EP1951615A1 - Verfahren und vorrichtung zur erzeugung von wasserstoff - Google Patents
Verfahren und vorrichtung zur erzeugung von wasserstoffInfo
- Publication number
- EP1951615A1 EP1951615A1 EP06818429A EP06818429A EP1951615A1 EP 1951615 A1 EP1951615 A1 EP 1951615A1 EP 06818429 A EP06818429 A EP 06818429A EP 06818429 A EP06818429 A EP 06818429A EP 1951615 A1 EP1951615 A1 EP 1951615A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- silicon
- reaction
- hydrogen
- solution
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/065—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the invention relates to a method according to the preamble of claim 1 and an apparatus according to the preamble of claim 34.
- DE 102 01 773 A1 discloses a process for producing hydrogen by pouring water into finely divided silicon in a reaction chamber. In contrast to the process according to the invention, the addition of a catalyst is not described.
- JP 2004115349 discloses a method in which finely divided silicon powder is oxidized with water for hydrogen evolution over a long period of time.
- JP 2004115348 describes a non-catalytic process in which hydrogen heated to produce hydrogen is pressed through a silicon-containing cartridge.
- the liquor reacts with the SiO 2 , which occupies the surface of the silicon, to sodium silicate and H 2 O and the remaining Si with H 2 O to silica and Hydrogen.
- the disadvantage is that it is assumed that the substances to be reacted have to be in a stoichiometric ratio to each other, whereby the proportion of the hydrogen to be recovered by the molar ratio of sodium hydroxide to silicon oxide (which passivated the surface) and the underlying Silicon and that ends with the complete stoichiometric formation of sodium silicate.
- This requires a large amount of relatively expensive sodium hydroxide and results in a large amount of sodium silicate, which must be disposed of.
- the spent sodium hydroxide solution is regenerated by adding slaked lime (CA (OH) 2 ), which in addition to silicon and water still consumed or burned lime is consumed and increases the amount of waste by calcium silicate.
- CA (OH) 2 slaked lime
- the invention is based on the object to significantly improve the known method of hydrogen production from silicon or amphoteric elements such as aluminum or zinc and an aqueous alkaline solution in a closed vessel to the effect that the process after the start in the presence of silicon oxide as a nucleating agent without the further supply of liquor and without application of high pressures and temperatures (hydrothermal conditions) continuously catalytically.
- an alkaline solution for example sodium silicate solution
- a significantly lower stoichiometric ratio relative to the overall conversion and the solution as crystallization nuclei, eg finely ground quartz powder, for the silicon newly emerging silicon oxide.
- crystallization nuclei eg finely ground quartz powder
- reaction already proceeds at room temperature, it proves advantageous at elevated temperature, e.g. between 50 ° C and the boiling point of the solution, to work to achieve a higher turnover rate.
- elevated temperature e.g. between 50 ° C and the boiling point of the solution.
- the reaction liberates enough heat to maintain the desired reaction temperature with sufficient thermal isolation of the reactor walls, external heating of the reactor is provided for a quick start of the reaction. It is also advantageous to thermally isolate other media-carrying devices to prevent supersaturation of the solution by cooling.
- the silicon introduced into the solution is dissolved and reacts in the presence of the catalyst with the water of the solution with release of hydrogen to silicates, which decompose at the crystallization nuclei with elimination of silicon dioxide, thereby releasing the catalyst again.
- crystallization nuclei are all materials that promote the spontaneous crystallization of a SiO 2 modification or the precipitation of hydrated SiO 2 (depending on the reaction conditions) due to their high surface area and their crystal structure, with quartz powder is preferred due to its low price. Even the silicon grains themselves with their adherent oxide layer can take on this task. In this case, it is advantageous to use a relatively high proportion of fine silicon, which has the necessary high surface area, in the mixture.
- the catalyst enables a substantial reaction of the silicon with the water, by promoting the transport of the oxidized silicon from the surface of the silicon grains to the crystallization nuclei, which are added, for example, in the form of quartz flour or form during the reaction.
- the deposited SiO 2 can be removed via a take-off device.
- the grain size of the crystallization nuclei can be varied within wide ranges, with fine material ( ⁇ 10 ⁇ m) being preferred because of its high specific surface area.
- the SiO 2 -containing material is used, which has been deposited in previous reactions.
- the resulting hydrogen as known in the art, is withdrawn from the apparatus via a water vapor separation condenser, compressed and stored in a pressure vessel, hydride storage or the like, or sent directly to a consumer, e.g. a fuel cell fed.
- the process according to the invention ends with complete oxidation of the silicon introduced into the device or the amphoteric elements added to the device.
- the once started process for hydrogen production can also be interrupted.
- the removal of the hydrogen from the device according to the invention can be stopped by removing no more hydrogen from the device, so that a pressure builds up in the device and the aqueous liquor can be pressed with the intermediate reaction products in a second vessel and the silicon to be oxidized or the amphoteric elements remain in the first vessel within the filter basket and thus further reactions are interrupted. If the process is to be continued, the solution in the second vessel is pushed back into the first vessel and the reaction continues.
- a preferred method to control the course of the reaction is to add the catalyst to the reaction mixture over a longer time. In this way, the concentration of the catalyst is slowly increased and achieved a more uniform evolution of hydrogen.
- Another preferred method to control the course of the reaction is to add the silicon continuously or discontinuously to the reaction mixture. In this way, first of all, a more uniform evolution of hydrogen is achieved and, secondly, the amount of hydrogen that can be maximally developed when it is necessary to switch off the reaction is limited.
- the grain size of the silicon is not critical for the process, so that both dusty silicon ( ⁇ 1 micron) and coarse pieces (> 1 cm) can be used.
- the size used is limited when using a filter basket in that the pieces should be significantly larger than the pore size of the filter used to ensure a high degree of implementation before the particles can fall through the filter, using finer particles (eg 20-400 ⁇ m) a faster reaction due to the higher specific surface area follows.
- the hydrogen production process of the present invention is also applicable by adding silicon, zinc or aluminum or magnesium to the solution instead of silicon.
- a further process according to the invention for producing hydrogen is characterized in that waste silicon from electronics production is combined in a substoichiometric ratio with a sodium hydroxide solution in a reaction vessel and crystal seeds are added to the solution and the resulting hydrogen can be withdrawn until the Waste silicon brought into the solution is completely oxidized at the crystallization nuclei.
- the sodium hydroxide solution is added to the solution in a substoichiometric ratio of between 0.5 and 30.0% at the beginning of the reaction.
- the solution can be removed via a filter press and silicon dioxide can be separated from the solution in the filter press and removed from the process.
- the remaining solution in the filter press can be supplied to the reaction vessel with the addition of fresh water.
- quartz flour can be fed to the reaction vessel discontinuously or continuously via a device.
- the device can be removed via a filter hydrogen gas for compression and pressure storage.
- reaction process in the reaction vessel is made possible by a pressure-induced displacement of the solution in a storage vessel.
- Another alternative embodiment of the method according to the invention for the production of hydrogen is characterized in that in a reaction vessel silicon is oxidized catalytically with an alkaline solution to silica and the solution crystallization seeds are added from quartz powder and the resulting hydrogen can be withdrawn.
- the alkaline solution may have a pH value between 8 and 15, which corresponds to an OH concentration of ICT of 6 mol / l. 10 mol / L corresponds to the material mixture of H 2 O, nucleating agents and reaction elements in a stoichiometric ratio between 0.5 and 30.0% of the ratio between NaOH and the elements to be oxidized at the beginning of the reaction is supplied.
- reaction of the reaction mixture preferably proceeds within a filter basket within the reaction vessel.
- the object of the invention is also achieved by a device having the features of claim 34.
- Fig. 6 shows a further device for technical
- Fig. 7 shows a further alternative device for the technical implementation of the method according to the invention and in
- Fig. 8 shows an alternative device for the technical implementation of the method according to the invention.
- a high drip rate is chosen (300 ml / hr) to quickly initiate the reaction, but is back-regulated during the steep ramp.
- the evolution of hydrogen is kept approximately constant over approximately 1.5 hours by varying the dropping rates. The decrease in gas evolution towards the end is relatively fast in this reaction.
- a high drip rate is chosen (300 ml / hr) to quickly initiate the reaction, but is back-regulated during the steep ramp.
- the gas evolution is out of the measuring range, so it must be switched off for a few minutes. After that, the reaction can be regulated well. By comparison with smaller approaches it is shown that the reaction is directly scalable.
- the reacted mixture from example 2 is refreshed after 24 h with 20 g of Si (0-70 ⁇ m) and 25 ml of demineralized water and again heated to boiling with stirring. The reaction starts spontaneously and gives a similar amount of hydrogen as the first reaction in comparable Time .
- the reacted mixture from the previous experiment is refreshed with a further 20 g of Si (0-70 ⁇ m) and 25 ml of demineralized water and heated to boiling with stirring. Also in this case, the reaction starts spontaneously and in turn provides a comparable amount of hydrogen in a similar time. This shows that the catalyst survives 3 reaction cycles without significant loss of activity.
- the mixture in the reaction vessel 1 is circulated via a take-off device 12, wherein resulting solids can be removed via a check valve 14 and a take-off device 15 from the circulation.
- a take-off device 12 About the container 10 and a control valve 11 fresh water can be supplied.
- silicon and / or quartz flour can be supplied in the reaction vessel 1.
- the aqueous solution is pressed with the reaction mixture with its liquid components via control valves 3 in a storage vessel 2 and the hydrogen formation in the reaction Vessel 1 comes to a standstill.
- the reaction vessel 1 is depressurized, for example, by a suction of hydrogen via the pressure-increasing device 7 and the filling valve 8, the solution from the storage vessel 2 is again pressed into the reaction vessel 1 and the hydrogen formation can be continued.
- the device shown in Fig. 6 has a similar underlying structure as that shown in Fig. 1.
- the reaction vessel 1 has a filter basket 20, which can retain solid constituents of the reaction mixture.
- the extraction device 12 is arranged at the bottom of the reaction vessel.
- the recirculated reaction mixture is fed back to the reaction vessel 1 via a turbulence generator 17, for example a vortex or swirl-producing nozzle, in order to achieve better mixing in the reaction vessel 1.
- a hydrogen consumer 19 such as a fuel cell, is connected directly to the apparatus via a removal valve 18.
- the reaction vessel 1 is isolated by means of a heating insulation jacket 21 in order to achieve better temperature stability.
- FIG. 7 A further embodiment of a device according to the invention is shown in FIG. 7.
- reaction vessel 1 a mixture of water and silicon is heated to the reaction temperature (eg boiling temperature of the water) with the aid of the heating mantle 21, added via the metering device for catalyst 26 with the desired amount of catalyst and for fast and safely starting the reaction, the desired amount of nucleating agent (eg SiO 2 from previous reaction) from the reservoir for nucleating agent 27 by means of the metering device 16 is added to the reaction mixture.
- the motor 24 with agitator shaft 23 prevents clumping of the solids by thorough mixing of the suspension.
- the derivative 5 contains a hydrogen filter 6, which is designed according to the purity requirement of the hydrogen produced.
- the device 7 compresses the hydrogen for storage in the pressure accumulator 9 or pumps it to the consumer 19 (eg a fuel cell).
- Variant 1 Water, catalyst and nucleating agent are initially charged and brought to reaction temperature by means of heating mantle 21 (eg 90 ° C.). Via the charging device 4, the desired amount of silicon is added and further added during the reaction to keep the gas flow constant or to change as desired, the circulation pump 30 via the circulation line 29 sucks dried hydrogen through the radiator 22 and generates a circulating current, dampening of the silicon by rising water vapor from the reaction vessel 1 and associated clumping of the silicon powder in the region of the charging device 4 prevented. Waste water is replaced by adding fresh water through the control valve 11. The addition of additional silicon is terminated at the latest when the reaction mixture has a certain Viscosity is achieved, which makes it necessary to separate the silicon dioxide formed from the reaction mixture.
- heating mantle 21 eg 90 ° C.
- the take-off device 12 transports the reaction mixture into the filter device 13, in which the solid constituents are separated off (eg with filter cloth presses) and transferred via the withdrawal device 15 into the storage container 27.
- the desired amount of nucleating agent is introduced into the reaction vessel 1 from this. Excess solid is removed through the drain valve 14 and the drain port 17 and sent for further recovery (cement industry, glass producers, etc.).
- the filtrate is returned to the reaction vessel 1 and thereby enriched with fresh water from the reservoir 10.
- the type of fresh water is not critical, so in addition to demineralized water and drinking water, service water, river water, etc. can be used.
- Variant 2 Water, nucleating agent and the total amount of silicon are charged and brought to reaction temperature. For this purpose, some catalyst is added via the metering device 26, so that the reaction starts. By adding catalyst during the reaction, the desired hydrogen flow is adjusted. The work-up is carried out as described under variant 1.
- the embodiment of the invention shown in FIG. 8 basically corresponds to that shown in FIG. In addition, it allows interruption of hydrogen evolution by pushing the reaction solution into the storage vessel 2 through the transfer device 3.
- the filter basket 20 ensures that the silicon remains largely in the reaction vessel 1, wherein the mesh of the filter basket should be significantly smaller than the middle Particle size of the silicon grains.
- the gas displacement line 32 provides pressure equalization as solution is pumped back and forth between the two vessels and ensures that hydrogen can escape which is formed by fine silicon particles that are not retained by the filter basket.
- the transfer device 3 does not necessarily have to be a pump, but the transfer operation can also be achieved by, for example, lifting and lowering (in the case of flexible lines) the storage vessel. In order to allow a rapid stopping of the reaction in the storage vessel 2, even in the presence of finely divided residual silicon, if necessary, the storage vessel 2 is equipped with a cooling device 33.
- the invention is not limited to the above exemplary embodiments and operating variants, but can still be modified in many ways without departing from the spirit.
- the exact nature of the construction of the devices can be varied within wide limits, as long as the underlying method according to the invention can proceed thereon.
- the type and configuration of the different supply-supply-exhaust, skillsmi-, heating and cooling devices, as well as the associated control and equipment technology can be varied according to the skill of the art.
- the starting materials can come from different sources, as long as they have the chemical properties necessary for the course of the reaction. LIST OF REFERENCE NUMBERS
- Circulation line for hydrogen 29. Circulation line for hydrogen 30. Circulation pump for hydrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005053781A DE102005053781B3 (de) | 2005-11-09 | 2005-11-09 | Verfahren zur Erzeugung von Wasserstoff |
DE102006020786A DE102006020786B4 (de) | 2005-11-09 | 2006-05-03 | Verfahren zur Erzeugung von Wasserstoff |
PCT/EP2006/010724 WO2007054290A1 (de) | 2005-11-09 | 2006-11-09 | Verfahren und vorrichtung zur erzeugung von wasserstoff |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1951615A1 true EP1951615A1 (de) | 2008-08-06 |
Family
ID=37758634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06818429A Ceased EP1951615A1 (de) | 2005-11-09 | 2006-11-09 | Verfahren und vorrichtung zur erzeugung von wasserstoff |
Country Status (4)
Country | Link |
---|---|
US (2) | US8012444B2 (de) |
EP (1) | EP1951615A1 (de) |
DE (1) | DE102006020786B4 (de) |
WO (1) | WO2007054290A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7879310B2 (en) | 2005-08-03 | 2011-02-01 | Board Of Trustees Of The University Of Alabama | Silanes as a source of hydrogen |
WO2009023535A2 (en) * | 2007-08-10 | 2009-02-19 | Hydrogen Solutions International | Devices and methods for improved generation of hydrogen |
KR101273254B1 (ko) * | 2010-02-17 | 2013-06-11 | 코웨이 주식회사 | 실리콘 폐수를 활용한 수소 에너지 생산 시스템 및 실리콘 폐수를 활용한 수소 에너지 생산 방법 |
GB201217525D0 (en) | 2012-10-01 | 2012-11-14 | Isis Innovation | Composition for hydrogen generation |
US9283529B2 (en) * | 2012-12-19 | 2016-03-15 | Hydrogentech Energy Group | System and reactor with basket for gas generation |
US9362546B1 (en) * | 2013-01-07 | 2016-06-07 | Quantumscape Corporation | Thin film lithium conducting powder material deposition from flux |
TWI570059B (zh) * | 2014-10-22 | 2017-02-11 | Get Green Energy Corp Ltd | Hydrogen production composition and hydrogen production method |
GB2574178B (en) * | 2018-02-16 | 2022-07-13 | Water Lane 6 Sf Ltd | Thermal Management |
CN114604826A (zh) * | 2020-12-09 | 2022-06-10 | 中国科学院上海硅酸盐研究所 | 一种基于细硅粉与硅酸钠的制氢方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE216768C (de) * | ||||
US909536A (en) * | 1908-06-06 | 1909-01-12 | Roessler & Hasslacher Chemical | Composition of matter for generating hydrogen. |
DE489932C (de) | 1927-07-18 | 1930-02-04 | L Oxhydrique Francaise Soc | Verfahren und Vorrichtung zur Erzeugung von Wasserstoff unter Druck |
DE528498C (de) | 1930-05-18 | 1931-06-30 | Elek Zitaets Akt Ges Vorm Schu | Verfahren zur Erzeugung von Wasserstoffgas aus Silicium, AEtznatron und Wasser |
US3669751A (en) | 1967-03-15 | 1972-06-13 | Peter D Richman | Electric battery comprising a fuel cell hydrogen generator and heat exchanger |
FR1604678A (en) | 1968-12-26 | 1972-01-03 | Semifixed installation for hydrogen prodn - in predetd volumes | |
US3895102A (en) * | 1971-10-27 | 1975-07-15 | Delta F Corp | Solid fuel for the generation of hydrogen and method of preparing same |
US3989010A (en) * | 1974-06-26 | 1976-11-02 | Arps Jan J | Desulfurization of high sulfur fuels during combustion |
US5104419A (en) * | 1990-02-28 | 1992-04-14 | Funk Harald F | Solid waste refining and conversion to methanol |
JPH0459093A (ja) | 1990-06-22 | 1992-02-25 | Asahi Chem Ind Co Ltd | シリコン微粉含有排水の処理方法 |
TW245651B (en) * | 1994-02-24 | 1995-04-21 | Babcock & Wilcox Co | Black liquor gasifier |
DE19954513A1 (de) * | 1998-11-13 | 2000-05-18 | Daniel Herbst | Verfahren und Vorrichtung zur Herstellung von Wasserstoff |
JP4072982B2 (ja) | 1998-12-25 | 2008-04-09 | 株式会社スギノマシン | 水素製造装置および水素製造方法 |
CA2415876A1 (en) * | 2000-07-13 | 2002-01-24 | Hydrogen Energy America Llc | Method and apparatus for controlled generation of hydrogen by dissociation of water |
US6582676B2 (en) | 2000-08-14 | 2003-06-24 | The University Of British Columbia | Hydrogen generation from water split reaction |
DE10155171B4 (de) * | 2000-11-12 | 2006-08-03 | Herbst, Daniel, Dr.-Ing. | Verfahren zur Herstellung von Wasserstoff |
US6663681B2 (en) * | 2001-03-06 | 2003-12-16 | Alchemix Corporation | Method for the production of hydrogen and applications thereof |
DE10201773A1 (de) * | 2001-05-03 | 2002-11-07 | Norbert Auner | Verfahren zur Energieerzeugung |
DE10291940D2 (de) | 2001-05-03 | 2004-11-11 | Wacker Chemie Gmbh | Verfahren zur Energieerzeugung |
DE10143305A1 (de) | 2001-09-04 | 2003-07-10 | Mikhail Bulygin | Erzeugungsweise des Wasserstoffs an Board der Fahrzeuges |
JP2004115349A (ja) * | 2002-09-30 | 2004-04-15 | Honda Motor Co Ltd | 水素発生方法 |
JP4203293B2 (ja) * | 2002-09-30 | 2008-12-24 | 本田技研工業株式会社 | 水素発生装置および水素発生装置を搭載した自動車 |
JP2004307328A (ja) * | 2003-03-25 | 2004-11-04 | Sanyo Electric Co Ltd | 水素製造方法、水素製造装置およびこれを備えた発動機 |
-
2006
- 2006-05-03 DE DE102006020786A patent/DE102006020786B4/de not_active Expired - Fee Related
- 2006-11-09 WO PCT/EP2006/010724 patent/WO2007054290A1/de active Search and Examination
- 2006-11-09 EP EP06818429A patent/EP1951615A1/de not_active Ceased
- 2006-11-09 US US12/084,815 patent/US8012444B2/en not_active Expired - Fee Related
-
2011
- 2011-07-15 US US13/135,831 patent/US20120027643A1/en not_active Abandoned
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2007054290A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102006020786A1 (de) | 2007-11-08 |
WO2007054290A1 (de) | 2007-05-18 |
DE102006020786B4 (de) | 2009-06-25 |
US20120027643A1 (en) | 2012-02-02 |
US8012444B2 (en) | 2011-09-06 |
US20100150821A1 (en) | 2010-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1951615A1 (de) | Verfahren und vorrichtung zur erzeugung von wasserstoff | |
DE1592098C3 (de) | Verfahren zur Herstellung von kugelförmigen Aluminiumoxidteilchen | |
DE2451019A1 (de) | Verfahren zur herstellung von aktivkohlekugeln | |
DE2347485C3 (de) | Verfahren zur Herstellung von Ammoniumfluorid aus Kieselfluorwasserstoffsäure | |
DE10393609T5 (de) | Verfahren zur Entmineralisierung von Kohle | |
EP0164073B1 (de) | Verfahren zur hydrothermalen Herstellung klarer Natriumsilikatlösungen | |
DE2915760C2 (de) | ||
DE102018122354A1 (de) | Verfahren und Anlage zur stofflichen Verwertung eines ammonium- und feststoffhaltigen Mediums | |
DE69614818T2 (de) | Flüssige reinigungszusammensetzung | |
AT504602B1 (de) | Verfahren und vorrichtung zur herstellung wasserfreier seltenerdhalogenide von kristallqualität | |
DE69005063T2 (de) | Synthetisches Quarzglas und Verfahren zu dessen Herstellung. | |
DE3532688A1 (de) | Kontinuierliches verfahren zur herstellung von pulverfoermigem urandioxid aus uranylnitrat | |
EP0627384A1 (de) | Verfahren und Vorrichtung zur Behandlung eines Kaliumchloridgemenges | |
DE102008004135B4 (de) | Katalysatorpulver | |
DE2112271B2 (de) | Verfahren zur Aufarbeitung verbrauchter Beizflüssigkeit | |
DE1241426B (de) | Verfahren zur Herstellung eines Nickelcarbonatpraeparates | |
EP0158269B1 (de) | Verfahren zur Bereitung und Reinigung wässriger Calciumhydroxid-Lösungen | |
DE19548863A1 (de) | Verfahren zur Herstellung von hochreinem Magnesiumhydroxid und Magnesiumoxid aus Magnesiumalkoxiden | |
EP0097892B1 (de) | Verfahren zum hydrothermalen Aufschluss von einen hohen Gehalt an geglühten Aluminiumoxiden aufweisenden chemischen Abfällen und Rückständen | |
WO2018141694A1 (de) | Verfahren zur passivierung eines katalysators | |
DE69710870T2 (de) | Elektrolytische Gewinnung von Reinzink aus einer Mangan enthaltenden Laugungslösung durch vorhergehender Entmanganisierung der Lösung mittels kalter Elektrolyse | |
DE622149C (de) | Verfahren zur Herstellung von Calciumformiat | |
DE102023108019A1 (de) | Reaktorsystem für ein Karbonatisierungsverfahren | |
EP0431337B1 (de) | Verfahren zur Entkieselung der Ablauge | |
DE970077C (de) | Gewinnung von Eisenpulver durch Reduktion von Rotschlamm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080609 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: REV, RENEWABLE ENERGY VENTURES INC. |
|
17Q | First examination report despatched |
Effective date: 20091005 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SPAWNT PRIVATE S.A.R.L. |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NAGARJUNA FERTILIZERS AND CHEMICALS LIMITED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20200117 |