EP1468760A1 - Rohrkokille zum Stranggiessen - Google Patents

Rohrkokille zum Stranggiessen Download PDF

Info

Publication number
EP1468760A1
EP1468760A1 EP03008681A EP03008681A EP1468760A1 EP 1468760 A1 EP1468760 A1 EP 1468760A1 EP 03008681 A EP03008681 A EP 03008681A EP 03008681 A EP03008681 A EP 03008681A EP 1468760 A1 EP1468760 A1 EP 1468760A1
Authority
EP
European Patent Office
Prior art keywords
copper tube
support
support plates
mold according
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03008681A
Other languages
English (en)
French (fr)
Other versions
EP1468760B1 (de
Inventor
Franz Kawa
Adalbert Roehrig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Concast AG
Original Assignee
Concast AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PT03008681T priority Critical patent/PT1468760E/pt
Application filed by Concast AG filed Critical Concast AG
Priority to EP03008681A priority patent/EP1468760B1/de
Priority to AT03008681T priority patent/ATE296174T1/de
Priority to DE50300582T priority patent/DE50300582D1/de
Priority to ES03008681T priority patent/ES2242119T3/es
Priority to PCT/EP2004/003712 priority patent/WO2004091826A1/de
Priority to PL377699A priority patent/PL207539B1/pl
Priority to JP2006505043A priority patent/JP4610548B2/ja
Priority to US10/550,373 priority patent/US7422049B2/en
Priority to CNB200480010049XA priority patent/CN100344394C/zh
Priority to BRPI0409449-2A priority patent/BRPI0409449B1/pt
Priority to AU2004230206A priority patent/AU2004230206B2/en
Priority to MXPA05009765A priority patent/MXPA05009765A/es
Priority to CA002522190A priority patent/CA2522190C/en
Priority to KR1020057019234A priority patent/KR101082901B1/ko
Priority to RU2005135447/02A priority patent/RU2316409C2/ru
Priority to TW093110157A priority patent/TWI240660B/zh
Priority to MYPI20041352A priority patent/MY136189A/en
Priority to ARP040101305A priority patent/AR043879A1/es
Priority to UAA200510838A priority patent/UA79695C2/uk
Publication of EP1468760A1 publication Critical patent/EP1468760A1/de
Application granted granted Critical
Publication of EP1468760B1 publication Critical patent/EP1468760B1/de
Priority to ZA2005/06874A priority patent/ZA200506874B/en
Priority to EGNA2005000605 priority patent/EG23891A/xx
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets

Definitions

  • the invention relates to a tubular mold for continuous casting of round and polygonal Billet and billet sections according to the preamble of claim 1 or 2.
  • Vorblockqueritese Tube molds used in continuous casting of steel in billets and small blooms.
  • Such tube molds consist of a copper tube, which in a water jacket is installed.
  • To a circulation cooling with a high To reach the flow velocity of the cooling water is outside the copper tube a tubular displacer with a small gap opposite the copper tube. Between the displacer and the copper pipe, the cooling water on the entire Circumference of the copper pipe with high pressure and high flow velocity up to 10 m / s and more pressed through.
  • the copper pipe in the casting operation by the high Temperature differences between the mold cavity side and the cooling water side no damaging deformations suffers
  • the copper tubes which are essentially only be held at the lower and upper pipe end by flanges, a minimum wall thickness exhibit. This minimal wall thickness depends on the casting format and is between 8 - 15 mm.
  • the cooling capacity of a mold wall or of the entire mold cavity is considered by many Factors influenced. Essential factors are the thermal conductivity of the copper pipe, the wall thickness of the mold wall, the dimensional stability of the mold cavity to Avoid distortion or air gaps between the strand crust and mold wall, etc.
  • the aim of the invention is to provide a continuous casting mold for billet and bloom formats create, in particular, a higher cooling performance and thus higher casting speeds allows, without reaching the limits of the thermal capacity of the copper material to poke.
  • this mold is in Giess congress a higher Have dimensional stability and thus less abrasive wear on the one hand Passage of the strand crust through the mold and on the other hand a more uniform cooling or produce a better strand quality.
  • an emergence Spiesskantiger strand cross sections are avoided.
  • the mold should additionally one achieve extended total service life and thus reduce the chill cost per ton of steel.
  • the tube mold according to the invention With the tube mold according to the invention, the following advantages can be achieved in continuous casting be achieved.
  • the comparison with the prior art lower wall thickness of the Copper pipe provides a higher cooling capacity with corresponding increase in performance Continuous casting plant safe.
  • the arranged substantially over the entire circumference Support plates stabilize the geometry of the mold cavity against distortion of the heat-loaded Copper walls of Kokillenrohres, so that on the one hand Kokillenverschleiss reduced and on the other hand, the strand quality, in particular by a more uniform Cooling, is improved.
  • An extended Kokillenstandzeit results from diminished thermal stress of the copper material and less abrasive wear between the strand crust and the mold walls.
  • the total lifetime is extended but also by reworking in the mold cavity, such as coppering of wear points followed by subsequent machining, etc., where the Copper pipe during the reworking with the support jacket or with the support plates remains connected.
  • This facilitates clamping during machining and vibrations of the copper pipe during milling or planing etc. are caused by the Support plates prevents what higher machining speeds with high dimensional accuracy of the mold cavity.
  • the whereabouts of the support plates on the copper tube during the repair of the copper pipe but also reduces the dismantling work the water circulation cooling of the mold, which reduces recovery costs.
  • the cooling channels can partially into the support plates and in the outer tube shell of the Copper tube be embedded or milled.
  • the wall thickness of the copper pipe Reduce by about 30 - 50% in the area of the cooling channels.
  • cooling ducts are milled into the copper pipe on the pipe jacket, so can between the cooling channels supporting and connecting ribs without substantial reduction of Cooling capacity can be arranged.
  • the cooling channels 65% - 95%, preferably 70% - 80%, of the outer surface claim the copper tube.
  • Residual wall thickness of the copper pipe in the area of the cooling channels is about 4 mm to 10 mm set.
  • the support plates can be the copper tube playfully and rigidly clamped, or polygonal formats can be used between the individual support plates in the overlaps small column for seals, preferably elastic seals, are provided.
  • Such small gaps can be one thermal expansion of the copper pipe walls and / or dimensional tolerances of the copper pipe jacket field.
  • the copper pipe on the support plates or supported on the support shell and / or connect with these.
  • the pipe jacket of the copper pipe pro Strand side along the corner areas narrow support surfaces and in the middle of the Extruded pages format dependent one or two connecting ribs arranged, the Connecting ribs with retaining devices against movements transverse to the strand axis are provided.
  • Such retaining means can be made of, for example, a Dovetail profile, a T-profile for sliding blocks or generally a force or consist positive locking device. Because at a recovery position the mold cavity, the support plates are not removed with advantage, are also solder Adhesive connections applicable.
  • the two support plates which are the arcuate Support side walls of the mold, with advantage with flat outer sides provided so that the mold during reworking without tension on a table can be spanned a processing machine.
  • the support plates for example, commercially available steel, if the mold is not equipped with an electromagnetic stirring device.
  • an electromagnetic stirring device Of the compact construction of the copper tube with its support plates and intervening Cooling channels facilitates the use of electromagnetic stirring devices.
  • Other advantages for electromagnetic stirring devices may be due to the choice of materials the support plates are achieved.
  • the Support plates or the support jacket made of a readily penetrable for a magnetic field metallic (austenitic steel etc.) or non-metallic (plastic etc.) material be made. Also composites are to be included in the choice of materials.
  • the support plates made of a metallic material, so it is from Advantage, if the electrolytic corrosion caused by the cooling water through an the support plates and the copper tube arranged protective layer is prevented.
  • a such protective layer can be constructed, for example, by a copper-plating of the support plate become. But it is also possible, the recessed cooling channels in the copper tube to close with a galvanic copper layer.
  • the cooling channels in the copper pipe are provided with water supply and discharge lines to the support plates or connected to the support jacket. According to one embodiment, it is of Advantage, if the water supply and discharge lines on the support plates at the upper Kokillenende arranged side by side and by means of a quick coupling with the cooling water system are connectable.
  • FIG. 1 and 2 is a Stranggiesskokille for round billets or billets shown.
  • a copper tube 3 forms a mold cavity 4.
  • This water circulation cooling consists of Cooling channels 6, over the entire circumference and substantially over the entire length of the copper tube 3 are distributed.
  • the individual cooling channels 6 are by supporting and connecting ribs 8 and 9 limited, as an additional task, the leadership of the cooling water circuit in the cooling channels 6 from a water supply line 10 to a water discharge line 11 take over.
  • a support jacket is shown, which is the copper tube 3 over the entire circumference and over the entire length encloses and the copper pipe 3 on the outer tube jacket 5 via the support ribs 8 is supported.
  • the connecting ribs 9 connect the copper tube 3 to the support shell 12.
  • the support shell 12 forms with his inner jacket, the outer boundary of the cooling channels. 6
  • the cooling channels 6 are embedded in the outer surface of the copper tube 3 and thereby reduce the wall thickness of the copper tube 3 by 20% - 70%, preferably by 30% - 50% compared to the copper tube thickness at the support ribs 8.
  • the thinner the Wall thickness of the copper pipe 3 in the region of the cooling channels 6 can be designed to so the heat transfer from the strand to the cooling water, at the same time
  • the operating temperature of the copper wall during casting is lower.
  • lower Operating temperatures in the copper wall not only reduce the distortion of the Kokillenrohres 3, also the wear such as cracks in the bathroom mirror area or abrasive wear in the lower mold area is thereby reduced.
  • Fig. 1 is schematically a stirring coil for stirring the liquid sump at Continuous casting shown in the mold. It can easily be seen that the stirring coil 14 due to the compact structure of the mold and its reduced copper wall thickness very close to the mold cavity 4 and thus opposite magnetic field losses classic molds are reduced in size.
  • backing plates are used or the support shell 12 made of a magnetic fields easily penetrable metallic Material, preferably made of austenitic stainless steel. It is but also possible, the support shell 12 or support plates made of non-metallic materials, for example, from carbon laminate, etc., produce.
  • FIG. 3 and 4 20 with a mold for square or polygonal billets and Vorblockstrlinde shown.
  • a bent copper tube 23 forms a curved one Mold cavity 24 for a circular arc continuous casting machine.
  • a water circulation cooling is disposed between the copper tube 23 and support plates 32-32 '' 'in cooling channels 26 support and connecting ribs 28 and 29 are provided.
  • the water circulation cooling is designed substantially the same as described in FIGS. 1 and 2.
  • the copper tube 23 in FIG. 3 and 4 between four support plates 32 - 32 '' ' forming a support box, clamped.
  • the support plates 32 - 32 "'with the copper tube 23rd connected and support ribs 28 may be the outer tube jacket 25 of the copper tube 23 are supported on the support plates 32-32 "', the four support plates 32-32"' are thus closed screwed together a rigid box around the copper tube 23, that each Support plate 32 - 32 "'on an adjacent plate frontally abuts and the other adjacent Plate overlaps.
  • symbols 34 are screws or other fasteners indicated.
  • the support plates 32 - 32 "' for example, by Dovetail or sliding block guides, clamping screws, threaded bolts, etc. releasably connected to the copper tube 23.
  • the copper tube 23 is clamped or supported on the box of the support plates 32 - 32 "at four corner regions 35 with support ribs 28 '
  • the copper tube 23 is generally produced by cold drawing and has in the corner regions and in the support ribs 28, 28' resulting from the manufacturing process wall thickness. This wall thickness is substantially dependent on the to be cast strand format and 120 mm is usually in a strand size of 120 x 2 11 mm and mm at 200 x 200 2 16 mm.
  • the cooling channels 6, 26 is by milling
  • the copper tube 23 has a residual wall thickness of 4 to 10 mm in the area of the cooling channels. 26 an area of 65% - 95%, preferably 70% - 80% e narrow support surfaces 28 'on both sides of the four pipe corners essential. They ensure that the four angles of the copper tube 23 do not distort during the casting operation. As a result, part of the danger of producing spies-edged strands is eliminated.
  • connection ribs 29 are provided, which are the copper tube 23 connect with the support plates 32 - 32 "'via retention devices. bending the copper pipe walls toward the mold cavity 24 or laterally Moving transversely to the strand direction can be avoided.
  • positive and non-positive connections are conceivable, such as Dovetail profiles or T-profiles for sliding blocks, welded Bolts etc.
  • a support plate 51 overlaps a support plate 52 which abuts with its end face 53 the support plate 51 abuts.
  • an elastic Seal 54 arranged in addition to the sealing task against escaping cooling water small tolerances in the outer dimensions of the copper pipe, but also small dimensions the copper pipe wall can catch transversely to the strand extraction direction.
  • the support plates 51, 52 With a Protective layer 57 of copper or an electrically non-conductive layer coated become.
  • a protective layer 57 for example, the cooling channels 55 'after milling into the copper wall with a galvanically applied copper layer 58 are closed.
  • a connecting rib is shown fixed by soldering or gluing connected to the support plate.
  • Fig. 6 is an example of a water circulation cooling in cooling channels 61, 61 'along an outer tubular jacket 62 of a copper tube 63 shown.
  • a pipe system 64 outside of support plates 65 cooling water is supplied to the cooling channels 61.
  • the cooling water is deflected by 180 ° and the cooling channels 61 'forwarded.
  • a pipe system 68 the cooling water is removed from the mold.
  • 67 schematically a coupling plate is shown, the settling when Mold on a mold table, not shown, the pipe systems 64, 68 to a water supply engage or disengage.
  • measuring points 69 are in the outer tube jacket 62 of the copper tube 63 built-in temperature sensor indicated that during the Giess Wilsones the Measure temperatures at various points of copper pipe 63. With such measurements On a screen, a temperature image of the entire copper tube 63 can be graphically displayed being represented.
  • the cooling channels in FIGS. 1-6 can by means of various manufacturing processes in the copper pipe are let in. It is possible to use the cooling channels in the outer or Milling the inner tube shell of the copper tube and then with a galvanic to close the applied layer. To the wear resistance in the mold cavity in addition to increase, known in the art known hard chrome plating be provided in the mold cavity.
  • FIG. 7 cooling channels 71 in support plates 72, 72 'are arranged.
  • a copper tube 70 is in its wall thickness chosen very thin, for example 3 mm - 8 mm.
  • Such thin Copper pipes 70 are correspondingly often by support surfaces 74, which are on the support plates 72, 72 'are mounted, supported.
  • Mounting surfaces 77 or connecting profiles 78 are usually provided on the copper pipe 70.
  • fastening devices such as a connecting bolt 75 or a dovetail profile plate 76 with one or more tie rod (s) 79, the copper tube 70 with the support plates 72, 72 'releasably or firmly connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

Beim Stranggiessen von runden oder polygonalen Knüppel- und Vorblockformaten werden Kokillen verwendet, deren Formhohlraum aus einem Kupferrohr (3) besteht, das mittels einer Wasserzirkulationskühlung intensiv gekühlt wird. Um einerseits die Kühlleistung und anderseits die Formstabilität des Formhohlraumes (4) zu erhöhen sowie die Totalstandzeit des Kupferrohres (3) zu verlängern, wird vorgeschlagen, das Kupferrohr (3) über den ganzen Umfang am äusseren Rohrmantel (5) mittels einem Stützmantel (12) bzw. Stützplatten zu versehen. Für die Kühlung des Kupferrohres (3) sind Kühlkanäle (6) zur Führung des Kühlwassers am Kupferrohr (3) oder am Stützmantel (12) angeordnet. Die Kühlkanäle (6) sind über den ganzen Umfang am äusseren Rohrmantel (5) verteilt und erstrecken sich im wesentlichen über die ganze Kokillenlänge. <IMAGE>

Description

Die Erfindung betrifft eine Rohrkokille zum Stranggiessen von runden und polygonalen Knüppel- und Vorblockquerschnitten gemäss dem Oberbegriff von Anspruch 1 oder 2.
Beim Stranggiessen von Stahl in Knüppel- und kleine Vorblockquerschnitte werden Rohrkokillen verwendet. Solche Rohrkokillen bestehen aus einem Kupferrohr, das in einen Wassermantel eingebaut ist. Um eine Zirkulationskühlung mit einer hohen Fliessgeschwindigkeit des Kühlwassers zu erreichen, ist ausserhalb des Kupferrohres ein rohrförmiger Verdränger mit einem kleinen Spalt gegenüber dem Kupferrohr angeordnet. Zwischen dem Verdränger und dem Kupferrohr wird das Kühlwasser am gesamten Umfang des Kupferrohres mit hohem Druck und hoher Fliessgeschwindigkeit bis 10 m/s und mehr hindurchgepresst. Damit das Kupferrohr im Giessbetrieb durch die hohen Temperaturunterschiede zwischen der Formhohlraumseite und der Kühlwasserseite keine schädlichen Deformationen erleidet, müssen die Kupferrohre, die im wesentlichen nur am unteren und oberen Rohrende durch Flansche gehalten werden, eine Minimal-Wandstärke aufweisen. Diese Minimal-Wandstärke ist vom Giessformat abhängig und beträgt zwischen 8 - 15 mm.
Seit dem industriellen Beginn des Stranggiessens bemühte sich die Fachwelt, die Giessgeschwindigkeit zu erhöhen, um höhere Produktionsleistungen pro Strang zu erreichen. Die Erhöhung der Giessleistung ist eng mit der Kühlleistung der Kokille verbunden. Die Kühlleistung einer Kokillenwand bzw. des gesamten Formhohlraumes wird von vielen Faktoren beeinflusst. Wesentliche Faktoren sind die Wärmeleitfähigkeit des Kupferrohres, die Wanddicke der Kokillenwand, die Formstabilität des Formhohlraumes um Verzug bzw. Luftspalte zwischen Strangkruste und Kokillenwand zu vermeiden etc.
Neben der Kühlleistung, die bei einem vorgegebenen Strangformat einen direkten Einfluss auf die Produktionsleistung pro Strang ausüben kann, bildet aber auch die Standzeit der Kokille für die Wirtschaftlichkeit der Stranggiessanlage einen wesentlichen Kostenfaktor. Die Standzeit einer Kokille drückt aus, wieviele Tonnen Stahl in eine Kokille gegossen werden können, bis Verschleisserscheinungen im Formhohlraum, wie abrasiver Verschleiss, Materialschädigungen, insbessondere Brandrisse, oder schädliche Deformationen des Formhohlraumes, einen Kokillenwechsel erfordern. Je nach dem Verschleisszustand ist das Kokillenrohr zu verschrotten oder einer Nachbearbeitung und einer Wiederverwendung zuzuführen. Bei konischen Standardkokillen weisen in der Regel Kokillen mit etwas grösseren Kupferrohrwandstärken höhere Formstabilitäten auf.
Ziel der Erfindung ist es, eine Stranggiesskokille für Knüppel- und Vorblockformate zu schaffen, die insbesondere eine höhere Kühlleistung erbringt und damit höhere Giessgeschwindigkeiten zulässt, ohne an die Grenzen der thermischen Belastbarkeit des Kupferwerkstoffes zu stossen. Im weiteren soll diese Kokille im Giessbetrieb eine höhere Formstabilität aufweisen und damit einerseits weniger abrasiven Verschleiss beim Durchlauf der Strangkruste durch die Kokille und anderseits eine gleichmässigere Kühlung bzw. eine bessere Strangqualität erzeugen. Insbesondere soll eine Entstehung spiesskantiger Strangquerschnitte vermieden werden. Die Kokille soll zusätzlich eine verlängerte Totalstandzeit erreichen und damit die Kokillenkosten pro Tonne Stahl reduzieren.
Nach der Erfindung wird diese Zielsetzung durch die kennzeichnenden Merkmale von Anspruch 1 oder 2 erfüllt.
Mit der erfindungsgemässen Rohrkokille können folgende Vorteile beim Stranggiessen erreicht werden. Die gegenüber dem Stand der Technik geringere Wandstärke des Kupferrohres stellt eine höhere Kühlleistung mit entsprechender Leistungssteigerung der Stranggiessanlage sicher. Die im wesentlichen über den ganzen Umfang angeordneten Stützplatten stabilisieren die Geometrie des Formhohlraumes gegen Verzug der wärmebelasteten Kupferwände des Kokillenrohres, so dass einerseits der Kokillenverschleiss vermindert und anderseits die Strangqualität, insbesondere durch eine gleichmässigere Abkühlung, verbessert wird. Eine verlängerte Kokillenstandzeit ergibt sich durch verminderte thermische Belastung des Kupferwerkstoffs und geringeren abrasiven Verschleiss zwischen der Strangkruste und den Kokillenwänden. Die Totalstandzeit verlängert sich aber auch durch Nachbearbeitungen im Formhohlraum, wie Aufkupferungen von Verschleissstellen mit anschliessender spanabhebender Nachbearbeitung etc., wobei das Kupferrohr bei den Nachbearbeitungen mit dem Stützmantel bzw. mit den Stützplatten verbunden bleibt. Das erleichtert bei einer spanabhebenden Bearbeitung das Aufspannen und Vibrationen des Kupferrohres beim Fräsen oder Hobeln etc. werden durch die Stützplatten verhindert, was höhere Bearbeitungsgeschwindigkeiten bei hoher Massgenauigkeit des Formhohlraumes zulässt. Der Verbleib der Stützplatten am Kupferrohr während der Instandstellung des Kupferrohres vermindert aber auch die Demontagearbeit der Wasserzirkulationskühlung der Kokille, was Wiederinstandstellungskosten reduziert.
Die Kühlkanäle können teilweise in die Stützplatten und in den äusseren Rohrmantel des Kupferrohres eingelassen bzw. eingefräst sein. Zur Erhöhung der Kontaktfläche Kupferrohr - Kühlmedium ist es von Vorteil, wenn die Kühlkanäle die Wanddicke des Kupferrohres im Bereich der Kühlkanäle um etwa 30 - 50 % reduzieren.
Werden die Kühlkanäle am Rohrmantel in das Kupferrohr eingefräst, so können zwischen den Kühlkanälen Stütz- und Verbindungsrippen ohne wesentliche Reduktion der Kühlleistung angeordnet werden. Gemäss einem Ausführungsbeispiel wird vorgeschlagen, dass die Kühlkanäle 65 % - 95 %, vorzugsweise 70 % - 80 %, der äusseren Oberfläche des Kupferrohres beanspruchen. Je nach dem Formhohlraumquerschnitt wird die Restwandstärke des Kupferrohres im Bereich der Kühlkanäle auf etwa 4 mm bis 10 mm eingestellt. Durch passende Wahl der Kühlkanalgeometrie und/oder Kühlkanalbeschichtung kann der Wärmeübergang zum Kühlwasser den örtlichen Anforderungen entsprechend eingestellt werden.
Bei rechteckigen Strangformaten werden vier Stützplatten am Kupferrohr lösbar oder fest angebracht. Um ein spielfreies Anliegen der Stützplatten am Kupferrohr unabhängig von den Fertigungstoleranzen sicher zu stellen, können, gemäss einem Ausführungsbeispiel, die Stützplatten gegenüber ihren benachbarten Platten einmal stirnseitig anschlagen und einmal überlappen. Benachbarte Stützplatten werden in den Eckbereichen des Kupferrohres verschraubt und bilden so einen rund um das Kupferrohr angeordneten Stützkasten.
Je nach dem Einspannkonzept des Kupferrohres können die Stützplatten das Kupferrohr spiellos und starr einspannen, oder es können bei polygonalen Formaten zwischen den einzelnen Stützplatten bei den Ueberlappungen kleine Spalte für Dichtungen, vorzugsweise elastische Dichtungen, vorgesehen werden. Solche kleine Spalte können eine thermische Ausdehnung der Kupferrohrwände und/oder Masstoleranzen des Kupferrohrmantels auffangen.
Je nach der Grösse der thermischen und mechanischen Belastung der Formhohlrauminnenwand durch flüssigen Stahl bzw. eine dünne Strangkruste, oder durch eine vorbestimmte Strangkrustenverformung innerhalb des Formhohlraumes, sind entsprechend Stütz- und Verbindungsrippen anzuordnen, die das Kupferrohr an den Stützplatten bzw. am Stützmantel abstützen und/oder mit diesen verbinden.
Gemäss einem Ausführungsbeispiel werden am Rohrmantel des Kupferrohres pro Strangseite entlang der Eckbereiche schmale Stützflächen und im Mittelbereich der Strangseiten formatabhängig eine oder zwei Verbindungsrippen angeordnet, wobei die Verbindungsrippen mit Festhalteeinrichtungen gegen Bewegungen quer zur Strangachse versehen sind. Solche Festhalteeinrichtungen können aus beispielsweise einem Schwalbenschwanzprofil, einem T-Profil für Gleitsteine oder allgemein einer kraft- oder formschlüssigen Festhalteeinrichtung bestehen. Weil bei einer Wiederinstandstellung des Formhohlraumes die Stützplatten mit Vorteil nicht entfernt werden, sind auch Lötund Klebeverbindungen anwendbar.
Bei Kokillen mit bogenförmigem Formhohlraum sind die beiden Stützplatten, die die bogenförmigen Seitenwände der Kokille abstützen, mit Vorteil mit ebenen Aussenseiten versehen, damit die Kokille beim Nachbearbeiten ohne Verspannung auf einen Tisch einer Bearbeitungsmaschine aufgespannt werden kann.
Als Werkstoff für die Stützplatten eignet sich beispielsweise handelsüblicher Stahl, wenn die Kokille nicht mit einer elektromagnetischen Rühreinrichtung ausgerüstet ist. Der kompakte Aufbau des Kupferrohres mit seinen Stützplatten und dazwischen liegenden Kühlkanälen erleichtert die Anwendung von elektromagnetischen Rühreinrichtungen. Weitere Vorteile für elektromagnetische Rühreinrichtungen können durch die Materialwahl der Stützplatten erreicht werden. Gemäss einem Ausführungsbeispiel können die Stützplatten bzw. der Stützmantel aus einem für ein Magnetfeld leicht durchdringbaren metallischen (austenitischem Stahl etc.) oder nichtmetallischen (Kunststoff etc.) Material gefertigt werden. Auch Verbundstoffe sind in die Materialwahl einzubeziehen.
Gemäss einem weiteren Ausführungsbeispiel wird vorgeschlagen, ausserhalb der Stützplatten bzw. des Stützmantels elektromagnetische Spulen anzuordnen oder bewegbare Dauermagnete in die Stützplatten bzw. den Stützmantel einzubauen.
Werden die Stützplatten aus einem metallischen Werkstoff hergestellt, so ist es von Vorteil, wenn die elektrolytische Korrosion durch das Kühlwasser durch eine zwischen den Stützplatten und dem Kupferrohr angeordneten Schutzschicht verhindert wird. Eine solche Schutzschicht kann beispielsweise durch eine Aufkupferung der Stützplatte aufgebaut werden. Es ist aber auch möglich, die eingelassenen Kühlkanäle im Kupferrohr mit einer galvanisch erzeugten Kupferschicht zu verschliessen.
Die Kühlkanäle im Kupferrohr sind mit Wasserzu- und Abführleitungen an den Stützplatten bzw. am Stützmantel verbunden. Gemäss einem Ausführungsbeispiel ist es von Vorteil, wenn die Wasserzu- und Abführleitungen an den Stützplatten am oberen Kokillenende nebeneinander angeordnet und mittels einer Schnellkupplung mit dem Kühlwassersystem verbindbar sind.
Im nachfolgenden werden anhand von Figuren Ausführungsbeispiele der Erfindung erläutert.
Dabei zeigen:
Fig. 1
einen Längsschnitt durch eine erfindungsgemässe Kokille für runde Stränge,
Fig. 2
einen Horizontalschnitt entlang der Linie II - II in Fig. 1,
Fig. 3
einen Längsschnitt durch eine Bogenkokille für einen quadratischen Knüppelquerschnitt,
Fig. 4
einen Horizontalschnitt entlang der Linie IV - IV in Fig. 3,
Fig. 5
einen teilweisen Horizontalschnitt durch eine Kokillenecke,
Fig. 6
einen Vertikalschnitt durch ein weiteres Beispiel einer Kokille und
Fig. 7
einen teilweisen Horizontalschnitt durch eine Kokillenecke eines weiteren Ausführungsbeispiels
In Fig. 1 und 2 ist mit 2 eine Stranggiesskokille für runde Knüppel- oder Vorblockstränge dargestellt. Ein Kupferrohr 3 bildet einen Formhohlraum 4. An der Aussenseite des Kupferrohres 3, die den äusseren Rohrmantel 5 bildet, ist eine Wasserzirkulationskühlung für das Kupferrohr 3 vorgesehen. Diese Wasserzirkulationskühlung besteht aus Kühlkanälen 6, die über den ganzen Umfang und im wesentlichen über die ganze Länge des Kupferrohres 3 verteilt sind. Die einzelnen Kühlkanäle 6 sind durch Stütz- und Verbindungsrippen 8 bzw. 9 begrenzt, die als zusätzliche Aufgabe die Führung des Kühlwasserkreislaufes in den Kühlkanälen 6 von einer Wasserzuführleitung 10 zu einer Wasserabführleitung 11 übernehmen. Mit 12 ist ein Stützmantel dargestellt, der das Kupferrohr 3 über den ganzen Umfang und über die ganze Länge umschliesst und das Kupferrohr 3 am äusseren Rohrmantel 5 über die Stützrippen 8 abstützt. Die Verbindungsrippen 9 verbinden das Kupferrohr 3 mit dem Stützmantel 12. Der Stützmantel 12 bildet mit seinem Innenmantel die äussere Begrenzung der Kühlkanäle 6.
Die Kühlkanäle 6 sind in die äussere Mantelfläche des Kupferrohres 3 eingelassen und reduzieren dadurch die Wanddicke des Kupferrohres 3 um 20 % - 70 %, vorzugsweise um 30 % - 50 % gegenüber der Kupferrohrdicke bei den Stützrippen 8. Je dünner die Wanddicke des Kupferrohres 3 im Bereich der Kühlkanäle 6 gestaltet werden kann, um so grösser wird der Wärmedurchgang vom Strang zum Kühlwasser, wobei gleichzeitig auch die Betriebstemperatur der Kupferwand während des Giessens niedriger wird. Geringere Betriebstemperaturen in der Kupferwand verringern nicht nur den Verzug des Kokillenrohres 3, auch der Verschleiss wie beispielsweise Risse im Badspiegelbereich oder abrasiver Verschleiss im unteren Kokillenbereich wird dadurch reduziert.
Mit 14 ist in Fig. 1 schematisch eine Rührspule zum Rühren des flüssigen Sumpfes beim Stranggiessen in der Kokille dargestellt. Es ist leicht erkennbar, dass die Rührspule 14 durch den kompakten Aufbau der Kokille und mit seiner reduzierten Kupferwandstärke sehr nahe an den Formhohlraum 4 angrenzt und damit Magnetfeldverluste gegenüber klassischen Kokillen verkleinert sind. Bei Magnetfeldanwendungen werden Stützplatten bzw. der Stützmantel 12 aus einem für Magnetfelder leicht durchdringbaren metallischen Werkstoff, vorzugsweise aus nicht rostendem austenitischem Stahl, hergestellt. Es ist aber auch möglich, den Stützmantel 12 oder Stützplatten aus nichtmetallischen Werkstoffen, beispielsweise aus Carbonlaminat etc., herzustellen.
In Fig. 3 und 4 ist mit 20 eine Kokille für quadratische bzw. polygonale Knüppel- und Vorblockstränge dargestellt. Ein gebogenes Kupferrohr 23 bildet einen gebogenen Formhohlraum 24 für eine Kreisbogenstranggiessmaschine. Eine Wasserzirkulationskühlung ist zwischen dem Kupferrohr 23 und Stützplattten 32 - 32"' angeordnet. In Kühlkanälen 26 sind Stütz- und Verbindungsrippen 28 bzw. 29 vorgesehen. Die Wasserzirkulationskühlung ist im wesentlichen gleich ausgeführt wie in Fig. 1 und 2 beschrieben. Anstelle des rohrförmigen Stützmantels 12 in Fig. 1 und 2 ist das Kupferrohr 23 in Fig. 3 und 4 zwischen vier Stützplatten 32 - 32"' die einen Stützkasten bilden, eingespannt. Ueber die Verbindungsrippen 29 sind die Stützplatten 32 - 32"' mit dem Kupferrohr 23 verbunden und an Stützrippen 28 kann sich der äussere Rohrmantel 25 des Kupferrohres 23 an den Stützplatten 32 - 32"' abstützen. Die vier Stützplatten 32 - 32"' sind so zu einem starren Kasten rund um das Kupferrohr 23 zusammengeschraubt, dass jede Stützplatte 32 - 32"' an eine benachbarte Platte stirnseitig anschlägt und die andere benachbarte Platte überlappt. Durch Symbole 34 sind Schrauben oder andere Verbindungselemente angedeutet. Die Stützplatten 32 - 32"' können beispielsweise durch Schwalbenschwanz- oder Gleitsteinführungen, Klemmschrauben, Gewindebolzen etc. lösbar mit dem Kupferrohr 23 verbunden sein. Es ist aber auch möglich, durch Löt- oder Klebeverbindungen etc. das Kupferrohr 23 mit den Stützplatten 32 bzw. dem Stützmantel 12 (Fig. 1 + 2) zu verbinden, weil für eine Nachbearbeitung des Kupferrohres 23, wie ein elektrolytisches Aufkupfern und anschliessendes spanabhebendes Bearbeiten, das Kupferrohr 23 mit den Stützplatten 32 bzw. dem Stützmantel 12 verbunden bleibt.
An vier Eckbereichen 35 mit Stützrippen 28' ist das Kupferrohr 23 am Kasten der Stützplatten 32 - 32"' eingespannt bzw. abgestützt. Das Kupferrohr 23 wird in der Regel durch Kaltziehen hergestellt und weist in den Eckbereichen und bei den Stützrippen 28, 28' die aus dem Herstellungsverfahren resultierende Wandstärke auf. Diese Wandstärke ist im wesentlichen vom zu giessenden Strangformat abhängig und beträgt in der Regel bei einem Strangformat 120 x 120 mm2 11 mm und bei 200 x 200 mm2 16 mm. Die Kühlkanäle 6, 26 werden durch Einfräsen so gestaltet, dass ein vorbestimmter Wasserkreislauf zwischen einer Kühlwassereinlauf- und einer Kühlwasserauslauföffnung sichergestellt ist. Das Kupferrohr 23 weist im Bereich der Kühlkanäle eine Restwandstärke von 4 - 10 mm auf. Von der äusseren Oberfläche (Rohrmantel 25) des Kupferrohres 23 beanspruchen die Kühlkanäle 6, 26 eine Fläche von 65 % - 95 %, vorzugsweise 70 % - 80 %. Für den Erhalt der Formhohlraumgeometrie tragen die schmalen Stützflächen 28' beidseits der vier Rohrecken wesentlich bei. Sie sorgen dafür, dass sich die vier Winkel des Kupferrohres 23 während des Giessbetriebes nicht verziehen. Dadurch ist ein Teil der Gefahr, spiesskantige Stränge zu produzieren, ausgeschaltet.
Zwischen den Eckbereichen sind Verbindungsrippen 29 vorgesehen, die das Kupferrohr 23 mit den Stützplatten 32 - 32"' über Festhalteeinrichtungen verbinden. Sie sorgen dafür, dass ein Verbiegen der Kupferrohrwände zum Formhohlraum 24 hin oder ein seitliches Verschieben quer zur Stranglaufrichtung vermieden werden kann. Als Festhalteeinrichtungen sind bekannte form- und kraftschlüssige Verbindungen denkbar, wie beispielsweise Schwalbenschwanzprofile oder T-Profile für Gleitsteine, angeschweisste Bolzen etc.
Bei Bogenkokillen ist es vorteilhaft, wenn die beiden Stützplatten 32, 32", die die bogenförmigen Seitenwände des Kupferrohres 23 abstützen, an ihren den bogenförmigen Stützflächen gegenüberliegenden Seiten ebene Begrenzungsflächen 36, 36" aufweisen.
In Fig. 5 überlappt eine Stützplatte 51 eine Stützplatte 52, die mit ihrer Stirnseite 53 an die Stützplatte 51 anschlägt. Zwischen den beiden Platten 51, 52 ist eine elastische Dichtung 54 angeordnet, die neben der Dichtungsaufgabe gegen austretendes Kühlwasser kleine Toleranzen bei den Aussenmassen am Kupferrohr, aber auch geringe Ausdehnungen der Kupferrohrwand quer zur Strangauszugsrichtung auffangen kann.
Um eine elektrolytische Korrosion zwischen den Kühlkanälen 55 der Kupferkokille 56 und den Stützplatten 51, 52 auszuschalten, können die Stützplatten 51, 52 mit einer Schutzschicht 57 aus Kupfer oder einer elektrisch nicht leitenden Schicht überzogen werden. Als Alternative zu einer Schutzschicht 57 können beispielsweise die Kühlkanäle 55' nach dem Einfräsen in die Kupferwand mit einer galvanisch aufgebrachten Kupferschicht 58 verschlossen werden.
Mit 59 ist in Fig. 5 eine Verbindungsrippe dargestellt, die durch Löten oder Kleben fest mit der Stützplatte verbunden ist.
In Fig. 6 ist ein Beispiel einer Wasserzirkulationskühlung in Kühlkanälen 61, 61' entlang eines äusseren Rohrmantels 62 eines Kupferrohres 63 dargestellt. Durch ein Rohrsystem 64 ausserhalb von Stützplatten 65 wird Kühlwasser den Kühlkanälen 61 zugeführt. Im unteren Teil 66 der Kokille wird das Kühlwasser um 180° umgelenkt und den Kühlkanälen 61' zugeleitet. Ueber ein Rohrsystem 68 wird das Kühlwasser aus der Kokille abgeführt. Mit 67 ist schematisch eine Kupplungsplatte dargestellt, die beim Absetzen der Kokille auf einen nicht dargestellten Kokillentisch die Rohrsysteme 64, 68 an eine Wasserversorgung an- bzw. abkuppeln.
Stellvertretend für weitere Messstellen 69 sind im äusseren Rohrmantel 62 des Kupferrohres 63 eingebaute Temperaturfühler angedeutet, die während des Giessbetriebes die Temperaturen an verschiedenen Stellen des Kupferrohres 63 messen. Mit solchen Messungen kann an einem Bildschirm ein Temperaturbild des ganzen Kupferrohres 63 grafisch dargestellt werden.
Die in der Kupferwand eingelassenen Kühlkanäle 61', die das Kühlwasser zurückführen und dem Rohrsystem 68 zuleiten, können auch als geschlossene Rückführkanäle in die Stützplatten 65 verlegt werden. Bei einer solchen Anordnung kann die Erwärmung des Kühlwassers bzw. können die Kupferwandtemperaturen zusätzlich reduziert werden.
Die Kühlkanäle in den Fig. 1 - 6 können mittels verschiedener Herstellungsverfahren in das Kupferrohr eingelassen werden. Es ist möglich, die Kühlkanäle in den äusseren oder inneren Rohrmantel des Kupferrohres einzufräsen und anschliessend mit einer galvanisch aufgebrachten Schicht zu verschliessen. Um den Verschleisswiderstand im Formhohlraum zusätzlich zu erhöhen, können im Stand der Technik bekannte Hartverchromungen im Formhohlraum vorgesehen werden.
In Fig. 7 sind Kühlkanäle 71 in Stützplatten 72, 72' angeordnet. Ein Kupferrohr 70 ist in seiner Wandstärke sehr dünn gewählt, beispielsweise 3 mm - 8 mm. Solche dünne Kupferrohre 70 sind entsprechend häufig durch Stützflächen 74, die an den Stützplatten 72, 72' angebracht sind, abgestützt. Befestigungsflächen 77 oder Verbindungsprofile 78 sind in der Regel am Kupferrohr 70 vorgesehen. Mit Befestigungseinrichtungen, wie beispielsweise einem Verbindungsbolzen 75 oder einer Schwalbenschwanzprofilplatte 76 mit einem oder mehreren Zuganker(n) 79 wird das Kupferrohr 70 mit den Stützplatten 72, 72' lösbar oder fest verbunden.

Claims (17)

  1. Kokille zum Stahlstranggiessen von runden Knüppel- und Vorblockformaten, bestehend aus einem Kupferrohr (3), das einen Formhohlraum (4) bildet und einer Einrichtung zur Kühlung des Kupferrohres mit einer Wasserzirkulationskühlung, dadurch gekennzeichnet, dass das Kupferrohr (3) über den ganzen Umfang und im wesentlichen über die ganze Länge mit einem Stützmantel (12) versehen ist, der das Kupferrohr (3) am äusseren Rohrmantel (5) an Stützflächen (8) abstützt, und dass im Kupferrohr (3) oder im Stützmantel (12) Kühlkanäle (6) zur Führung des Kühlwassers über den ganzen Umfang verteilt und im wesentlichen über die ganze Kokillenlänge angeordnet sind.
  2. Kokille zum Stahlstranggiessen von polygonalen Knüppel- und Vorblockformaten, vorzugsweise mit rechteckigen Querschnitten, bestehend aus einem Kupferrohr (23), das einen Formhohlraum (24) bildet und einer Einrichtung zur Kühlung des Kupferrohres (23) mit einer Wasserzirkulationskühlung, dadurch gekennzeichnet, dass das Kupferrohr (23) am äusseren Rohrmantel (25) im wesentlichen über den ganzen Umfang und im wesentlichen über die ganze Länge mit Stützplatten (32 - 32'") versehen ist, die mit dem Kupferrohr (23) verbunden sind und die die Wände des Kupferrohres (23) an Stützflächen (28, 28') abstützen und dass im Kupferrohr (23) oder in den Stützplatten (72, 72') Kühlkanäle (26) zur Führung des Kühlwassers über den ganzen Umfang verteilt und im wesentlichen über die ganze Kokillenlänge angeordnet sind.
  3. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kühlkanäle (6, 26) die Wanddicke des Kupferrohres (3, 23) im Bereich der Kühlkanäle (6, 26) um 20 % bis 70 %, vorzugsweise um 30 % bis 50 %, reduzieren.
  4. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kühlkanäle (6, 26) 65 % bis 95 %, vorzugsweise 70 % bis 80 %, der äusseren Oberfläche des Kupferrohres (3, 23) beanspruchen.
  5. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kupferrohr (3, 23) im Bereich der Kühlkanäle (6, 26) eine Restwandstärke von 4 mm bis 10 mm aufweist.
  6. Kokille nach Anspruch 2, dadurch gekennzeichnet, dass bei rechteckigen Knüppelund Vorblockkokillen vier Stützplatten (32 - 32"') am Kupferrohr (23) lösbar angebracht sind, wobei jede Stützplatte (32 - 32"') an einer benachbarten Platte stirnseitig anschlägt und die andere benachbarte Platte überlappt.
  7. Kokille nach Anspruch 2, dadurch gekennzeichnet, dass benachbarte Stützplatten (32, 51, 52) in den Eckbereichen des Kupferrohres (23) verschraubt sind und einen rund um das Kupferrohr (23) angeordneten Stützkasten bilden.
  8. Kokille nach Anspruch 2, dadurch gekennzeichnet, dass in Ueberlappungsspalten zwischen den Stützplatten (51, 52) elastische Dichtungen (54) angeordnet sind, die Ausdehnungen der Kupferrohrwände zulassen.
  9. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kühlkanäle (6, 26) durch Stütz- (8, 28) und/oder Verbindungsrippen (9, 29) begrenzt sind, die das Kupferrohr (3, 23) an den Stützplatten (32) bzw. am Stützmantel (12) abstützen und/oder mit diesen bzw. mit diesem verbinden.
  10. Kokille nach Anspruch 2, dadurch gekennzeichnet, dass pro Strangseite entlang der Eckbereiche schmale Stützflächen (28') und im Mittelbereich der Kokillenseiten Verbindungsrippen (9, 29, 59) angeordnet sind, wobei die Verbindungsrippen (9, 29, 59) mit Festhalteeinrichtungen gegen Bewegungen quer zur Strangachse versehen sind.
  11. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Festhalteeinrichtung aus einem Schwalbenschwanzprofil, einem T-Profil für Gleitsteine oder einer Festklemmeinrichtung etc. besteht.
  12. Kokille nach Anspruch 2, dadurch gekennzeichnet, dass das Kupferrohr (23) einen bogenförmigen Formhohlraum (24) aufweist und die beiden Stützplatten (32, 32"), die die bogenförmigen Seitenwände des Kupferrohres (23) abstützen, an ihren den bogenförmigen Stützflächen gegenüberliegenden Seiten (36, 36") ebene Begrenzungsflächen aufweisen.
  13. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Kupferrohr (3, 23) eingefräste Kühlkanäle (6, 26, 55) mit einer galvanisch erzeugten Kupferschicht (58) verschlossen sind.
  14. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Stützplatten (32 - 32"') bzw. der Stützmantel (12) aus einem für Magnetfelder leicht durchdringbaren metallischen, vorzugsweise austenitischem Stahl, oder nichtmetallischen Werkstoff besteht.
  15. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ausserhalb der Stützplatten (32 - 32"') bzw. des Stützmantels (12) elektromagnetische Spulen (14) angeordnet oder bewegte Dauermagnete in die Stützplatten (32 - 32"') bzw. in den Stützmantel (12) eingebaut sind.
  16. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen den Stützplatten (32 - 32"', 51, 52) bzw. dem Stützmantel (12) und dem Kupferrohr (3, 23, 56) eine Schutzschicht (57) gegen elektrolytische Korrosion angeordnet ist.
  17. Kokille nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Stützplatten (65) bzw. der Stützmantel (12) mit Külwasserzu- (64) und Abführleitungen (68) versehen sind, die am oberen Kokillenende angeordnet und mittels einer Kupplungsplatte (67) mit dem Kühlwassernetz verbindbar sind.
EP03008681A 2003-04-16 2003-04-16 Rohrkokille zum Stranggiessen Expired - Lifetime EP1468760B1 (de)

Priority Applications (22)

Application Number Priority Date Filing Date Title
EP03008681A EP1468760B1 (de) 2003-04-16 2003-04-16 Rohrkokille zum Stranggiessen
AT03008681T ATE296174T1 (de) 2003-04-16 2003-04-16 Rohrkokille zum stranggiessen
DE50300582T DE50300582D1 (de) 2003-04-16 2003-04-16 Rohrkokille zum Stranggiessen
ES03008681T ES2242119T3 (es) 2003-04-16 2003-04-16 Lingotera tubular para la colada continua.
PT03008681T PT1468760E (pt) 2003-04-16 2003-04-16 Lingoteira tubular para o vazamento continuo
CA002522190A CA2522190C (en) 2003-04-16 2004-04-07 Tubular mould for continuous casting
JP2006505043A JP4610548B2 (ja) 2003-04-16 2004-04-07 連続鋳造用管状鋳型
US10/550,373 US7422049B2 (en) 2003-04-16 2004-04-07 Tubular mould for continuous casting
CNB200480010049XA CN100344394C (zh) 2003-04-16 2004-04-07 用于连铸的管形锭模
BRPI0409449-2A BRPI0409449B1 (pt) 2003-04-16 2004-04-07 molde para lingotamento contìnuo de aço.
AU2004230206A AU2004230206B2 (en) 2003-04-16 2004-04-07 Tubular mould for continuous casting
MXPA05009765A MXPA05009765A (es) 2003-04-16 2004-04-07 Lingotera tubular para la colada continua.
PCT/EP2004/003712 WO2004091826A1 (de) 2003-04-16 2004-04-07 Rohrkokille zum stranggiessen
KR1020057019234A KR101082901B1 (ko) 2003-04-16 2004-04-07 연속 주조용 관형상 주형
RU2005135447/02A RU2316409C2 (ru) 2003-04-16 2004-04-07 Трубчатый кристаллизатор для непрерывного литья
PL377699A PL207539B1 (pl) 2003-04-16 2004-04-07 Krystalizator rurowy do ciągłego odlewania
TW093110157A TWI240660B (en) 2003-04-16 2004-04-12 Tubular mould for continuous casting
MYPI20041352A MY136189A (en) 2003-04-16 2004-04-13 Tubular mould for continuous casting
ARP040101305A AR043879A1 (es) 2003-04-16 2004-04-19 Lingotera tubular para la colada continua
UAA200510838A UA79695C2 (en) 2003-04-16 2004-07-04 Tubular crystallizer for continuous casting
ZA2005/06874A ZA200506874B (en) 2003-04-16 2005-08-26 Tubular mould for continuous casting
EGNA2005000605 EG23891A (en) 2003-04-16 2005-10-02 Tubular mould for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03008681A EP1468760B1 (de) 2003-04-16 2003-04-16 Rohrkokille zum Stranggiessen

Publications (2)

Publication Number Publication Date
EP1468760A1 true EP1468760A1 (de) 2004-10-20
EP1468760B1 EP1468760B1 (de) 2005-05-25

Family

ID=32892888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03008681A Expired - Lifetime EP1468760B1 (de) 2003-04-16 2003-04-16 Rohrkokille zum Stranggiessen

Country Status (22)

Country Link
US (1) US7422049B2 (de)
EP (1) EP1468760B1 (de)
JP (1) JP4610548B2 (de)
KR (1) KR101082901B1 (de)
CN (1) CN100344394C (de)
AR (1) AR043879A1 (de)
AT (1) ATE296174T1 (de)
AU (1) AU2004230206B2 (de)
BR (1) BRPI0409449B1 (de)
CA (1) CA2522190C (de)
DE (1) DE50300582D1 (de)
EG (1) EG23891A (de)
ES (1) ES2242119T3 (de)
MX (1) MXPA05009765A (de)
MY (1) MY136189A (de)
PL (1) PL207539B1 (de)
PT (1) PT1468760E (de)
RU (1) RU2316409C2 (de)
TW (1) TWI240660B (de)
UA (1) UA79695C2 (de)
WO (1) WO2004091826A1 (de)
ZA (1) ZA200506874B (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1792676A1 (de) * 2005-12-05 2007-06-06 KM Europa Metal Aktiengesellschaft Kokille zum Stranggiessen von Metall
WO2008148465A1 (de) * 2007-06-04 2008-12-11 Concast Ag Kokille zum stranggiessen von vorblöcken, brammen und knüppeln
EP2055410A1 (de) 2007-11-01 2009-05-06 KME Germany AG & Co. KG Flüssigkeitsgekühlte Kokille zum Stranggießen von Metallen
DE102010047392A1 (de) * 2010-10-02 2012-04-05 Egon Evertz Kg (Gmbh & Co.) Stranggießkokille
CN103056317A (zh) * 2013-01-28 2013-04-24 青岛云路新能源科技有限公司 一种非晶结晶器铜套冷却结构
ITUD20120192A1 (it) * 2012-11-16 2014-05-17 Danieli Off Mecc Metodo per la realizzazione di un cristallizzatore per colata continua, e cristallizzatore cosi' ottenuto
ITUD20130090A1 (it) * 2013-06-28 2014-12-29 Danieli Off Mecc Cristallizzatore per colata continua e procedimento per la sua realizzazione
WO2016166215A1 (de) * 2015-04-16 2016-10-20 Primetals Technologies Austria GmbH Gestützte rohrkokille für knüppel- und vorblockanlagen
EP2620236A3 (de) * 2012-01-30 2017-07-19 Primetals Technologies Austria GmbH Durchlaufkokille zum Stranggießen eines Strangs, insbesondere mit Knüppel- oder Vorblockprofil
EP3284550A1 (de) 2016-08-18 2018-02-21 SMS Concast AG Verfahren zum herstellen einer kokille für das stranggiessen von metallischen produkten, sowie eine kokille
EP3406368A1 (de) 2017-05-23 2018-11-28 SMS Concast AG Kokille zum stranggiessen von metallischen produkten
WO2019007656A1 (de) 2017-07-03 2019-01-10 Primetals Technologies Austria GmbH Einbau eines faseroptischen temperatursensors in eine kokille und kokille mit mehreren faseroptischen temperatursensoren
WO2020126206A1 (de) 2018-12-21 2020-06-25 Primetals Technologies Austria GmbH Kokilleneinheit zum stranggiessen von metallprodukten sowie stranggiessanlage
EP3695918A1 (de) 2019-02-15 2020-08-19 Primetals Technologies Austria GmbH Kokilleneinheit zum stranggiessen von metallprodukten sowie stranggiessanlage
WO2023041814A1 (es) * 2021-09-20 2023-03-23 Sarralle Steel Melting Plant, S.L. Conjunto para molde de colada continua

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2025432B2 (de) * 2007-07-27 2017-08-30 Concast Ag Verfahren zur Erzeugung von Stahl-Langprodukten durch Stranggiessen und Walzen
DE102008007082A1 (de) * 2007-11-01 2009-05-07 Kme Germany Ag & Co. Kg Flüssigkeitsgekühlte Kokille zum Stranggießen von Metallen
KR101067967B1 (ko) * 2009-04-27 2011-09-26 김기창 주형지그
JP5423564B2 (ja) * 2010-04-27 2014-02-19 新日鐵住金株式会社 連続鋳造用鋳型装置
US20120111524A1 (en) * 2010-11-05 2012-05-10 Schlichting Kevin W Shot tube plunger for a die casting system
ES2695045T3 (es) * 2011-11-09 2018-12-28 Nippon Steel & Sumitomo Metal Corporation Aparato de colada continua para acero
ITBS20120016A1 (it) * 2012-01-31 2013-08-01 Sama S R L Lingottiera di un impianto per colata continua
CN102527960A (zh) * 2012-02-15 2012-07-04 曲沃县民政福利企业有限公司 一种水平连铸新型结晶器
JP5689434B2 (ja) * 2012-03-23 2015-03-25 三島光産株式会社 連続鋳造用鋳型
JP5896811B2 (ja) * 2012-04-02 2016-03-30 株式会社神戸製鋼所 チタンまたはチタン合金からなる鋳塊の連続鋳造用の鋳型およびこれを備えた連続鋳造装置
CN103341598A (zh) * 2013-07-19 2013-10-09 烟台孚信达双金属股份有限公司 铜包铝复合材料铸造用结晶器
CN104624990B (zh) * 2015-02-26 2023-08-25 周嘉平 一种均匀冷却结晶器铜管及其制造方法
KR101613668B1 (ko) * 2015-04-28 2016-04-29 주식회사 케이유신소재 연속주조용 냉각장치
IT201700027045A1 (it) 2017-03-10 2018-09-10 Em Moulds S P A A Socio Unico Cristallizzatore per colata continua e metodo per ottenere lo stesso
CN110039013B (zh) * 2019-04-29 2021-01-26 攀钢集团攀枝花钢铁研究院有限公司 小变形连铸管式结晶器
CN109894585B (zh) * 2019-04-29 2021-01-26 攀钢集团攀枝花钢铁研究院有限公司 连铸管式结晶器
CN110076326A (zh) * 2019-05-20 2019-08-02 沈阳铸造研究所有限公司 一种电渣熔铸异形件用结晶器水路控制方法
CN110076303B (zh) * 2019-05-22 2024-05-03 中冶赛迪工程技术股份有限公司 改变结晶器铜管凸度的方法及可变凸度结晶器铜管
KR102122682B1 (ko) * 2019-07-29 2020-06-12 현대제철 주식회사 열간압연용 롤의 제조 장치
KR102133133B1 (ko) * 2019-09-26 2020-07-10 현대제철 주식회사 열간압연용 롤의 제조 장치
CN111468690A (zh) * 2020-04-22 2020-07-31 江西耐乐科技协同创新有限公司 一种利用感应线圈进行有序结晶的结晶器
RU198654U1 (ru) * 2020-04-23 2020-07-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Трубчатый кристаллизатор
CN113441700A (zh) * 2021-07-30 2021-09-28 上海睿昇半导体科技有限公司 一种冷却水套及其加工方法
CN113579183B (zh) * 2021-08-02 2023-10-27 成都冶金实验厂有限公司 一种结晶器用的冷却系统
IT202100026519A1 (it) * 2021-10-06 2023-04-06 Danieli Off Mecc Cristallizzatore per colata continua

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078600A (en) * 1976-02-03 1978-03-14 Cashdollar Sr Robert E Continuous casting
EP0268143A2 (de) * 1986-11-19 1988-05-25 Concast Standard Ag Verfahren und Kokille zum Stranggiessen von Metall-, insbesondere von Stahlsträngen

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667534A (en) * 1971-03-11 1972-06-06 Sumitomo Metal Ind Steel ingot making method
US3730257A (en) * 1971-06-24 1973-05-01 Koppers Co Inc Continuous casting sleeve mold
US3763920A (en) * 1972-03-16 1973-10-09 United States Steel Corp Water inlet construction for continuous-casting molds
DE2613745A1 (de) * 1976-03-31 1977-10-06 Linde Ag Waermetauscher
FR2423285A1 (fr) * 1978-04-17 1979-11-16 Siderurgie Fse Inst Rech Chemise de refroidissement pour lingotiere de coulee continue des metaux
JPS6110833Y2 (de) * 1980-02-27 1986-04-07
JPS5758953A (en) * 1980-09-26 1982-04-09 Mitsubishi Heavy Ind Ltd Block type casting for continuous casting
JPS59135850U (ja) * 1983-02-23 1984-09-11 三島光産株式会社 連続鋳造用鋳型
JPS60176858U (ja) * 1984-04-26 1985-11-22 株式会社神戸製鋼所 電磁攪拌装置を内蔵した連続鋳造用鋳型
JPS61176445A (ja) * 1985-01-31 1986-08-08 Sumitomo Heavy Ind Ltd 連続鋳造装置の鋳型構造
JPS62142453U (de) * 1986-02-28 1987-09-08
JPH0160745U (de) * 1987-10-12 1989-04-18
JPH01128945U (de) * 1988-02-24 1989-09-01
JPH0659523B2 (ja) * 1988-09-09 1994-08-10 ノムラテクノリサーチ株式会社 連続鋳造用鋳型の製造方法
JPH0593644U (ja) * 1992-05-23 1993-12-21 神鋼メタルプロダクツ株式会社 連続鋳造用チューブラモールド
CN2142764Y (zh) * 1992-12-05 1993-09-29 章仲禹 一种水平连铸方坯的结晶器
CN2151828Y (zh) * 1992-12-28 1994-01-05 吉林市钢厂 水平连铸小方坯结晶器
CN2206685Y (zh) * 1994-12-01 1995-09-06 马鞍山钢铁股份有限公司 新型高密封连铸结晶器
CN2236374Y (zh) * 1995-10-13 1996-10-02 冶金工业部钢铁研究总院 直冷式附加结晶器
CN2301273Y (zh) * 1997-06-09 1998-12-23 李建勇 一种喷淋式汽化结晶器
CN2300464Y (zh) * 1997-08-20 1998-12-16 桂源 一种结晶器铜管
CZ295184B6 (cs) * 1999-08-26 2005-06-15 Concast Standard Ag Kokila ke kontinuálnímu lití oceli do sochorů a bloků
US6374903B1 (en) * 2000-09-11 2002-04-23 Ag Industries, Inc. System and process for optimizing cooling in continuous casting mold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078600A (en) * 1976-02-03 1978-03-14 Cashdollar Sr Robert E Continuous casting
EP0268143A2 (de) * 1986-11-19 1988-05-25 Concast Standard Ag Verfahren und Kokille zum Stranggiessen von Metall-, insbesondere von Stahlsträngen

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978091B (zh) * 2005-12-05 2011-04-13 Km欧洲钢铁股份有限公司 用于连铸金属的管式结晶器
EP1792676A1 (de) * 2005-12-05 2007-06-06 KM Europa Metal Aktiengesellschaft Kokille zum Stranggiessen von Metall
CN101772387B (zh) * 2007-06-04 2013-11-20 Sms康卡斯特股份公司 用于连铸初轧坯、板坯或钢坯的结晶器
WO2008148465A1 (de) * 2007-06-04 2008-12-11 Concast Ag Kokille zum stranggiessen von vorblöcken, brammen und knüppeln
EP2014393A1 (de) 2007-06-04 2009-01-14 Concast Ag Kokille zum Stranggiessen von Vorblöcken, Brammen oder Knüppeln
EA017205B1 (ru) * 2007-06-04 2012-10-30 Смс Конкаст Аг Кристаллизатор для непрерывной разливки блюмов, слябов или сортовых заготовок
EP2055410A1 (de) 2007-11-01 2009-05-06 KME Germany AG & Co. KG Flüssigkeitsgekühlte Kokille zum Stranggießen von Metallen
DE102010047392A1 (de) * 2010-10-02 2012-04-05 Egon Evertz Kg (Gmbh & Co.) Stranggießkokille
AT512433B1 (de) * 2012-01-30 2017-08-15 Primetals Technologies Austria GmbH Durchlaufkokille zum stranggiessen eines strangs mit knüppel- oder vorblockprofil
EP2620236A3 (de) * 2012-01-30 2017-07-19 Primetals Technologies Austria GmbH Durchlaufkokille zum Stranggießen eines Strangs, insbesondere mit Knüppel- oder Vorblockprofil
ITUD20120192A1 (it) * 2012-11-16 2014-05-17 Danieli Off Mecc Metodo per la realizzazione di un cristallizzatore per colata continua, e cristallizzatore cosi' ottenuto
CN103056317A (zh) * 2013-01-28 2013-04-24 青岛云路新能源科技有限公司 一种非晶结晶器铜套冷却结构
WO2014207729A3 (en) * 2013-06-28 2015-04-16 Danieli & C. Officine Meccaniche S.P.A. Crystallizer for continuous casting and method for its production
WO2014207729A2 (en) 2013-06-28 2014-12-31 Danieli & C. Officine Meccaniche S.P.A. Crystallizer for continuous casting and method for its production
ITUD20130090A1 (it) * 2013-06-28 2014-12-29 Danieli Off Mecc Cristallizzatore per colata continua e procedimento per la sua realizzazione
WO2016166215A1 (de) * 2015-04-16 2016-10-20 Primetals Technologies Austria GmbH Gestützte rohrkokille für knüppel- und vorblockanlagen
EP3284550A1 (de) 2016-08-18 2018-02-21 SMS Concast AG Verfahren zum herstellen einer kokille für das stranggiessen von metallischen produkten, sowie eine kokille
EP3406368A1 (de) 2017-05-23 2018-11-28 SMS Concast AG Kokille zum stranggiessen von metallischen produkten
WO2019007656A1 (de) 2017-07-03 2019-01-10 Primetals Technologies Austria GmbH Einbau eines faseroptischen temperatursensors in eine kokille und kokille mit mehreren faseroptischen temperatursensoren
WO2020126206A1 (de) 2018-12-21 2020-06-25 Primetals Technologies Austria GmbH Kokilleneinheit zum stranggiessen von metallprodukten sowie stranggiessanlage
KR20210105356A (ko) * 2018-12-21 2021-08-26 프리메탈스 테크놀로지스 오스트리아 게엠베하 금속 제품의 연속 주조를 위한 금형 유닛 및 연속 주조 설비
EP3695918A1 (de) 2019-02-15 2020-08-19 Primetals Technologies Austria GmbH Kokilleneinheit zum stranggiessen von metallprodukten sowie stranggiessanlage
WO2023041814A1 (es) * 2021-09-20 2023-03-23 Sarralle Steel Melting Plant, S.L. Conjunto para molde de colada continua

Also Published As

Publication number Publication date
JP2006523534A (ja) 2006-10-19
PL377699A1 (pl) 2006-02-06
KR20050109626A (ko) 2005-11-21
US20060237161A1 (en) 2006-10-26
BRPI0409449B1 (pt) 2011-11-16
DE50300582D1 (de) 2005-06-30
ATE296174T1 (de) 2005-06-15
EP1468760B1 (de) 2005-05-25
ZA200506874B (en) 2006-05-31
CN100344394C (zh) 2007-10-24
TWI240660B (en) 2005-10-01
RU2316409C2 (ru) 2008-02-10
CA2522190C (en) 2009-09-29
RU2005135447A (ru) 2006-03-10
PL207539B1 (pl) 2010-12-31
UA79695C2 (en) 2007-07-10
US7422049B2 (en) 2008-09-09
AR043879A1 (es) 2005-08-17
KR101082901B1 (ko) 2011-11-11
CN1774309A (zh) 2006-05-17
PT1468760E (pt) 2005-10-31
TW200425975A (en) 2004-12-01
AU2004230206A1 (en) 2004-10-28
BRPI0409449A (pt) 2006-05-02
MY136189A (en) 2008-08-29
AU2004230206B2 (en) 2008-12-11
WO2004091826A1 (de) 2004-10-28
MXPA05009765A (es) 2006-05-19
ES2242119T3 (es) 2005-11-01
EG23891A (en) 2007-12-12
JP4610548B2 (ja) 2011-01-12
CA2522190A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
EP1468760B1 (de) Rohrkokille zum Stranggiessen
EP0912271B1 (de) Flüssigkeitsgekühlte kokille
CH623759A5 (de)
DE2641261A1 (de) Kokille mit im kuehlkanal angeordneten induktorspulen
DE60025053T2 (de) Stranggiessanlage für Stahl
DE2353449C2 (de) Flüssigkeitsgekühlte Kokille
EP1795281B1 (de) Stranggiesskokille
EP1007246B1 (de) Stranggiesskokille
DE2858250C2 (de) Stranggießkokille
EP1212159B1 (de) Kokille zum stahlstranggiessen von knüppel- und vorblockformaten
DE10024587A1 (de) Kühlplatte
EP0268143A2 (de) Verfahren und Kokille zum Stranggiessen von Metall-, insbesondere von Stahlsträngen
DE2847581C2 (de)
EP2255140B1 (de) Kühlelement zur kühlung der feuerfesten auskleidung eines metallurgischen ofens
EP2897746B1 (de) Vorrichtung zum stranggiessen von metallen
AT526023A1 (de) Stranggießanlage von Stahl
WO2008017374A1 (de) KOKILLE ZUM STRANGGIEßEN VON FLÜSSIGEM METALL, INSBESONDERE VON STAHLWERKSTOFFEN
EP1535678B1 (de) Zusammenbau von Kupferplattenkassetten
DE19716450A1 (de) Flüssigkeitsgekühlte Kokille
DE10218957B4 (de) Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl
EP0246423A2 (de) Verfahren und Vorrichtung zur festen Verbindung von keramischen Formteilen mit Metallen
AT18150U1 (de) Führungstisch zum geführten Überleiten eines Metallbandes sowie Verfahren zum Betreiben eines derartigen Führungstisches
DE202021004335U1 (de) Führungstisch zum geführten Überleiten eines Metallbandes
WO1988004586A1 (en) Process and device for continuous casting of metal bars
DE102009018213A1 (de) Vakuumpumpengehäuse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

17P Request for examination filed

Effective date: 20041029

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050525

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50300582

Country of ref document: DE

Date of ref document: 20050630

Kind code of ref document: P

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050825

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20050823

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2242119

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051126

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

26N No opposition filed

Effective date: 20060228

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130418

Year of fee payment: 11

Ref country code: SE

Payment date: 20130418

Year of fee payment: 11

Ref country code: BE

Payment date: 20130418

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20130416

Year of fee payment: 11

Ref country code: FI

Payment date: 20130411

Year of fee payment: 11

Ref country code: FR

Payment date: 20130515

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20141016

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140416

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141016

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140416

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140416

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170324

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210503

Year of fee payment: 19

Ref country code: ES

Payment date: 20210621

Year of fee payment: 19

Ref country code: TR

Payment date: 20210415

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220421

Year of fee payment: 20

Ref country code: DE

Payment date: 20220420

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220421

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50300582

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230530

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 296174

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220416