EP1521901B1 - Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers - Google Patents

Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers Download PDF

Info

Publication number
EP1521901B1
EP1521901B1 EP03740391.2A EP03740391A EP1521901B1 EP 1521901 B1 EP1521901 B1 EP 1521901B1 EP 03740391 A EP03740391 A EP 03740391A EP 1521901 B1 EP1521901 B1 EP 1521901B1
Authority
EP
European Patent Office
Prior art keywords
controller
rotational speed
adjustment
camshaft
control structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03740391.2A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1521901A1 (de
Inventor
Jens Schäfer
Martin Steigerwald
Martin Overberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP1521901A1 publication Critical patent/EP1521901A1/de
Application granted granted Critical
Publication of EP1521901B1 publication Critical patent/EP1521901B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/024Belt drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • F02D2041/1419Several control loops, either as alternatives or simultaneous the control loops being cascaded, i.e. being placed in series or nested
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2101Cams
    • Y10T74/2102Adjustable

Definitions

  • the invention relates to a control structure for achieving the desired adjustment speed of an adjusting motor of an electric adjusting device of the camshaft of an internal combustion engine according to the preamble of patent claim 1.
  • a major requirement of an ideal camshaft adjuster is to ensure an exact compliance with the desired Verstellwinkelverlaufs the camshaft. In reality, however, there are deviations between the desired and the actual Verstellwinkelverlauf. These are due to mechanical and electrical inertia as well as the influence of disturbances such as the camshaft torque.
  • a reduction in the deviations from the desired displacement curve of the camshaft leads to a reduction in pollutant emissions and fuel consumption, to increase engine power and torque and to a reduction of the on-board network load and the high emission values in the starting phase.
  • the latter requires that the camshaft adjuster is adjustable before or during engine start. This requirement can only be met by an electric camshaft adjuster, since hydraulic adjusters are inoperative before and during the starting phase for lack of lubricating oil pressure.
  • the quality of the regulated system is determined by the Target-actual displacement curve of the camshaft determined. It is increased by minimizing the deviations from the desired adjustment angle.
  • a control structure according to the preamble of claim 1 is in DE 100 38 354 A1 disclosed.
  • the invention has for its object to provide a control structure for the electric variable displacement motor of a camshaft adjuster, which has a lowest possible deviation of the actual adjustment angle of the target adjustment angle of the camshaft and a low power consumption of the adjustment motor in the entire operating range of the internal combustion engine.
  • the input signal is a difference signal, it approaches the actual and setpoint of size 0 with increasing agreement. This also applies for the output signal, which supplies a controlled setpoint adjustment speed of the variable displacement motor, which then comes to a standstill.
  • the variable displacement motor must rotate with the camshaft speed.
  • a stationary adjusting motor leads to an adjustment of the rotational angle position of the camshaft whose adjusting speed increases with the rotational speed of the internal combustion engine.
  • the required setpoint speed is predetermined to the adjusting motor during the operating time of the internal combustion engine by adding up the uncontrolled speed signal, which is thus independent of the differential signal.
  • the position of the camshaft can be held to the crankshaft.
  • a position control which relates to the camshaft adjustment angle
  • a speed control which refers to the variable engine speed
  • controller for the speed control, inter alia, P, PI, PID, prediction or observer controller.
  • the position control is performed by a prediction controller.
  • PI controller for small target-Ist-Verstellwinkelabweichitch a PI controller and for large target-Ist-Verstellwinkelabweichitch a P controller advantageous. Fuzzy logic controllers are also conceivable.
  • the advantage of the prediction controller is that, depending on the respective displacement angle jump of the camshaft, it predetermines an adjustment speed which can be delayed by the adjusting motor in the period available for this purpose. In this way, the overshooting of the angle of rotation of the camshaft is avoided and thereby saves adjustment energy.
  • the prediction controller of the position control and the PID controller of the speed control are used individually or in series.
  • An advantageous embodiment of the invention is that with position control of the prediction as an input signal, the difference signal between an actual displacement and a target displacement angle of the camshaft and output as a controlled target adjustment speed for the adjusting and that the added speed is the camshaft speed.
  • the added camshaft speed prevents the entire operating range of the engine standstill of the variable displacement motor and thus a faulty control.
  • the PID controller has as input signal the difference signal between an actual adjustment speed and a desired adjustment speed of the adjustment motor and as output signal a regulated desired adjustment speed for the adjustment motor in the form of a voltage value or a duty-modulated voltage the added speed is the uneven and spannunsgeterte desired adjustment speed of the variable displacement motor.
  • the added up unregulated desired adjustment speed of the adjusting motor in which the camshaft speed is included, prevents a stoppage of the adjusting motor and the associated faulty control.
  • An advantageous development of the invention is that, when the prediction controller and the PID controller are connected in series, the output signal of the prediction controller with added camshaft rotational speed in voltage-converted form also serves as a connection signal for the output signal of the PID controller. Since the output signals of both controllers, the camshaft speed In this case, a standstill of the adjusting motor is reliably prevented even in this case.
  • the PID controller of the speed control has a current limiting function, preferably a two-point current regulator.
  • the current regulator decreases the voltage or the duty cycle modulated voltage, as a result of which the current drops.
  • the current limit value is undershot, the current regulation acts in the reverse direction.
  • a cost saving results from the fact that the angular position of the camshaft is not measured by a camshaft sensor but by a Hall sensor of the adjusting motor. Since the stator of a brushless DC motor anyway has at least one Hall sensor, thus eliminating a special camshaft sensor.
  • FIG. 1 an internal combustion engine 1 is shown schematically.
  • the camshaft 5 has an electrical camshaft adjuster 6 with an adjusting gear 7 and an electric adjusting motor 8.
  • the rotational angle position of the crankshaft 2 is measured by means of a crankshaft sensor 9, the rotational angle position of the camshaft 5 by means of a camshaft sensor 10.
  • the signals of the sensors 9, 10 pass through a control unit 11 of the internal combustion engine 1 to a control unit 12 of the adjusting motor 8. There they are converted into control signals for the adjusting motor 8.
  • FIG. 2 shows the diagram of the internal combustion engine 1 of FIG. 1
  • the camshaft sensor 10 has been replaced by an existing in brushless DC motors without Hall sensor 13 of the adjusting motor 8.
  • the camshaft adjuster 6 is shown schematically.
  • the adjusting 7 is designed as a three-shaft gear, with a drive shaft connected to the Nockenwellenantriebsrad 4, an output shaft connected to the camshaft 5 and a Verstellwelle 14, which are rotatably connected to a rotor 15 of the adjusting 8.
  • the adjusting motor 8 has a stator 16 is formed on the housing fixed.
  • FIG. 4 A differential signal 17 ⁇ 18 of an actual displacement angle 17 and a desired displacement angle 18 between the crankshaft 2 and the camshaft 5 is the input signal of a PID controller 19. Its output signal 20 includes a controlled Sollverstellitchiere for the adjusting motor eighth ,
  • the difference signal 17 ⁇ 18 approaches the value 0.
  • the output signal 20 and thus the controlled setpoint adjustment speed of the adjustment motor 8 also approaches this value.
  • the rotor 15 of the adjusting motor 8 must rotate at camshaft speed. Deviations from this speed affect, especially at higher speeds of the internal combustion engine 1 as significant rule position deviations.
  • the camshaft speed 21 is added to the output signal 20 of the controller 19 and set as the setpoint speed 20 + 21 the adjusting motor 8, in this way, the adjusting motor 8 rotates at least with the camshaft speed 21, whereby the control position the camshaft 5 is maintained.
  • FIG. 5 in the rule structure of a position control shows. This is dependent on the jump size of the adjustment angle of the adjusting motor 8 in the available time just delayable adjustment speed.
  • the size of the input signal 17 ⁇ 18 of the prediction controller 22 corresponds to the difference between the actual adjustment angle 17 and the desired adjustment angle 18 of FIG. 4 , Depending on this Verstellwinkelsprung is given by the prediction controller 22 as an output signal 20 'that regulated target adjustment speed, which can be delayed to overcome the predetermined angular deviation within the available time of the adjusting motor 8.
  • the output signal 20 'of the prediction controller 22 the current camshaft speed 21 is switched on and the sum 20' + 21 set as the desired adjustment speed to the adjusting motor 8.
  • the prediction controller 22 the overshooting of the actual adjustment angle is avoided and thereby at the same time the power consumption of the adjusting motor 8 is lowered considerably.
  • the previously described regulators 19, 22 serve to control the position of the camshaft 5. For optimum control results, an inner control loop with a speed control of the adjusting motor 8 is still necessary.
  • the relevant rule structure shows FIG. 6 ,
  • the input signal of the PID controller 19 ' is the difference signal 23 ⁇ 24 between a setpoint adjustment speed 24 and an actual adjustment speed 23 of the adjustment motor 8.
  • the output signal 20 " is a voltage which serves to control the adjustment motor 8. To prevent this . that a voltage 0 is specified if the setpoint and actual adjustment speeds 24, 23 are in agreement, the voltage corresponding to the setpoint adjustment speed 24 of the adjustment motor 8 is added to the output signal 20 "via a voltage converter 25. This ensures that the adjustment motor 8 in FIG Operation always a voltage is specified according to the target adjustment speed 24.
  • FIG. 7 shows the control structure of a complete control system for the adjusting motor 8 with series connection of a position control accordingly FIG. 4 and a speed control accordingly FIG. 6 ,
  • the position control has a prediction controller 22 whose input signal is formed as a difference signal 17 ⁇ 18 between the actual displacement angle 17 and the desired displacement angle 18 and processed to the output signal 20 'of a controlled target adjustment speed. This is added to the camshaft speed 21, which together form the desired adjustment speed 20 '+ 21 of the adjusting motor 8.
  • the difference signal 20 '+ 21 ⁇ 23 from the target adjustment speed 20' + 21 and actual adjustment speed 23 forms the input signal of the PID controller 19 'of the speed control, the output signal 20 "with the added, in a voltage converter 25 voltage-converted desired adjustment speed 20th '+ 21 to the adjusting motor 8-driving voltage 20 "+ 20' + 21 is processed.
  • other controllers such as P and PI controllers can also be used.
  • FIG. 8 a flowchart is shown in which it is shown how the control of the adjusting 8 takes place at the start of the internal combustion engine 1 and during its operation.
  • the ignition switch is actuated, in position 27, the starter is running high and thus ends the starting process.
  • the rotational angle position of the camshaft 5 is detected, in position 29 of the Verstellwinkel document is made, the result leads to driving the Verstellmotors 8 in position 30.
  • Activation may mean holding according to item 31, advancing according to item 32 or retarding according to item 33.
  • the respective result is returned via the return line 34 to position 28, whereby a new pass begins.
EP03740391.2A 2002-07-11 2003-07-01 Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers Expired - Lifetime EP1521901B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10231225 2002-07-11
DE10231225 2002-07-11
PCT/EP2003/006956 WO2004007919A1 (de) 2002-07-11 2003-07-01 Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers

Publications (2)

Publication Number Publication Date
EP1521901A1 EP1521901A1 (de) 2005-04-13
EP1521901B1 true EP1521901B1 (de) 2015-04-15

Family

ID=30009886

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03740391.2A Expired - Lifetime EP1521901B1 (de) 2002-07-11 2003-07-01 Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers

Country Status (6)

Country Link
US (2) US7059285B2 (ja)
EP (1) EP1521901B1 (ja)
JP (1) JP4662765B2 (ja)
AU (1) AU2003280981A1 (ja)
DE (1) DE10251347A1 (ja)
WO (1) WO2004007919A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004014865A1 (de) * 2004-03-26 2005-10-13 Ina-Schaeffler Kg Elektrischer Nockenwellerversteller mit Scheibenläufermotor
DE112005000299B4 (de) * 2004-03-26 2020-02-20 Schaeffler Technologies AG & Co. KG Elektrischer Nockenwellenversteller mit Scheibenläufermotor
JP4269341B2 (ja) * 2004-04-23 2009-05-27 株式会社デンソー バルブタイミング調整装置
EP1605140B1 (de) * 2004-06-09 2016-11-02 Schaeffler Technologies AG & Co. KG Verstellvorrichtung für eine Nockenwelle
DE502005003618D1 (de) 2004-08-28 2008-05-21 Luk Lamellen & Kupplungsbau Verfahren zum Bestimmen der Phasenlage einer Nockenwelle einer Brennkraftmaschine
JP4196294B2 (ja) * 2004-08-31 2008-12-17 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
DE102005015856A1 (de) 2004-12-24 2006-07-13 Daimlerchrysler Ag Verfahren und Einrichtung zum Einstellen einer elektrodynamischen Bremse eines elektrischen Nockenwellenverstellers für eine Nockenwelle einer Brennkraftmaschine
US7353788B2 (en) * 2005-09-02 2008-04-08 Gm Global Technology Operations, Inc. Fuzzy logic based cam phaser control
JP4874617B2 (ja) 2005-10-04 2012-02-15 トヨタ自動車株式会社 車両の制御装置
JP2007100681A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp 電動式バルブタイミング可変機構
JP4609278B2 (ja) * 2005-10-24 2011-01-12 トヨタ自動車株式会社 内燃機関の可変バルブタイミング制御装置及びその可変バルブタイミング制御装置を備えた内燃機関
GB0601590D0 (en) * 2006-01-26 2006-03-08 Delphi Tech Inc Cam drive apparatus and method
DE102006017232A1 (de) * 2006-04-12 2007-10-25 Schaeffler Kg Synchronisationsvorrichtung für einen Motor
JP4923757B2 (ja) * 2006-06-06 2012-04-25 トヨタ自動車株式会社 可変バルブタイミング装置
JP4641985B2 (ja) * 2006-08-30 2011-03-02 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
JP4641986B2 (ja) * 2006-08-30 2011-03-02 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
JP4600935B2 (ja) * 2006-08-30 2010-12-22 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
JP2010511839A (ja) * 2006-12-05 2010-04-15 ザ ティムケン カンパニー 電気機械的カムシャフト移相装置のための制御構造
US7918130B2 (en) * 2007-05-11 2011-04-05 GM Global Technology Operations LLC Methods and systems to identify cam phaser hardware degradation
EP2017436A1 (en) * 2007-06-16 2009-01-21 Delphi Technologies, Inc. Variable cam phaser apparatus
DE102008010638B4 (de) 2008-02-22 2022-01-27 Schaeffler Technologies AG & Co. KG Elektromechanisches Nockenwellenverstellsystem und Verfahren zur Verstellung einer Nockenwelle mittels eines solchen Nockenwellenverstellsystems
US8523803B1 (en) 2012-03-20 2013-09-03 Medtronic Minimed, Inc. Motor health monitoring and medical device incorporating same
US8603026B2 (en) * 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Dynamic pulse-width modulation motor control and medical device incorporating same
DE102014213253B4 (de) * 2014-07-08 2017-12-28 Schaeffler Technologies AG & Co. KG Verfahren zum Betrieb eines Nockenwellenverstellers und Regelvorrichtung für einen Nockenwellenversteller
DE102015215813A1 (de) 2015-08-19 2017-02-23 Volkswagen Aktiengesellschaft Prädiktion der Phasenlage einer Nockenwelle
DE102021214543A1 (de) 2021-12-16 2023-06-22 Volkswagen Aktiengesellschaft Diagnoseverfahren, Steuergerät und Kraftfahrzeug

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10116707A1 (de) * 2001-04-04 2002-10-10 Ina Schaeffler Kg Vorrichtung zur Relativverdrehung einer Nockenwelle gegenüber einer Kurbelwelle einer Brennkraftmaschine

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2011446A1 (de) 1970-03-11 1971-09-23 Späth, Walter, 7760 Radolfzell Ausschwenkbares Hubfahrwerk für Container
JPS50155822A (ja) * 1974-06-10 1975-12-16
JPS5218516A (en) * 1975-08-04 1977-02-12 Nissan Motor Co Ltd Cam angle chaner of cam shaft
DE3830382C1 (ja) * 1988-09-07 1990-01-18 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH02267308A (ja) * 1989-04-05 1990-11-01 Honda Motor Co Ltd 内燃エンジンの動弁制御装置
JPH0754620A (ja) * 1993-06-16 1995-02-28 Robert Bosch Gmbh カム軸の角度位置を調節する方法と装置
JP3498455B2 (ja) * 1995-12-08 2004-02-16 日産自動車株式会社 スロットルバルブの位置決め制御装置
US5680834A (en) * 1996-01-22 1997-10-28 Ford Global Technologies, Inc. Just-in-time scheduling for variable camshaft timing
JP3248568B2 (ja) * 1997-09-12 2002-01-21 トヨタ自動車株式会社 ステアリング装置
DE19746529A1 (de) * 1997-10-22 1999-04-29 Ruediger Ufermann Vorrichtung zur stufenlos variablen Steuerzeitenverstellung für Ein- und Auslaßventile von Brennkraftmaschinen
US5787848A (en) 1997-12-05 1998-08-04 Ford Global Technologies, Inc. Method of system for operating an internal combustion engine having variable valve timing
DE19804942A1 (de) * 1998-02-07 1999-08-12 Bosch Gmbh Robert Brennkraftmaschine
JP2001138929A (ja) * 1999-11-15 2001-05-22 Toyota Motor Corp 車両の電動パワーステアリング装置
JP3907370B2 (ja) * 2000-03-17 2007-04-18 株式会社日立製作所 内燃機関の可変動弁装置の制御装置
DE10036275A1 (de) * 2000-07-26 2002-02-07 Daimler Chrysler Ag Vorrichtung zur relativen Winkelverstellung zwischen zwei drehzahlgleich rotierenden, antriebsverbundenen Elementen
DE10038354C2 (de) 2000-08-05 2003-03-20 Atlas Fahrzeugtechnik Gmbh Steuereinrichtung zum Verstellen des Drehwinkels einer Nockenwelle
JP2002089301A (ja) * 2000-09-14 2002-03-27 Honda Motor Co Ltd 内燃機関のバルブタイミング制御装置
JP2002106373A (ja) * 2000-10-02 2002-04-10 Mikuni Corp 電磁アクチュエータによるエンジン吸気バルブ開閉制御装置
DE20114466U1 (de) * 2001-09-01 2002-01-03 Eto Magnetic Kg Elektromagnetische Stellvorrichtung
JP2004156461A (ja) * 2002-11-05 2004-06-03 Denso Corp 内燃機関の可変バルブタイミング制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10116707A1 (de) * 2001-04-04 2002-10-10 Ina Schaeffler Kg Vorrichtung zur Relativverdrehung einer Nockenwelle gegenüber einer Kurbelwelle einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE10251347A1 (de) 2004-03-11
US7152561B2 (en) 2006-12-26
US20060124095A1 (en) 2006-06-15
US7059285B2 (en) 2006-06-13
JP2005532502A (ja) 2005-10-27
AU2003280981A1 (en) 2004-02-02
WO2004007919A1 (de) 2004-01-22
US20050103298A1 (en) 2005-05-19
JP4662765B2 (ja) 2011-03-30
EP1521901A1 (de) 2005-04-13

Similar Documents

Publication Publication Date Title
EP1521901B1 (de) Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers
DE10051417B4 (de) Steuerungsverfahren für Motoren mit mehrfachen Steuerungsvorrichtungen
EP0445555B1 (de) Regelverfahren zur drehzahlabhängigen, stufenlosen Verstellung der Nockenspreizung
EP2547876B1 (de) Verfahren und vorrichtung zum betreiben eines verbrennungsmotors bei einer störung eines kurbelwellensensors
DE102007041940B4 (de) Steuervorrichtung für einen Verbrennungsmotor
DE102006034576B4 (de) Verbessern der Antriebsstrang-Schaltqualität bei mit einem Motor mit variablem Ventiltrieb ausgestatteten Antriebssträngen
DE10066185B4 (de) Verfahren und Steuervorrichtung zum Steuern der Drehzahl eines Motors
DE102005007352B4 (de) Leerlaufdrehzahlsteuerungs- bzw. Regelungssystem und -Verfahren
EP2150697B1 (de) Verfahren zum positionieren einer kurbelwelle einer abgeschalteten brennkraftmaschine eines kraftfahrzeugs
DE102007000174B4 (de) Variable Ventilzeitabstimmungsvorrichtung mit verringertem Betriebsgeräusch und deren Steuerverfahren
DE602005002575T2 (de) Nockenwellenverstellungseinrichtung für eine Brennkraftmaschine
DE102007000016B4 (de) Steuervorrichtung und -verfahren für einen variablen Ventilmechanismus
DE19634136A1 (de) Störungserfassungs-Vorrichtung für eine Ventilsteuerzeiten-Vorrichtung eines Motors
DE102007024416A1 (de) Verfahren und Einrichtung zum Ermitteln eines Drehparameters einer Kurbelwelle
EP2326805B1 (de) Verfahren zur verstellung einer kurbelwelle eines verbrennungsmotors, nockenwellenverstellsystem und verbrennungsmotor mit verstellbarer kurbelwelle
DE10051418B4 (de) Steuerverfahren für ein Fahrzeug mit einem Motor
DE4327912C1 (de) Motorleerlaufdrehzahlsteuergerät
DE10222680B9 (de) Verfahren und Einrichtung zum Einstellen der Ansteuerzeit eines Motorventils
DE10137367A1 (de) Ventilzeitgabe-Steuersystem für einen Verbrennungsmotor
DE60128997T2 (de) Ein drehmomentabhängiges Ventilsteuerverfahren und -system
DE10310301A1 (de) Verfahren und Steuerung eines Verbrennungsmotors in einem Start-Stopp-Betrieb
DE10138048A1 (de) Ventilzeitgabe-Steuersystem für einen Verbrennungsmotor
DE102004054321A1 (de) Regelvorrichtung für variables Ventilbetätigungssystem
DE10200511A1 (de) Verfahren und Einrichtung zum Steuern eines Elektromagnetventils für Brennkraftmaschinen
DE3210282C2 (ja)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER KG

17Q First examination report despatched

Effective date: 20070919

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50315247

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01L0001352000

Ipc: F01L0001340000

RIC1 Information provided on ipc code assigned before grant

Ipc: F01L 1/34 20060101AFI20141017BHEP

Ipc: F01L 1/02 20060101ALI20141017BHEP

Ipc: F01L 1/352 20060101ALI20141017BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141218

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315247

Country of ref document: DE

Effective date: 20150528

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315247

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150715

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220726

Year of fee payment: 20

Ref country code: DE

Payment date: 20220920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220720

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50315247

Country of ref document: DE