EP1819706B1 - Verfahren zur herstellung von annelierten piperazin-2-on derivaten sowie zwischenprodukte des verfahrens - Google Patents

Verfahren zur herstellung von annelierten piperazin-2-on derivaten sowie zwischenprodukte des verfahrens Download PDF

Info

Publication number
EP1819706B1
EP1819706B1 EP05823799A EP05823799A EP1819706B1 EP 1819706 B1 EP1819706 B1 EP 1819706B1 EP 05823799 A EP05823799 A EP 05823799A EP 05823799 A EP05823799 A EP 05823799A EP 1819706 B1 EP1819706 B1 EP 1819706B1
Authority
EP
European Patent Office
Prior art keywords
process according
compound
alkyl
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05823799A
Other languages
English (en)
French (fr)
Other versions
EP1819706A1 (de
Inventor
Adil Duran
Guenter Linz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Boehringer Ingelheim Pharma GmbH and Co KG
Original Assignee
Boehringer Ingelheim International GmbH
Boehringer Ingelheim Pharma GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35923724&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1819706(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to SI200531631T priority Critical patent/SI1819706T1/sl
Priority to PL05823799T priority patent/PL1819706T3/pl
Priority to DK11189691.6T priority patent/DK2436685T3/en
Priority to EP11189691.6A priority patent/EP2436685B1/de
Priority to PL11189691T priority patent/PL2436685T3/pl
Application filed by Boehringer Ingelheim International GmbH, Boehringer Ingelheim Pharma GmbH and Co KG filed Critical Boehringer Ingelheim International GmbH
Priority to MEP-2012-124A priority patent/ME01470B/me
Publication of EP1819706A1 publication Critical patent/EP1819706A1/de
Publication of EP1819706B1 publication Critical patent/EP1819706B1/de
Application granted granted Critical
Priority to CY20121101215T priority patent/CY1113625T1/el
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D475/00Heterocyclic compounds containing pteridine ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/28Oxygen atom

Definitions

  • the invention relates to a process for the preparation of fused piperazin-2-one derivatives of the general formula (I) where the radicals R 1 to R 5 have the meanings mentioned in the claims and the description, in particular a process for the preparation of 7,8-dihydro-5H-pteridin-6-one derivatives.
  • Pteridinone derivatives are known as agents with antiproliferative action from the prior art.
  • WO 03/020722 describes the use of Dihydropteridinonderivaten for the treatment of tumor diseases and methods for their preparation.
  • 7,8-Dihydro-5H-pteridin-6-one derivatives of the formula (I) are important intermediates in the synthesis of such active ingredients.
  • reduction methods have been applied to nitro compounds of formula (II) described below which are excessively colored Product mixtures led and complicated Aufarbeitungs- and cleaning steps required.
  • WO 96/36597 describes the catalytic hydrogenation of nitro compounds by means of noble metal catalysts with the addition of a vanadium compound, the end products being free amines but not lactams.
  • the present invention solves the above object via the synthesis method described below for compounds of formula (I).
  • the hydrogenation catalyst is selected from the group consisting of rhodium, ruthenium, iridium, platinum, palladium and nickel, preferably platinum, palladium and Raney nickel. Particularly preferred is platinum. Platinum may be in metallic or oxidized form as platinum oxide on supports such as activated carbon, silica, alumina, calcium carbonate, calcium phosphate, calcium sulfate, barium sulfate, titanium dioxide, magnesium oxide, iron oxide, lead oxide, lead sulfate or lead carbonate and optionally additionally doped with sulfur or Lead can be used. Preferred support material is activated carbon, silica or alumina.
  • Preferred copper compounds are compounds in which copper occupies the oxidation states I or II, for example the halides of copper such as CuCl, CuCl 2 , CuBr, CuBr 2 , CuI or CuSO 4 .
  • Preferred iron compounds are compounds in which iron assumes the oxidation states II or III, for example the halides of iron such as FeCl 2 , FeCl 3 , FeBr 2 , FeBr 3 , FeF 2 or other iron compounds such as FeSO 4 , FePO 4 or Fe ( acac) 2 .
  • Preferred vanadium compounds are compounds in which vanadium assumes the oxidation states 0, II, III, IV or V, for example inorganic or organic compounds or complexes such as, for example, V 2 O 3 , V 2 O 5 , V 2 O 4 , Na 4 VO 4 , NaVO 3 , NH 4 VO 3 , VOCl 2 , VOCl 3 , VOSO 4 , VCl 2 , VCl 3 , vanadium oxobis (1-phenyl-1,3-butanedionate), vanadium oxotriisopropoxide, vanadium (III) acetylacetonate [V (acac) 3 ] or vanadium (IV) oxyacetylacetonate [VO (acac) 2 ]. Particularly preferred is vanadium (IV) oxyacetylacetonate [VO (acac) 2 ].
  • the copper, iron or vanadium compound can optionally be used either directly at the beginning of the hydrogenation or after formation of the intermediate of the formula (III).
  • a solvent selected from the group consisting of: dipolar, aprotic solvents, for example dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, dimethyl sulfoxide or sulfolane; Alcohols, for example Methanol, ethanol, 1-propanol, 2-propanol, the various isomeric alcohols of butane and pentane; Ethers, for example diethyl ether, methyl tert-butyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane or dimethoxyethane; Esters, for example ethyl acetate, 2-propyl acetate or 1-butyl acetate; Ketones, for example acetone, methyl ethyl ketone or methyl isobutyl ketone; Carboxylic acids, for example acetic acid; Apolar solvents, for example tolu, acetic acid; Apolar solvents, for example
  • the solvents can also be used as mixtures.
  • reaction temperature is between 0 ° C and 150 ° C, preferably between 20 ° C and 100 ° C.
  • Another object of the invention is a compound of formula (III) wherein R 1 to R 5 may have the meaning indicated.
  • the work-up of the reactions is carried out according to common methods, e.g. via extractive purification steps or precipitation and crystallization procedures.
  • the compounds of the invention may be in the form of the individual optical isomers, mixtures of the individual enantiomers, diastereomers or racemates, in Form of tautomers and in the form of the free bases or the corresponding acid addition salts with acids - such as acid addition salts with hydrohalic acids, for example hydrochloric or hydrobromic acid, or organic acids, such as oxalic, fumaric, diglycol or methanesulfonic acid present.
  • acids - such as acid addition salts with hydrohalic acids, for example hydrochloric or hydrobromic acid, or organic acids, such as oxalic, fumaric, diglycol or methanesulfonic acid present.
  • alkyl groups and alkyl groups which are part of other groups are preferably 1 to 6, more preferably 1 to 4 carbon atoms, for example: methyl, ethyl, propyl, butyl, pentyl, hexyl, Heptyl, octyl, nonyl, decyl and dodecyl.
  • propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and dodecyl include all of the possible isomeric forms.
  • propyl includes the two isomeric radicals n-propyl and iso-propyl, the term butyl n-butyl, isobutyl, sec-butyl and tert-butyl, the term pentyl, iso-pentyl, neopentyl, etc.
  • alkyl groups it is optionally possible for one or more hydrogen atoms to be replaced by other radicals.
  • these alkyl groups may be substituted by fluorine.
  • all hydrogen atoms of the alkyl group may also be replaced.
  • alkyl bridge Branched and unbranched alkyl groups having 2 to 5 carbon atoms, for example ethylene, propylene, isopropylene, n-butylene, isobutyl, sec-butyl and tert-butyl, etc., are referred to as alkyl bridge, unless stated otherwise. Particular preference is given to ethylene, propylene and butylene bridges. In the abovementioned alkyl bridges, optionally 1 to 2 C atoms may be replaced by one or more heteroatoms selected from the group consisting of oxygen, nitrogen or sulfur.
  • Alkenyl groups include branched and unbranched alkylene groups having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms, more preferably 2 to 3 carbon atoms, as far as they are concerned have at least one double bond. Examples which may be mentioned are: ethenyl, propenyl, butenyl, pentenyl, etc. Unless stated otherwise, all of the possible isomeric forms are included among the abovementioned designations propenyl, butenyl, etc.
  • butenyl includes 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-1-propenyl, 2-methyl-2-propenyl, and 1 ethyl-1-ethenyl.
  • one or more hydrogen atoms in the abovementioned alkenyl groups may optionally be replaced by other radicals.
  • these alkyl groups may be substituted by the halogen atoms fluorine.
  • all hydrogen atoms of the alkenyl group may also be replaced.
  • Alkynyl groups are branched and unbranched alkynyl groups having 2 to 12 carbon atoms, provided they have at least one triple bond, for example ethynyl, propargyl, butynyl, pentynyl, hexynyl, etc., preferably ethynyl or propynyl.
  • one or more hydrogen atoms in the abovementioned alkynyl groups may optionally be replaced by other radicals.
  • these alkyl groups may be fluorine-substituted.
  • all hydrogen atoms of the alkynyl group may also be replaced.
  • aryl denotes an aromatic ring system having 6 to 14 carbon atoms, preferably 6 or 10 carbon atoms, preferably phenyl, which, unless otherwise stated, may carry, for example, one or more of the following substituents: OH, NO 2 , CN, OMe, -OCHF 2 , -OCF 3 , halogen, preferably fluorine or chlorine, C 1 -C 10 -alkyl, preferably C 1 -C 5 -alkyl, preferably C 1 -C 3 -alkyl, more preferably methyl or ethyl, -OC 1 C 3 alkyl, preferably -O-methyl or -O-ethyl, -COOH, -COO-C 1 -C 4 -alkyl, preferably -O-methyl or -O-ethyl, -CONH 2 .
  • cycloalkyl radicals having 3 to 12 carbon atoms are, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, preferably cyclopropyl, cyclopentyl or cyclohexyl, where any of the abovementioned cycloalkyl radicals may optionally further bear one or more substituents, for example: OH, NO 2 , CN, OMe, -OCHF 2 , - OCF 3 or halogen, preferably fluorine or chlorine, C 1 -C 10 -alkyl, preferably C 1 -C 5 -alkyl, preferably C 1 -C 3 -alkyl, more preferably methyl or ethyl, -OC 1 -C 3 -alkyl, preferably -O-methyl or -O-ethyl,
  • Cycloalkenyl radicals are cycloalkyl radicals having 3 to 12 carbon atoms which have at least one double bond, for example cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl or cycloheptenyl, preferably cyclopropenyl, cyclopentenyl or cyclohexenyl, where any of the abovementioned cycloalkenyl radicals may optionally further carry one or more substituents.
  • heterocycloalkyl radicals are, unless otherwise described in the definitions, 3 to 12-membered, preferably 5-, 6- or 7-membered, saturated or unsaturated heterocycles which may contain nitrogen, oxygen or sulfur as heteroatoms, for example tetrahydrofuran, tetrahydrofuranone, ⁇ Butylrolactone, ⁇ -pyran, ⁇ -pyran, dioxolane, tetrahydropyran, dioxane, dihydrothiophene, thiolane, dithiolane, pyrroline, pyrrolidine, pyrazoline, pyrazolidine, imidazoline, imidazolidine, tetrazole, piperidine, pyridazine, pyrimidine, pyrazine, piperazine, triazine, tetrazine , Morpholine, thiomorpholine, diazepane, oxazine, tetrahydro-oxazin
  • polycycloalkyl radicals optionally substituted, bi-, tri-, tetra- or pentacyclic cycloalkyl radicals, for example Pinan, 2,2,2-octane, 2,2,1-heptane or adamantane, are referred to.
  • polycycloalkenyl radicals optionally bridged or / and substituted, 8-membered bi-, tri-, tetra- or pentacyclic cycloalkenyl radicals, preferably bicycloalkenyl, or tricycloalkenyl radicals, if they have at least one double bond, for example norbornene.
  • spiroalkyl radicals optionally substituted spirocyclic C 5 -C 12 alkyl radicals are referred to.
  • the halogen is generally fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably chlorine.
  • the substituent R 1 may be a radical selected from the group consisting of chlorine, fluorine, bromine, methanesulfonyl, ethanesulfonyl, trifluoromethanesulfonyl and para-toluenesulfonyl, preferably chlorine.
  • the substituent R 2 may be hydrogen or C 1 -C 3 -alkyl, preferably hydrogen.
  • the substituent R 3 may be hydrogen, or a radical selected from the group consisting of optionally substituted C 1 -C 12 -alkyl, C 2 -C 12 -alkenyl, C 2 -C 12 -alkynyl, and C 6 -C 14 -aryl, preferably phenyl, or a radical selected from the group consisting of optionally substituted and / or bridged C 3 -C 12 -cycloalkyl, preferably cyclopentyl, C 3 -C 12 -cycloalkenyl, C 7 -C 12 -polycycloalkyl, C 7 -C 12 -polycycloalkenyl, C 5 -C 12 -spirocycloalkyl and saturated or unsaturated C 3 -C 12 -heterocycloalkyl containing 1 to 2 heteroatoms, mean.
  • R 4 , R 5 are identical or different and may be hydrogen, or optionally substituted C 1 -C 6 -alkyl, or R 4 and R 5 together form a 2- to 5-membered alkyl bridge which may contain 1 to 2 heteroatoms, or R 4 and R 3 or R 5 and R 3 together represent a saturated or unsaturated C 3 -C 4 -alkyl bridge, which may optionally contain 1 heteroatom mean.
  • R 6 may be a C 1 -C 4 alkyl, preferably methyl or ethyl.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von annelierten Piperazin-2-on Derivaten der allgemeinen Formel (I)
    Figure imgb0001
    wobei die Reste R1 bis R5 die in den Ansprüchen und der Beschreibung genannten Bedeutungen haben, insbesondere ein Verfahren zur Herstellung von 7,8-Dihydro-5H-pteridin-6-on Derivaten.
  • Hintergrund der Erfindung
  • Pteridinon-Derivate sind als Wirkstoffe mit antiproliferativer Wirkung aus dem Stand der Technik bekannt. WO 03/020722 beschreibt die Verwendung von Dihydropteridinonderivaten zur Behandlung von Tumorerkrankungen sowie Verfahren zu deren Herstellung.
  • 7,8-Dihydro-5H-pteridin-6-on Derivate der Formel (I) stellen wichtige Zwischenprodukte in der Synthese solcher Wirkstoffe dar. Für ihre Herstellung wurden bisher Reduktionsmethoden auf Nitroverbindungen der unten beschriebenen Formel (II) angewandt, welche zu stark gefärbten Produktgemischen führten und aufwendige Aufarbeitungs- und Reinigungsschritte erforderlich machten.
  • WO 96/36597 beschreibt die katalytische Hydrierung von Nitroverbindungen mittels Edelmetailkatalysatoren unter Zusatz einer Vanadiumverbindung, wobei als Endprodukte freie Amine, aber keine Laktame, offenbart werden.
  • TenBrink et al., (J. Med. Chem. 37, 1994, 758-768) offenbart die Synthese verschiedener Quinoxalinamide durch Reduktion von an Benzolringen gebundener Nitrogruppen, welche von einer Ringzyklisierung gefolgt ist.
  • Es ist die Aufgabe der vorlegenden Erfindung ein verbessertes Verfahren zur Herstellung von Verbindungen der Formel (1), insbesondere von 7,8-Dihydro-5H-pteridin-6-on Derivaten, bereitzustellen.
  • Detaillierte Beschreibung der Erfindung
  • Die vorliegende Erfindung löst die vorstehend genannte Aufgabe über das im folgenden beschriebene Syntheseverfahren für Verbindungen der Formel (I).
  • Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I
    Figure imgb0002
    worin
  • R1
    ein Rest ausgewählt aus der Gruppe bestehend aus Chlor, Fluor, Brom, Methansulfonyl, Ethansulfonyl, Trifluormethansulfonyl, para-Toluolsulfonyl, CH3S(=O)- und PhenylS(=O)-
    R2
    Wasserstoff oder C1-C3-Alkyl,
    R3
    Wasserstoff oder ein Rest ausgewählt aus der Gruppe bestehend aus gegebenenfalls substituiertem C1-C12-Alkyl, C2-C12-Alkenyl, C2-C12-Alkinyl und C6-C14-Aryl, oder
    ein Rest ausgewählt aus der Gruppe bestehend aus gegebenenfalls substituiertem und/oder verbrücktem C3-C12-Cycloalkyl, C3-C12-Cycloalkenyl, C7-C12-Polycycloalkyl, C7-C12-Polycycloalkenyl, C5-C12-Spirocycloalkyl und gesättigtes oder ungesättigtes C3-C12-Heterocycloalkyl, das 1 bis 2 Heteroatome enthält,
    R4, R5
    gleich oder verschieden Wasserstoff oder gegebenenfalls substituiertes C1-C6-Alkyl, oder
    R4 und R5
    gemeinsam eine 2- bis 5-gliedrige Alkylbrücke, die bis 2 Heteroatome enthalten kann, oder
    R4 und R3 oder R5 und R3
    gemeinsam eine gesättigte oder ungesättigte C3-C4-Alkylbrücke, die gegebenenfalls 1 Heteroatom enthalten kann,
    und
    A1 und A2
    -N=,
    bedeuten,
    wobei eine Verbindung der Formel II
    Figure imgb0003
    worin
    R1-R5 und A1, A2 die angegebene Bedeutung aufweisen und
    R6 C1-C4-Alkyl bedeutet,
    1. a) in Anwesenheit eines Hydrierkatalysators mit Wasserstoff hydriert wird und
    2. b) eine Kupfer-, Eisen- oder Vanadium-Verbindung zugegeben wird,
    wobei die Schritte a) und b) gleichzeitig oder nacheinander erfolgen können.
  • Bevorzugt ist ein Verfahren, wobei die Hydrierung der Verbindung der Formel II direkt in Anwesenheit des Hydrierkatalysators und der Kupfer-, Eisen- oder Vanadium-Verbindung zur Verbindung der Formel I durchgeführt wird.
  • Besonders bevorzugt ist ein Verfahren, wobei nach dem ersten Hydrierungsschritt a) zunächst das Zwischenprodukt der Formel III erhalten wird, das gegebenenfalls isoliert werden kann,
    Figure imgb0004
    und anschließend in Gegenwart von einem Hydrierkatalysator und einer Kupfer-, Eisen- oder Vanadium-Verbindung zu einer Verbindung der Formel I weiterreduziert wird
    Figure imgb0005
  • Weiterhin bevorzugt ist ein Verfahren, wobei der Hydrierkatalysator ausgewählt ist aus der Gruppe bestehend aus Rhodium, Ruthenium, Iridium, Platin, Palladium und Nickel vorzugsweise Platin, Palladium und Raney-Nickel. Insbesondere bevorzugt ist Platin. Platin kann in metallischer Form oder oxidierter Form als Platinoxid auf Trägern wie z.B. Aktivkohle, Siliziumdioxid, Aluminiumoxid, Calziumcarbonat, Calziumphosphat, Calziumsulfat, Bariumsulfat, Titandioxid, Magnesiumoxid, Eisenoxid, Bleioxid, Bleisulfat oder Bleicarbonat und gegebenenfalls zusätzlich dotiert mit Schwefel oder Blei verwendet werden. Bevorzugtes Trägermaterial ist Aktivkohle, Siliziumdioxid oder Aluminiumoxid.
  • Bevorzugte Kupfer-Verbindungen sind Verbindungen in denen Kupfer die Oxidationsstufen I oder II einnimmt, beispielsweise die Halogenide des Kupfers wie z.B. CuCl, CuCl2, CuBr, CuBr2, CuI oder CuSO4. Bevorzugte Eisen-Verbindungen sind Verbindungen in denen Eisen die Oxidationsstufen II oder III einnimmt, beispielsweise die Halogenide des Eisens wie z.B. FeCl2, FeCl3, FeBr2, FeBr3, FeF2 oder andere Eisenverbindungen wie z.B. FeSO4, FePO4 oder Fe(acac)2.
  • Bevorzugte Vanadium-Verbindungen sind Verbindungen in denen Vanadium die Oxidationsstufen 0, II, III, IV oder V einnimmt, beispielsweise anorganische oder organische Verbindungen oder Komplexe wie z.B. V2O3, V2O5, V2O4, Na4VO4, NaVO3, NH4VO3, VOCl2, VOCl3, VOSO4, VCl2, VCl3, Vanadiumoxobis(1-phenyl-1,3-butandionat), Vanadiumoxotriisopropoxid, Vanadium(III)acetylacetonat [V(acac)3]oder Vanadium(IV)oxyacetylacetonat [VO(acac)2]. Besonders bevorzugt ist Vanadium(IV)oxyacetylacetonat [VO(acac)2].
  • Die Kupfer-, Eisen- oder Vanadium-Verbindung kann wahlweise entweder direkt zu Beginn der Hydrierung eingesetzt werden oder nach Bildung der Zwischenstufe der Formel (III).
  • Weiterhin bevorzugt ist ein Verfahren, worin die Menge an zugesetztem HydrierKatalysator zwischen 0.1 und 10 Gewichts-% bezogen auf die eingesetzte Menge der Verbindung der Formel (II) liegt.
  • Weiterhin bevorzugt ist ein Verfahren, worin die Menge an eingesetzter Kupfer-, Eisen- oder Vanadium-Verbindung zwischen 0.01 und 10 Gewichts-% bezogen auf die eingesetzte Menge der Verbindung der Formel (II) liegt.
  • Weiterhin bevorzugt ist ein Verfahren, worin die Reaktion durchgeführt wird in einem Lösungsmittel ausgewählt aus der Gruppe bestehend aus: Dipolaren, aprotischen Lösungsmitteln, beispielsweise Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidinon, Dimethylsulfoxid oder Sulfolan; Alkoholen, beispielsweise Methanol, Ethanol, 1-Propanol, 2-Propanol, die verschiedenen isomeren Alkohole des Butans und Pentans; Ethern, beispielsweise Diethylether, Methyl-tert.-butylether, Tetrahydrofuran, 2-Methyltetrahydrofuran, Dioxan oder Dimethoxyethan; Estern, beispielsweise Ethylacetat, 2-Propylacetat oder 1-Butylacetat; Ketonen, beispielsweise Aceton, Methylethylketon oder Methylisobutylketon; Carbonsäuren, beispielsweise Essigsäure; Apolaren Lösungsmitteln, beispielsweise Toluol, Xylol, Cyclohexan oder Methylcyclohexan, sowie aus Acetonitril, Methylenchlorid und Wasser.
  • Die Lösungsmittel können auch als Gemische eingesetzt werden.
  • Weiterhin bevorzugt ist ein Verfahren, worin die Reaktionstemperatur zwischen 0 °C und 150.°C, vorzugsweise zwischen 20°C und 100 °C liegt.
  • Weiterhin bevorzugt ist ein Verfahren, worin der Wasserstoffdruck 1 bar bis 100 bar beträgt.
  • Ein weiterer Gegenstand der Erfindung ist eine Verbindung der Formel (III)
    Figure imgb0006
    worin R1 bis R5 die angegebene Bedeutung aufweisen können.
  • Bevorzugte Verbindungen der Formel (III) sind diejenigen wobei A1 und A2 gleich -N= bedeuten.
  • Die Aufarbeitung der Umsetzungen erfolgt nach gängigen Methoden z.B. über extraktive Reinigungsschritte oder Fäll- und Kristallisations-Prozeduren.
  • Die erfindungsgemäßen Verbindungen können in Form der einzelnen optischen Isomeren, Mischungen der einzelnen Enantiomeren, Diastereomeren oder Racemate, in Form der Tautomere sowie in Form der freien Basen oder der entsprechenden Säureadditionssalze mit Säuren - wie beispielsweise Säureadditionssalze mit Halogenwasserstoffsäuren, beispielsweise Chlor- oder Bromwasserstoffsäure, oder organische Säuren, wie beispielsweise Oxal-, Fumar-, Diglycol- oder Methansulfonsäure, vorliegen.
  • Als Alkylgruppen sowie Alkylgruppen, welche Bestandteil anderer Reste sind, werden verzweigte und unverzweigte Alkylgruppen mit 1 bis 12 Kohlenstoffatomen bevorzugt 1 - 6, besonders bevorzugt 1-4 Kohlenstoffatomen bezeichnet, beispielsweise werden genannt: Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl und Dodecyl. Sofern nicht anders genannt, sind von den vorstehend genannten Bezeichnungen Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl und Dodecyl sämtliche der möglichen isomeren Formen umfaßt. Beispielsweise umfaßt die Bezeichnung Propyl die beiden isomeren Reste n-Propyl und iso-Propyl, die Bezeichnung Butyl n-Butyl, iso-Butyl, sec. Butyl und tert.-Butyl, die Bezeichnung Pentyl, iso-Pentyl, Neopentyl etc.
  • In den vorstehend genannten Alkylgruppen können gegebenenfalls ein oder mehrere Wasserstoffatome durch andere Reste ersetzt sein. Beispielsweise können diese Alkylgruppen durch Fluor substituiert sein. Es können gegebenenfalls auch alle Wasserstoffatome der Alkylgruppe ersetzt sein.
  • Als Alkylbrücke werden, soweit nicht anders angegeben, verzweigte und unverzweigte Alkylgruppen mit 2 bis 5 Kohlenstoffatomen, beispielsweise Ethylen, Propylen-, Isopropylen-, n-Butylen, iso-Butyl, sec. Butyl und tert.-Butyl etc. Brücken bezeichnet. Besonders bevorzugt sind Etyhlen, Propylen- und Butylen-Brücken. In den genannten Alkylbrücken können gegebenenfalls 1 bis 2 C-Atome durch ein oder mehrere Heteroatome ausgewählt aus der Gruppe Sauerstoff, Stickstoff oder Schwefel ersetzt sein.
  • Als Alkenylgruppen (auch soweit sie Bestandteil anderer Reste sind) werden verzweigte und unverzweigte Alkylengruppen mit 2 bis 12 Kohlenstoffatomen, bevorzugt 2 - 6 Kohlenstoffatomen, besonders bevorzugt 2 - 3 Kohlenstoffatomen betrachtet, soweit sie mindestens eine Doppelbindung aufweisen. Beispielsweise werden genannt: Ethenyl, Propenyl, Butenyl, Pentenyl etc. Sofern nicht anders genannt, sind von den vorstehend genannten Bezeichnungen Propenyl, Butenyl etc. sämtliche der möglichen isomeren Formen umfaßt. Beispielsweise umfaßt die Bezeichnung Butenyl 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-Propenyl, 1-Methyl-2-Propenyl, 2-Methyl-1-Propenyl, 2-Methyl-2-Propenyl und 1-Ethyl-1-Ethenyl.
  • In den vorstehend genannten Alkenylgruppen können, soweit nicht anders beschrieben, gegebenenfalls ein oder mehrere Wasserstoffatome durch andere Reste ersetzt sein. Beispielsweise können diese Alkylgruppen durch die Halogenatome Fluor substituiert sein. Es können gegebenenfalls auch alle Wasserstoffatome der Alkenylgruppe ersetzt sein.
  • Als Alkinylgruppen (auch soweit sie Bestandteil anderer Reste sind) werden verzweigte und unverzweigte Alkinylgruppen mit 2 bis 12 Kohlenstoffatomen bezeichnet, soweit sie mindestens eine Dreifachbindung aufweisen, beispielsweise Ethinyl, Propargyl, Butinyl, Pentinyl, Hexinyl etc., vorzugsweise Ethinyl oder Propinyl.
  • In den vorstehend genannten Alkinylgruppen können, soweit nicht anders beschrieben, gegebenenfalls ein oder mehrere Wasserstoffatome durch andere Reste ersetzt sein. Beispielsweise können diese Alkylgruppen Fluor substituiert sein. Es können gegebenenfalls auch alle Wasserstoffatome der Alkinylgruppe ersetzt sein.
  • Der Begriff Aryl steht für ein aromatisches Ringsystem mit 6 bis 14 Kohlenstoffatomen, vorzugsweise 6 oder 10 Kohlenstoffatomen, bevorzugt Phenyl, das, soweit nicht anders beschrieben, beispielsweise einen oder mehrere der nachfolgend genannten Substituenten tragen kann: OH, NO2, CN, OMe, -OCHF2, -OCF3, Halogen, vorzugsweise Fluor oder Chlor, C1-C10-Alkyl, vorzugsweise C1-C5-Alkyl, bevorzugt C1-C3-Alkyl, besonders bevorzugt Methyl oder Ethyl, -O-C1-C3-Alkyl, vorzugsweise -O-Methyl oder-O-Ethyl, -COOH, -COO-C1-C4-Alkyl, vorzugsweise -O-Methyl oder-O-Ethyl, -CONH2.
  • Als Cycloalkylreste werden Cycloalkylreste mit 3 - 12 Kohlenstoffatomen beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl, vorzugsweise Cyclopropyl, Cyclopentyl oder Cyclohexyl bezeichnet, wobei jeder der vorstehend genannten Cycloalkylreste gegebenenfalls ferner einen oder mehrere Substituenten tragen kann, beispielsweise: OH, NO2, CN, OMe, -OCHF2, - OCF3 oder Halogen, vorzugsweise Fluor oder Chlor, C1-C10-Alkyl, vorzugsweise C1-C5-Alkyl, bevorzugt C1-C3-Alkyl, besonders bevorzugt Methyl oder Ethyl, -O-C1-C3-Alkyl, vorzugsweise -O-Methyl oder -O-Ethyl, -COOH, -COO-C1-C4-Alkyl, vorzugsweise -COO-Methyl oder-COO-Ethyl oder -CONH2. Besonders bevorzugte Substituenten der Cycloalkylreste sind =O, OH, Methyl oder F.
  • Als Cycloalkenylreste werden Cycloalkylreste mit 3 - 12 Kohlenstoffatomen, die mindestens eine Doppelbindung aufweisen, beispielsweise Cyclopropenyl, Cyclobutenyl, Cyclopentenyl, Cyclohexenyl oder Cycloheptenyl, vorzugsweise Cyclopropenyl, Cyclopentenyl oder Cyclohexenyl bezeichnet, wobei jeder der vorstehend genannten Cycloalkenylreste gegebenenfalls ferner einen oder mehrere Substituenten tragen kann.
  • "=O" bedeutet ein über eine Doppelbindung verknüpftes Sauerstoffatom.
  • Als Heterocycloalkylreste werden, soweit in den Definitionen nicht anders beschrieben, 3 bis 12 gliedrige, vorzugsweise 5- ,6- oder 7-gliedrige, gesättigte oder ungesättigte Heterocyclen, die als Heteroatome Stickstoff, Sauerstoff oder Schwefel enthalten können, beispielsweise Tetrahydrofuran, Tetrahydrofuranon, γ-Butylrolacton, α-Pyran, γ-Pyran, Dioxolan, Tetrahydropyran, Dioxan, Dihydrothiophen, Thiolan, Dithiolan, Pyrrolin, Pyrrolidin, Pyrazolin, Pyrazolidin, Imidazolin, Imidazolidin, Tetrazol, Piperidin, Pyridazin, Pyrimidin, Pyrazin, Piperazin, Triazin, Tetrazin, Morpholin, Thiomorpholin, Diazepan, Oxazin, Tetrahydro-oxazinyl, Isothiazol, Pyrazolidin genannt, vorzugsweise Morpholin, Pyrrolidin, Piperidin oder Piperazin, genannt, wobei der Heterocyclus gegebenenfalls Substituenten tragen kann , beispielsweise C1-C4-Alkyl, vorzugsweise Methyl, Ethyl oder Propyl.
  • Als Polycycloalkylreste werden gegebenenfalls substituierte, Bi-, Tri-, Tetra- oder pentacyclische Cycloalkylreste, beispielsweise Pinan, 2,2,2-Octan, 2,2,1-Heptan oder Adamantan, bezeichnet. Als Polycycloalkenylreste werden gegebenenfalls verbrückte oder/und substituierte, 8- gliedrige Bi-, Tri-, Tetra- oder pentacyclische Cycloalkenyllreste, vorzugsweise Bicycloalkenyl, oder Tricycloalkenylreste, sofern sie mindestens eine Doppelbindung aufweisen, beispielsweise Norbornen, bezeichnet. Als Spiroalkylreste werden gegebenenfalls substituierte spirocyclische C5-C12 Alkylreste bezeichnet.
  • Als Halogen wird im allgemeinen Fluor, Chlor, Brom oder Jod bezeichnet, vorzugsweise Fluor, Chlor oder Brom, besonders bevorzugt Chlor.
  • Der Substituent R1 kann ein Rest ausgewählt aus der Gruppe bestehend aus Chlor, Fluor, Brom, Methansulfonyl, Ethansulfonyl, Trifluormethansulfonyl und para-Toluolsulfonyl, vorzugsweise Chlor bedeuten.
  • Der Substituent R2 kann Wasserstoff oder C1-C3-Alkyl, bevorzugt Wasserstoff, bedeuten.
  • Der Substituent R3 kann Wasserstoff,
    oder ein Rest ausgewählt aus der Gruppe bestehend aus gegebenenfalls substituiertem C1-C12-Alkyl, C2-C12-Alkenyl, C2-C12-Alkinyl, und C6-C14-Aryl, vorzugsweise Phenyl,
    oder ein Rest ausgewählt aus der Gruppe bestehend aus gegebenenfalls substituiertem und/oder verbrücktem C3-C12-Cycloalkyl, vorzugsweise Cyclopentyl, C3-C12-Cycloalkenyl, C7-C12-Polycycloalkyl, C7-C12-Polycycloalkenyl, C5-C12-Spirocycloalkyl und gesättigtes oder ungesättigtes C3-C12-Heterocycloalkyl, das 1 bis 2 Heteroatome enthält,
    bedeuten.
  • Die Substituenten R4, R5 sind gleich oder verschieden und können Wasserstoff,
    oder gegebenenfalls substituiertes C1-C6-Alkyl,
    oder R4 und R5 gemeinsam eine 2- bis 5-gliedrige Alkylbrücke, die 1 bis 2 Heteroatome enthalten kann,
    oder R4 und R3 oder R5 und R3 gemeinsam eine gesättigte oder ungesättigte
    C3-C4-Alkylbrücke, die gegebenenfalls 1 Heteroatom enthalten kann, bedeuten.
  • A1 und A2 können -N= bedeuten.
  • R6 kann einen C1-C4-Alkyl, vorzugsweise Methyl oder Ethyl, bedeuten.
  • Die Herstellung der Verbindung der Formel (II) kann nach literäturbekannten Methoden, beispielsweise analog den in WO 03/020722 beschrieben Synthesen erfolgen.
  • Die Verbindungen der allgemeinen Formel (I) können u.a. in Analogie zu nachfolgendem Synthesebeispielen synthetisiert werden. Diese Beispiele sind allerdings nur als exemplarische Vorgehensweise zur weitergehenden Erläuterung der Erfindung zu verstehen, ohne selbige auf dessen Gegenstand zu beschränken. Die allgemeine Synthese ist in Schema (1) dargestellt.
    Figure imgb0007
  • Synthese von (7R)-2-Chlor-8-cyclopentyl-7-ethyl-5-hydroxy-7,8-dihydro-5H-pteridin-6-on
  • Figure imgb0008
  • 30 g (84.2 mmol) von 1 werden in 300 ml Tetrahydrofuran gelöst und 3 g Pt/C (5%) zugesetzt. Die Reaktionsmischung wird 5 h bei 35°C und einem Wasserstoffdruck von 4 bar hydriert. Der Katalysator wird abfiltriert und mit ca. 30 ml Tetrahydrofuran gewaschen. Das Filtrat wird unter vermindertem Druck eingedampft. Man erhält 25,6g von Produkt 2 als gelben Feststoff.
    1H-NMR (400 MHZ) (DMSOd6): δ 11.05 (bs 1H); 7.85 (s 1H); 4.47-4.45 (dd 1H); 4.16-4.08 (t 1H); 1.95-1.67 (m 10H); 0.80-0.73 (t 3H)
  • Synthese von (7R)-2-Chlor-8-cyclopentyl-7-ethyl-7,8-dihydro-5H-pteridin-6-on
  • Figure imgb0009
  • 5,22 g (17,6 mmol) von 2 werden in 55 ml Tetrahydrofuran gelöst. 520 mg Pt-C (5%) und 250 mg Vanadium(IV)oxyacetylacetonat werden zugegeben. Die Reaktionsmischung wird 6 Stunden bei 20°C und einem Wasserstoffdruck von 4 bar hydriert. Der Katalysator wird abfiltriert und mit ca. 15 ml Tetrahydrofuran gewaschen. Das Filtrat wird unter vermindertem Druck eingedampft.
    Man erhält 5,0 g von Produkt 3 als gelbes Pulver.
    1H-NMR (400 MHz) (DMSOd6): δ 11.82 (bs 1H); 7.57 (s 1H); 4.24-4.21 (dd 1H); 4.17-4.08 (m 1H); 1.97-1.48 (m 10H); 0.80-0.77 (t 3H).
  • Synthese von: (7R)-2-Chlor-8-cyclopentyl-7-ethyl-7,8-dihydro-5H-pteridin-6-on
  • Zu einer Lösung von 700g (1,96 mol) von 1 in 700 ml Tetrahydrofuran gibt man 70g Pt/C (5%). Die Reaktionsmischung wird 2,5 Stunden bei 35°C und einem Wasserstoffdruck von 4 bar bis zum Stillstand der Wasserstoffaufnahme hydriert. Der Autoklav wird geöffnet und man gibt 35g Vanadium(IV)oxyacetylacetonat zu. Man hydriert weitere 2,5 Stunden bei 35°C und einem Wasserstoffdruck von 4 bar. Es wird filtriert und der Rückstand mit Tetrahydrofuran gewaschen. Das Filtrat wird unter vermindertem Druck eingedampft. Der Rückstand wird in 2.75 L Aceton gelöst und durch Zusatz von ebenso viel entmineralisiertem Wasser gefällt. Der Feststoff wird abgenutscht und mit einem Aceton/Wasser Gemisch (1:1), anschließend mit tert.-Butylmethylether gewaschen. Nach Trocknung erhält man 551 g von Produkt 3.
  • Synthese von: (7R)-2-Chlor-8-cyclopentyl-7-ethyl-7,8-dihydro-5H-pteridin-6-on
  • 30g (84 mmol) von 1 werden in 300 ml Tetrahydrofuran gelöst. 3g PUC (5%) und 1,5g Vanadium(IV)oxyacetylacetonat werden zugegeben. Die Reaktionsmischung wird 24 Stunden bei 35°C und einem Wasserstoffdruck von 4 bar bis zur vollständigen Umsetzung hydriert. Es wird filtriert, der Rückstand mit Tetrahydrofuran gewaschen und das Filtrat unter vermindertem Druck eingedampft. Der Rückstand wird in 118 ml Aceton gelöst und durch Zusatz von ebenso viel entmineralisiertem Wasser gefällt. Der Feststoff wird abgenutscht und mit einem Aceton/Wasser Gemisch (1:1) und anschließend mit tert.-Butylmethylether gewaschen. Nach Trocknung erhält man 18g von Produkt 3.
  • Synthese von: (7R)-2-Chlor-7-ethyl-8-isopropyl-7,8-dihydro-5H-pteridin-6-on
  • Figure imgb0010
  • 10g (316 mmol) von 4 werden in 800 ml Tetrahydrofuran und 200 ml Isopropanol gelöst. 10g Pt/C (5%) und 5g Vanadium(IV)oxyacetylacetonat werden zugegeben. Die Reaktionsmischung wird 24 Stunden bei 35°C und einem Wasserstoffdruck von 4 bar bis zur vollständigen Umsetzung hydriert. Es wird filtriert und das Filtrat bis zur beginnenden Kristallisation eingedampft. 150 ml Isopropanol werden zugegeben und die Suspension bis zur vollständigen Lösung auf 70-80°C erwärmt. Nach Zugabe von 600 ml entmineralisiertem Wasser wird das Produkt zur Kristallisation gebracht. Es wird abgesaugt und mit entmineralisiertem Wasser gewaschen. Nach Trocknung erhält man 68g von Produkt 5 .
    1H-NMR (400 MHz) (DMSOd6): δ 10.81 (bs 1H); 7.56 (s 1H); 4.37-4.24 (m 2H); 1.89-1.65 (m 2H); 1.34-1.31 (m 6H); 0.80-0.73 (t 3H)

Claims (14)

  1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I
    Figure imgb0011
    worin
    R1 ein Rest ausgewählt aus der Gruppe bestehend aus Chlor, Fluor, Brom, Methansulfonyl, Ethansulfonyl, Trifluormethansulfonyl, para-Toluolsulfonyl, CH3S(=O)- und PhenylS(=O)-,
    R2 Wasserstoff oder C1-C3-Alkyl,
    R3 Wasserstoff oder ein Rest ausgewählt aus der Gruppe bestehend aus gegebenenfalls substituiertem C1-C12-Alkyl, C2-C12-Alkenyl, C2-C12-Alkinyl und C6-C14-Aryl,
    oder
    ein Rest ausgewählt aus der Gruppe bestehend aus gegebenenfalls substituiertem und/oder verbrücktem C3-C12-Cycloalkyl, C3-C12-Cycloalkenyl, C7-C12-Polycycloalkyl, C7-C12-Polycycloalkenyl, C5-C12-Spirocycloalkyl und gesättigtes oder ungesättigtes C3-C12-Heterocycloalkyl, das 1 bis 2 Heteroatome enthält,
    R4, R5 gleich oder verschieden, Wasserstoff oder gegebenenfalls substituiertes C1-C6-Alkyl, oder
    R4 und R5 gemeinsam eine 2- bis 5-gliedrige Alkylbrücke, die 1 bis 2 Heteroatome enthalten kann, oder
    R4 und R3 oder R5 und R3 gemeinsam eine gesättigte oder ungesättigte C3-C4-Alkylbrücke, die gegebenenfalls 1 Heteroatom enthalten kann,
    und
    A1 und A2 -N=, bedeuten,
    dadurch gekennzeichnet, dass eine Verbindung der Formel II
    Figure imgb0012
    worin
    R1 bis R5, A1 und A2 die angegebene Bedeutung aus dem Anspruch 1 haben und
    R6 C1-C4-Alkyl bedeutet,
    a) in Anwesenheit eines Hydrierkatalysators mit Wasserstoff hydriert wird und
    b) eine Kupfer-, Eisen- oder Vanadium-Verbindung zugegeben wird,
    wobei die Schritte a) und b) gleichzeitig oder nacheinander erfolgen können.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in Schritt b) eine Kupfer-Verbindung zugegeben wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in Schritt b) eine Eisen-Verbindung zugegeben wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in Schritt b) eine Vanadium-Verbindung zugegeben wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Schritte a) und b) nacheinander erfolgen.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass nach dem ersten Schritt a) zunächst das Zwischenprodukt der Formel III erhalten wird, das gegebenenfalls isoliert werden kann,
    Figure imgb0013
    und daß nach dem anschließend Schritt b) eine Verbindung der Formel I erhalten wird.
  7. Verfahren nach einem der Ansprüch 1 bis 4, dadurch gekennzeichnet, dass die Schritte a) und b) gleichzeitig erfolgen.
  8. Verfahren nach einem der Ansprüch 1 bis 7, dadurch gekennzeichnet, dass der Hydrierkatalysator ausgewählt ist aus der Gruppe bestehend aus Rhodium, Ruthenium, Iridium, Platin, Palladium und Nickel.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Menge an zugesetztem Hydrierkatalysator zwischen 0.1 und 10 Gewichts-% bezogen auf die eingesetzte Menge der Verbindung der Formel (II) liegt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Menge an zugesetzter Kupfer-, Eisen- oder Vanadium-Verbindung zwischen 0.01 und 10 Gewichts-% bezogen auf die eingesetzte Menge der Verbindung der Formel (II) liegt.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Reaktion in einem Lösungsmittel oder Lösungsmittelgemisch ausgewählt aus der Gruppe bestehend aus dipolaren, aprotischen Lösungsmitteln, Alkoholen, Ethern, Estern, Carbonsäuren, apolaren Lösungsmitteln, Acetonitril, Methylenchlorid und Wasser, durchgeführt wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Reaktionstemperatur zwischen 0 °C und 150 °C liegt.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Wasserstoffdruck 1 bar bis 100 bar beträgt.
  14. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I
    Figure imgb0014
    worin
    R1 bis R5, A1 und A2 die angegebene Bedeutung aus dem Anspruch 1 haben, dadurch gekennzeichnet, dass eine Verbindung der Formel III
    Figure imgb0015
    worin
    R1 bis R5 und A1, A2 die angegebene Bedeutung aus dem Anspruch 1 haben,
    in Anwesenheit eines Hydrierkatalysators und eine Kupfer-, Eisen- oder Vanadium-Verbindung mit Wasserstoff hydriert wird.
EP05823799A 2004-12-02 2005-11-29 Verfahren zur herstellung von annelierten piperazin-2-on derivaten sowie zwischenprodukte des verfahrens Active EP1819706B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL05823799T PL1819706T3 (pl) 2004-12-02 2005-11-29 Sposób wytwarzania skondensowanych pochodnych piperazyn-2-onu oraz produkty pośrednie tego sposobu
DK11189691.6T DK2436685T3 (en) 2004-12-02 2005-11-29 The intermediate for the preparation of annealed piperazin-2-one derivatives
EP11189691.6A EP2436685B1 (de) 2004-12-02 2005-11-29 Zwischenprodukte zur Herststellung von annelierten Piperazin-2-on Derivaten
PL11189691T PL2436685T3 (pl) 2004-12-02 2005-11-29 Produkty pośrednie do wytwarzania skondensowanych pochodnych piperazyn-2-onu
SI200531631T SI1819706T1 (sl) 2004-12-02 2005-11-29 Postopek za pripravo aneliranih derivatov piperazin-2-ona in intermediati postopka
MEP-2012-124A ME01470B (me) 2004-12-02 2005-11-29 Postupak za dobijanje anelacijskih piperazin-2-on derivata i intermedijera navedenog postupka
CY20121101215T CY1113625T1 (el) 2004-12-02 2012-12-12 Μεθοδος για την παραγωγη συμπυκνωμενων παραγωγων της πιπεραζιν-2-ονης καθως και ενδιαμεσα προϊοντα της μεθοδου

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004058337A DE102004058337A1 (de) 2004-12-02 2004-12-02 Verfahren zur Herstellung von annelierten Piperazin-2-on Derivaten
PCT/EP2005/056291 WO2006058876A1 (de) 2004-12-02 2005-11-29 Verfahren zur herstellung von annelierten piperazin-2-on derivaten sowie zwischenprodukte des verfahrens

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP11189691.6A Division EP2436685B1 (de) 2004-12-02 2005-11-29 Zwischenprodukte zur Herststellung von annelierten Piperazin-2-on Derivaten
EP11189691.6A Division-Into EP2436685B1 (de) 2004-12-02 2005-11-29 Zwischenprodukte zur Herststellung von annelierten Piperazin-2-on Derivaten

Publications (2)

Publication Number Publication Date
EP1819706A1 EP1819706A1 (de) 2007-08-22
EP1819706B1 true EP1819706B1 (de) 2012-09-19

Family

ID=35923724

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05823799A Active EP1819706B1 (de) 2004-12-02 2005-11-29 Verfahren zur herstellung von annelierten piperazin-2-on derivaten sowie zwischenprodukte des verfahrens
EP11189691.6A Active EP2436685B1 (de) 2004-12-02 2005-11-29 Zwischenprodukte zur Herststellung von annelierten Piperazin-2-on Derivaten

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11189691.6A Active EP2436685B1 (de) 2004-12-02 2005-11-29 Zwischenprodukte zur Herststellung von annelierten Piperazin-2-on Derivaten

Country Status (35)

Country Link
US (9) US7238807B2 (de)
EP (2) EP1819706B1 (de)
JP (1) JP5164574B2 (de)
KR (2) KR101362131B1 (de)
CN (3) CN102070637B (de)
AR (1) AR053100A1 (de)
AU (1) AU2005311308B2 (de)
BR (1) BRPI0518601A2 (de)
CA (1) CA2588857C (de)
CL (1) CL2013002895A1 (de)
CY (1) CY1113625T1 (de)
DE (1) DE102004058337A1 (de)
DK (2) DK1819706T3 (de)
EA (1) EA012624B1 (de)
ES (2) ES2395829T3 (de)
HK (3) HK1113489A1 (de)
HR (1) HRP20120980T1 (de)
HU (1) HUE027689T2 (de)
IL (1) IL183568A (de)
ME (1) ME01470B (de)
MX (1) MX2007006549A (de)
MY (1) MY147459A (de)
NO (1) NO20072283L (de)
NZ (1) NZ556182A (de)
PE (2) PE20061061A1 (de)
PL (2) PL1819706T3 (de)
PT (1) PT1819706E (de)
RS (1) RS52533B (de)
SG (2) SG158848A1 (de)
SI (1) SI1819706T1 (de)
TW (1) TWI362391B (de)
UA (1) UA89390C2 (de)
UY (1) UY29233A1 (de)
WO (1) WO2006058876A1 (de)
ZA (1) ZA200703368B (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861422B2 (en) * 2003-02-26 2005-03-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions
DE102004029784A1 (de) * 2004-06-21 2006-01-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue 2-Benzylaminodihydropteridinone, Verfahren zur deren Herstellung und deren Verwendung als Arzneimittel
DE102004033670A1 (de) 2004-07-09 2006-02-02 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Pyridodihydropyrazinone, Verfahren zu Ihrer Herstellung und Ihre Verwendung als Arzneimittel
US7728134B2 (en) * 2004-08-14 2010-06-01 Boehringer Ingelheim International Gmbh Hydrates and polymorphs of 4[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament
US20060074088A1 (en) * 2004-08-14 2006-04-06 Boehringer Ingelheim International Gmbh Dihydropteridinones for the treatment of cancer diseases
US20060058311A1 (en) * 2004-08-14 2006-03-16 Boehringer Ingelheim International Gmbh Combinations for the treatment of diseases involving cell proliferation
US7759485B2 (en) * 2004-08-14 2010-07-20 Boehringer Ingelheim International Gmbh Process for the manufacture of dihydropteridinones
US20060035903A1 (en) * 2004-08-14 2006-02-16 Boehringer Ingelheim International Gmbh Storage stable perfusion solution for dihydropteridinones
EP1630163A1 (de) * 2004-08-25 2006-03-01 Boehringer Ingelheim Pharma GmbH & Co.KG Dihydropteridinonderivative, Verfahren zu deren Herstellung und deren Verwendung als Arzneimittel
EP1632493A1 (de) * 2004-08-25 2006-03-08 Boehringer Ingelheim Pharma GmbH & Co.KG Dihydropteridinonderivative, Verfahren zu deren Herstellung und deren Verwendung als Arzneimittel
DE102004058337A1 (de) * 2004-12-02 2006-06-14 Boehringer Ingelheim Pharma Gmbh & Co. Kg Verfahren zur Herstellung von annelierten Piperazin-2-on Derivaten
US7439358B2 (en) 2006-02-08 2008-10-21 Boehringer Ingelheim International Gmbh Specific salt, anhydrous and crystalline form of a dihydropteridione derivative
DE602007008837D1 (de) 2006-02-14 2010-10-14 Vertex Pharma Als protein-kinase-inhibitoren nutzbare dyhydrodiazepine
JP4958461B2 (ja) * 2006-03-30 2012-06-20 富士フイルム株式会社 近赤外吸収色素含有硬化性組成物
CA2675677A1 (en) 2007-02-01 2008-08-07 Astrazeneca Ab 5,6,7,8-tetrahydropteridine derivatives as hsp90 inhibitors
US8329695B2 (en) * 2007-08-03 2012-12-11 Boehringer Ingelheim International Gmbh Crystalline form of the free base N-[trans-4-[4-(cyclopropylmethyl)-1-piperazinyl]cyclohexyl]-4-[[(7r)-7-ethyl-5,6,7,8-tetrahydro-5-methyl-8-(1-methylethyl)-6-oxo-2-pteridinyl]amino]-3-methoxy-benzamide
EP2100894A1 (de) 2008-03-12 2009-09-16 4Sc Ag Pyridopyrimidinone verwendbar als Plk1 (polo-like kinase) Hemmen
CN102020643A (zh) 2009-09-22 2011-04-20 上海恒瑞医药有限公司 二氢喋啶酮类衍生物、其制备方法及其在医药上的应用
JP2013505927A (ja) 2009-09-25 2013-02-21 バーテックス ファーマシューティカルズ インコーポレイテッド プロテインキナーゼ阻害剤として有用なピリミジン誘導体の調製方法
AU2010298190A1 (en) 2009-09-25 2012-05-03 Vertex Pharmaceuticals Incorporated Methods for preparing pyrimidine derivatives useful as protein kinase inhibitors
US8546566B2 (en) 2010-10-12 2013-10-01 Boehringer Ingelheim International Gmbh Process for manufacturing dihydropteridinones and intermediates thereof
US9358233B2 (en) 2010-11-29 2016-06-07 Boehringer Ingelheim International Gmbh Method for treating acute myeloid leukemia
WO2012148548A1 (en) 2011-02-25 2012-11-01 Takeda Pharmaceutical Company Limited N-substituted oxazinopteridines and oxazinopteridinones
US9370535B2 (en) 2011-05-17 2016-06-21 Boehringer Ingelheim International Gmbh Method for treatment of advanced solid tumors
TW201414734A (zh) 2012-07-10 2014-04-16 Takeda Pharmaceutical 氮雜吲哚衍生物
US20150031699A1 (en) 2013-07-26 2015-01-29 Boehringer Ingelheim International Gmbh Treatment of myelodysplastic syndrome
WO2015106012A1 (en) 2014-01-09 2015-07-16 Takeda Pharmaceutical Company Limited Azaindole derivatives
US9867831B2 (en) 2014-10-01 2018-01-16 Boehringer Ingelheim International Gmbh Combination treatment of acute myeloid leukemia and myelodysplastic syndrome

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182872A (en) * 1976-03-22 1980-01-08 American Home Products Corporation 4-(Lower)alkyl-1-(o-nitrophenyl)piperazine-2-carboxylic acid chemical intermediates
US4032639A (en) * 1976-03-22 1977-06-28 American Home Products Corporation 2,3,4,4A-Tetrahydro-1H-pyrazino[1,2-a,]quinoxalin-5(6H)-ones and derivatives thereof for relieving hypertension
NL8303657A (nl) 1983-10-24 1985-05-17 Pharmachemie Bv Voor injectie geschikte, stabiele, waterige, zoutzuur bevattende oplossing van cisplatine, alsmede werkwijze ter bereiding daarvan.
DE3537761A1 (de) * 1985-10-24 1987-04-30 Bayer Ag Infusionsloesungen der 1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-7- (1-piperazinyl)-chinolin-3-carbonsaeure
DE68908786T2 (de) 1988-06-16 1994-03-17 Smith Kline French Lab Condensierte Pyrimidinderivate, Verfahren und Zwischenprodukte zu ihrer Herstellung und diese enthaltende pharmazeutische Zubereitungen.
FR2645152B1 (fr) * 1989-03-30 1991-05-31 Lipha 3h-pteridinones-4, procedes de preparation et medicaments les contenant
US5043270A (en) 1989-03-31 1991-08-27 The Board Of Trustees Of The Leland Stanford Junior University Intronic overexpression vectors
CA2029651C (en) 1989-11-17 2000-06-06 David D. Davey Tricyclic pteridinones and a process for their preparation
US5198547A (en) 1992-03-16 1993-03-30 South Alabama Medical Science Foundation, Usa Process for N5-formylating tetrahydropteridines
TW274550B (de) * 1992-09-26 1996-04-21 Hoechst Ag
EP1195372A1 (de) 1994-04-18 2002-04-10 Mitsubishi Pharma Corporation N-Heterozyklisch substitutierte Benzamid Deriviate mit antihypertensiver Wirkung
CO4410191A1 (es) 1994-09-19 1997-01-09 Lilly Co Eli SINTESIS DE 3-[4-(2-AMINOETOXI)BENZOIL]-2-ARIL-6- HIDROXIBENZO [b] TIOFENOS
IL117923A (en) 1995-05-03 2000-06-01 Warner Lambert Co Anti-cancer pharmaceutical compositions containing polysubstituted pyrido¬2,3-d¾pyrimidine derivatives and certain such novel compounds
EP0825979B1 (de) * 1995-05-19 2001-01-03 Novartis AG Verfahren zur katalytischen hydrogenierung von aromatischen nitroverbindungen
US5698556A (en) * 1995-06-07 1997-12-16 Chan; Carcy L. Methotrexate analogs and methods of using same
EA001881B1 (ru) 1996-09-23 2001-10-22 Эли Лилли Энд Компани Форма d дигидрата оланзапина
CA2340180A1 (en) * 1998-08-11 2000-02-24 Pfizer Products Inc. 1-aryl,-3-arylmethyl-1,8-naphthyridn-2(1h)-ones
SK3542002A3 (en) * 1999-09-15 2003-04-01 Warner Lambert Co Pteridinones as kinase inhibitors
GB2359551A (en) 2000-02-23 2001-08-29 Astrazeneca Uk Ltd Pharmaceutically active pyrimidine derivatives
CA2401368A1 (en) 2000-03-06 2001-09-27 Warner-Lambert Company 5-alkylpyrido[2,3-d]pyrimidines tyrosine kinase inhibitors
DE10018783A1 (de) 2000-04-15 2001-10-25 Fresenius Kabi De Gmbh Lagerstabile Infusionslösung des Ciprofloxacins mit verringertem Säuregehalt
US20020183292A1 (en) * 2000-10-31 2002-12-05 Michel Pairet Pharmaceutical compositions based on anticholinergics and corticosteroids
DE10058119A1 (de) * 2000-11-22 2002-05-23 Bayer Ag Pepinotan-Kit
US6756374B2 (en) 2001-01-22 2004-06-29 Hoffmann-La Roche Inc. Diaminothiazoles having antiproliferative activity
WO2002076954A1 (en) 2001-03-23 2002-10-03 Smithkline Beecham Corporation Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases
WO2002076985A1 (en) 2001-03-23 2002-10-03 Smithkline Beecham Corporation Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases
US20030055026A1 (en) 2001-04-17 2003-03-20 Dey L.P. Formoterol/steroid bronchodilating compositions and methods of use thereof
US6806272B2 (en) * 2001-09-04 2004-10-19 Boehringer Ingelheim Pharma Kg Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions
RS51012B (sr) 2001-09-04 2010-10-31 Boehringer Ingelheim Pharma Gmbh. & Co.Kg. Novi dihidropteridinoni, postupak za njihovo dobijanje i njihova primena kao lekova
UA80418C2 (en) * 2001-12-14 2007-09-25 Applied Research Systems Methods of inducing ovulation using phosphodiesterase inhibitor as non-polypeptide camp level modulator.and method of collecting oocytes for in vitro fertilization
PL372890A1 (en) * 2002-05-03 2005-08-08 Schering Aktiengesellschaft Thiazolidinones and the use thereof as polo-like kinase inhibitors
CA2493908A1 (en) 2002-08-08 2004-02-19 Smithkline Beecham Corporation Thiophene compounds
US6862422B2 (en) * 2003-02-12 2005-03-01 Kabushiki Kaisha Toshiba Image forming apparatus and image forming method having pressing members for pressing a belt-like member
EA008778B1 (ru) 2003-02-26 2007-08-31 Бёрингер Ингельхайм Фарма Гмбх Унд Ко. Кг Дигидроптеридиноны, способ их получения и их применение в качестве лекарственных средств
US6861422B2 (en) * 2003-02-26 2005-03-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions
US20040180898A1 (en) * 2003-03-03 2004-09-16 Bang-Chi Chen Processes for preparing imidazoquinoxalinones, heterocyclic-substituted imidazopyrazinones, imidazoquinoxalines and heterocyclic-substituted imidazopyrazines
BRPI0408779A (pt) 2003-03-26 2006-04-04 Wyeth Corp uso de composições, composição imunogênica e kit
JP2006522634A (ja) 2003-04-14 2006-10-05 ベクトゥラ・リミテッド 投与効率を向上させるデバイス及び製薬組成
DE102004002557A1 (de) * 2004-01-17 2005-08-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Verwendung von substituierten Pyrimido(5,4-d)pyrimidinen zur Behandlung von Atemwegserkrankungen
JP2007517828A (ja) 2004-01-17 2007-07-05 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 気道の疾患を治療するための置換プテリジンの使用
DE102004029784A1 (de) * 2004-06-21 2006-01-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue 2-Benzylaminodihydropteridinone, Verfahren zur deren Herstellung und deren Verwendung als Arzneimittel
DE102004033670A1 (de) 2004-07-09 2006-02-02 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Pyridodihydropyrazinone, Verfahren zu Ihrer Herstellung und Ihre Verwendung als Arzneimittel
DE102004034623A1 (de) * 2004-07-16 2006-02-02 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue 6-Formyl-tetrahydropteridine, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
US20060058311A1 (en) 2004-08-14 2006-03-16 Boehringer Ingelheim International Gmbh Combinations for the treatment of diseases involving cell proliferation
US20060074088A1 (en) * 2004-08-14 2006-04-06 Boehringer Ingelheim International Gmbh Dihydropteridinones for the treatment of cancer diseases
US20060035903A1 (en) * 2004-08-14 2006-02-16 Boehringer Ingelheim International Gmbh Storage stable perfusion solution for dihydropteridinones
US7728134B2 (en) * 2004-08-14 2010-06-01 Boehringer Ingelheim International Gmbh Hydrates and polymorphs of 4[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament
US7759485B2 (en) * 2004-08-14 2010-07-20 Boehringer Ingelheim International Gmbh Process for the manufacture of dihydropteridinones
EP1630163A1 (de) * 2004-08-25 2006-03-01 Boehringer Ingelheim Pharma GmbH & Co.KG Dihydropteridinonderivative, Verfahren zu deren Herstellung und deren Verwendung als Arzneimittel
EP1632493A1 (de) 2004-08-25 2006-03-08 Boehringer Ingelheim Pharma GmbH & Co.KG Dihydropteridinonderivative, Verfahren zu deren Herstellung und deren Verwendung als Arzneimittel
JP2008510770A (ja) * 2004-08-26 2008-04-10 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Plk阻害剤としての新規プテリジノン
CA2578560A1 (en) * 2004-08-27 2006-03-02 Boehringer Ingelheim International Gmbh Dihydropteridinones, method for the production thereof, and use thereof as a medicament
DE102004058337A1 (de) 2004-12-02 2006-06-14 Boehringer Ingelheim Pharma Gmbh & Co. Kg Verfahren zur Herstellung von annelierten Piperazin-2-on Derivaten
JP2009503014A (ja) 2005-08-03 2009-01-29 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 呼吸器系疾患の治療におけるジヒドロプテリジノン
US7439358B2 (en) * 2006-02-08 2008-10-21 Boehringer Ingelheim International Gmbh Specific salt, anhydrous and crystalline form of a dihydropteridione derivative
EP1994002A1 (de) 2006-03-07 2008-11-26 AstraZeneca AB Piperidinderivate, verfahren zu ihrer herstellung, ihre verwendung als therapeutische mittel und pharmazeutische zusammensetzungen, die sie enthalten
US8329695B2 (en) 2007-08-03 2012-12-11 Boehringer Ingelheim International Gmbh Crystalline form of the free base N-[trans-4-[4-(cyclopropylmethyl)-1-piperazinyl]cyclohexyl]-4-[[(7r)-7-ethyl-5,6,7,8-tetrahydro-5-methyl-8-(1-methylethyl)-6-oxo-2-pteridinyl]amino]-3-methoxy-benzamide

Also Published As

Publication number Publication date
ME01470B (me) 2014-04-20
CN101065381B (zh) 2011-03-30
CN102070637A (zh) 2011-05-25
BRPI0518601A2 (pt) 2008-11-25
CA2588857A1 (en) 2006-06-08
CN102093361B (zh) 2014-05-07
DK1819706T3 (da) 2013-01-02
US20070219369A1 (en) 2007-09-20
US20070213529A1 (en) 2007-09-13
CL2013002895A1 (es) 2014-03-14
UY29233A1 (es) 2006-07-31
KR101395591B1 (ko) 2014-05-16
US20070208027A1 (en) 2007-09-06
US7626019B2 (en) 2009-12-01
CN102070637B (zh) 2012-09-26
HUE027689T2 (hu) 2021-12-28
KR20120136414A (ko) 2012-12-18
CN102093361A (zh) 2011-06-15
DE102004058337A1 (de) 2006-06-14
US7238807B2 (en) 2007-07-03
ES2395829T3 (es) 2013-02-15
SI1819706T1 (sl) 2013-01-31
RS52533B (en) 2013-04-30
KR20070092252A (ko) 2007-09-12
EA012624B1 (ru) 2009-10-30
EP2436685A1 (de) 2012-04-04
PE20061061A1 (es) 2006-11-10
PE20090488A1 (es) 2009-05-27
TW200628471A (en) 2006-08-16
ZA200703368B (en) 2008-09-25
AU2005311308A1 (en) 2006-06-08
WO2006058876A1 (de) 2006-06-08
AU2005311308B2 (en) 2012-04-12
KR101362131B1 (ko) 2014-02-19
HK1113489A1 (en) 2008-10-03
EA200701164A1 (ru) 2007-12-28
US20070213530A1 (en) 2007-09-13
UA89390C2 (ru) 2010-01-25
JP5164574B2 (ja) 2013-03-21
MY147459A (en) 2012-12-14
CN101065381A (zh) 2007-10-31
HK1158200A1 (en) 2012-07-13
EP1819706A1 (de) 2007-08-22
IL183568A0 (en) 2007-09-20
US20070213531A1 (en) 2007-09-13
PL1819706T3 (pl) 2013-03-29
MX2007006549A (es) 2007-06-18
USRE43115E1 (en) 2012-01-17
NZ556182A (en) 2009-08-28
JP2008521861A (ja) 2008-06-26
IL183568A (en) 2015-02-26
CA2588857C (en) 2013-10-08
CY1113625T1 (el) 2016-06-22
EP2436685B1 (de) 2015-07-01
US20070213534A1 (en) 2007-09-13
US20070213528A1 (en) 2007-09-13
US20060122393A1 (en) 2006-06-08
TWI362391B (en) 2012-04-21
PL2436685T3 (pl) 2015-11-30
SG141461A1 (en) 2008-04-28
ES2548680T3 (es) 2015-10-20
HK1158199A1 (en) 2012-07-13
SG158848A1 (en) 2010-02-26
NO20072283L (no) 2007-06-28
DK2436685T3 (en) 2015-09-14
PT1819706E (pt) 2012-12-06
AR053100A1 (es) 2007-04-25
HRP20120980T1 (hr) 2012-12-31

Similar Documents

Publication Publication Date Title
EP1819706B1 (de) Verfahren zur herstellung von annelierten piperazin-2-on derivaten sowie zwischenprodukte des verfahrens
EP1778668B1 (de) Verfahren zur herstellung von dihydropteridinonen
EP1383770B1 (de) Verfahren zur herstellung von 4,6-diaminopyrimido 5,4-d]pyrimidinen
CH670644A5 (de)
DE2248477A1 (de) Imidazolinverbindungen
DE2841644C2 (de)
EP0570764A2 (de) Asymmetrische Hydrierung
EP1904458A1 (de) Verfahren zur herstellung von chinazolinonderivaten
EP0656358A1 (de) Verfahren zur Herstellung von Imidazopyridinderivaten
DE1904081A1 (de) Benzoxazinderivate und Verfahren ? Herstellung
WO2023186692A1 (de) Verfahren zur herstellung von cis-4-aminotetrahydrofuran-2-carbonsäureestern
DE60308170T2 (de) Verfahren zur herstellung von chinolinderivaten
DE3347526A1 (de) Verfahren zur herstellung substituierter chinazolin-2.4(1h.3h)-dione
CH634835A5 (de) Verfahren zur herstellung von neuen benzodiazepinderivaten.
AT339912B (de) Verfahren zur herstellung von neuen azetidinverbindungen
DE19858352A1 (de) Verfahren zum Herstellen von 2,4-Dimethyl-3,5-bis-alkoxycarbonyl-pyrrol
EP0548640A2 (de) Verfahren zur Herstellung von 2,4,5-Triamino-6-halogenopyrimidinen und 2-Amino-6-halogenopurinen
EP2233481A1 (de) Verfahren zur Herstellung von Mefloquin
DE1445895B (de) Verfahren zur Herstellung von 2-Dehydroemetinderivaten
DE1071089B (de) Verfahren zur Herstellung von Bis-(y-chlorpropyl)-amin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: BA HR YU

RAX Requested extension states of the european patent have changed

Extension state: YU

Payment date: 20070702

Extension state: HR

Payment date: 20070702

Extension state: BA

Payment date: 20070702

17Q First examination report despatched

Effective date: 20091120

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHRINGER INGELHEIM INTERNATIONAL GMBH

Owner name: BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: BA HR YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 575961

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013118

Country of ref document: DE

Effective date: 20121115

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20120980

Country of ref document: HR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20121120

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20120980

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E007421

Country of ref document: EE

Effective date: 20121203

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2395829

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130215

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 13003

Country of ref document: SK

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

Ref country code: GR

Ref legal event code: EP

Ref document number: 20120402790

Country of ref document: GR

Effective date: 20130205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130620

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E016214

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013118

Country of ref document: DE

Effective date: 20130620

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20120980

Country of ref document: HR

Payment date: 20141107

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20141121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20141124

Year of fee payment: 10

Ref country code: RO

Payment date: 20141030

Year of fee payment: 10

Ref country code: GR

Payment date: 20141125

Year of fee payment: 10

Ref country code: EE

Payment date: 20141112

Year of fee payment: 10

Ref country code: CZ

Payment date: 20141125

Year of fee payment: 10

Ref country code: LT

Payment date: 20141022

Year of fee payment: 10

Ref country code: BG

Payment date: 20141112

Year of fee payment: 10

Ref country code: MC

Payment date: 20141113

Year of fee payment: 10

Ref country code: SK

Payment date: 20141126

Year of fee payment: 10

Ref country code: FI

Payment date: 20141112

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20141111

Year of fee payment: 10

Ref country code: PT

Payment date: 20141127

Year of fee payment: 10

Ref country code: SI

Payment date: 20141028

Year of fee payment: 10

Ref country code: IS

Payment date: 20141021

Year of fee payment: 10

Ref country code: CY

Payment date: 20141112

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20160530

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20120980

Country of ref document: HR

Effective date: 20151129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20151129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E007421

Country of ref document: EE

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160602

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 13003

Country of ref document: SK

Effective date: 20151129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160530

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160531

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20160712

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20120402790

Country of ref document: GR

Effective date: 20160602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20161118

Year of fee payment: 12

Ref country code: DK

Payment date: 20161118

Year of fee payment: 12

Ref country code: HU

Payment date: 20161115

Year of fee payment: 12

Ref country code: CH

Payment date: 20161121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20161125

Year of fee payment: 12

Ref country code: AT

Payment date: 20161121

Year of fee payment: 12

Ref country code: IT

Payment date: 20161123

Year of fee payment: 12

Ref country code: ES

Payment date: 20161110

Year of fee payment: 12

Ref country code: SE

Payment date: 20161118

Year of fee payment: 12

Ref country code: BE

Payment date: 20161118

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20161115

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151129

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20171130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 575961

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 19

Ref country code: DE

Payment date: 20231121

Year of fee payment: 19