EP1844215B1 - Nockenwelle mit gegeneinander verdrehbaren nocken für insbesondere kraftfahrzeuge - Google Patents

Nockenwelle mit gegeneinander verdrehbaren nocken für insbesondere kraftfahrzeuge Download PDF

Info

Publication number
EP1844215B1
EP1844215B1 EP06705777A EP06705777A EP1844215B1 EP 1844215 B1 EP1844215 B1 EP 1844215B1 EP 06705777 A EP06705777 A EP 06705777A EP 06705777 A EP06705777 A EP 06705777A EP 1844215 B1 EP1844215 B1 EP 1844215B1
Authority
EP
European Patent Office
Prior art keywords
shaft
camshaft
outside
outside shaft
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06705777A
Other languages
English (en)
French (fr)
Other versions
EP1844215A1 (de
Inventor
Markus Lettmann
Roland Schacherer
Falk Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP1844215A1 publication Critical patent/EP1844215A1/de
Application granted granted Critical
Publication of EP1844215B1 publication Critical patent/EP1844215B1/de
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0471Assembled camshafts
    • F01L2001/0473Composite camshafts, e.g. with cams or cam sleeve being able to move relative to the inner camshaft or a cam adjusting rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34436Features or method for avoiding malfunction due to foreign matters in oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34436Features or method for avoiding malfunction due to foreign matters in oil
    • F01L2001/3444Oil filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49293Camshaft making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2101Cams
    • Y10T74/2102Adjustable

Definitions

  • the invention relates to a camshaft with mutually rotatable cams, in particular for motor vehicles, according to the preamble of patent claim 1.
  • Such a camshaft is shown in Fig. 15 of JP 07-286507 A shown.
  • the invention is concerned with the problem of joining the mutually movable elements of the camshaft and store that as smooth as possible movement of the parts with each other in terms of production and operationally safe is guaranteed.
  • the lowest possible friction is aimed at rotational movements between the inner and outer shaft.
  • the inner shaft Because of their relation to the outer shaft of smaller diameter, the inner shaft naturally has a lower resisting torque against radial displacement and bending, which is why it is of great advantage if outgoing from a camshaft drive support lateral forces can act on the more resistant outer shaft instead of the inner shaft.
  • a friction-desired desired mounting of the inner shaft within the outer shaft is particularly susceptible to radial, drive-induced loads.
  • a first advantage is that a simple and secure axial fixation between the outer and inner shaft can be achieved via the proposed pinning between inner and outer shaft. It is of particular advantage that the fixation takes place only at one end of the camshaft so that different expansions during camshaft operation between inner and outer shaft on the axial fixation can exert no influence, by which it leads to an increase in friction during a movement between the two shafts could come.
  • the measure according to claim 6 relates to a camshaft design, in which the drive connection means comprise a space standing in camshaft operation under high lubricating oil pressure, which is directly adjacent to the inner shaft. This results in an axial load on the inner shaft, with the result that when turning the inner shaft Frictional force adjusted by this axial load. To avoid this consequence, is relieved of pressure by the measure according to claim 7 of the manner described in the above manner to the inner shaft free space.
  • a particularly advantageous embodiment is the subject of claim 7.
  • the inner shaft is suspended in the cams practically via the connecting means connecting them with the cams.
  • the measure according to claim 8 relates to the following problem.
  • the annular gap between inner and outer shaft is basically lubricated with pressure oil.
  • the pressure oil is introduced into the annular gap via bearing rings located on the outer shaft by means of radial bores provided in the latter, which are in turn aligned with radial bores in the outer shaft. So that the pressure oil can not escape axially from the annular gap, so far, the axial end portions of the outer shaft into which the annular gap opens, axially sealed outside. This results between the seals and the inner shaft free spaces that are filled by pressure oil. If such a seal is provided only at one end of the inner shaft with an axial distance to the end face of this inner shaft, the result is a friction-inducing pressurization of the inner shaft in the axial direction. This problem is solved easily and safely by the measure according to claim 10.
  • the embodiment according to claim 9 represents a reduction in manufacturing costs simplification.
  • the measure according to claim 11 represents a cost-reducing, constructive simplification.
  • the inner shaft relative to the outer shaft lengthwise cut according to claim 12.
  • the inner shaft can be shortened so far that it comes to rest just below the last adjustable cam at this end, which leads to a weight saving of the overall shaft.
  • This manufacturing process is based on the following consideration.
  • the inner shaft is mounted in each case by a direct radial contact within the outer shaft, and this can be done by over the length of the camshaft axially spaced bearings.
  • the rotatably mounted on the outer shaft cams are usually pinned to the inner shaft, wherein the respective pins are guided by a recess of the outer shaft.
  • the recess has in the circumferential direction the camshaft a size that dictates the angle of rotation of the relevant associated with the inner shaft cam.
  • the bores within the cams and the inner shaft often can not be manufactured in such a tolerance-free manner in practice that the pins used in the supercooled state can be pushed free of force into, in particular, the inner shaft. If an insertion under force, this can lead to a bending of the inner shaft, which in turn can lead to jamming of the inner shaft in the outer shaft. If the camshaft is still functional at all, an undesired high friction occurs when the inner shaft is rotated relative to the outer shaft. Undesirable and not permissible are such high friction due to an often associated, not acceptable for the operation reaction time increase in an adjustment of the cam against each other during the camshaft operation.
  • the inner shaft Prior to pinning the inner shaft with the cams rotatably supported on the outer shaft, the inner shaft is pushed into the outer shaft in a state in which it is inserted by a thin mounting sleeve of incompressible material such as steel. During this state, in which the inner shaft is in a kind of sliding seat almost free of play within the outer shaft, the pinning of the cam can be done with the inner shaft. To make this pinning, the pins must be passed through the mounting sleeve. In addition, after the pinning, the mounting sleeve must be completely removed from the inner shaft. For this purpose, the mounting sleeve has open, axial grooves towards the end of the sleeve.
  • the mounting sleeve In order to make the pinning over the entire length of the camshaft, the mounting sleeve is axially displaced until it can be removed completely from the inner shaft after the last pinning.
  • the use of the mounting sleeve ensures that during the pinning process, the inner shaft can not bend radially in the longitudinal direction. If anything, only bending around the fit clearance is possible, in which the inner shaft is supported together with the mounting sleeve within the outer shaft. But even such, only extremely slight possible bending does not hinder a frictionless rotatability of the inner shaft within the outer shaft.
  • the inner shaft is not supported by radial abutment within the outer shaft, but it depends practically on the pinning elements to the rotatably mounted on the outer shaft cam, with which they are connected is.
  • the outer shaft and the fully assembled inner shaft determined by the thickness of the mounting sleeve, relatively large game. This game is so big that even a slight misalignment of the inner shaft, which could possibly occur during pinning, could not reverse this game. This would also leave such a slight desalination for a frictionless mobility of the inner shaft within the outer shaft without any harmful influence.
  • An adjustable camshaft comprises an outer shaft 1 with an inner shaft 2 supported therein.
  • the inner shaft 2 is pinned with first cam 3 rotatably mounted on the outer shaft 1 in the form of double cams.
  • the pinning is in each case given by equally pressed into the cams 3 and in the inner shaft 2 pins 4.
  • the pins 4 are preferably subcooled inserted into the corresponding holes of the respective cam 3 and the inner shaft 2.
  • the respective press seats adjust in temperature compensation at a sufficient height.
  • the first cam 3 are fixedly connected to the outer shaft 1 second cam 5 and also firmly connected to the outer shaft 1 bearing rings. 6
  • a camshaft having the above-described components is in its camshaft-facing end portion in FIG Fig. 1 shown schematically.
  • a stationary mounting of the camshaft is indicated by the bearing 8.
  • a belt operation, via which the camshaft is driven by the crankshaft of an automotive engine, is designated by 9.
  • This belt drive 9 can of course also be a chain drive or a drive of any kind.
  • the drawn belt of the belt drive 9 engages on a drive connecting means 10 of the camshaft.
  • This connection means 10 is supported with respect to a transverse force stress with respect to the axis of the camshaft via bearing elements 11 on the outer shaft 1.
  • the drive connection means 10 also has torque transmission means 12, with the aid of which the camshaft, on the one hand, is driven in terms of rotational speed and with which, on the other hand, the mutual rotatability between the inner and outer shaft 2, 1 with respect to the connection means 10 can be generated.
  • a mounting sleeve 13 Before insertion into the outer shaft 1, a mounting sleeve 13 is pushed with a sliding fit on the inner shaft 2. Together with the mounting sleeve 13, the inner shaft 2 is then inserted into the outer shaft 1.
  • the mounting sleeve 13 is made of incompressible material, in particular a thin steel sheet.
  • the thickness of the mounting sleeves 13 wall determines the radial clearance between inner and outer shaft 2.1. In other words, the radial clearance between the inner and outer shaft 2.1 is to be interpreted as meaning that the inner shaft 2 can be inserted with mounted mounting sleeve 13 in the outer shaft 1.
  • the pinning between the inner shaft 2 and the first cam 3 associated therewith takes place in a state in which the mounting sleeve 13 is located between the inner and outer shaft 2.1.
  • radial recesses in the outer shaft 1 and in the mounting sleeve 13 must be connected.
  • the recesses in the outer shaft 1 are formed as in the circumferential direction of the outer shaft extending slots whose length limits the adjustment between the outer and inner shaft 1, 2.
  • axial grooves 14 In the mounting sleeve 13 are diametrically opposed, axial grooves 14 at one of its ends, which open axially from the mounting sleeve 13 expire. Through the axial grooves 14, the pins 4 can be mounted respectively.
  • the mounting of the pins 4 is carried out by a force-fitting press-fit into bores of the respective first cam 3 and the inner shaft 2. In this way, a press-fit connection between the first cam 3 and the inner shaft 2 is achieved.
  • the pins 4 are subcooled introduced into the respective holes of the first cam 3 and inner shaft 2. In this case, radial press-in forces can occur, in particular, when the bores into which the pins 4 are to be inserted are not exactly aligned by tolerance deviations due to production.
  • the inner shaft 1 can be subject to radially acting on pressing forces virtually do not bend along its axis, since it is prevented by the form fit in the annular gap between the inner and outer shaft 2, 1 mounting sleeve 13 thereto.
  • a displacement of the inner shaft 2 to the small sliding seat clearance of the mounting sleeve 13 within the annular gap between the inner and outer shaft 2, 1 take place.
  • Such a displacement would be uncritical, even if it occurred, because after removal of the mounting sleeve 13 remains a non-reversible by such a displacement radial clearance.
  • each of the first cams 3 begins at one end of the camshaft and then proceeds along the length of the camshaft with respective stepwise withdrawal of the mounting sleeve 13 from the outer shaft 1. Such extraction of the mounting sleeve 13 is necessary in order to introduce the pin 4 respectively through the axial grooves 14 can.
  • the mounting sleeve 13 is completely separated from the camshaft. The state in which this complete separation occurs is in Fig. 2 and 3 shown at the right end of the camshaft.
  • the mounting sleeve 13 can then be used for the assembly of further corresponding camshafts.
  • the first cams 3 are designed as double cams. Such a double cam is produced as per se known built camshafts by individual cam 3 ', 3 "are shrunk fit on a base tube 3"' shrunk. In the case of the double cams, the pin 4 only engages in the base tube 3 "'. in and in an area which is axially between the two cams 3 "'and 3". Instead of a shrink connection are alternatively or additionally still connections by gluing, welding, expansion of the base tube 3 "', any form-locking method or the like possible.
  • the assembly consisting of the individual cams 3 ', 3 "and a base tube 3"', with which they are firmly connected, may additionally contain further functional elements of the camshaft. So shows Fig. 6 For example, one with the base tube 3 "'firmly connected, on its circumference positioning portions having rotary encoder (26) as a functional element.
  • a spring through which a predeterminable rotational angle assignment between the inner and outer shaft 2, 1 is automatically adjusted at an inactive adjustment of the camshaft.
  • the spring is to be connected for this purpose to the inner and outer shaft 2, 1. This can take place on the inner shaft 2 via an abutment which can be fastened as a functional element according to the invention on the base tube 3 "'and if appropriate can be integrated there in a rotary encoder 26. This spring is not shown in the drawing.
  • the annular gap 15 between the inner and outer shaft 2, 1 supplied with supplied under pressure lubricating oil For this purpose, in the bearing rings 6 as shown in FIG Fig. 4 four feed holes 16 provided. This feed bores 16 open into an annular channel 17 between bearing ring 6 and outer shaft 1. From this annular channel 17 lead from only two radial bores 18 in the annular gap 15. In this embodiment, a special feature is that fewer radial bores 18 are provided as ZuSciencebohritch 16. This peculiarity is made possible by the fact that the supply bores 16 are not supplied radially from the outside by a ring-shaped lubricating oil source, but in each case in sections by alignment with radially aligned, corresponding supply ducts (not shown in the drawing).
  • the annular gap 15 is provided with sealing ring seals 19 in each case.
  • connection flange 7 which is part of the drive connection means 10.
  • a pin 21 engages in the connecting flange 7 between the diametrically opposite radial recesses 20 of the connecting pin 21 frictionally passes through a corresponding bore within the inner shaft 2.
  • the radial recesses 20 have in the circumferential direction a length which determines the adjustment angle between the inner and outer shaft 2, 1.
  • the connecting pin 21 represents a first force transmission element. At this first power transmission element as a pin 21 is within the drive connection means 10, a second power transmission element - not shown - positively and positively connected.
  • the connection is made in a simple manner in that the second force transmission element has an axially aligned, the first force transmission element 21 associated axial groove, whereby the second force transmission element can be slid onto the first force transmission element 21 fit.
  • Another function of the connecting pin 21 is to fix the inner shaft 2 with respect to the outer shaft 1 axially. In this way, an extremely simple, axial fixation of the inner shaft 2 is achieved within the outer shaft 1 and only at one end of the camshaft. This leaves different expansions between outer shaft 1 and inner shaft 2, if such should occur without any influence on the axial fixation between inner and outer shaft 2, first
  • connection flange 7 In the drive-connection means device 10 is located within the connection flange 7, a stationary mounted cone 23 for a pressure oil supply.
  • a pressure oil supply For this pressure oil supply is an annular gap 24 between this cone 23 and the connecting flange 7, which is sealed at its the inner shaft 2 end facing by a ring seal 25. In this way, no hydraulic pressure is exerted on the end of the inner shaft 2 from there, which could lead to an increase in friction during a rotation of the inner shaft 2 relative to the outer shaft 1.
  • a camshaft Fig. 2 can be at the right in the drawing, the end in Fig. 7 is shown, in the not filled by the inner shaft 2 cavity of the outer shaft 1 accumulate lubricating oil, for example, from a oil-lubricated bearing ring 6 at the end of the outer shaft 1 can penetrate into this space within the outer shaft 1.
  • lubricating oil for example, from a oil-lubricated bearing ring 6 at the end of the outer shaft 1 can penetrate into this space within the outer shaft 1.
  • an axial pressure on the inner shaft 2 adjacent to this space would build up in a completely filled space within the outer shaft 1. This would in turn lead to additional friction during a relative movement between the inner and outer shaft 2, 1.
  • radially outwardly leading openings 28 may be disposed in the outer shell 1 in the area in question.
  • Fig. 8 to 10 is an oil supply to the camshaft from the inside through an axial feed channel 29 in the outer shaft 1 at the drive end opposite end provided.
  • This oil supply is an alternative to that in the execution of the Fig. 2 to 4 shown oil supply provided in the outer shaft 1 radial openings 18 which are supplied by radial bores 16 of a bearing ring 6 with supplied under pressure lubricating oil.
  • this feed channel 29 must be able to communicate with the annular gap 15 between inner and outer shaft 2, 1 in a seal-free manner.
  • lubricating oil introduced under pressure into the feed channel 29 can flow through the annular gap 15 between the inner and outer shafts 2, 1 as far as the drive end of the camshaft.
  • this lubricating oil by the in the execution of the camshaft after Fig. 2 provided radial recess 20 to flow outward.
  • the axial feed channel 29 is supplied by the bearing ring 6 provided at this end of the camshaft, whereby a transition space 30 acted upon by the lubrication of the bearing ring 6 is provided around the respective end of the camshaft, from the lubricating oil supplied under pressure from the bearing ring 6 into the Inside the outer shaft 1 can flow.
  • lubricating oil can also be introduced into the feed channel 29 through an oil injection nozzle 26, which conveys axially into the feed channel 29, in accordance with FIG Fig. 9 illustrated embodiment are introduced.
  • an oil injection nozzle can be used as oil supply device 32, as used for injection-cooling of a reciprocating piston of an internal combustion engine in a generally known manner.
  • FIG. 8 shown embodiment of a camshaft having a feed channel 29, in which in the feed channel 29, a filter 27 is inserted.
  • This filter 27 may be formed as a disc-shaped particle screen.
  • This particle sieve can be bell-shaped or funnel-shaped, each with a closed upstream end.
  • Such a bell-shaped design has the advantage that due to the centrifugal force emitted by the rotating camshaft, dirt particles separated from the lubricating oil can detach radially from the sieve and accumulate on the inside of the tube. The central filter area remains in this way, even with long periods of operation of the camshaft substantially dirt-free.
  • the second cams 5 are provided with stops extending the axial width in order to be able to fix the first cam 3 axially accurately between two adjacent, correspondingly formed second cams 5.
  • Fig. 11 is at the drive-connection means 10 according to the embodiment in Fig. 2 another type of oil supply of a hydraulic oil drive connected there provided.
  • the relevant drive connection means 10 is in Fig. 11 denoted by 10 '.
  • This drive connection means 10 ' is provided with oil guide channels 31. These oil guide channels 31 each lead radially outward one end into an oil supply device 32 and the other end in a hydraulic drive 33.
  • the components 32 and 33 are indicated in the drawing only by dash-dotted lines.
  • an oil supply device 32 is used in the illustrated example, a bearing device of the camshaft, wherein the drive connection means 10 as a fixed to the outer shaft 1 connected inner bearing ring is formed, while the oil supply through supply channels 34 are provided within a stationary, the inner bearing ring leading outer bearing ring.
  • Such oil supply of a hydraulically operating camshaft adjusting device is extremely advantageous because it can be realized with a few components.
  • such an oil supply device on the drive side builds axially short, so that axial space can be saved.
  • the mutually moving parts of the camshaft according to the invention may possibly be dispensed with oil lubrication completely or at least largely, if the mating partners are on the one hand wear-coated and on the other hand provided with a hardened surface.
  • a hardened surface can be in particular the outer shaft and double cams.
  • the drive connection means 10 In the drive connection means 10 "after Fig. 13 is like the execution after Fig. 11 sought the smallest possible axial length.
  • the drive connection means 10 bear on a stationary cone 23. Through this cone 23 lead supplied from the left end face of the cone from oil guide channels 31 '. These oil guide channels 31 'are formed running at right angles within the cone 23, whereby they open radially out of the cone 23 in an annular gap 24 between the cone 23 and the drive connection means 10.
  • This annular gap 24 is divided by annular seals 25 in axially separate sections. These axial sections are in each case connected to radial bores 39 leading radially outward into a hydraulic drive 33 within the drive connection means 10 ".
  • the number of radial bores 39 is specified for a specific hydraulic drive 33 with a total of 4.
  • connection pin 21 passes through in the drive connection means 10 "a radial opening 20.
  • This opening 20 fills the connection pin 21 in the circumferential direction, since this recess 20 must allow in this direction a rotational adjustment of the connecting pin 21.
  • additional seals are required in the form of, for example, ring seals 41 and 42.
  • the ring seal 41 seals the space of the recess 20 with respect to the annular gap between outer ring seals 41 and 42. and inner shaft 1, 2.
  • the annular seal 42 provides a seal to the outside within the hydraulic drive 33rd
  • Fig. 14 shows a further alternative embodiment of the drive connection means 10 in a basic version of this drive connection means according to the embodiment in Fig. 2 ,
  • the axial shortening with respect to the camshaft is in the execution after Fig. 14 achieved by a displacement of the connecting pin 21 in the axial interior of the adjacent bearing ring, said bearing ring is an integral part of the connecting flange 7.
  • the connecting flange 7 In order to be able to mount the connecting pin 21 in such a housing of the connecting pin 21 within the connecting flange 7 forming, inter alia, the drive-side bearing ring, the connecting flange 7 must consist of a central core area and a bearing ring 36 which forms the bearing in this area.
  • Fig. 14 is designed as a power transmission element, by means of which the torque required to rotate the connecting pin 21 is transmitted by the hydraulic drive 33, in the form of a connection fork 38.
  • this connection is made via a positive connection in the direction of rotation namely, for example, by a rotation 37 in the form of a tongue and groove safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Gears, Cams (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

Eine Nockenwelle mit gegeneinander verdrehbaren Nocken bei der der mindestens ein erster Nocken (3) lagert verdrehbar auf der Aussenwelle (1) und ist durch mindestens eine radiale Öffnung in der Aussenwelle (1) hindurch mit der Innenwelle (2) fest verbunden, an einem ihrer axialen Enden Mittel (10) zum Anschluss eines Nockenwellen-Drehantriebes vorgesehen sind und an der ferner e) ein auf die Nockenwelle radiale Abstützungskräfte ausübender Drehantrieb (9) angreift, soll eine reibungsarme Verstellbarkeit zwischen Innen- und Aussenwelle sicher gewährleisten und kostengünstig herstellbar sein.

Description

  • Die Erfindung betrifft eine Nockenwelle mit gegeneinander verdrehbaren Nocken, insbesondere für Kraftfahrzeuge, nach dem Oberbegriff des Patentanspruchs 1.
  • Eine derartige Nockenwelle wird in Fig. 15 der JP 07-286507 A dargestellt.
  • Bei einer solchen Nockenwelle beschäftigt sich die Erfindung mit dem Problem, die gegeneinander beweglichen Elemente der Nockenwelle derart zu fügen und zu lagern, dass eine möglichst reibungsfreie Bewegung der Teile untereinander fertigungsmäßig und betriebsbedingt sicher gewährleistet ist.
  • Zu diesem Zweck geht die Erfindung von der vorgenannten JP 07-286507 A und der US 4 332 222 aus. Nach diesen Druckschriften ist des weiteren vorgesehen, von dem Antrieb der Nockenwelle ausgehende Abstützungs-Querkräfte, die radial zur Nockenwellenachse wirken, nicht an der Innenwelle angreifen zu lassen, sondern an der insgesamt widerstandssteiferen Außenwelle.
  • Von einem Nockenwellenantrieb auf die Nockenwelle radial ausgehende Querkräfte, die beispielsweise bei einem Antrieb der Nockenwelle über einen Ketten- oder Riemenantrieb zwangsläufig auftreten, können zu einer radialen Verlagerung der jeweils direkt angetriebenen Welle, das heißt der Innen- oder Außenwelle führen. Wird die Innenwelle einer gattungsgemäßen Nockenwelle angetrieben, das heißt wirken die Abstützkräfte des Antriebs auf die Innenwelle ein, so kann eine möglichst reibungsfreie Verdrehbarkeit der Innenwelle innerhalb der Außenwelle negativ beeinflusst werden bis hin zu einem leichten Verklemmen zwischen Innen- und Außenwelle. Bei einem Verdrehen der Innenwelle innerhalb der Außenwelle auftretende Reibung kann mit zunehmend hoher Reibung zu einer Reaktionsverlangsamung bei einer Relativverdrehung zwischen Innen- und Außenwelle während dessen Nockenwellenbetriebes führen. Daher wird eine möglichst geringe Reibung bei Verdrehbewegungen zwischen der Innen- und Außenwelle angestrebt. Wegen ihres gegenüber der Außenwelle geringeren Durchmessers hat die Innenwelle naturgemäß ein geringeres Widerstandsmoment gegen radiale Verlagerungen und Verbiegungen, weshalb es von großem Vorteil ist, wenn von einem Nockenwellenantrieb ausgehende Abstützungs-Querkräfte anstelle auf die Innenwelle auf die widerstandssteifere Außenwelle einwirken können. Insbesondere ist eine reibungsarm gewünschte Lagerung der Innenwelle innerhalb der Außenwelle besonders anfällig gegen radiale, antriebsbedingte Belastungen.
  • Die Maßnahmen nach Anspruch 1 bieten verschiedene Vorteile. Ein erster Vorteil besteht darin, dass über die dort vorgeschlagene Verstiftung zwischen Innen- und Außenwelle eine einfache und sichere axiale Fixierung zwischen Außen- und Innenwelle erreicht werden kann. Dabei ist von besonderem Vorteil, dass die Fixierung lediglich an einem Ende der Nockenwelle erfolgt, so dass unterschiedliche Ausdehnungen während des Nockenwellenbetriebes zwischen Innen- und Außenwelle auf die axiale Fixierung keinen Einfluss ausüben können, durch den es zu einer Reibungserhöhung bei einer Bewegung zwischen beiden Wellen kommen könnte.
  • Ein weiterer Vorteil besteht darin, dass ein Kraftübertragungselement, das zwischen Nockenwellenantrieb und derjenigen Welle, die mit diesem Kraftübertragungselement zu verbinden ist, über den mit der jeweiligen Welle fest verbundenen Stift einfach verbindbar ist. Einfach verbindbar heißt, dass die Verbindungselemente einfach mit geringsten Toleranzen mit Bezug auf die Verbindung herstellbar sind. In diesem Sinne stellen die Ausführungen nach den Ansprüchen 2 bis 5 weitere Vorteile dar, die im Zusammenhang eines Ausführungsbeispieles nachstehend noch näher erläutert werden.
  • Die Maßnahme nach Anspruch 6 betrifft eine Nockenwellenausführung, bei der die Antriebs-Anschlussmittel einen bei Nockenwellenbetrieb unter hohem Schmieröldruck stehenden Raum umfassen, der direkt an die Innenwelle angrenzt. Hierdurch kommt es zu einer axialen Belastung der Innenwelle mit der Folge, dass sich bei einem Verdrehen der Innenwelle eine Reibkraft durch diese Axialbelastung einstellt. Um diese Folge zu vermeiden, wird durch die Maßnahme nach Anspruch 7 der in der vorbeschriebenen Weise an die Innenwelle angrenzende Freiraum druckentlastet.
  • Eine besonders vorteilhafte Ausbildung ist Gegenstand des Anspruchs 7. Durch die Lagerung der Innenwelle über die mit dieser fest verbundenen, auf der Außenwelle verdrehbar gelagerten Nocken, kann die Innenwelle gegenüber dem Innenumfang der Außenwelle ein praktisch beliebig großes radiales Spiel aufweisen, da die Lagerung ausschließlich über die Nocken auf dem Außenumfang der Außenwelle erfolgt.
  • Die Innenwelle ist praktisch über die sie mit den Nocken verbindenden Verbindungsmittel in den Nocken aufgehängt. Durch das hierdurch zwischen Innen- und Außenwelle mögliche, an sich beliebig große, radiale Spiel kann sich die Achse der Innenwelle bei der Befestigung der Nocken in der Innenwelle durch beispielsweise eine gegenseitige Verstiftung gegenüber der Achse der Außenwelle geringfügig verschieben, ohne dass hierdurch eine Verklemmung zwischen Innen- und Außenwelle befürchtet werden muss. Auch eine geringfügige Verbiegung der Innenwelle längs dieser Achse würde, wenn sie bei einer Befestigung der Nocken auf der Innenwelle auftreten sollte, wegen eines relativ groß einstellbaren radialen Spiels zwischen den Wellen zu keiner funktionsbeeinträchtigenden Verklemmung zwischen den beiden Wellen führen können. Bei dieser erfindungsgemäßen Lagerung der Innenwelle mit großem radialen Spiel gegenüber der Außenwelle sind ferner keine engen Fertigungstoleranzen bezüglich des Innendurchmessers der Außenwelle sowie des Außendurchmessers der Innenwelle einzuhalten.
  • Die Maßnahme nach Anspruch 8 betrifft folgendes Problem.
  • Der Ringspalt zwischen Innen- und Außenwelle ist grundsätzlich druckölgeschmiert. Das Drucköl wird über auf der Außenwelle befindliche Lagerringe durch in diesen vorgesehene, radiale Bohrungen, die wiederum mit radialen Bohrungen in der Außenwelle fluchten, in den Ringspalt eingebracht. Damit das Drucköl axial nicht aus dem Ringspalt austreten kann, sind bisher die axialen Endbereiche der Außenwelle, in die der Ringspalt mündet, axial außen gedichtet. Dadurch ergeben sich zwischen den Dichtungen und der Innenwelle Freiräume, die durch Drucköl gefüllt sind. Ist eine solche Dichtung lediglich an einem Ende der Innenwelle mit axialem Abstand zu der Stirnfläche dieser Innenwelle vorgesehen, so entsteht eine reibungsauslösende Druckbeaufschlagung der Innenwelle in axialer Richtung. Dieses Problem wird durch die Maßnahme nach Anspruch 10 einfach und sicher behoben.
  • Die Ausführung nach Anspruch 9 stellt eine die Herstellungskosten senkende Vereinfachung dar.
  • Das gleiche gilt für die Ausführung nach Anspruch 10, nach der ein sogenannter Doppelnocken in der gleichen Weise hergestellt werden kann wie eine gebaute Nockenwelle, bei der Nocken auf einer fertig bearbeiteten Grundwelle passgenau gefügt werden.
  • Auch die Maßnahme nach Anspruch 11 stellt eine kostensenkende, konstruktive Vereinfachung dar.
  • Durch das Dichtungssystem nach Anspruch 8 lässt sich die Innenwelle gegenüber der Außenwelle längenmäßig entsprechend Anspruch 12 kürzen. Insbesondere an dem dem Antriebsende der Nockenwelle entgegengesetzten Ende kann die Innenwelle soweit gekürzt werden, dass sie gerade noch unterhalb des letzten verstellbaren Nockens an diesem Ende zu liegen kommt was zu einer Gewichtsersparnis der Gesamtwelle führt.
  • Von einem ganz besonderen Vorteil ist ein Verfahren zur Herstellung einer gattungsgemäßen Nockenwelle nach dem Anspruch 30.
  • Dieses Herstellungsverfahren geht von folgender Überlegung aus.
  • Bei bisher im Stand der Technik bekannten, gattungsgemäßen Nockenwellen ist die Innenwelle jeweils durch eine direkte radiale Anlage innerhalb der Außenwelle gelagert, wobei dies durch über die Länge der Nockenwelle axial beabstandete Lager erfolgen kann. Die auf der Außenwelle drehbar gelagerten Nocken werden üblicherweise mit der Innenwelle verstiftet, wobei die betreffenden Stifte durch eine Ausnehmung der Außenwelle geführt werden. Die Ausnehmung besitzt in Umfangsrichtung der Nockenwelle eine Größe, die den Verdrehwinkel des betreffenden, mit der Innenwelle verbundenen Nockens vorgibt. Mit der Außen- und Innenwelle sind bei solchen Verstiftungen die betreffenden Stifte durch jeweils einen Presssitz verbunden. Für die Erzielung eines Presssitzes werden die Stifte in der Regel unterkühlt eingesetzt, wodurch sich bei Temperaturausgleich ein Presssitz ergibt. Die Bohrungen innerhalb der Nocken und der Innenwelle lassen sich in der Praxis häufig allerdings nicht derart toleranzfrei fertigen, dass die in unterkühltem Zustand eingesetzten Stifte kraftfrei in insbesondere die Innenwelle eingeschoben werden können. Erfolgt ein Einschieben unter Kraft, so kann dies zu einem Verbiegen der Innenwelle führen, wodurch es wiederum zu einem Verklemmen der Innenwelle in der Außenwelle kommen kann. Sofern die Nockenwelle dann überhaupt noch funktionsfähig ist, liegt bei einem Verdrehen der Innenwelle gegenüber der Außenwelle eine unerwünscht hohe Reibung vor. Unerwünscht und nicht zulässig sind derartige hohe Reibungen wegen einer damit häufig verbundenen, für den Betrieb nicht akzeptablen Reaktionszeitvergrößerung bei einem Verstellen der Nocken gegeneinander während des Nockenwellenbetriebes.
  • Bei einer Herstellung einer gattungsgemäßen Nockenwelle nach Anspruch 30 kann die vorstehend geschilderte Problematik von vornherein überhaupt nicht auftreten.
  • Die ergibt sich aus Folgendem.
  • Vor dem Verstiften der Innenwelle mit den auf der Außenwelle drehbar lagernden Nocken wird die Innenwelle in einem Zustand in die Außenwelle geschoben, in dem sie von einer dünnen Montagehülse aus inkompressiblem Material wie beispielsweise Stahl eingeschoben wird. Während dieses Zustands, in dem die Innenwelle in einer Art Schiebesitz nahezu spielfrei innerhalb der Außenwelle liegt, kann die Verstiftung der Nocken mit der Innenwelle erfolgen. Um diese Verstiftung vornehmen zu können, müssen die Stifte durch die Montagehülse hindurchgeführt werden. Außerdem muss nach erfolgter Verstiftung die Montagehülse von der Innenwelle vollständig abgezogen werden können. Zu diesem Zweck besitzt die Montagehülse zum Ende der Hülse hin offene, axiale Nuten. Durch diese axialen Nuten kann jeweils verstiftet werden. Um die Verstiftung über die gesamte Länge der Nockenwelle vornehmen zu können, wird die Montagehülse jeweils axial verlagert, bis sie nach der letzten Verstiftung ganz von der Innenwelle abgenommen werden kann. Durch die Verwendung der Montagehülse ist sichergestellt, dass sich bei dem Verstiftungsprozess die Innenwelle nicht in Längsrichtung radial verbiegen kann. Wenn überhaupt, ist lediglich ein Verbiegen um das Passungsspiel möglich, in dem die Innenwelle zusammen mit der Montagehülse innerhalb der Außenwelle lagert. Aber auch eine solche, nur äußerst geringfügig mögliche Verbiegung behindert eine reibungsfreie Verdrehbarkeit der Innenwelle innerhalb der Außenwelle nicht. Denn die Innenwelle wird nicht durch radiale Anlage innerhalb der Außenwelle gelagert, sondern sie hängt praktisch über die Verstiftungselemente an den auf der Außenwelle drehbar gelagerten Nocken, mit denen sie verbunden ist. Hierdurch besteht zwischen der Außenwelle und der fertig montierten Innenwelle ein durch die Dicke der Montagehülse bestimmtes, relativ großes Spiel. Dieses Spiel ist so groß, dass selbst eine geringfügige Desachsierung der Innenwelle, die sich beim Verstiften möglicherweise einstellen könnte, dieses Spiel nicht aufheben könnte. Damit bliebe auch eine solche geringfügige Desachsierung für eine reibungsfreie Bewegbarkeit der Innenwelle innerhalb der Außenwelle ohne jeglichen schädlichen Einfluss.
  • Besonders vorteilhafte, nachstehend näher erläuterte Ausführungsbeispiele, bei denen sämtliche erfindungsgemäßen Maßnahmen verwirklicht sind, sind in der Zeichnung dargestellt.
  • In dieser zeigen
  • Fig. 1
    eine schematische Darstellung der Anschlussmit- tel einer Nockenwelle an einen Drehantrieb,
    Fig. 2
    einen Schnitt durch eine in der Länge unterbro- chen gezeichnete Nockenwelle,
    Fig. 3
    eine Draufsicht auf die Nockenwelle nach Fig. 2,
    Fig. 4
    einen Schnitt durch die Nockenwelle nach Linie IV-IV in Fig. 2,
    Fig. 5
    eine perspektivische Ansicht einer Nockenwelle nach den Fig. 2, 3.
    Fig. 6a, b
    eine Ansicht (a) auf einen Ausschnitt der No- ckenwelle sowie einen Längsschnitt (b) durch diesen Ausschnitt,
    Fig. 7
    einen Ausschnitt des rechten Endbereiches einer Nockenwelle nach Fig. 2 in einer modifizierten Ausführung,
    Fig. 8
    einen Ausschnitt des rechten Endbereiches einer Nockenwelle nach Fig. 2 in einer nochmals modi- fizierten Ausführung mit einem axialen Ölzuführ- kanal innerhalb der Außenwelle sowie einem Fil- ter in diesem Zuführkanal,
    Fig. 9
    eine Nockenwelle nach Fig. 2 in einer weiteren modifizierten Ausführung mit einem axialen Ölzu- führkanal innerhalb der Außenwelle sowie einer in diesen Kanal axial fördernden Öleinspritzein- richtung,
    Fig. 10
    einen Ausschnitt des rechten Endbereiches einer Nockenwelle nach Fig. 2 in einer wiederum modi- fizierten Ausführung mit einem axialen Ölzuführ- kanal innerhalb der Außenwelle und einem axial mit diesem Kanal kommunizierenden Ölversorgungs- raum,
    Fig. 11
    einen Ausschnitt des linken Endbereiches einer Nockenwelle nach Fig. 2 mit einer modifizierten Verdreh-Einrichtung,
    Fig. 12a, b
    einen Ausschnitt aus einem mittleren Bereich ei- ner Nockenwelle nach Fig. 2 mit einer unter- schiedlichen Axialfixierung zwischen Innen- und Außenwelle.
    Fig. 13a, b
    einen Ausschnitt aus einem linken Endbereich ei- ner Nockenwelle ähnlich Fig. 2 mit einem axial verkürzten Antriebs-Anschlussmittel in einem Längsschnitt (a) sowie in einer Draufsicht (b).
    Fig. 14a, b
    einen Ausschnitt aus einem linken Endbereich ei- ner Nockenwelle ähnlich Fig. 2 mit einem axial verkürzten Antriebs-Anschlussmittel in einer al- ternativen Ausführung zu Fig. 13 in einem Längs- schnitt (a), in einer Draufsicht (b) sowie in einem Schnitt (c) nach Linie XIIV c - XIV c in Teil (a)
  • Eine verstellbare Nockenwelle umfasst eine Außenwelle 1 mit einer in dieser lagernden Innenwelle 2. Die Innenwelle 2 ist verstiftet mit auf der Außenwelle 1 drehbar gelagerten ersten Nocken 3 in der Form von Doppelnocken. Die Verstiftung ist jeweils gegeben durch gleichermaßen in die Nocken 3 und in die Innenwelle 2 eingepresste Stifte 4. Zur Erzielung der erforderlichen Presssitze werden die Stifte 4 vorzugsweise unterkühlt in die entsprechenden Bohrungen des jeweiligen Nockens 3 und der Innenwelle 2 eingeschoben. Die jeweiligen Presssitze stellen sich bei Temperaturausgleich in ausreichender Höhe ein.
  • Alternativ ist ein Einbringen der Stifte bei Raumtemperatur möglich.
  • Zwischen den auf der Außenwelle 1 drehbar gelagerten, ersten Nocken 3 befinden sich fest mit der Außenwelle 1 verbundene zweite Nocken 5 sowie ebenfalls fest mit der Außenwelle 1 verbundene Lagerringe 6.
  • Eine Nockenwelle, die die vorstehend beschriebenen Bauelemente besitzt, ist in ihrem, einem Nockenwellenantrieb zugewandten Endbereich in Fig. 1 schematisch dargestellt.
  • Eine ortsfeste Lagerung der Nockenwelle ist durch die Lager 8 angedeutet. Ein Riemenbetrieb, über den die Nockenwelle von der Kurbelwelle eines Kraftfahrzeugmotors aus angetrieben wird, ist mit 9 bezeichnet. Dieser Riementrieb 9 kann selbstverständlich auch ein Kettentrieb oder ein Antrieb beliebiger Art sein. Der gezeichnete Riemen des Riementriebes 9 greift an einem Antriebs-Anschlussmittel 10 der Nockenwelle an. Dieses Anschlussmittel 10 stützt sich mit Bezug auf eine Querkraftbeanspruchung gegenüber der Achse der Nockenwelle über Lagerelemente 11 an der Außenwelle 1 ab. Das Antriebs-Anschlussmittel 10 besitzt ferner Drehmomentübertragungsmittel 12, mit deren Hilfe die Nockenwelle einerseits drehzahlmäßig angetrieben und mit denen andererseits die gegenseitige Verdrehbarkeit zwischen Innen- und Außenwelle 2, 1 gegenüber dem Anschlussmittel 10 erzeugt werden kann. Derartige Einrichtungen sind im Stand der Technik bekannt, weshalb hier nicht weiter auf Einzelheiten dieser bekannten Antriebs- und Verstellmittel eingegangen wird. Durch die Schemadarstellung in Fig. 1 soll lediglich demonstriert werden, wie bei einer verstellbaren Nockenwelle, die von einem Riementrieb angetrieben wird, die Querkraftbelastung aus dem Riementrieb 9 auf die Außenwelle 1 geleitet wird unter entsprechender radialkräftefreier Lagerung der Innenwelle 2. Die Lagerung der Innenwelle 2 in der Außenwelle 1 ist dabei ausschließlich über die Verstiftung der Innenwelle über Stifte 4 mit den ersten Nocken 3 gegeben. Mit anderen Worten kann diese Lagerung als eine Aufhängung der Innenwelle 2 an den mit den ersten Nocken 3 verbundenen Stiften 4 betrachtet werden.
  • Die nachfolgende Beschreibung bezieht sich speziell auf die Fig. 2 bis 5.
  • Dabei wird als nächstes das Zusammenfügen von Außen- und Innenwelle 1, 2 erläutert.
  • Vor einem Einführen in die Außenwelle 1 wird auf die Innenwelle 2 eine Montagehülse 13 mit einer Schiebesitzpassung aufgeschoben. Zusammen mit der Montagehülse 13 wird die Innenwelle 2 sodann in die Außenwelle 1 eingeschoben. Die Montagehülse 13 besteht aus inkompressiblem Material, insbesondere einem dünnen Stahlblech. Die Dicke der Montagehülsen 13 -Wand bestimmt das radiale Spiel zwischen Innen- und Außenwelle 2,1. Dies bedeutet anders ausgedrückt, das radiale Spiel zwischen Innen- und Außenwelle 2,1 ist so auszulegen, dass die Innenwelle 2 mit aufgesetzter Montagehülse 13 in die Außenwelle 1 eingeschoben werden kann.
  • Die Verstiftung zwischen Innenwelle 2 und den diesen zugeordneten ersten Nocken 3 erfolgt in einem Zustand, in dem sich die Montagehülse 13 zwischen Innen- und Außenwelle 2.1 befindet. Um die Stifte 4, mit denen die ersten Nocken 3 fest mit der Innenwelle 2 verbunden werden, montieren zu können, müssen radiale Ausnehmungen in der Außenwelle 1 und in der Montagehülse 13 verbunden sein. Die Ausnehmungen in der Außenwelle 1 sind als sich in Umfangsrichtung der Außenwelle erstreckende Langlöcher ausgebildet, deren Länge den Verstellwinkel zwischen Außen- und Innenwelle 1, 2 begrenzt. In der Montagehülse 13 befinden sich an einem ihrer Enden diametral gegenüberliegende, axiale Nuten 14, die axial offen aus der Montagehülse 13 auslaufen. Durch die axialen Nuten 14 können die Stifte 4 jeweils montiert werden. Die Montage der Stifte 4 erfolgt durch ein kraftschlüssiges Einpressen in Bohrungen der jeweils ersten Nocken 3 und der Innenwelle 2. Auf diese Weise wird eine Presssitzverbindung zwischen ersten Nocken 3 und der Innenwelle 2 erzielt. Für eine vereinfachte Montage werden die Stifte 4 unterkühlt in die betreffenden Bohrungen von ersten Nocken 3 und Innenwelle 2 eingeführt. Dabei können insbesondere dann radiale Einpresskräfte auftreten, wenn die Bohrungen, in die die Stifte 4 einzuführen sind, durch herstellungsbedingte Toleranzabweichungen nicht exakt fluchten. Durch das Vorhandensein der Montagehülse 13 während eines solchen Einpressvorganges kann die Innenwelle 1 sich unter auf sie radial einwirkenden Einpresskräften praktisch längs ihrer Achse nicht verbiegen, da sie durch die formschlüssig in dem Ringspalt zwischen Innen- und Außenwelle 2, 1 liegende Montagehülse 13 hieran gehindert wird. Damit kann lediglich eine Verlagerung der Innenwelle 2 um das geringe Schiebesitzspiel der Montagehülse 13 innerhalb des Ringspaltes zwischen Innen- und Außenwelle 2, 1 stattfinden. Eine solche Verlagerung wäre, auch wenn sie aufträte, unkritisch, da nach dem Entfernen der Montagehülse 13 ein durch eine solche Verlagerung nicht aufhebbares Radialspiel verbleibt. Die Verstiftung der einzelnen ersten Nocken 3 beginnt jeweils an einem Ende der Nockenwelle und schreitet sodann über die Länge der Nockenwelle unter jeweiligem, schrittweisem Herausziehen der Montagehülse 13 aus der Außenwelle 1 fort. Ein solches Herausziehen der Montagehülse 13 ist notwendig, um die Stift 4 jeweils durch die axialen Nuten 14 einführen zu können. Nach Abschluss der Verstiftungen zwischen sämtlichen ersten Nocken 3 und der Innenwelle 2 wird die Montagehülse 13 vollständig von der Nockenwelle getrennt. Der Zustand, in dem diese vollständige Trennung erfolgt, ist in Fig. 2 und 3 am rechten Ende der Nockenwelle dargestellt. Die Montagehülse 13 kann sodann für die Montage weiterer entsprechender Nockenwellen verwendet werden.
  • Die ersten Nocken 3 sind als Doppelnocken ausgeführt. Hergestellt wird eine solche Doppelnocke wie an sich bekannte gebaute Nockenwellen, indem einzelne Nocken 3', 3" passgenau auf ein Basisrohr 3"' aufgeschrumpft werden. Bei den Doppelnocken greift der Stift 4 lediglich in das Basisrohr 3"' ein und zwar in einem Bereich, der axial zwischen den beiden Nocken 3"' und 3" liegt. Anstelle einer Schrumpfverbindung sind alternativ oder zusätzlich noch Verbindungen durch Kleben, Schweißen, Aufweiten des Basisrohres 3"', ein beliebiges formschlüssiges Verfahren oder dergleichen möglich.
  • Die aus den Einzelnocken 3', 3" und einem Basisrohr 3"', mit dem sie fest verbunden sind, bestehende Baueinheit kann zusätzlich noch weitere Funktionselemente der Nockenwelle enthalten. So zeigt Fig. 6 beispielsweise einen mit dem Basisrohr 3"' fest verbundenen, auf seinem Umfang Positionierabschnitte aufweisenden Drehwinkelgeber (26) als Funktionselement.
  • Weiterhin kann zwischen der Innen- und Außenwelle 2, 1 eine Feder montiert sein, durch die bei einem inaktiven Verstellantrieb der Nockenwelle eine vorbestimmbare Drehwinkelzuordnung zwischen Innen- und Außenwelle 2, 1 automatisch eingestellt wird. Die Feder ist zu diesem Zweck an der Innen- und Außenwelle 2, 1 anzubinden. An der Innenwelle 2 kann dies über ein Widerlager erfolgen, das als erfindungsgemäßes Funktionselement auf dem Basisrohr 3"' befestigt und gegebenenfalls dort in einen Drehwinkelgeber 26 integriert sein kann. Diese Feder ist zeichnerisch nicht dargestellt.
  • Durch die Lagerringe 6 hindurch wird der Ringspalt 15 zwischen Innen- und Außenwelle 2, 1 mit unter Druck zugeführtem Schmieröl versorgt. Zu diesem Zweck sind in den Lagerringen 6 entsprechend der Darstellung in Fig. 4 vier Zuführbohrungen 16 vorgesehen. Diese Zuführbohrungen 16 münden in einen Ringskanal 17 zwischen Lagerring 6 und Außenwelle 1. Von diesem Ringkanal 17 aus führen lediglich zwei Radialbohrungen 18 in den Ringspalt 15. Bei dieser Ausführung besteht eine Besonderheit darin, dass weniger Radialbohrungen 18 als Zuführbohrungen 16 vorgesehen werden. Diese Besonderheit wird dadurch möglich, dass die Zuführbohrungen 16 nicht radial außen von einer ringförmig anstehenden Schmierölquelle aus versorgt werden, sondern jeweils abschnittsweise durch Fluchtung mit radial ausgerichteten, entsprechenden, in der Zeichnung nicht dargestellten Versorgungskanälen.
  • Von dem Ringspalt 15 aus gelangt das Schmieröl über die Ausnehmungen in der Außenwelle 1, durch die die Stifte 4 geführt sind, an die Schmierstellen zwischen Außenwelle 1 und drehbar auf dieser gelagerten ersten Nocken 3.
  • Um zu verhindern, dass unter Druck stehendes Schmieröl an den Enden der Innenwelle 2 aus dem Ringspalt 15 austreten kann, sind dort jeweils den Ringspalt 15 dichtende Ringdichtungen 19 vorgesehen.
  • Nachfolgend wird auf die erfindungsgemäße Ausgestaltung der Nockenwellen-Antriebs-Anschlussmittel 10 näher eingegangen und zwar in erster Linie mit Bezug auf die Fig. 2 und 3.
  • Eines der beiden Enden der Außenwelle 1 ist mit einem Anschlussflansch 7 versehen, der Bestandteil der Antriebs-Anschlussmittel 10 ist. In dem Anschlussflansch 7 sind radiale Ausnehmungen 20 vorgesehen, durch die ein Anschlussstift 21 hindurchgreift. Zwischen den diametral gegenüberliegenden radialen Ausnehmungen 20 durchgreift der Anschlussstift 21 kraftschlüssig eine entsprechende Bohrung innerhalb der Innenwelle 2. Die radialen Ausnehmungen 20 besitzen in Umfangsrichtung eine Länge, die den Verstellwinkel zwischen Innen- und Außenwelle 2, 1 bestimmt. Der Anschlussstift 21 stellt ein erstes Kraftübertragungselement dar. An dieses erste Kraftübertragungselement als Stift 21 wird innerhalb der Antriebs-Anschluss-Mittel 10 ein zweites Kraftübertragungselement - nicht gezeichnet - kraft- und formschlüssig angeschlossen. Der Anschluss erfolgt in einfacher Weise dadurch, dass das zweite Kraftübertragungselement eine axial ausgerichtete, dem ersten Kraftübertragungselement 21 zugeordnete Axialnut aufweist, wodurch das zweite Kraftübertragungselement auf das erste Kraftübertragungselement 21 passgenau aufgeschoben werden kann.
  • Eine weitere Funktion des Anschlussstiftes 21 besteht darin, die Innenwelle 2 gegenüber der Außenwelle 1 axial zu fixieren. Auf diese Weise wird eine äußerst einfache, axiale Fixierung der Innenwelle 2 innerhalb der Außenwelle 1 erreicht und zwar lediglich an einem Ende der Nockenwelle. Hierdurch bleiben unterschiedliche Ausdehnungen zwischen Außenwelle 1 und Innenwelle 2, wenn solche auftreten sollten, ohne jeglichen Einfluss auf die axiale Fixierung zwischen Innen- und Außenwelle 2, 1.
  • Um sowohl für die axiale Fixierung zwischen Innen- und Außenwelle 2, 1 einerseits und der Verbindung mit dem zweiten Kraftübertragungselement möglichst große kraftübertragende Flächen an dem Anschlussstift 21 zu besitzen, ist dieser mit jeweils diametral gegenüberliegenden ebenen Anschlussflächen in einerseits Umfangsrichtung der Nockenwelle und andererseits in axialer Richtung der Nockenwelle ausgerüstet. In der Zeichnung ist von diesen insgesamt vier ebenen Flächen lediglich eine exemplarisch mit 22 bezeichnet. Die Eckbereiche zwischen den vier ebenen Flächen sind auf einem Kreisumfang liegend ausgebildet. Auf diesen Kreisumfangssegmenten ist der Anschlussstift 21 sicher und passgenau innerhalb der Innenwelle 2 fixiert.
  • In der Antriebs-Anschlussmittel-Einrichtung 10 befindet sich innerhalb des Anschlussflansches 7 ein ortsfest gelagerter Konus 23 für eine Druckölversorgung. Für diese Druckölversorgung dient ein Ringspalt 24 zwischen diesem Konus 23 und dem Anschlussflansch 7, der an seinem der Innenwelle 2 zugewandten Ende durch eine Ringdichtung 25 gedichtet ist. Auf diese Weise wird auf das Ende der Innenwelle 2 von dort aus kein hydraulischer Druck ausgeübt, der zu einer Reibungserhöhung bei einem Verdrehen der Innenwelle 2 gegenüber der Außenwelle 1 führen könnte.
  • Bei einer Nockenwelle nach Fig. 2 kann sich an dem in der Zeichnung rechten Ende, das in Fig. 7 dargestellt ist, in den nicht von der Innenwelle 2 ausgefüllten Hohlraum der Außenwelle 1 Schmieröl ansammeln, das beispielsweise von einem ölgeschmierten Lagerring 6 am Ende der Außenwelle 1 in diesen Raum innerhalb der Außenwelle 1 eindringen kann. Soweit dieses eindringende Öl unter Druck zugeführt wird, würde sich bei einem vollständig gefüllten Raum innerhalb der Außenwelle 1 ein Axialdruck auf die an diesen Raum angrenzende Innenwelle 2 aufbauen. Dies würde wiederum zu einer zusätzlichen Reibung bei einer Relativbewegung zwischen Innen- und Außenwelle 2, 1 führen. Um einen solchen Druckaufbau von Schmieröl in dem betreffenden Raum zu vermeiden, können radial nach außen führende Öffnungen 28 in dem Außenmantel 1 in dem betreffenden Bereich angeordnet sein.
  • Bei den Ausführungen nach den Fig. 8 bis 10 ist eine Ölversorgung der Nockenwelle von innen durch einen axialen Zuführkanal 29 in der Außenwelle 1 an deren der Antriebsseite entgegengesetzten Ende vorgesehen. Diese Ölversorgung ist eine Alternative zu der bei der Ausführung nach den Fig. 2 bis 4 gezeigten Ölversorgung durch in der Außenwelle 1 vorgesehene radiale Öffnungen 18, die durch radiale Bohrungen 16 eines Lagerringes 6 mit unter Druck zugeführtem Schmieröl versorgt werden.
  • Wird die Ölversorgung des Inneren der Nockenwelle durch einen vorstehend genannten Ölzuführkanal 29 bewirkt, so muss dieser Zuführkanal 29 dichtungsfrei mit dem Ringspalt 15 zwischen Innen- und Außenwelle 2, 1 kommunizieren können. Mit Bezug auf die Ausführung nach Fig. 2 bedeutet dies, dass der dort vorgesehene radiale Dichtring 19 nicht vorhanden sein darf. Das gleiche gilt für den radialen Dichtring an dem entgegengesetzten Ende der Nockenwelle. Ohne solche Dichtungen 19 kann in den Zuführkanal 29 unter Druck eingeführtes Schmieröl durch den Ringspalt 15 zwischen Innen- und Außenwelle 2, 1 hindurch strömen bis zu dem Antriebsende der Nockenwelle hin. Dort kann dieses Schmieröl durch die bei der Ausführung der Nockenwelle nach Fig. 2 vorgesehene radiale Ausnehmung 20 nach außen abfließen.
  • Bei der Ausführung nach Fig. 10 wird der axiale Zuführkanal 29 von dem an diesem Ende der Nockenwelle vorgesehenen Lagerring 6 aus versorgt, wobei um das betreffende Ende der Nockenwelle ein von der Schmierung des Lagerringes 6 beaufschlagter Übergangsraum 30 vorgesehen ist, von dem aus dem Lagerring 6 unter Druck zugeführtes Schmieröl in das Innere der Außenwelle 1 einströmen kann.
  • In den Zuführkanal 29 kann alternativ Schmieröl auch durch eine axial in den Zuführkanal 29 fördernde Öl-Spritzdüse 26 gemäß der in Fig. 9 dargestellten Ausführung eingebracht werden. Es kann hier beispielsweise eine Öl-Einspritzdüse als Ölversorgungseinrichtung 32 eingesetzt werden, wie sie für eine Anspritzkühlung eines Hubkolbens eines Verbrennungsmotores in allgemein bekannter Weise eingesetzt wird.
  • Besonders zweckmäßig ist eine in Fig. 8 gezeigte Ausführung einer Nockenwelle mit einem Zuführkanal 29, bei der in den Zuführkanal 29 ein Filter 27 eingesetzt ist. Dieses Filter 27 kann als ein scheibenförmiges Partikelsieb ausgebildet sein. Dieses Partikelsieb kann glocken- beziehungsweise trichterförmig ausgeführt sein, mit jeweils einem verschlossenen stromauf liegenden Ende. Eine solche glockenförmige Ausführung besitzt den Vorteil, dass aus dem Schmieröl abgeschiedene Schmutzpartikel auf Grund der von der drehenden Nockenwelle ausgehenden Zentrifugalkraft sich radial vom Sieb ablösen und an der Innenseite des Rohrs anlagern können. Der zentrale Filterbereich bleibt auf diese Weise auch bei langen Betriebszeiten der Nockenwelle im wesentlichen schmutzablagerungsfrei.
  • Bei der Ausführung nach Fig. 2 erfolgt eine axiale Fixierung zwischen Innen- und Außenwelle 2, 1 über einen radialen Anschlussstift 21, der beide Wellen 1, 2 durchdringt. Eine Alternative zu einer solchen axialen Fixierung zwischen Innen- und Außenwelle 2, 1 zeigt die Fig. 12 und zwar in zwei unterschiedlichen Varianten nach den Teilen a und b Dieser Figur.
  • Diese alternative Fixierung besteht darin, dass der erste mit der Innenwelle 2 verbundene, verstellbare Nocken 3 axial passgenau zwischen zwei benachbarte, fest mit der Außenwelle 1 verbundene zweite Nocken montiert wird. Um eine solche passgenaue Montage erhalten zu können, sind die axialen Breiten entweder eines betreffenden ersten Nockens 3 und/oder der benachbarten zweiten Nocken 5 entsprechend auszulegen. Dies bedeutet, dass die betreffenden Nocken 3, 5 mit axialen, als Anschläge wirkenden Verlängerungen derart auszurüsten sind, dass eine axiale Passung, das heißt Fixierung zwischen Innen- und Außenwelle exakt gegeben ist.
  • Bei der Ausführung nach Fig. 12a liegt ein gebauter erster Doppel-Nocken 3 vor, dessen axiale Breite derart ausgelegt ist, dass eine axiale Passung zwischen zwei benachbarten, fest mit der Außenwelle 1 verbundenen zweiten Nocken 5 erreichbar ist. Bei der Montage der zweiten Nocken 5 auf der Außenwelle 2 ist darauf zu achten, dass ein möglichst geringes, jedoch noch ausreichendes Verdrehspiel zwischen ersten und zweiten Nocken 3; 5 gewährleistet ist.
  • Bei der Ausführung nach Fig. 12b sind die zweiten Nocken 5 mit die axiale Breite verlängernden Anschlägen versehen, um den ersten Nocken 3 axial passgenau zwischen zwei benachbarten, entsprechend ausgebildeten zweiten Nocken 5 fixieren zu können.
  • In Fig. 11 ist bei dem Antriebs-Anschlussmittel 10 nach der Ausführung in Fig. 2 eine andere Art der Ölversorgung eines dort angeschlossenen Hydraulik-Ölantriebes vorgesehen. Das betreffende Antriebs-Anschlussmittel 10 ist in Fig. 11 mit 10' bezeichnet. Dieses Antriebs-Anschlussmittel 10' ist mit Ölführungskanälen 31 versehen. Diese Ölführungskanäle 31 führen jeweils nach radial außen einenends in eine Ölversorgungseinrichtung 32 und anderenends in einem Hydraulikantrieb 33. Die Bauelemente 32 und 33 sind in der Zeichnung lediglich strichpunktiert angedeutet. Als Ölversorgungseinrichtung 32 dient in dem gezeichneten Beispiel eine Lagereinrichtung der Nockenwelle, wobei das Antriebs-Anschlussmittel 10 als ein fest mit der Außenwelle 1 verbundener innerer Lagerring ausgebildet ist, während die Ölversorgung durch Versorgungskanäle 34 innerhalb eines stationären, den inneren Lagerring führenden äußeren Lagerringes vorgesehen sind. Eine solche Ölversorgung einer hydraulisch arbeitenden Nockenwellenverstelleinrichtung ist äußerst vorteilhaft, da sie mit wenigen Bauelementen realisierbar ist. Insbesondere baut eine solche Ölversorgungseinrichtung antriebseitig axial kurz, so dass axialer Bauraum eingespart werden kann.
  • Bei den sich gegeneinander bewegenden Teilen der erfindungsgemäßen Nockenwelle kann eventuell auf eine Ölschmierung ganz oder zumindest weitestgehend verzichtet werden, wenn die Gegenlaufpartner einerseits verschleißbeschichtet und andererseits mit einer gehärteten Oberfläche versehen sind. Mit einer gehärteten Oberfläche versehen können insbesondere die Außenwelle und Doppelnocken sein.
  • Während bei den gezeichneten und beschriebenen Ausführungsbeispielen der Verstellantrieb für die verstellbare Nockenwelle jeweils als ein Hydraulikantrieb beschrieben ist, können selbstverständlich auch mechanische oder elektrische Antriebe eingesetzt werden. Die übrigen erfindungsgemäßen Besonderheiten der Nockenwelle bleiben hiervon unberührt.
  • Bei dem Antriebs-Anschlussmittel 10" nach Fig. 13 wird wie bei der Ausführung nach Fig. 11 eine möglichst geringe axiale Länge angestrebt. Die Antriebs-Anschlussmittel 10" lagern auf einem ortsfesten Konus 23. Durch diesen Konus 23 führen von der linken Stirnseite des Konus aus versorgte Ölführungskanäle 31'. Diese Ölführungskanäle 31' sind innerhalb des Konus 23 rechtwinklig verlaufend ausgebildet, wodurch sie radial aus dem Konus 23 in einen Ringspalt 24 zwischen dem Konus 23 und dem Antriebs-Anschlussmittel 10 münden. Dieser Ringspalt 24 ist durch Ringdichtungen 25 in axial voneinander getrennte Abschnitte unterteilt. Diese axialen Abschnitte sind jeweils mit innerhalb des Antriebs-Anschlussmittels 10" nach radial außen in einen Hydraulik-Antrieb 33 führenden Radialbohrungen 39 verbunden. Die Anzahl dieser Radialbohrungen 39 ist für einen bestimmten Hydraulik-Antrieb 33 mit insgesamt 4 vorgegeben. Bei der Ausführung nach Fig. 13 wird die Funktion einer dieser vier Radialbohrungen in einen an sich zu anderen Zwecken dienenden Bereich des Antriebs-Anschlussmittels 10" integriert. Dabei handelt es sich um denjenigen Bereich des Antriebs-Anschlussmittels 10", in den sich der Anschlussstift 21 befindet, durch dessen Betätigung die Innen- und Außenwelle 2, 1 gegeneinander verdreht werden können. Der Anschlussstift
  • 21 durchgreift in dem Antriebsanschlussmittel 10" eine radiale Öffnung 20. Diese Öffnung 20 füllt der Anschlussstift 21 in Umfangsrichtung nicht aus, da diese Ausnehmung 20 in dieser Richtung eine Dreh-Verstellung des Anschlussstiftes 21 erlauben muss. Damit die Ausnehmung 20 die gleiche Funktion erfüllen kann wie die Radialbohrungen 39, sind zusätzliche Dichtungen in der Form von beispielsweise Ringdichtungen 41 und 42 erforderlich. Die Ringdichtung 41 dichtet den Raum der Ausnehmung 20 gegenüber dem Ringspalt zwischen Außen- und Innenwelle 1, 2. Die Ringdichtung 42 sorgt für eine Dichtung nach außen innerhalb des Hydraulik-Antriebs 33.
  • Fig. 14 zeigt eine weitere, alternative Ausführung des Antriebs-Anschlussmittels 10 bei einer Grundausführung dieses Antriebs-Anschlussmittels nach der Ausführung in Fig. 2. Die axiale Verkürzung mit Bezug auf die Nockenwelle wird bei der Ausführung nach Fig. 14 durch ein Verlagern des Anschlussstiftes 21 in das axial Innere des benachbarten Lagerringes erreicht, wobei dieser Lagerring integrierter Bestandteil des Anschlussflansches 7 ist.
  • Um bei einer solchen Unterbringung des Anschlussstiftes 21 innerhalb des unter anderem den antriebsseitigen Lagerring bildenden Anschlussflansches 7 den Anschlussstift 21 montieren zu können, muss der Anschlussflansch 7 in diesem Bereich aus einem zentralen Kernbereich sowie einem das Lagern bildenden aufgesetzten Lagerring 36 bestehen.
  • In Fig. 14 ist als Kraftübertragungselement, durch das das zum Verdrehen des Anschlussstiftes 21 erforderliche Drehmoment von dem Hydraulik-Antrieb 33 übertragen wird, in der Form einer Verbindungsgabel 38 ausgeführt.
  • Um eine verdrehsichere Verbindung zwischen dem Antriebs-Anschlussmittel 10 mit einem zugeordneten Kraftübertragungselement des Hydraulik-Antriebes 33 gewährleisten zu können, erfolgt diese Verbindung über einen Formschluss in Drehrichtung und zwar beispielsweise durch eine Verdrehsicherung 37 in der Form einer Nut- und Federsicherung.
  • Alle in der Beschreibung und in den nachfolgenden Ansprüchen dargestellten Merkmale können sowohl einzeln als auch in beliebiger Form miteinander kombiniert erfindungswesentlich sein.

Claims (30)

  1. Nockenwelle mit gegeneinander verdrehbaren Nocken für insbesondere Kraftfahrzeuge, bei der
    a) eine Innen- und eine Außenwelle (2, 1) gegeneinander verdrehbar ineinander angeordnet sind,
    b) mindestens jeweils ein Nocken (3, 5) fest mit der Innenbeziehungsweise Außenwelle (2, 1) verbunden ist, nämlich ein erster Nocken (3) mit der Innen- (2) und ein zweiter Nocken (5) mit der Außenwelle (1),
    c) der mindestens eine erste Nocken (3) verdrehbar auf der Außenwelle (1) gelagert und durch mindestens eine in der Außenwelle (1) angeordnete radiale Öffnung hindurch mit der Innenwelle (2) fest verbunden ist.
    d) an einem ihrer axialen Enden Mittel (10) zum Anschluss eines Nockenwellen-Drehantriebes vorgesehen sind, wobei die Anschluss-Mittel (10) ein gegenseitiges, in Umfangsrichtung begrenztes, Verdrehen der ersten und zweiten Nocken (3, 5) ermöglichen und an der ferner
    e) ein auf die Nockenwelle radiale Abstützungskräfte ausübender Drehantrieb (9) angreift, und wobei
    eine Verbindung zwischen den Anschlussmitteln (10) und der Außenwelle (1) vorgesehen ist, durch die von dem Nockenwellen-Drehantrieb (9) auf die Nockenwelle radial einwirkende Abstützungsquerkräfte ausschließlich auf die Außenwelle (1) übertragbar sind, dadurch gekennzeichnet,
    dass die Anschlussmittel (10) als ein erstes Kraftübertragungselement zwischen Drehantrieb (9) und Innen- oder Außenwelle (2, 1) einen Anschlussstift (21) umfassen, der jeweils eine der Wellen (1, 2) über eine dort vorgesehene Ausnehmung (20) durchgreift und in der jeweils anderen Welle (1; 2) fixiert ist, wobei die Ausnehmung (20) in der jeweils einen Welle (1, 2), die von dem Anschlussstift (21) durchgriffen wird, eine in Umfangsrichtung der Nockenwelle begrenzte Drehung des Anschlussstiftes (21) erlaubt, während der Anschlussstift (21) in Achsrichtung der Nockenwelle in dieser jeweiligen Ausnehmung (20) in einer möglichst spielarmen Passung lagert.
  2. Nockenwelle nach Anspruch 1,
    dadurch gekennzeichnet,
    dass ein zweites Kraftübertragungselement der Anschlussmittel (10) mit einer in Umfangsrichtung der Nockenwelle dem Anschlussstift (21) umfangsmäßig komplementär angepassten Ausnehmung versehen ist, über die dieses zweite Kraftübertragungselement in Achsrichtung der Nockenwelle ausschließlich in Umfangsrichtung der Nockenwelle kraftschlüssig passgenau auf den Anschlussstift (21) aufschiebbar ist.
  3. Nockenwelle nach Anspruch 2,
    dadurch gekennzeichnet,
    dass der Anschlussstift (21) in axialer und/oder Umfangsrichtung mit jeweils diametral parallel gegenüberliegenden, ebenen Anlageflächen (22) zur Anlage einerseits an eine entsprechende Gegenfläche der Ausnehmung (20) in einer der beiden Wellen (1, 2) und andererseits an entsprechenden Gegenflächen des aufzuschiebenden zweiten Kraftübertragungselementes versehen ist.
  4. Nockenwelle nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die Eckbereiche zwischen den ebenen Anlageflächen (22) des Anschlussstiftes (21) auf einem Kreisumfang mit der Achse des Anschlussstiftes (21) als Kreismittelpunkt liegen.
  5. Nockenwelle nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass der Anschlussstift (21) als ein erstes Kraftübertragungselement mit der Innenwelle (2) fest verbunden ist.
  6. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Antriebs-Anschlussmittel(10) einen axial rohrförmig offen auslaufenden Bereich der Außenwelle (1) oder eines fest mit dieser verbundenen Anschlussflansches (7) umfassen, in dem ein geschlossenes Ende der Innenwelle (2) an einen freien Raum angrenzt, der gegenüber einem zum offenen Ende des auslaufenden Bereiches der Außenwelle (1) angrenzenden, von unter Druck stehendem Schmieröl beaufschlagten Raum gedichtet ist.
  7. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Innenwelle (2) ausschließlich über die auf der Außenwelle (1) verdrehbar gelagerten Nocken (3), mit denen sie fest verbunden ist, gegenüber der Außenwelle (1) radial gelagert ist.
  8. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass ein von unter Druck stehendem Schmieröl ausgefüllter Ringspalt (15) zwischen Innen- und Außenwelle (2, 1) an mindestens einem axialen Ende durch eine Ringdichtung (19) nach außen gedichtet ist.
  9. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Außenwelle (1) mit Lagerringen (6) verbunden ist und über in diesen vorgesehene Zuführbohrungen (16) Schmieröl in den zwischen Innen- und Außenwelle (2, 1) gebildeten Ringspalt (15) eingeführt wird, wobei die Zuführbohrungen (16) in eine zwischen Außenwelle (1) und Lagerring (6) vorgesehene Ringnut (17) münden, in die von der Außenwelle (1) aus weniger Radialbohrungen (18) als von dem jeweiligen Lagerring (6) aus führen.
  10. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zumindest einzelne Nocken (3) als Doppelnocken ausgeführt sind, bei denen zwei axial beabstandet aneinander angrenzende Einzelnocken (3', 3") zu einer gemeinsamen, fest miteinander verbundenen Einheit zusammengefasst sind und dass die zu einer Doppelnocke als Einheit fest miteinander verbundenen Einzelnocken (3', 3") auf ein Basisrohr (3"') und/oder aufgesetzt und mit diesem durch Aufschrumpfen, Kleben, Schweißen, Aufweiten des Basisrohres (3"'), ein beliebiges formschlüssiges Verfahren oder dergleichen fest verbunden sind.
  11. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Anschlussmittel (10) mit einem fest mit der Außenwelle (1) verbundenen Anschlussflansch (7) zusammenwirken, in den ein Lagerring (6) der Nockenwelle integriert ist.
  12. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Innenwelle (2) mit einer gegenüber der Außenwelle (1) kürzeren Länge ausgebildet ist.
  13. Nockenwelle nach Anspruch 10,
    dadurch gekennzeichnet,
    dass auf ein Basisrohr (3"') außer Einzelnocken (3', 3") noch zusätzlich in gleicher Weise befestigte, weitere Funktionsteile (26) der Nockenwelle aufgesetzt sind.
  14. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zwischen Innen- und Außenwelle (2, 1) eine Feder vorgesehen ist, durch die bei inaktivem Dreh- und Verstellantrieb der Nockenwelle eine vorbestimmbare Drehwinkelzuordnung zwischen Innen- und Außenwelle (2, 1) zwangsweise eingestellt wird.
  15. Nockenwelle nach Anspruch 12,
    dadurch gekennzeichnet,
    dass in dem von der Innenwelle (2) axial nicht ausgefüllten Bereich der Außenwelle (1) mindestens eine nach radial außen führende Öffnung (28) für eine Abfuhr sich dort ansammelnden Schmieröles vorgesehen ist.
  16. Nockenwelle nach einem der Ansprüche 1 bis 13, gekennzeichnet durch folgende Merkmale,
    - das dem Antriebs-Anschlussmittel (10) abgewandt liegende, axial offen auslaufende Ende der Außenwelle (1) ist als ein axialer Zuführkanal (29) für axial zuzuführendes Schmieröl für die im Inneren der Außenwelle in dem Ringspalt (15) zwischen Innen- und Außenwelle (2, 1) erforderliche Ölschmierung ausgebildet,
    - der Ringspalt (15) zwischen Außen- und Innenwelle (1, 2) kommuniziert einenends dichtungsfrei mit dem axialen Zuführkanal (29) und mündet anderenends in einen nach außerhalb führenden Raum (20).
  17. Nockenwelle nach Anspruch 16,
    dadurch gekennzeichnet,
    dass der axiale Zuführkanal (29) durch eine diesem axial zugeordnete Ölzuführeinrichtung mit Schmieröl beaufschlagbar ist.
  18. Nockenwelle nach Anspruch 17,
    dadurch gekennzeichnet,
    dass die Ölzuführeinrichtung als eine Öl-Spritzdüse (35) ausgebildet ist.
  19. Nockenwelle nach Anspruch 16, bei der die Außenwelle (1) an ihrem, den axialen Zuführkanal (29) bildenden Ende mit einem ölgeschmierten Lagerring (6) versehen ist,
    dadurch gekennzeichnet,
    dass der Schmierraum dieses Lagerringes (6) über einen nach außen gedichteten Übergangsraum (30) mit dem axialen Zuführkanal (29) kommuniziert.
  20. Nockenwelle nach einem der Ansprüche 1 bis 14 oder 16 bis 19,
    dadurch gekennzeichnet,
    dass in dem axialen Zuführkanal (29) für eine durch diesen erfolgende Schmierölversorgung des Innenraumes der Außenwelle (1) ein von dem zugeführten Schmieröl zu durchströmendes mechanisches Filter (27) vorgesehen ist.
  21. Nockenwelle nach Anspruch 20,
    dadurch gekennzeichnet,
    dass das Filter (27) scheibenartig mit einer in Richtung stromauf der Ölversorgung glocken- beziehungsweise trichterförmig verlaufenden Form ausgebildet ist, wobei das geschlossene Ende jeweils stromauf liegt.
  22. Nockenwelle nach Anspruch 20 oder 21,
    dadurch gekennzeichnet,
    dass das Filter (27) als ein Partikelsieb-Filter ausgebildet ist.
  23. Nockenwelle nach einem der Ansprüche 1 bis 22, gekennzeichnet durch die Merkmale:
    - ein erster Nocken (3) ist zwischen zwei zweiten Nocken (5) axial spielarm geführt,
    - die Innen- und Außenwelle (2, 1) sind axial gegeneinander ausschließlich über die axiale Führung zwischen einem ersten und zweiten Nocken (3, 5) gelagert.
  24. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die beweglichen Elemente verschleißfest beschichtet und zumindest die Außenwelle (1) zumindest auf ihrem Außenumfang gehärtet ist.
  25. Nockenwelle nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein durch Nockenwellen-Schmieröl hydraulisch betätigtes, zweites Kraftübertragungselement der Nockenwellen-Antriebs-Anschlussmittel (10'), wobei für die Ölversorgung der Anschlussmittel (10') in einem fest mit der Außenwelle (1) an dem dem Antrieb zugewandten Ende der Nockenwelle verbundenen Lagerring (7) Ölführungskanäle (31) vorgesehen sind, die einenends mit der Schmierölversorgungseinrichtung (32) des Lagerringes (7) und anderenends mit dem Hydraulikantrieb der zweiten Kraftübertragungsmittel kommunizieren.
  26. Nockenwelle nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,dass
    - ein Anschlussflansch (7) mit dem antriebsseitigen Ende der Außenwelle (1) fest verbunden ist,
    - der Anschlussstift (21) die Innenwelle (2) in deren Umfangsrichtung formschlüssig und die Außenwelle (1) im Bereich des mit dieser verbundenen Anschlussflansches (7) mit Verstellspiel durchgreift,
    - der Anschlussflansch (7) in einem in Achsrichtung der Nockenwelle über den Anschlussstift (21) hinausgehenden Bereich als Verteiler für in einen, die gegenseitige Verstellung von Innen- und Außenwelle (2, 1) bewirkenden Hydraulik-Antrieb (33) einzuleitendes Schmieröl als Hydraulikflüssigkeit ausgebildet ist, wobei radial zur Nockenwellenachse verlaufende Radialbohrungen (39) Schmieröl nach außerhalb des Anschlussflansches (7) führen, und
    - dass eine radiale Ausnehmung (20) in der Außenwelle (1), durch die das Verstellspiel des Anschlussstiftes (21) in der Außenwelle (1) gegeben ist als eine der Radialbohrungen (39) fungiert.
  27. Nockenwelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    - der Anschlussstift (21) die Innenwelle (2) in deren Umfangsrichtung formschlüssig und die Außenwelle (1) im Bereich des mit dieser verbundenen Anschlussflansches (7) mit Verstellspiel durchgreift und
    - der Anschlussstift (21) axial innerhalb eines das antriebsseitige Ende der Außenwelle (1) bildenden Lagerringes liegt.
  28. Nockenwelle nach Anspruch 27,
    dadurch gekennzeichnet,
    dass der Lagerring, innerhalb dessen der Anschlussstift (21) zu liegen kommt, aus zwei konzentrisch ineinanderliegenden Bauteilen zusammengesetzt ist, nämlich einem, auf der Außenwelle (1) direkt aufsitzenden Lagerring-Kern mit einer Ausnehmung für eine Drehverstellung des Anschlussstiftes (21) und einem äußeren geschlossenen Lagerring (36), wobei der Lagerring (36) axial auf den Kern aufschiebbar ist.
  29. Nockenwelle nach einem der Ansprüche 1 bis 29,
    dadurch gekennzeichnet,
    dass die an der Außenwelle (1) angreifenden Anschlussmittel (10) formschlüssigen Verbund mit der Außenwelle (1) beziehungsweise den mit dieser fest verbundenen Anschlussflansch (7) aufweisen.
  30. Verfahren zur Herstellung einer Nockenwelle nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch die Merkmale,
    - die Innenwelle (2) wird in einem von einer Montagehülse (13) ummantelten Zustand in die Außenwelle (1) eingeschoben, wobei die Montagehülse (13) an einem ihrer axialen Enden Ausnehmungen in der Form nach axial außen offen auslaufender Axialnuten (14) aufweist,
    - zum Befestigen der Nocken (3) mit der Innenwelle (2) werden Stifte (4) jeweils in einem Zustand in die Innenwelle (2) eingesetzt, in dem die jeweiligen Stifte (4) durch Bereiche innerhalb der Axialnuten (14) der Montagehülse (13) einführbar sind, wobei die Montagehülse (13), um alle Stifte (4) entsprechend einführen zu können, axial verlagert und nach dem Einsetzen sämtlicher auf der Länge der Nockenwelle anzubringender Stifte (4) ganz aus der Außenwelle (1) entfernt wird.
EP06705777A 2005-02-03 2006-01-13 Nockenwelle mit gegeneinander verdrehbaren nocken für insbesondere kraftfahrzeuge Ceased EP1844215B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005005212 2005-02-03
DE102005014680A DE102005014680A1 (de) 2005-02-03 2005-03-29 Nockenwelle mit gegeneinander verdrehbaren Nocken für insbesondere Kraftfahrzeuge
PCT/DE2006/000038 WO2006081788A1 (de) 2005-02-03 2006-01-13 Nockenwelle mit gegeneinander verdrehbaren nocken für insbesondere kraftfahrzeuge

Publications (2)

Publication Number Publication Date
EP1844215A1 EP1844215A1 (de) 2007-10-17
EP1844215B1 true EP1844215B1 (de) 2011-03-23

Family

ID=36383750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06705777A Ceased EP1844215B1 (de) 2005-02-03 2006-01-13 Nockenwelle mit gegeneinander verdrehbaren nocken für insbesondere kraftfahrzeuge

Country Status (5)

Country Link
US (1) US7610890B2 (de)
EP (1) EP1844215B1 (de)
JP (1) JP5038908B2 (de)
DE (3) DE102005014680A1 (de)
WO (1) WO2006081788A1 (de)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006004639D1 (de) 2005-08-16 2009-10-08 Mahle Int Gmbh Verstellbare Nockenwelle
DE102005062207A1 (de) * 2005-12-24 2007-06-28 Mahle International Gmbh Nockenwelle
DE202006020694U1 (de) * 2006-09-07 2009-06-18 Mahle International Gmbh Verstellbare Nockenwelle
DE102006049243A1 (de) * 2006-10-18 2008-04-24 Mahle International Gmbh Betätigungseinrichtung für zwei parallel drehende Nockenwellen
US8146551B2 (en) * 2007-06-19 2012-04-03 Borgwarner Inc. Concentric cam with phaser
WO2009005999A1 (en) * 2007-07-02 2009-01-08 Borgwarner Inc. Concentric cam with check valves in the spool for a phaser
WO2009049402A1 (en) * 2007-10-16 2009-04-23 Magna Powertrain Inc. Concentric phaser camshaft and a method of manufacture thereof
US7841311B2 (en) 2008-01-04 2010-11-30 Hilite International Inc. Variable valve timing device
DE102008033230B4 (de) 2008-01-04 2010-05-27 Hydraulik-Ring Gmbh Doppelter Nockenwellenversteller in Schichtaufbau
GB2457228A (en) * 2008-02-05 2009-08-12 Mechadyne Plc Lubricating oil feed arrangement for a single cam phaser (SCP) camshaft
US8028666B2 (en) * 2008-03-12 2011-10-04 GM Global Technology Operations LLC Concentric camshaft with bearing sleeve and method of debris removal
DE102008019747A1 (de) 2008-04-19 2009-10-22 Schaeffler Kg Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102008023066B4 (de) 2008-05-09 2017-10-05 Hilite Germany Gmbh Nockenwellenverstellung mit trockener Lauffläche
DE102008023098A1 (de) 2008-05-09 2009-12-17 Hydraulik-Ring Gmbh Doppelter Nockenwellenversteller in Schichtaufbau
DE102008025781A1 (de) * 2008-05-29 2009-12-10 Thyssenkrupp Presta Teccenter Ag Verstellbare Nockenwellenanordnung
DE102008032412A1 (de) 2008-07-10 2010-01-14 Hydraulik-Ring Gmbh Gestreckter Nockenwellenversteller
US20100012060A1 (en) * 2008-07-21 2010-01-21 Gm Global Technology Operations, Inc. Split Lobe Design of Concentric Camshaft
US20110162605A1 (en) 2008-09-19 2011-07-07 Borgwarner Inc. Cam torque actuated phaser using band check valves built into a camshaft or concentric camshafts
DE102009041768B4 (de) 2008-10-09 2020-10-08 Schaeffler Technologies AG & Co. KG Nockenwellenversteller für eine konzentrische Nockenwelle
DE102009042215B4 (de) 2008-10-14 2018-06-07 Schaeffler Technologies AG & Co. KG Nockenwellenversteller für eine konzentrische Nockenwelle
DE102009042168A1 (de) 2008-10-14 2010-04-15 Schaeffler Kg Nockenwellenversteller und Abtriebsadapter für eine konzentrische Nockenwelle
JP2010196488A (ja) * 2009-02-23 2010-09-09 Mitsubishi Motors Corp 可変動弁装置付エンジン
DE102009049218A1 (de) * 2009-10-13 2011-04-28 Mahle International Gmbh Nockenwelle für eine Brennkraftmaschine
JP5182528B2 (ja) * 2009-11-11 2013-04-17 三菱自動車工業株式会社 可変動弁装置付エンジン
JP5392496B2 (ja) * 2010-01-21 2014-01-22 三菱自動車工業株式会社 内燃機関の可変動弁装置
JP5392501B2 (ja) * 2010-04-27 2014-01-22 三菱自動車工業株式会社 可変動弁装置付エンジン
DE102010033296A1 (de) 2010-08-04 2012-02-09 Hydraulik-Ring Gmbh Nockenwellenversteller, insbesondere mit Nockenwelle
US8671920B2 (en) 2010-08-31 2014-03-18 GM Global Technology Operations LLC Internal combustion engine
KR101209733B1 (ko) * 2010-09-01 2012-12-07 현대자동차주식회사 가변 밸브 리프트 장치
DE102010045047A1 (de) * 2010-09-10 2012-03-15 Thyssenkrupp Presta Teccenter Ag Verfahren zum Zusammenbau eines Motormoduls
US8448617B2 (en) 2010-10-20 2013-05-28 GM Global Technology Operations LLC Engine including camshaft with partial lobe
US8544436B2 (en) * 2010-12-08 2013-10-01 GM Global Technology Operations LLC Engine assembly including camshaft with multimode lobe
WO2012090300A1 (ja) 2010-12-28 2012-07-05 トヨタ自動車株式会社 二重カム軸構造及び二重カム軸構造の組み立て方法
GB2487227A (en) 2011-01-14 2012-07-18 Mechadyne Plc Spool valve for simultaneous control of two output members
DE102011001301B4 (de) 2011-03-16 2017-09-21 Hilite Germany Gmbh Schwenkmotorversteller
DE102011077532A1 (de) 2011-06-15 2012-12-20 Schaeffler Technologies AG & Co. KG Phasenverstelleinrichtung einer Nockenwelle für eine Verbrennungskraftmaschine
DE102011077563B4 (de) 2011-06-15 2022-08-11 Mahle International Gmbh Brennkraftmaschine
DE102011052819A1 (de) * 2011-08-18 2013-02-21 Thyssenkrupp Presta Teccenter Ag Nockenwelle, insbesondere für Kraftfahrzeugmotoren
DE102011052822A1 (de) * 2011-08-18 2013-02-21 Thyssenkrupp Presta Teccenter Ag Nockenwelle, insbesondere für Kraftfahrzeugmotoren
DE102011082591A1 (de) * 2011-09-13 2013-03-14 Schaeffler Technologies AG & Co. KG Axiallagerung bei Doppelnockenwellen, Nockenwellenverstellvorrichtung und Verbrennungskraftmaschine
DE102012203145A1 (de) * 2012-02-29 2013-08-29 Mahle International Gmbh Verstellbare Nockenwelle
DE102012103581A1 (de) 2012-04-24 2013-10-24 Thyssenkrupp Presta Teccenter Ag Nockenwelle mit durch Drucköl beölbare, verstellbare Nocken
DE102012103594B4 (de) 2012-04-24 2015-08-27 Thyssenkrupp Presta Teccenter Ag Nockenwelle mit durch Spritzöl beölbare, verstellbare Nocken
GB2504100A (en) * 2012-07-17 2014-01-22 Mechadyne Internat Ltd A concentric camshaft supported by roller bearings
DE102012106856B4 (de) 2012-07-27 2019-05-29 Thyssenkrupp Presta Teccenter Ag Verstellbare Nockenwelle
US9027522B2 (en) * 2012-10-17 2015-05-12 Ford Global Technologies, Llc Camshaft with internal oil filter
DE102012220652A1 (de) 2012-11-13 2014-05-15 Mahle International Gmbh Nockenwelle
DE102012022800A1 (de) 2012-11-21 2014-05-22 Volkswagen Aktiengesellschaft Nockenwelle mit einer Innenwelle und einer Außenwelle
DE102013207573A1 (de) 2013-04-25 2014-10-30 Mahle International Gmbh Lagerrahmen oder Zylinderkopfhaube
DE102013211159A1 (de) * 2013-06-14 2014-12-31 Mahle International Gmbh Verstellbare Nockenwelle
DE102013106746A1 (de) * 2013-06-27 2014-12-31 Thyssenkrupp Presta Teccenter Ag Verstellbare Nockenwelle
DE102013106747A1 (de) * 2013-06-27 2014-12-31 Thyssenkrupp Presta Teccenter Ag Verstellbare Nockenwelle
DE102013113255A1 (de) * 2013-11-29 2015-06-03 Thyssenkrupp Presta Teccenter Ag Verstellbare Nockenwelle
KR102008680B1 (ko) * 2013-12-20 2019-08-08 현대자동차 주식회사 캠샤프트-인-캠샤프트 조립용 지그 장치
DE102014104885A1 (de) 2014-04-07 2015-10-08 Thyssenkrupp Presta Teccenter Ag Nockenwelle mit verbesserter Schmierung
DE102014104994A1 (de) * 2014-04-08 2015-10-08 Thyssenkrupp Presta Teccenter Ag verstellbare Nockenwelle
DE102014107459A1 (de) * 2014-05-27 2015-12-03 Thyssenkrupp Presta Teccenter Ag Ventilsteuersystem mit einer verstellbaren Nockenwelle
DE102014107475A1 (de) 2014-05-27 2015-12-03 Thyssenkrupp Presta Teccenter Ag Verstellbare Nockenwelle mit verbesserter Ölübergabe zwischen Innenwelle und Außenwelle
KR101427904B1 (ko) 2014-07-10 2014-08-08 주식회사 미보 컨센트릭 캠샤프트 및 컨센트릭 캠샤프트의 이동캠 또는 고정캠 제조방법
DE102014213937A1 (de) * 2014-07-17 2016-01-21 Mahle International Gmbh Nockenwelle
DE102014223215A1 (de) 2014-11-13 2016-05-19 Schaeffler Technologies AG & Co. KG Phasenverstelleinrichtung mit Überlastkupplung zwischen einer Nockenwelle und einem Nockenwellenversteller
DE102015200139B4 (de) * 2015-01-08 2021-07-08 Schaeffler Technologies AG & Co. KG Nockenwellenverstelleranbindung an eine Doppelnockenwelle
DE102015205770B4 (de) * 2015-03-31 2018-10-11 Schaeffler Technologies AG & Co. KG Nockenwellenbaugruppe
DE102015210080B4 (de) 2015-06-01 2021-08-12 Thyssenkrupp Presta Teccenter Ag Nockenwellenmodul mit trennbarem Schiebeelement und Verfahren zur Montage eines Nockenwellenmoduls
KR101713817B1 (ko) * 2015-06-10 2017-03-09 한형수 캠식 부품 이송 장치
DE102015215292A1 (de) 2015-08-11 2017-02-16 Thyssenkrupp Ag Verfahren und Vorrichtung zur Montage einer verstellbaren Nockenwelle
JP6425827B2 (ja) * 2015-09-30 2018-11-21 本田技研工業株式会社 カムシャフト
GB201518508D0 (en) * 2015-10-20 2015-12-02 Delphi Internat Operations Luxembourg S À R L Hydraulic machine with centrifugal particle trap
FR3109797B1 (fr) * 2020-04-29 2023-07-28 Renault Arbre à cames à paliers internes.
DE102022206388A1 (de) 2022-06-24 2024-01-04 Mahle International Gmbh Verfahren zum drehfesten Fügen eines ringförmigen Positionsgebers an eine Nockenwelle
DE102023202204A1 (de) 2023-03-10 2024-09-12 Mahle International Gmbh Verfahren zum Montieren eines Positionsgebers auf einer Nockenwelle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822147C3 (de) 1978-05-20 1982-02-11 Volkswagenwerk Ag, 3180 Wolfsburg Nockenwellenanordnung, insbesondere für eine Brennkraftmaschine
US4235939A (en) * 1978-07-24 1980-11-25 A. E. Staley Manufacturing Company Base mixes simulating natural and dutch cocoa powders
DE3624827A1 (de) * 1986-07-23 1988-02-04 Sueddeutsche Kolbenbolzenfabri Verstelleinrichtung fuer eine nockenwelle zum steuern der gasein- und auslassventile von verbrennungsmotoren
DE3943426C1 (de) * 1989-12-22 1991-04-11 Gkn Automotive Ag, 5200 Siegburg, De
US5235939A (en) * 1992-11-05 1993-08-17 Ford Motor Company Automotive engine torsional pulse enhancer
JPH07102914A (ja) * 1993-03-03 1995-04-18 Peter Amborn 相互に位置決めされる軸要素を備えたカム軸構体およびその製造方法
FR2709786B1 (fr) * 1993-09-09 1995-11-17 Renault Arbre à cames pour moteur à combustion interne.
GB2301396B (en) * 1994-01-05 1998-05-06 Stephen Keith Madden Variable timing camshaft with variable valve lift
JPH07286507A (ja) 1994-04-19 1995-10-31 Toyota Motor Corp カム角調整装置
IT1268966B1 (it) * 1994-05-12 1997-03-18 Carraro Spa Sistema di distribuzione monoalbero, in particolare per motori acombustione interna.
DE4419557C1 (de) 1994-06-03 1995-10-19 Korostenski Erwin Brennkraftmaschine mit variabler Ventilsteuerung
DE10063285A1 (de) * 2000-12-19 2002-06-20 Ina Schaeffler Kg Siebfilter für Fluidleitungen, insbesondere für hydraulische Druckleitungen in Brennkraftmaschinen
US6484680B2 (en) * 2001-03-10 2002-11-26 Ford Global Technologies, Inc. Internal combustion engine with variable cam timing oil filter with restrictor arrangement
GB2375583B (en) * 2001-05-15 2004-09-01 Mechadyne Internat Plc Variable camshaft assembly

Also Published As

Publication number Publication date
US7610890B2 (en) 2009-11-03
WO2006081788A1 (de) 2006-08-10
WO2006081788A9 (de) 2007-08-23
DE102005014680A1 (de) 2006-08-10
DE202005021715U1 (de) 2009-07-02
JP5038908B2 (ja) 2012-10-03
DE502006009155D1 (de) 2011-05-05
EP1844215A1 (de) 2007-10-17
US20080257290A1 (en) 2008-10-23
JP2008530412A (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
EP1844215B1 (de) Nockenwelle mit gegeneinander verdrehbaren nocken für insbesondere kraftfahrzeuge
EP1844216B1 (de) Verstellbare nockenwelle, insbesondere für verbrennungsmotoren von kraftfahrzeugen, mit einer hydraulischen stelleinrichtung
EP1963625B1 (de) Nockenwelle
DE69609678T2 (de) Synchronisiervorrichtung-Kupplung-Anordnung
DE112006001481B4 (de) Automatikgetriebe mit Kupplungsvorrichtungen
EP1752691A1 (de) Steuerventil und Verfahren zur Herstellung desselben
EP1472438A1 (de) Schaltelement für einen ventiltrieb einer brennkraftmaschine
EP1456547B1 (de) Hohlwelle
EP2469048A2 (de) Nockenwellenversteller
WO2011003865A1 (de) Verfahren zur herstellung eines hubübertragungsbauteils
DE10222475A1 (de) Getriebe mit zwei ineinander angeordneten Drehscheiben, die durch eine Taumelscheibe miteinander verbunden sind
DE10229515A1 (de) Getriebeschaltung
EP0469334A1 (de) Vorrichtung zur Änderung der relativen Drehlage von Wellen in einer Brennkraftmaschine
EP3810963A1 (de) Hydrodynamisch wirksamer dichtring und drehdurchführung mit einem solchen dichtring
DE4426616C2 (de) Riemenscheibe für stufenlos veränderliche Getriebe
DE102012203383B3 (de) Filteranordnung eines Steuerventils für einen Nockenwellenversteller
WO1998016726A1 (de) Stössel für einen ventiltrieb einer brennkraftmaschine
DE2945967C2 (de) Synchronisierungseinrichtung für ein Wechselgetriebe
DE3909910C2 (de)
DE102006013829A1 (de) Verstellbare Nockenwelle
DE102008064456B4 (de) Servolenkungsvorrichtung
AT503895A2 (de) Schiebemuffe
EP3165721B1 (de) Nockenwelle
DE19645464B4 (de) Mechanische Presse
DE4232191C1 (de) Vorrichtung zum Verstellen der Exzentrizität eines exzentrischen Radiallagers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20100219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006009155

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009155

Country of ref document: DE

Effective date: 20110505

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009155

Country of ref document: DE

Effective date: 20111227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190130

Year of fee payment: 14

Ref country code: GB

Payment date: 20190130

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220127

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006009155

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801