this step.
  • a stub can be placed on a hole of the discharge vessel remaining after closing, and the second gas can be introduced through it. Subsequently, this nozzle can be merged with about the discharge vessel.
  • the filler neck can then be opened before the second filling step, such as broken.
  • an ampoule with the second gas is enclosed in the discharge vessel and subsequently opened. In this way, it is possible to precisely control the amount of the second gas introduced into the discharge vessel.
  • the ampoule can be broken up, for example, by means of a laser or other electromagnetic waves.
  • the second gas mixes with the first gas to form the discharge gas.
  • the ampoule it is preferred to receive the ampoule at the edge of the discharge vessel. If the ampoule is outside the light field, it does not disturb the light emitted by the discharge lamp. Furthermore, it is possible, in particular at the edge of the discharge lamp, to receive the ampoule in such a way that it does not spatially restrict the discharge. Preferably in the same area or adjacent to the receptacle for the ampoule uncoated discharge vessel window, in particular openings in the phosphor layer in order to carry out the mentioned diagnostics, available.
  • the first gas could be included in a recovery.
  • the two-stage process according to this invention makes it possible to carry out the filling process for such gases as a second step, so that the first gas can be discarded more simply and advantageously.
  • the invention is directed in particular to the production of so-called flat radiators, in which the discharge vessel is flat and relatively large in size compared to the thickness.
  • the large sides of the flat radiator are formed by two substantially plane-parallel plates.
  • the plates can be structured and must, despite the name "flat radiator”, not be flat in the strict sense of the word.
  • the invention is directed in particular to the production of dielectrically impeded discharge lamps.
  • the power to sustain the discharge via dielectrically separated from the discharge gas electrodes is capacitively coupled into the discharge gas.
  • FIG. 1 shows a continuous furnace 1 for joining discharge vessel parts 2 to discharge vessels 3.
  • the discharge vessel parts 2 are introduced in the drawing from right to left on a conveyor belt 4 through an opening 5 of the continuous furnace 1 in this and the joined discharge vessels 3 through an opening 6 from the oven 1 transported out.
  • the discharge vessel parts 2 correspond to cover (top) and bottom (bottom) of the finished discharge vessel 3.
  • the discharge vessels 3 are for dielectrically impeded flat radiators certainly.
  • the external electrodes or their contacting are attached in a manner known per se in the following method steps (not shown).
  • the discharge vessel parts 2 pass through prior to introduction into the furnace 1 already known cleaning and processing steps (not shown); For example, the inner sides of the discharge vessel parts are coated in advance with a phosphor and in some cases a reflector layer.
  • the continuous furnace 1 has heating elements 7 for heating the furnace interior.
  • Gas supply 8 are provided with further heating elements 9.
  • the interior of the oven is heated by the heating elements 7 and by a gas introduced via the gas feeds 8 and heated by the heating elements 9 first gas.
  • the first still spaced discharge vessel parts 2 are placed between these SF6 glass pieces as spacers. Due to the high temperature in the continuous furnace 1 soften this and the upper discharge vessel part 2 lowers to the lower discharge vessel part 2 from. The edges of the discharge vessel parts 2 are provided with a glass solder, which is melted in the continuous furnace 1 and over which the discharge vessel parts 2 are joined together in a gastight manner.
  • the discharge vessel parts or the assembled discharge vessels must be cleaned and rinsed in a manner known per se in order to remove residual moisture and any residual constituents of organic materials such as solvents or binder constituents.
  • the inside of the oven is flooded via the gas feeds 8 with the first gas, a helium / neon mixture.
  • the helium / neon mixture is introduced with sufficient pressure to ensure a constant flow through the furnace interior and the openings 5 and 6 of the continuous furnace.
  • Between the first still spaced discharge vessel parts 2 is located, besides the SF6 glass pieces, within the continuous furnace exclusively introduced by the gas feeds 8 first gas. As the SF6 glass pieces soften, the first gas is trapped on the lower discharge vessel portion 2 as the upper discharge vessel portion 2 is lowered.
  • FIG. 2 shows the continuous furnace FIG. 1 supplemented by Gasabsaug Oberen 10 and a pump 11.
  • the first gas flows mainly into the Gasabsaug Oberen 10.
  • the exhausted noble gases are then recovered in a conventional manner (not shown).
  • a manufacturing method using a continuous furnace with a plurality of furnace chambers in which various operations are performed, is in DE 101 47 727 A1 shown in more detail. To improve understanding, reference is made to this.
  • FIG. 3 shows one of the just described as assembled discharge vessels 3 from above. It includes gas-tight the He / Ne mix; Further, it contains two received at the outer edge ampoules 12, which are provided in the lateral smaller channels and round in section. The ampoules themselves and the inside of the discharge vessel 3, along which they are received, are not - like the rest of the inner surface of the discharge vessel 3 - coated with a phosphor or a reflector layer. Incidentally, shows FIG. 3 between the two ampule channels in cross-section larger channels that form the actual discharge volume and are already described elsewhere in the prior art.
  • an IR laser is used to open the ampoules.
  • microwaves can also be used.
  • temperature gradients can be generated, which lead to breakage due to material stresses.
  • the sections such as ampoule tips, for example, metal coated.
  • the discharge vessel is 40 cm wide, 70 cm long and in the middle inside 0.3 cm high, in places, but also up to 0.55 cm high (clear inside height).
  • the ampoules have 1 mm quartz walls, are 67 cm long and have an inside diameter of 3 mm.
  • a xenon partial pressure of 0.1 bar within the discharge vessel 3 results when the ampoules are opened by laser irradiation and the xenon has been distributed in the discharge vessel 3 ( at room temperature).
  • the emission spectrum of the He / Ne mixture is examined. Impurities can be detected and the production of other defective discharge lamps can be avoided.
  • FIG. 4 outlines a further variant for the second filling step with a filler neck 13. This is introduced via a seal 14 in a filling volume 15 and closed at its arranged in this filling volume 15 end. The other end of the filler neck 13 opens into the left schematically drawn discharge vessel 16th
  • the filling volume 15 is connected via a first valve 17 to a gas outlet and via a second valve 18 with a gas inlet. It also has an indicated heating 19.
  • the filling volume 15 is part of another device for filling, so not the continuous furnace, and surrounds the filler neck 13 in the manner outlined here.
  • the exterior of the filler neck 13 and the interior of the filling volume 15 are cleaned by a rinsing step using the two valves 17, 18 and the gas inlet and outlet.
  • the second valve closed and the first valve open it can also be pumped out for cleaning purposes.
  • the filler neck 13 is opened by a not shown mechanical means (passage in the filling volume 15) or by IR laser or microwave irradiation on a metal coating at its end to introduce a second gas into the interior of the discharge vessel, which previously via the gas inlet was introduced into the filling volume 15.
  • a gas pressure is set, which leads after opening of the filler neck 13 to the desired discharge gas mixture in the discharge vessel itself.
  • the filler neck 13 can be shortened and closed by melting and peeling off with a flame in so-called pump stems in the lamp technology generally known manner and closed when the second filling step is completed. It preferably consists of the same Glass material from which the cover glass of the discharge vessel also consists.
  • a second filling step can be performed.
  • the first filling step of the two variants is the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Herstellen einer Entladungslampe.
  • Stand der Technik
  • Entladungslampen weisen ein geschlossenes und ein Entladungsgas beinhaltendes Entladungsgefäß auf. Entsprechend umfasst ein Verfahren zur Herstellung von Entladungslampen das Einbringen des Entladungsgases und das Verschließen des Entladungsgefäßes.
  • Es ist bekannt, Entladungsgefäßteile in einem Vakuumofen unter einer Entladungsgasatmosphäre zu fügen und zu verschließen. Vor dem Ausbilden der Entladungsgasatmosphäre wird der die Entladungsgefäßteile einschließende Vakuumofen evakuiert, um unerwünschte Gase aus dem Ofen und Adsorbate von den Entladungsgefäßteilen zu entfernen.
  • Weiter ist es bekannt, Entladungsgefäße mit einem Pumprohr zunächst auszupumpen und dann mit einem Entladungsgas zu füllen. Im Anschluss an das Füllen werden Pumprohre üblicherweise durch Verschmelzen verschlossen; gegebenenfalls werden überstehende Teile entfernt.
  • Die DE 101 47 727 A1 zeigt einen Durchlaufofen zum Fügen von Entladungsgefäßteilen und Füllen der gefügten Entladungsgefäße. Dabei werden die Entladungsgefäßteile in eine Atmosphäre mit dem Entladungsgas eingebracht, in dieser Atmosphäre gefügt und dabei auch verschlossen.
  • Die DE 102 25 612 A1 zeigt eine Kammer zum Fügen und Verschließen von Entladungsgefäßteilen. Die die Entladungsgefäßteile umfassende Kammer wird dabei mit dem Entladungsgas unter moderatem Überdruck geflutet, so dass die Entladungsgefäßteile von dem Entladungsgas umspült werden.
  • Darstellung der Erfindung
  • Aufgabe der Erfindung ist es, ein hinsichtlich des Füllens und Schließens eines Entladungsgefäßes vorteilhaftes Verfahren zur Herstellung einer Entladungslampe anzugeben.
  • Die Erfindung betrifft ein Verfahren zum Herstellen einer Entladungslampe mit den Schritten: Fügen und Füllen eines offenen Entladungsgefäßes der Entladungslampe mit einem ersten Gas in einer Umgebung aus dem ersten Gas, gekennzeichnet durch den sich anschließenden Schritt: Zufügen eines zweiten Gases zu dem ersten Gas in dem gefügten Entladungsgefäß durch ein von der äußeren Umgebung des Entladungsgefäßes abgetrenntes Zuführvolumen.
  • Bevorzugte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche und werden im Folgenden ebenfalls näher erläutert.
  • Der Erfindung liegt die Überlegung zu Grunde, dass das Auspumpen und Füllen eines Entladungsgefäßes über ein Pumprohr mit einem hohen Aufwand verbunden ist: Für das Auspumpen wird eine bestimmte Zeit benötigt, zum Erreichen der gewünschten Reinheit muss eine erhebliche Pumpleistung eingesetzt werden, entsprechende Anlagen sind aufwändig und daher teuer. Gerade bei großen Entladungsgefäßen, etwa bei solchen für Flachstrahler mit einer großen Diagonalen, ist es aufgrund der großen Innenfläche des Entladungsgefäßes (an der Adsorbate haften können) schwer, die gewünschte Reinheit zu gewährleisten. Außerdem gehen beim Auspumpen einige Entladungslampen zu Bruch.
  • Die Erfindung ist weiter durch den Gedanken motiviert, dass das Fügen, also Verbinden, von Entladungsgefäßteilen und das Füllen von Entladungsgefäßen mit einem Gas gleichzeitig durchgeführt werden können.
  • Schließlich basiert die Erfindung auf der Erkenntnis, dass bei Entladungsgefäßen, die dementsprechend in einer Entladungsgasatmosphäre gefüllt und geschlossen werden, etwa beim Fügen von Entladungslampenteilen unter einer Neon/Xenon-Atmosphäre in einem Durchlaufofen, typischerweise ein Teil des Entladungsgases in die Umgebung entweicht und so verloren geht. Einmal ist dies ökonomisch nachteilig, da einige der typischerweise für Entladungsgase verwendeten Gase, wie etwa Xenon, erheblich zu den Kosten des Herstellungsverfahrens beitragen. Außerdem kann das Entladungsgas Komponenten aufweisen, bei denen ein Entweichen in die Umgebung aus anderen Gründen zu vermeiden ist, etwa bei chemisch sehr reaktiven, umweltschädlichen und/oder giftigen Gasen. Ein Auffangen und Zurückführen des nicht in die Entladungsgefäße eingebrachten Gases erfordert einen zusätzlichen apparativen Aufwand, der erheblich sein kann.
  • Wie bemerkt, weist das Entladungsgas üblicherweise mehrere Komponenten auf, etwa Helium, Neon, Argon und Xenon. Die Idee der Erfindung ist es nun, die letztlich für das Entladungsgas gewünschten Komponenten auf ein erstes Gas und ein zweites Gas zu verteilen und zunächst ein offenes Entladungsgefäß in einer Umgebung aus dem ersten Gas zu füllen. Schließlich wird das Entladungsgas durch das gezielte Einbringen des zweiten Gases in das Entladungsgefäß komplettiert, nachdem das Entladungsgefäß gefügt und zumindest teilweise geschlossen ist.
  • Für den zweiten Füllschritt wird ein Zuführvolumen verwendet, dass von der Umgebung des Entladungsgefäßes abgetrennt ist, also nicht allein die Umgebung bildet. Hier wird nicht ein Austausch des Inneren des Entladungsgefäßes mit der vollständigen Umgebung des Entladungsgefäßes verwendet, sondern das zweite Gas auf ein bestimmtes Volumen begrenzt und damit gezielt eingesetzt. Unter Umgebung wird hier also die äußere Umgebung des Entladungsgefäßes, nicht der Entladungsraum darin verstanden. In Betracht kommen, worauf jeweils noch näher eingegangen wird, sowohl das Zuführen durch eine Leitung für das zweite Gas und eine Verbindung der Leitung mit einer entsprechenden Befüllöffnung des Entladungsgefäßes als auch die Unterbringung eines mit dem zweiten Gas gefüllten separaten Volumens in dem Entladungsgefäß zur späteren Vermischung der beiden Gase durch Öffnung dieses Volumens nach dem vollständigen Verschließen des Entladungsgefäßes. Im ersten Fall ist das Zuführvolumen außerhalb des Entladungsgefäßes, aber nur ein kleiner Teil seiner Umgebung und von der restlichen Umgebung getrennt. Im zweiten Fall liegt es in dem Entladungsgefäß und ist schon dadurch und durch eine weitere Begrenzung von der äußeren Umgebung getrennt. In beiden Fällen geht es darum, das zweite Gas gezielt und in nicht zu großen Mengen bzw. unter Vermeidung einer Verbreitung in die Umgebung einzusetzen.
  • Durch das Fügen nach dem ersten Füllschritt wird das Entladungsgefäß zwar vorzugsweise aber nicht notwendigerweise vollständig gasdicht abgeschlossen. So könnte nach dem Schließen auch ein vergleichsweise kleines Loch in der Entladungsgefäßwand verbleiben, durch welches das zweite Gas eingebracht wird. Es kann aber dazu auch wieder geöffnet werden. Alternativ kann das Entladungsgefäß abgeschlossen werden und das gesonderte Volumen mit dem zweiten Gas bereits enthalten.
  • Insgesamt wird mit der Erfindung also ein Füllschritt mit dem zweiten Gas in der vollständigen Umgebung des Entladungsgefäßes, etwa in einem Durchlaufofen, vermieden.
  • Es ist entsprechend vorteilhaft, die vergleichsweise günstigen oder chemisch unbedenklicheren Komponenten des Entladungsgases dem ersten Gas zuzuschlagen - die anderen Komponenten dem zweiten Gas.
  • Da ein Verlust oder eine Ausbreitung des zweiten Gases klein gehalten oder sogar ausgeschlossen werden kann, kann evtl. auch auf eine ggf. aufwendige Rückgewinnung von Komponenten des zweiten Gases verzichtet werden.
  • Die Erfindung ermöglicht also ein gezieltes Einbringen bestimmter Entladungsgaskomponenten mit dem zweiten Gas. Das zweite Gas und das erste Gas sollen sich also erfindungsgemäß unterscheiden, insbesondere sollen die Komponenten, mit denen ein Befüllen in einer oder aus einer vollständigen Umgebung des Entladungsgefäßes günstig ist, ganz oder zumindest im Wesentlichen dem ersten Gas zugeordnet werden und entsprechend andere Komponenten, bei denen ein gezieltes Einbringen von besonderem Vorteil ist, vor allem dem zweiten Gas zugeordnet werden. Dies lässt sich anhand des Partialdrucks der Entladungsgaskomponenten auch quantifizieren: Es ist bevorzugt, wenn das zweite Gas eine Komponente aufweist, deren Partialdruck in dem Entladungsgas zu zumindest 70 % durch das zweite Gas bedingt ist, noch bevorzugter zu zumindest 90 % bzw. sogar 98 %. In anderen Worten: Das Entladungsgas soll zumindest eine Komponente enthalten, die im Wesentlichen oder praktisch ausschließlich auf den Befüllschritt mit dem zweiten Gas zurückgeht.
  • Die vorzugsweise vergleichsweise große Öffnung des Entladungsgefäßes vor dem Fügen erlaubt ein zügiges Füllen des Entladungsgefäßes mit dem ersten Gas bzw. sogar ein Spülen mit diesem, insbesondere bei noch vereinzelten Entladungsgefäßteilen. Durch ein solches Spülen des Entladungsgefäßes mit dem ersten Gas, kann dieses gereinigt und können außerdem weitere Verunreinigungen ferngehalten werden - auch in Form unerwünschter Gase. Auf ein aufwändiges Evakuieren einer Kammer, wie beim Vakuumofen, kann hier verzichtet werden.
  • Werden Entladungsgefäße in einer Gasatmosphäre vollständig geschlossen, sind die Partialdrücke der Komponenten dieses Gases in dem Entladungsgefäß von der Temperatur des Gases während des Schließens abhängig. Sollen für bestimmte Komponenten des Entladungsgases dadurch bedingte Herstellungstoleranzen vermieden werden, so können diese Komponenten dem zweiten Gas zugeschlagen werden.
  • Es ist bevorzugt, für den ersten Füllschritt einen Durchlaufofen einzusetzen und dabei das erste Gas in einem Durchlaufofen auch zum Reinigen des Entladungsgefäßes und auch zum Fernhalten von Verunreinigungen zu verwenden. Dazu wird in dem Durchlaufofen eine Strömung des ersten Gases und das Entladungsgefäß etabliert. Je nach Verteilung der Entladungsgaskomponenten auf das erste und zweite Gas, muss - auch bei hohen Umsätzen - ggf. keine Rückgewinnung des ersten Gases durchgeführt werden.
  • Weiter müssen Durchlauföfen nicht, so wie auf Chargenbasis arbeitende Öfen, ständig von einem ausgekühlten Zustand aus aufgeheizt zu werden, was zeit- und energieaufwendig ist; insbesondere bei großen Öfen für große Lampen.
  • Das Entladungsgas kann Komponenten enthalten, welche eine Analyse des Entladungsgases mittels Spektroskopie erschweren oder sogar verhindern. Entladungsgaskomponenten, die nicht mitanalysiert werden sollen, können mit dem zweiten Gas in das Entladungsgefäß eingebracht werden. Bei einer Ausgestaltung wird also nach dem zumindest teilweisen Schließen des Entladungsgefäßes und vor dem Einbringen des zweiten Gases eine Spektralanalyse des ersten Gases in dem Entladungsgefäß durchgeführt. Beispielsweise könnte man in diesem Zusammenhang bei einem Xenon-/Neon-Gemisch das Xenon über das zweite Gas einbringen. Neon besitzt wie auch andere leichte Edelgase eine wesentlich höhere Anregungsenergie als Xenon, sodass sich Verunreinigungen durch Spektroskopie der Entladungsstrahlung nachweisen lassen. Wegen der relativ niedrigen Anregungsenergie würde Xenon hierbei in der Regel stören. Eine solche spektroskopische Untersuchung kann beispielsweise mithilfe von Hilfselektroden, etwa einfachen Metallstreifen, außerhalb des Ofens und nach dem ersten Füllschritt durch Zündung einer lokalen Entladung erfolgen. Die Hilfselektroden können danach wieder abgenommen werden, sodass sie den weiteren Herstellungsprozess nicht stören und an der fertigen Lampe nicht vorhanden sind.
  • Bei einer möglichen Ausführungsform wird das zweite Gas über einen Füllstutzen in das Entladungsgefäß eingebracht. Der Füllstutzen kann beispielsweise bereits vor dem Schließen des Entladungsgefäßes an einem Entladungsgefäßteil angelegt sein und vor und auch nach diesem Schritt vorzugsweise noch verschlossen sein. Alternativ kann aber etwa auch ein Stutzen auf ein nach dem Schließen verbliebenes Loch des Entladungsgefäßes aufgesetzt werden und durch diesen das zweite Gas eingebracht werden. Anschließend kann dieser Stutzen etwa mit dem Entladungsgefäß verschmolzen werden. Der Füllstutzen kann dann vor dem zweiten Füllschritt geöffnet, etwa aufgebrochen werden.
  • Bei einer anderen besonderen Ausführungsform der Erfindung wird bei dem ersten Füllschritt und dem Fügen eine Ampulle mit dem zweiten Gas in das Entladungsgefäß eingeschlossen und im Anschluss geöffnet. Auf diese Weise ist es möglich, die in das Entladungsgefäß eingebrachte Menge des zweiten Gases genau zu kontrollieren.
  • Die Ampulle kann beispielsweise mit Hilfe eines Lasers oder anderer elektromagnetischer Wellen aufgebrochen werden. Ist sie geöffnet, so mischt sich das zweite Gas mit dem ersten Gas, um das Entladungsgas zu bilden.
  • Es ist bevorzugt, die Ampulle am Rand des Entladungsgefäßes aufzunehmen. Liegt die Ampulle außerhalb des Leuchtfeldes, stört sie das von der Entladungslampe abgegebene Licht nicht. Weiter ist es insbesondere am Rand der Entladungslampe möglich, die Ampulle so aufzunehmen, dass sie die Entladung nicht räumlich einschränkt. Vorzugsweise sind im selben Bereich oder benachbart zu der Aufnahme für die Ampulle nicht beschichtete Entladungsgefäßfenster insbesondere Öffnungen in der Leuchtstoffschicht, um die erwähnte Diagnostik durchführen zu können, vorhanden.
  • Prinzipiell könnte das erste Gas in eine Rückgewinnung eingebunden werden. Der zweistufige Prozess gemäß dieser Erfindung erlaubt es aber gerade, den Befüllvorgang für solche Gase als zweiten Schritt durchzuführen, sodass das erste Gas einfacher und vorteilhafter Weise verworfen werden kann.
  • Die Erfindung richtet sich insbesondere auf die Herstellung sogenannter Flachstrahler, bei denen das Entladungsgefäß flach und im Vergleich zur Stärke relativ großformatig ausgebildet ist. Üblicherweise werden die großen Seiten des Flachstrahlers durch zwei im Wesentlichen planparallele Platten gebildet. Die Platten können dabei strukturiert sein und müssen, trotz des Namens "Flachstrahler", nicht im strengen Wortsinn flach sein.
  • Weiter richtet sich die Erfindung insbesondere auf das Herstellen dielektrisch behinderter Entladungslampen. Hier wird die Leistung zum Unterhalt der Entladung über dielektrisch von dem Entladungsgas getrennte Elektroden kapazitiv in das Entladungsgas eingekoppelt.
  • Kurze Beschreibung der Zeichnungen
  • Im Folgenden soll die Erfindung anhand von Ausführungsbeispielen näher erläutert werden. Offenbarte Einzelmerkmale können auch in anderen als in den gezeigten Kombinationen erfindungswesentlich sein.
  • Die Figuren zeigen:
  • Fig. 1
    zeigt einen Durchlaufofen zur Durchführung des erfindungsgemäßen Verfahrens.
    Fig. 2
    zeigt den Durchlaufofen aus Figur 1 mit Ergänzungen.
    Fig. 3
    zeigt ein Entladungsgefäß, das einen Teil des erfindungsgemäßen Herstellungsverfahrens durchlaufen hat.
    Fig. 4
    zeigt eine schematische Darstellung zu einer al- ternativen Möglichkeit zur Figur 3.
    Bevorzugte Ausführung der Erfindung
  • Figur 1 zeigt einen Durchlaufofen 1 zum Fügen von Entladungsgefäßteilen 2 zu Entladungsgefäßen 3. Die Entladungsgefäßteile 2 werden in der Zeichnung von rechts nach links auf einem Förderband 4 durch eine Öffnung 5 des Durchlaufofens 1 in diesen eingebracht und die gefügten Entladungsgefäße 3 durch eine Öffnung 6 aus dem Ofen 1 heraustransportiert.
  • Die Entladungsgefäßteile 2 entsprechen Deckel (oben) und Boden (unten) des fertigen Entladungsgefäßes 3. Die Entladungsgefäße 3 sind für dielektrisch behinderte Flachstrahler bestimmt. Die außenliegenden Elektroden bzw. deren Kontaktierung werden auf an sich bekannte Weise in folgenden Verfahrensschritten angebracht (nicht gezeigt).
  • Die Entladungsgefäßteile 2 durchlaufen vor dem Einbringen in den Ofen 1 bereits an sich bekannte Reinigungs- und Bearbeitungsschritte (nicht gezeigt); so werden etwa vorab die Innenseiten der Entladungsgefäßteile mit einem Leuchtstoff und teilweise einer Reflektorschicht beschichtet.
  • Der Durchlaufofen 1 weist Heizelemente 7 zum Aufheizen des Ofeninneren auf. Gaszuführungen 8 sind mit weiteren Heizelementen 9 versehen. Das Ofeninnere wird durch die Heizelemente 7 und durch ein über die Gaszuführungen 8 eingebrachtes und mit den Heizelementen 9 erhitztes erstes Gas aufgeheizt.
  • Zum Fügen der zunächst noch beabstandeten Entladungsgefäßteile 2 sind zwischen diese SF6-Glasstücke als Abstandshalter gelegt. Durch die hohe Temperatur in dem Durchlaufofen 1 erweichen diese und das obere Entladungsgefäßteil 2 senkt sich auf das untere Entladungsgefäßteil 2 ab. Die Ränder der Entladungsgefäßteile 2 sind mit einem Glaslot versehen, das in dem Durchlaufofen 1 angeschmolzen wird und über das die Entladungsgefäßteile 2 gasdicht miteinander gefügt werden.
  • Vor dem eigentlichen Befüllen müssen die Entladungsgefäßteile bzw. die gefügten Entladungsgefäße in an sich bekannter Weise gereinigt und gespült werden, um Restfeuchtigkeit und eventuelle Restbestandteile organischer Materialien wie Lösungsmittel oder Binderbestandteile zu entfernen.
  • Das Ofeninnere wird über die Gaszuführungen 8 mit dem ersten Gas, einer Helium/Neon-Mischung, geflutet. Dabei wird die Helium/Neon-Mischung mit einem ausreichenden Druck eingebracht, um einen ständigen Strom durch das Ofeninnere und die Öffnungen 5 und 6 des Durchlaufofens zu gewährleisten. Zwischen den zunächst noch beabstandeten Entladungsgefäßteilen 2 befindet sich, neben den SF6-Glasstücken, innerhalb des Durchlaufofens ausschließlich das durch die Gaszuführungen 8 eingebrachte erste Gas. Sobald die SF6-Glasstücke weich werden, wird das erste Gas beim Absenken des oberen Entladungsgefäßteils 2 auf das untere Entladungsgefäßteil 2 eingeschlossen.
  • Figur 2 zeigt den Durchlaufofen aus Figur 1 ergänzt um Gasabsaugleitungen 10 und eine Pumpe 11. Hier strömt das erste Gas vor allem in die Gasabsaugleitungen 10. Die abgesaugten Edelgase werden dann auf an sich bekannte Weise zurückgewonnen (nicht gezeigt).
  • Ein Herstellungsverfahren unter Verwendung eines Durchlaufofens mit mehreren Ofenkammern in denen verschiedene Arbeitsschritte durchgeführt werden, ist in der DE 101 47 727 A1 detaillierter gezeigt. Zur Verbesserung des Verständnisses wird hierauf verwiesen.
  • Figur 3 zeigt eines der wie eben beschrieben gefügten Entladungsgefäße 3 von oben. Es schließt gasdicht die He/Ne-Mischung ein; weiter enthält es zwei am äußeren Rand aufgenommene Ampullen 12, die in den seitlichen kleineren Kanälen vorgesehen und im Schnitt rund sind. Die Ampullen selbst und die Innenseite des Entladungsgefäßes 3, entlang derer sie aufgenommen sind, sind nicht - wie der Rest der Innenfläche des Entladungsgefäßes 3 - mit einem Leuchtstoff oder einer Reflektorschicht beschichtet. Im Übrigen zeigt Figur 3 zwischen den beiden Ampullenkanälen im Querschnitt größere Kanäle, die das eigentliche Entladungsvolumen bilden und im Stand der Technik an anderer Stelle bereits beschrieben sind.
  • Bevorzugt findet zum Öffnen der Ampullen ein IR-Laser Verwendung. Es können beispielsweise auch Mikrowellen eingesetzt werden. Jedenfalls können durch Energieeinkopplung in Teilbereiche der Ampullen Temperaturgradienten erzeugt werden, die durch Materialspannungen zum Bruch führen. Dazu sind die Teilbereiche, etwa Ampullenspitzen, beispielsweise metallbeschichtet.
  • Das Entladungsgefäß ist 40 cm breit, 70 cm lang und im Mittel innen 0,3 cm hoch, stellenweise jedoch auch bis zu 0,55 cm hoch (lichte Höhe innen). Die Ampullen haben 1 mm starke Wände aus Quarz, sind 67 cm lang und haben einen Innendurchmesser von 3 mm. Bei einem Xenon-Druck von 10 bar innerhalb der Ampullen 12 (bei Raumtemperatur) ergibt sich ein Xenon-Partialdruck von 0,1 bar innerhalb des Entladungsgefäßes 3, wenn die Ampullen durch Lasereinstrahlung geöffnet werden und sich das Xenon in dem Entladungsgefäß 3 verteilt hat (bei Raumtemperatur).
  • Vor dem Öffnen der Ampullen wird das Emissionsspektrum der He/Ne-Mischung untersucht. Verunreinigungen können so festgestellt werden und die Produktion weiterer mangelhafter Entladungslampen vermieden werden.
  • Figur 4 skizziert eine weitere Variante für den zweiten Befüllschritt mit einem Füllstutzen 13. Dieser ist über eine Dichtung 14 in ein Füllvolumen 15 eingebracht und an seinem in diesem Füllvolumen 15 angeordneten Ende abgeschlossen. Das andere Ende des Füllstutzens 13 mündet in das links schematisch eingezeichnete Entladungsgefäß 16.
  • Das Füllvolumen 15 ist über ein erstes Ventil 17 mit einem Gasauslass verbunden und über ein zweites Ventil 18 mit einem Gaseinlass. Es verfügt ferner über eine angedeutete Heizung 19. Das Füllvolumen 15 ist Bestandteil einer weiteren Vorrichtung zum Befüllen, also nicht des Durchlaufofens, und umgreift den Füllstutzen 13 in der hier skizzierten Weise. Der Außenbereich des Füllstutzens 13 und das Innere des Füllvolumens 15 werden durch einen Spülschritt unter Verwendung der beiden Ventile 17, 18 und des Gaseinlasses und -auslasses gereinigt. Optional kann bei geschlossenem zweiten Ventil und geöffnetem ersten Ventil auch zu Reinigungszwecken abgepumpt werden.
  • Der Füllstutzen 13 wird durch eine nicht gezeichnete mechanische Einrichtung (Durchführung in das Füllvolumen 15) oder auch durch IR-Laser- oder Mikrowellenbestrahlung auf einer Metallbeschichtung an seinem Ende geöffnet, um ein zweites Gas in das Innere des Entladungsgefäßes einzubringen, das zuvor über den Gaseinlass in das Füllvolumen 15 eingebracht wurde. Hierbei wird ein Gasdruck eingestellt, der nach Öffnung des Füllstutzens 13 zu der gewünschten Entladungsgasmischung in dem Entladungsgefäß selbst führt.
  • Der Füllstutzen 13 kann durch Abschmelzen und Abziehen mit einer Flamme in von sogenannten Pumpstengeln in der Lampentechnik allgemein bekannter Weise gekürzt und verschlossen werden, wenn der zweite Befüllschritt abgeschlossen ist. Er besteht vorzugsweise aus demselben Glasmaterial aus dem auch das Deckglas des Entladungsgefäßes besteht.
  • In der geschilderten Weise kann alternativ zu der zuvor anhand Figur 3 beschriebenen Ampullentechnik ein zweiter Befüllschritt durchgeführt werden. Der erste Befüllschritt der beiden Varianten ist der gleiche.

Claims (9)

  1. Verfahren zum Herstellen einer Entladungslampe, mit den Schritten:
    Fügen und Füllen eines offenen Entladungsgefäßes (2, 3, 16) der Entladungslampe mit einem ersten Gas in einer Umgebung (1) aus dem ersten Gas,
    gekennzeichnet durch den sich anschließenden Schritt:
    Zufügen eines zweiten Gases zu dem ersten Gas in dem gefügten Entladungsgefäß (3) durch ein von der Umgebung des Entladungsgefäßes (3) abgetrenntes Zuführvolumen (12, 15).
  2. Verfahren nach Anspruch 1, bei dem das Fügen und Füllen des Entladungsgefäßes (2, 3, 16) mit dem ersten Gas in einem Durchlaufofen (1) durchgeführt wird.
  3. Verfahren nach Anspruch 2, bei dem das Entladungsgefäß (2, 3) von dem ersten Gas umströmt wird.
  4. Verfahren nach einem der vorangehenden Ansprüche, bei dem nach dem Schließen des Entladungsgefäßes (3, 16) und vor dem Einbringen des zweiten Gases eine Spektralanalyse des ersten Gases in dem Entladungsgefäß (3, 16) durchgeführt wird.
  5. Verfahren nach einem der vorangehenden Ansprüche, bei dem das zweite Gas über einen Füllstutzen in das Entladungsgefäß (16) eingebracht wird.
  6. Verfahren nach einem der vorangehenden Ansprüche, bei dem das Entladungsgefäß (2, 3) nach dem Füllen mit dem ersten Gas vollständig geschlossen wird und eine Ampulle (12) mit dem zweiten Gas enthält, wobei die Ampulle (12) im Anschluss geöffnet wird.
  7. Verfahren nach Anspruch 6, bei dem die Ampulle (12) durch elektromagnetischen Wellen geöffnet wird.
  8. Verfahren nach Anspruch 6 oder 7, bei dem die Ampulle (12) am Rand des Entladungsgefäßes (2, 3) aufgenommen wird.
  9. Verfahren nach einem der vorangehenden Ansprüche, bei dem die Entladungslampe ein Flachstrahler ist.
EP07802456A 2007-08-01 2007-08-01 Herstellungsverfahren für entladungslampen Not-in-force EP2171741B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/057935 WO2009015694A1 (de) 2007-08-01 2007-08-01 Herstellungsverfahren für entladungslampen

Publications (2)

Publication Number Publication Date
EP2171741A1 EP2171741A1 (de) 2010-04-07
EP2171741B1 true EP2171741B1 (de) 2010-11-24

Family

ID=38670561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07802456A Not-in-force EP2171741B1 (de) 2007-08-01 2007-08-01 Herstellungsverfahren für entladungslampen

Country Status (9)

Country Link
US (1) US8123583B2 (de)
EP (1) EP2171741B1 (de)
JP (1) JP5235995B2 (de)
KR (1) KR101092096B1 (de)
CN (1) CN101765898A (de)
AT (1) ATE489721T1 (de)
DE (1) DE502007005808D1 (de)
TW (1) TW200919535A (de)
WO (1) WO2009015694A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222272A (ja) * 2011-02-16 2015-12-10 セイコーエプソン株式会社 ガスセルの製造方法、ガスセル、磁気測定装置の製造方法、および磁気測定装置
JP5821439B2 (ja) 2011-02-16 2015-11-24 セイコーエプソン株式会社 ガスセルの製造方法
US9330876B2 (en) * 2013-11-06 2016-05-03 General Electric Company Systems and methods for regulating pressure of a filled-in gas

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185357A (ja) * 1984-03-05 1985-09-20 スタンレー電気株式会社 ビード封止ガス入り電球の製造装置
DE4018792C2 (de) * 1990-06-12 1994-03-10 Vector Related Physics Consult Verfahren zur Herstellung einer Gasentladungslichtquelle sowie Gasentladungsröhre
JPH0438650U (de) * 1990-07-27 1992-03-31
JPH08236025A (ja) * 1995-02-28 1996-09-13 Oki Electric Ind Co Ltd ガス充填方法、ガス充填構造およびガス放電表示パネルの製造方法
JP3127817B2 (ja) * 1996-01-12 2001-01-29 ウシオ電機株式会社 誘電体バリア放電ランプの製造方法
JPH11238469A (ja) * 1998-02-24 1999-08-31 Dainippon Printing Co Ltd プラズマディスプレイパネル、その製造方法、およびガスカプセル
DE19817478B4 (de) * 1998-04-20 2004-03-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flache Entladungslampe und Verfahren zu ihrer Herstellung
JP2002517893A (ja) * 1998-06-05 2002-06-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ディスプレイデバイス
JP2001291471A (ja) * 2000-04-10 2001-10-19 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法および製造装置
JP2001297700A (ja) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法およびその製造装置
DE10147727B4 (de) * 2001-09-27 2011-06-01 Osram Gesellschaft mit beschränkter Haftung Herstellungsverfahren für eine Flachstrahler-Entladungslampe
DE10225612A1 (de) 2002-06-07 2003-12-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Herstellungsverfahren für Entladungslampe
JP4631550B2 (ja) * 2005-06-02 2011-02-16 パナソニック株式会社 プラズマディスプレイパネル、保護膜およびプラズマディスプレイパネルの検査方法

Also Published As

Publication number Publication date
TW200919535A (en) 2009-05-01
ATE489721T1 (de) 2010-12-15
KR101092096B1 (ko) 2011-12-12
US20100159780A1 (en) 2010-06-24
CN101765898A (zh) 2010-06-30
EP2171741A1 (de) 2010-04-07
JP5235995B2 (ja) 2013-07-10
JP2010534918A (ja) 2010-11-11
WO2009015694A1 (de) 2009-02-05
KR20100040950A (ko) 2010-04-21
DE502007005808D1 (de) 2011-01-05
US8123583B2 (en) 2012-02-28

Similar Documents

Publication Publication Date Title
DE2212536C2 (de) Verfahren zur Herstellung von Leuchtstofflampen
DE3011383C2 (de)
EP2171741B1 (de) Herstellungsverfahren für entladungslampen
DE102005012274A1 (de) Verfahren zur Herstellung fluoreszierender Lampen
EP2794499A2 (de) Verfahren und vorrichtung zur herstellung von vakuumröhren für solarthermische anlagen
DE3224790C2 (de) Verfahren zum Herstellen einer Kathodenstrahlröhre
DE10147727B4 (de) Herstellungsverfahren für eine Flachstrahler-Entladungslampe
DE1596598C3 (de) Schauloch-Armatur für Vorrichtungen zur Glasherstellung und Verfahren zum Schutz der Glasscheibe einer solchen Armatur
CH621889A5 (de)
DE837890C (de) Verfahren und Vorrichtung zum Abschmelzen von glaesernen Pumproehrchen an entluefteten Huellen
DE2648792C2 (de) Elektrodenlose Quecksilberdampfentladungslampe und Verfahren zu ihrer Herstelluung
DE2118301C3 (de) Verfahren zum Wiederherstellen einer Kathodenstrahlröhre
DE10225612A1 (de) Herstellungsverfahren für Entladungslampe
DE3712971A1 (de) Verfahren und vorrichtung zum erzeugen eines plasmas
DD290503A5 (de) Verfahren zur herstellung einer zweiseitigen hochdruckentladungslampe
DE102008060780A1 (de) Kurzbogenentladungslampe und Verfahren zu ihrer Herstellung
DE2303282C3 (de) Niederdruck-Gasentladungslampe
DE102008030677A1 (de) Verfahen und Vorrichtung zur Diffusionsbehandlung von Werkstücken
DE10147728A1 (de) Entladungslampe mit stabilisierter Entladungsgefäßplatte
DE10153009C1 (de) Verfahren zur Herstellung von Gasentladungslampen
DE102022116475A1 (de) Anodenelektrode für eine gasentladungslampe, verfahren zu deren herstellung sowie gasentladungslampe
EP1854119B1 (de) Verfahren zur herstellung einer entladungsröhrenanordnung und eine derartige entladungsröhrenanordnung
DE19936865A1 (de) Gasentladungslampe und zugehöriges Herstellungsverfahren
DE19936864A1 (de) Verfahren zum Einsetzen eines Pumpstengels in ein Entladungsgefäß
DE758114C (de) Gas- oder dampfgefuelltes elektrisches Entladungsgefaess mit metallischer Gefaesswand und indirekt geheizter Kathode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007005808

Country of ref document: DE

Date of ref document: 20110105

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110324

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110324

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110307

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005808

Country of ref document: DE

Effective date: 20110825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007005808

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111214

BERE Be: lapsed

Owner name: OSRAM G.M.B.H.

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120823

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120806

Year of fee payment: 6

Ref country code: DE

Payment date: 20121023

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007005808

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 489721

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007005808

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101124

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007005808

Country of ref document: DE

Effective date: 20140301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902