WO2023041814A1 - Conjunto para molde de colada continua - Google Patents

Conjunto para molde de colada continua Download PDF

Info

Publication number
WO2023041814A1
WO2023041814A1 PCT/ES2021/070676 ES2021070676W WO2023041814A1 WO 2023041814 A1 WO2023041814 A1 WO 2023041814A1 ES 2021070676 W ES2021070676 W ES 2021070676W WO 2023041814 A1 WO2023041814 A1 WO 2023041814A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystallizer
mold assembly
jacket
walls
guide
Prior art date
Application number
PCT/ES2021/070676
Other languages
English (en)
French (fr)
Inventor
Ugo Zanelli
Gianni Zomero
Juan FERNÁNDEZ MORAL
Gorka ARBIDE URBIZU
Original Assignee
Sarralle Steel Melting Plant, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarralle Steel Melting Plant, S.L. filed Critical Sarralle Steel Melting Plant, S.L.
Priority to PCT/ES2021/070676 priority Critical patent/WO2023041814A1/es
Publication of WO2023041814A1 publication Critical patent/WO2023041814A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/057Manufacturing or calibrating the moulds

Definitions

  • the present invention is included in the technical field of continuous casting molds, where the casting mold assembly comprises a crystallizer, a cooling jacket that surrounds it and a separation structure that creates cooling channels around the crystallizer and where the mold assembly is intended to be housed in a mold body.
  • the assembly for continuous casting mold of the present invention improves heat extraction, increasing heat exchange and avoids, on the one hand, speed differences along the longitudinal direction and, on the other, achieves the possibility of having a localized increase or decrease in water flow.
  • the crystallizer does not deform and its useful life is increased.
  • the entire system can be mounted outside the body of the mold and, due to its particular design, it can be adapted to the bodies of new or existing molds without the need for specific modifications to the cooling circuit.
  • Continuous casting is a process that involves the transformation of metallic materials cast in liquid form into a predefined form of solidified material, without interruption of continuity and over long periods of time.
  • the material cast at high temperature is received by a container, called a crystallizer, which is formed by a hollow body, whose cross section defines the geometry of the final product and which extends longitudinally.
  • the crystallizer also known as an ingot mold, is open at its top and bottom so that the liquid material passes through its inlet end and comes into contact with the inside of the inner boundary wall.
  • These walls are cooled externally in different ways, normally by means of a jacket that surrounds the external walls of the crystallizer and that defines a transit compartment, inside which a cooling liquid circulates.
  • the contact between the cast material and the cold internal walls of the crystallizer, due to the relevant heat extraction, causes the formation of a solidified layer made by the cast material.
  • the product is continuously withdrawn from the mold and cooled by spraying water or by means of water and air until it is completely solidified, giving rise to a longitudinal product also called "long product" or cast product.
  • the layer must be thick enough at the exit of the mold to be able to withstand the extraction forces and the ferrostatic pressure of the liquid steel present inside the solidified layer itself. Added to this is the fact that permanent deformations and distortions are created in the area of the meniscus, which can create internal cracks in the areas close to the corners and can cause the surface to break at the outlet of the crystallizer.
  • crystallizers for continuous casting have been developed, such as the one included in patent document EP3013498B1, where a crystallizer for continuous casting is disclosed that comprises a tubular body, which has at least a wall defining a through longitudinal casting cavity and a plurality of longitudinal slots made in at least a part of said wall and open towards the exterior thereof, wherein the crystallizer further comprises a cover enveloping said wall.
  • the patent document EP3096901 B1 is also known, which describes a crystallizer for continuous casting comprising at least one wall provided on its external surface with a plurality of grooves, each groove opening outwards.
  • the crystallizer further comprises a longitudinal metal bar inserted in each of said slots and which closes each slot towards the outside.
  • a channel is defined for the passage of a refrigerant fluid.
  • the longitudinal metal bars are connected to the wall of the crystallizer by welding on at least part of the internal edges of said grooves.
  • the patent document EP3592484A1 deals with a crystallizer for continuous casting that comprises a tubular body, formed by a first and a second tubular element where both are monolithic and coaxial with each other.
  • the tubular elements are provided with one or more slots open towards the other tubular element.
  • the first and second tubular elements are mechanically coupled together, by plastic deformation through drawing between a die and a suitably shaped mandrel, so that the slots are radially closed, forming conduits in the tubular body configured to serve as refrigeration and/or refrigeration conduits. or house reinforcing bars.
  • the present invention refers to an assembly for a continuous casting mold, intended for the manufacture of longitudinal metal products and to be partially housed in a mold body, comprising a crystallizer that is intended to accommodate the metal and is provided with an outlet end, an inlet end and at least one crystallizer wall provided with an internal face that is intended to contact the metal and is provided with a meniscus zone and an external face opposite to the internal face.
  • the assembly comprises a cooling jacket provided with at least one jacket wall that embraces the crystallizer and a longitudinal separation structure, which is retained between the jacket and the crystallizer where the separation structure is provided with a plurality of longitudinal guide sheets. provided with an internal guide face that comes into contact with the external face of the crystallizer, among which are defined a plurality of vertical channels limited by the jacket wall and which are intended to house a cooling fluid.
  • the present invention guarantees, on the one hand, the absence of speed differences along the longitudinal direction and, on the other, the possibility of having a localized increase or decrease in the flow of refrigerant fluid.
  • the flow of coolant liquid is distributed evenly over the entire surface of the crystallizer, achieving greater cooling control.
  • the whole assembly can be mounted outside the body of the mold and, due to its particular design, it can be adapted to the bodies of new or existing molds without the need for specific modifications to the cooling circuit or other parts of the mould.
  • the configuration of the mold assembly allows the dimensions of the vertical channels that house the coolant to be modified, so that the number of vertical sheets, the thickness and the distance between them can be readjusted to control the cooling without having to modify the entire mould.
  • the crystallizer is the part of a mold assembly that is changed the most and thanks to the configuration of the present invention, the crystallizer can be changed and the rest of the elements can be reused, lowering the costs of mold maintenance. In the case of technological tests on, for example, different forms of primary cooling, tapers, copper thicknesses, etc., it is not necessary to change the jacket, but only the crystallizer and the longitudinal sheets of the separation structure.
  • the crystallizer can have different very varied configurations, being able to be monolithic, composed of several plates, tubular, bimaterial, etc.
  • the liquid metal also changes its dimensions, decreasing its volume, the internal shape of the crystallizer must also be adequately designed to follow this contraction, maintaining maximum contact with the solidified shell.
  • the mold set brings advantages not only in increasing the casting speed but also in the production of high quality steels and finally in extending the casting hours of the copper crystallizer with the consequent reduction of maintenance and spare parts costs.
  • the wall of the crystallizer can comprise at least one cavity on the external face at least at the level of the meniscus area and the separation structure can be partially housed in the cavity, the width of the separation structure being less than the width of the The cavity.
  • the area of the meniscus which is the area of maximum heat exchange, an area of reduced thickness is generated thanks to the cavity, increasing the heat extraction capacity.
  • the fact that the heat exchange in the meniscus area increases can help increase the casting speed.
  • the jacket wall can comprise an internal surface provided with a plurality of longitudinal guide grooves where each guide groove houses a guide sheet, so that it retains them and thus the separation between the sheets is given by the separation of the sheets. sleeve guide grooves. The thickness of the guide sheets and the width of the guide grooves is the same to ensure the retention of the sheets and the tightness of the channels.
  • the crystallizer can be quadrangular and have four walls.
  • the crystallizer and the jacket can comprise four jacket walls linked together in a use situation and facing the crystallizer walls respectively.
  • the walls of the jacket can comprise two first walls with first holes that extend perpendicular to the internal surface and two second walls provided with second holes that extend parallel to the internal surface, where the holes are intended to house some elements of joint and each first wall is joined to the two second walls in a removable manner.
  • the set for continuous casting mold is intended for the production of longitudinal products, commonly called “long products” or casting product, whose cross section is defined by the cross section of the crystallizer.
  • the crystallizer alternatively to the quadrangular section described, can have any polygonal shape, it can be "neat ner" type, BBL or a circular section having a single crystallizer wall with at least one cavity and at least one jacket wall that surround.
  • the crystallizer can be straight or curved, depending on manufacturing requirements, and the elements of the jacket are adapted to the curvature of its external face.
  • the guide sheets can comprise a cross-sectional shape that is complementary to the cross-section of the cavity in such a way that it optimizes the closing of the channels.
  • the guide sheets can be made of a polymeric material, such as Teflon, or any other material that meets the requirements for durability and resistance.
  • the parts are shaped by laser cutting or by similar technologies, avoiding mechanical manufacturing.
  • the assembly for the mold can comprise some elastic tubes housed in the vertical channels that come into contact with the guide sheets and with a bottom of the guide grooves and that improve the fit, preventing the sheets from being damaged, in addition to having the task of allowing the expansion of the crystallizer subjected to thermal flux
  • the cavity can extend from the height of the meniscus towards the exit end and/or towards the entrance end of the crystallizer, so that, depending on the requirements of the mold, the heat extraction can be optimized, in addition to the zone of the meniscus, in the area immediately after it is towards the upper end or towards the lower end. Additionally, the cavity can extend to said ends. Furthermore, the depth of the cavity preferably decreases as it extends towards the outlet end, optimizing the heat extraction capacity in the meniscus area, which is the area of maximum heat exchange, by maximally reducing the thickness of the crystallizer. in the area of the meniscus and increasing it as it extends towards the exit end and/or the entrance end, where the heat exchange is not as high.
  • the cavity can be of various shapes such as polygonal, quadrangular, circular or oval, being preferably quadrangular.
  • the configuration of the mold assembly guarantees structural rigidity that eliminates the risks of permanent deformation and distortion, without reducing the refrigerant capacity necessary for the solidification of the cast metal, optimizing the maintenance of the mold assembly and reducing maintenance costs.
  • Figure 1. Shows a perspective figure of an assembly for a continuous casting mould.
  • Figure 2. Shows an exploded view of a first configuration of a mold assembly.
  • Figure 3A. Shows a top view of a crystallizer of a first configuration.
  • Figure 3B. Shows a view of a crystallizer according to a longitudinal section.
  • Figure 4A. Shows a longitudinal sectional view of a first assembly configuration for a mould.
  • Figure 4B Shows a sectional view according to a section A-A of figure 4A.
  • Figure 4C.- Sample is a perspective view of the first configuration.
  • Figure 5A Shows a longitudinal section view of a second assembly configuration for a mould.
  • Figure 5B.- Shows a section view according to a section B-B of figure 5A.
  • Figure 5C.- Sample is a perspective view of the second configuration.
  • Figure 6A Shows a view in longitudinal section of a third assembly configuration for the mould.
  • Figure 6B Shows a section view according to a section C-C of figure 6A.
  • Figure 6C.- Sample is a perspective view of the third configuration.
  • Figure 1 shows a perspective figure of an assembly for a continuous casting mold, according to the present invention, intended for the manufacture of longitudinal metal products, which comprises a monolithic tubular crystallizer (1) that is intended to house the metal and which is provided with an outlet end (2) and a sleeve
  • Figure 2 shows an exploded view of a mold assembly, according to the present invention, where it can be seen that the crystallizer wall (3) comprises an internal face (4) that is intended to contact the metal and that is provided with a meniscus area (5), not visible in the figure, an external face (6) opposite the internal face (4) and at least one cavity (7) on the external face (6).
  • the crystallizer wall (3) comprises an internal face (4) that is intended to contact the metal and that is provided with a meniscus area (5), not visible in the figure, an external face (6) opposite the internal face (4) and at least one cavity (7) on the external face (6).
  • the mold assembly is provided with a separation structure
  • the separation structure (9) longitudinal, which is between the jacket (8) and the crystallizer (1). In a situation of use, the separation structure (9) is partially housed in the cavity (7).
  • the separation structure (9) is provided with a plurality of guide sheets (10) between which a plurality of vertical channels (11) are defined, which are limited by the wall of jacket (12) and through which a refrigerant fluid flows in a situation of use.
  • the width of the spacing structure (9) is less than the width of the cavity
  • the spacing structure (9) is of greater length than the cavity (7) in the shown embodiment.
  • the crystallizer (1) is quadrangular, specifically with a square cross section and is provided with four crystallizer walls (3) and the jacket
  • (8) comprises four jacket walls (12, 13) facing the crystallizer walls (3).
  • the jacket walls (12, 13) have two first walls (12) provided with first holes (15) that extend perpendicular to the internal surface (20) and two second walls (13) provided with second holes. (16) that extend parallel to the internal surface (20), where the holes (15, 16) are intended to house bolt-type connecting elements (21) and each first wall
  • the assembly for the mold comprises elastic tubes (17) housed in the vertical channels (11) that come into contact with the guide sheets (10) and with a bottom of the guide grooves (14).
  • the assembly for the mold comprises two clamps (19) that in a situation of use embrace the walls of the jacket (12, 13).
  • the two second shell walls (13) have two curved longitudinal projections (22) extending from each lateral edge of the second shell walls.
  • Figure 3A shows a top view of a crystallizer (1), according to the present invention, where the curvature that it can have can be appreciated.
  • Figure 3B shows a view of a crystallizer, according to a longitudinal section, where it is observed that the cavity extends from the height of the meniscus area (5) a few millimeters towards the input end (29) and towards the output end ( 2).
  • the depth of the cavity (7) decreases as it extends towards the outlet (2) and inlet (29) end and the minimum thickness of the crystallizer (1) is at the height of the meniscus (5).
  • the guide sheets (10) describe a longitudinal section shape complementary to the longitudinal section of the cavity (7) as shown in the detail of Figure 2.
  • Figure 4A shows a longitudinal sectional view of a first configuration of the mold assembly, according to the present invention, where the clamps (19) are intended to rest on the mold body.
  • the mold assembly comprises a lower ring (25) that surrounds the outlet end (2) in such a way that it defines a lower gap (26) between an internal face of the lower ring (25) and the external face. (6) of the crystallizer (1).
  • it comprises an upper ring (28) that surrounds the inlet end (29), defining an upper gap (30) between an inner face of the upper ring (28) and the outer face (6) of the crystallizer (1), so that gaps of a constant thickness are created around the ends of the crystallizer (2, 29) through which the refrigerant fluid circulates.
  • the guide blades (10) comprise a lower groove (24) in the inner guide face (27) that extends from the lower end of the guide blade (10) and an upper groove (23) in the guide face. internal (27) that extends from the upper end of the guide sheet (10) in an assembly situation as shown.
  • the lower ring (25) has a lower projection (33) intended to be lodged in the lower groove (24) and the upper ring (28) has an upper projection (31) intended to be lodged in the upper groove (23) of so that the guide sheets are retained in their predetermined situation and the position is given by the installation itself.
  • the walls of the jacket (12, 13) have lower and upper slits corresponding to said slits (23, 24).
  • Figure 4B shows a sectional view according to a section AA of Figure 4A of the first mold assembly configuration, according to the present invention, where it is in a use situation, the jacket walls (12, 13) are joined together by means of the connecting elements, which are preferably bolts not shown in the figure.
  • the guide sheets (10) are of the same thickness as the slots (14) completely closing the vertical channel (11). This is how the 4 zones with controlled refrigeration can be seen through the riser and with a crystallizer to increase heat exchange at the meniscus.
  • Figure 4C is a perspective view of the first configuration.
  • Figure 5A shows a longitudinal section view of a second configuration of the mold assembly, according to the present invention, where the crystallizer (1) is monolithic, specifically a copper tube, and the wall of the crystallizer (3) is of a thickness very small, so that it facilitates refrigeration. In the area close to the inlet end, the thickness is greater to allow the union of the clamps (19).
  • Figure 5B is a sectional view according to a section B-B of Figure 5A and Figure 5C shows a perspective view of said second configuration.
  • Figure 6A shows a longitudinal sectional view of a third mold assembly configuration, according to the present invention, where the wall of the crystallizer (3) is provided with a cavity (7) and a secondary tube (34) surrounds said cavity (7). ) and is attached and flush with the external face (6).
  • Figure 6B shows a sectional view according to a section C-C of Figure 6A, according to the present invention and Figure 6C shows a perspective view of the third configuration.
  • the third configuration is especially suitable for special steels and related high casting speeds where high dimensional stability of the crystallizer (1) and intensive cooling of the meniscus are required.
  • the crystallizer (1) is allowed to expand under the effect of the heat flow, but in a limited way, thus guaranteeing the stability and rigidity of the assembly.
  • the cavity (7) is thus limited by the secondary tube (34), with variable shapes and sizes depending on technological calculations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Continuous Casting (AREA)

Abstract

Conjunto para molde de colada continua que aumenta el intercambio de calor, aumentando la velocidad de colada, que es apto para elementos longitudinales de secciones transversales variadas y permite un montaje rápido. El conjunto para molde comprende un cristalizador (1) tubular monolítico que está destinado a alojar el metal y que tiene al menos una pared de cristalizador (3). El conjunto para molde comprende una camisa (8) de refrigeración dotada de al menos una pared de camisa (12, 13) que abraza al cristalizador (1) y una estructura de separación (9), dotada de una pluralidad de láminas de guiado (10) entre las que se definen una pluralidad de canales verticales (11) destinados a alojar un fluido refrigerante.

Description

Figure imgf000003_0001
OBJETO DE LA INVENCIÓN
La presente invención se incluye en el campo técnico de los moldes de colada continua, donde el conjunto para molde de colada comprende un cristalizador, una camisa refrigerante que lo rodea y una estructura de separación que crea unos canales de refrigeración alrededor del cristalizador y donde el conjunto para molde está destinado a alojarse en un cuerpo de molde.
Por una parte, el conjunto para molde de colada continua de la presente invención mejora la extracción de calor, aumentando el intercambio de calor y evita, por un lado, las diferencias de velocidad a lo largo de la dirección longitudinal y, por otro, consigue la posibilidad de tener un aumento o disminución localizada del flujo de agua. Además, el cristalizador no se deforma y la vida útil del mismo aumenta.
Por otra parte, todo el sistema se puede montar fuera del cuerpo del molde y, debido a su diseño particular, se puede adaptar a los cuerpos de los moldes nuevos o existentes sin necesidad de realizar modificaciones específicas en el circuito de refrigeración.
ANTECEDENTES DE LA INVENCIÓN
La colada continua es un proceso que implica la transformación de materiales metálicos colados en forma líquida en una forma predefinida de material solidificado, sin interrupción de la continuidad y durante largos períodos de tiempo. El material colado a alta temperatura, es recibido por un recipiente, llamado cristalizador, que está formado por un cuerpo hueco, cuya sección trasversal define la geometría del producto final y que se extiende en sentido longitudinal.
El cristalizador, también conocido por el termino de lingotera, está abierto en su parte superior y en su parte inferior, de modo que el material líquido pasa por su extremo de entrada y entra en contacto con la parte interna de la pared delimitadora interior. Estas paredes se enfrían externamente de diferentes maneras, normalmente mediante una camisa que rodea externamente las paredes del cristalizador y que define un compartimento de tránsito, en cuyo interior circula un líquido refrigerante. El contacto entre el material colado y las paredes internas frías del cristalizador, debido a la extracción de calor pertinente, provoca la formación de una capa solidificada hecha por el material colado. El producto se retira continuamente del molde y se enfría pulverizando agua o mediante agua y aire hasta su completa solidificación, dando lugar a un producto longitudinal también llamado “long product” o producto de colada.
Uno de los principales problemas relacionados con esta solidificación inicial es que, la capa debe ser lo suficientemente gruesa a la salida del molde para poder soportar las fuerzas de extracción y la presión ferrostática del acero líquido presente en el interior de la propia capa solidificada. A esto se le suma que en el área del menisco se crean deformaciones y distorsiones permanentes, que pueden crear grietas internas en las zonas cercanas a las esquinas y que pueden provocar que se rompa la superficie en la salida del cristalizador.
La solución más obvia para aumentar la extracción de calor es reducir el grosor del tubo del molde, garantizando así una menor resistencia térmica, tal y como se recoge en el documento ES384660, que divulga un cristalizador cuyas paredes exteriores presentan una cavidad. Sin embargo, en este tipo de soluciones, esto no es posible llevarlo al máximo, ya que hay una limitación de grosor mínimo posible, debido a que el tubo o cristalizador también debe mantener las características mecánicas y la forma cuando está en condiciones de calor, ya que está sujeto tanto a la tensión térmica como a la mecánica, y esto está limitado por el grosor del propio tubo.
Con el fin de eliminar riesgos de deformaciones y distorsiones permanentes se han desarrollado cristalizadores para la colada continua, como el que se recoge en el documento de patente EP3013498B1 , donde se divulga un cristalizador para colada continua que comprende un cuerpo tubular, que tiene al menos una pared que define una cavidad de colada longitudinal pasante y una pluralidad de ranuras longitudinales hechas al menos en una parte de dicha pared y abiertas hacia el exterior de la misma, donde el cristalizador comprende adicionalmente una cubierta que envuelve dicha pared.
Se conoce también el documento de patente EP3096901 B1 que describe un cristalizador para colada continua que comprende al menos una pared provista en su superficie externa, de una pluralidad de ranuras, donde cada ranura se abre hacia el exterior. El cristalizador comprende además una barra metálica longitudinal insertada en cada una de dichas ranuras y que cierra cada ranura hacia el exterior. Así, entre la barra y la ranura se define un canal para el paso de un fluido refrigerante. Las barras metálicas longitudinales están unidas con la pared del cristalizador mediante soldadura en al menos una parte de los bordes internos de dichas ranuras.
El documento de patente EP3592484A1 trata de un cristalizador para colada continua que comprende un cuerpo tubular, formado por un primer y un segundo elemento tubular donde ambos son monolíticos y coaxiales entre sí. Los elementos tubulares están provistos de una o varias ranuras abiertas hacia el otro elemento tubular. El primer y segundo elemento tubular se acoplan mecánicamente entre sí, por deformación plástica mediante embutición entre una matriz y un mandril convenientemente conformado, de forma que las ranuras queden radialmente cerradas, formando conductos en el cuerpo tubular configurados para servir de conductos de refrigeración y/o alojar barras de refuerzo.
Las operaciones para realizar los canales de refrigeración referidos en los documentos mencionados son particularmente complejas y exigen de mucho tiempo y un equipo de trabajo especializado que realice complicadas operaciones de fabricación. Adicionalmente, en caso de reparación se tiene que cambiar el cristalizador y los elementos de refrigeración que lo rodean, ya que las uniones se realizan por soldadura.
En el caso de los tubos dotados de una cavidad, el riesgo de deformación y tensiones térmicas sigue siendo elevado ya que no se garantiza una refrigeración adecuada de la pared externa debido a la velocidad desigual del agua dentro de los canales de refrigeración, o bien da lugar a una variación de la velocidad a lo largo del propio tubo de cobre, generando gradientes de temperatura.
Finalmente, las soluciones conocidas en el estado de la técnica no permiten controlar ni modificar con facilidad la refrigeración del cristalizador. La mayoría de las soluciones anteriormente descritas no son completamente eficaces y requieren una modificación radical del diseño.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un conjunto para molde de colada continua, destinado a la fabricación de productos longitudinales de metal y a ser alojado parcialmente en un cuerpo de molde, que comprende un cristalizador que está destinado a alojar el metal y está dotado de un extremo de salida, un extremo de entrada y al menos una pared de cristalizador dotada de una cara interna que está destinada a contactar con el metal y está dotada de una zona de menisco y una cara externa opuesta a la cara interna.
El conjunto comprende una camisa de refrigeración dotada de al menos una pared de camisa que abraza al cristalizador y una estructura de separación longitudinal, que está retenida entre la camisa y el cristalizador donde la estructura de separación está dotada de una pluralidad de láminas de guiado longitudinales dotadas de una cara de guiado interna que contacta con la cara externa del cristalizador entre las que se definen una pluralidad de canales verticales limitados por la pared de camisa y que están destinados a alojar un fluido refrigerante.
Así, la presente invención garantiza, por un lado, la ausencia de diferencias de velocidad a lo largo de la dirección longitudinal y, por otro, la posibilidad de tener un aumento o disminución localizada del flujo de fluido refrigerante. Ventajosamente, al incorporar el separador vertical, el flujo de líquido refrigerante se distribuye uniformemente por toda la superficie del cristalizador consiguiendo un mayor control de la refrigeración.
Todo el conjunto se puede montar fuera del cuerpo del molde y, debido a su diseño particular, se puede adaptar a los cuerpos de los moldes nuevos o existentes sin necesidad de realizar modificaciones específicas en el circuito de refrigeración o en otras partes del molde.
Se consigue así una canalización vertical del líquido refrigerante y se mantiene una velocidad adecuada del flujo de dicho líquido por los canales, que es preferiblemente agua. El efecto compresor de las láminas de guiado garantiza un cristalizador estable geométricamente e indeformable durante las operaciones de colada. La estabilidad geométrica reduce el desgaste del cristalizador, ya que el revestimiento interno, hecho preferiblemente de cromo, no se agrieta y, por lo tanto, protege las paredes de cobre durante mucho tiempo.
Adicionalmente, la configuración del conjunto para molde permite modificar las dimensiones de los canales verticales que alojan el líquido refrigerante, de manera que el número de láminas verticales, el grosor y la distancia entre las mismas puede ser reajustada para controlar la refrigeración sin tener que modificar la totalidad del molde. El cristalizador es la parte que más se cambia de un conjunto para molde y gracias a la configuración de la presente invención, se puede cambiar el cristalizador pudiendo reutilizar el resto de elementos, abaratando los costes del mantenimiento del molde. En caso de pruebas tecnológicas sobre, por ejemplo, diferentes formas de refrigeración primaria, de conicidades, de espesores de cobre, etc., no es necesario cambiar la camisa, sino sólo el cristalizador y las láminas longitudinales de la estructura de separación. El cristalizador puede tener distintas configuraciones muy variadas pudiendo ser monolítico, compuesto por varias placas, tubular, bimaterial etc.
Como con la solidificación y la disminución de la temperatura también el metal líquido cambia sus dimensiones, disminuyendo su volumen, la forma interna del cristalizador también debe ser diseñada adecuadamente para seguir esta contracción, manteniendo el máximo contacto con la cáscara solidificada. Como se ha mencionado anteriormente, el conjunto para molde trae ventajas no solo en el aumento de la velocidad de colada sino también en la producción de aceros de alta calidad y finalmente en la ampliación de las horas de colada del cristalizador de cobre con la consecuente reducción de costes de mantenimiento y repuestos.
La pared del cristalizador puede comprender al menos una cavidad en la cara externa al menos a la altura de la zona del menisco y la estructura de separación puede estar alojada parcialmente en la cavidad, siendo la anchura de la estructura de separación menor que la anchura de la cavidad. En la zona del menisco, que es la zona de máximo intercambio de calor, se genera un área de espesor reducido gracias a la cavidad, aumentando la capacidad de extracción de calor. Además, entre otros factores, el hecho de que el intercambio de calor en la zona del menisco aumente, puede ayudar a que la velocidad de colada aumente.
Preferentemente, la pared de camisa puede comprender una superficie interna dotada de una pluralidad de ranuras de guiado longitudinales donde cada ranura de guiado aloja una lámina de guiado, de manera que las retiene y así la separación entre las láminas viene dada por la separación de las ranuras de guiado de la camisa. El grosor de las láminas de guiado y la anchura de las ranuras de guiado es el mismo para asegurar la retención de las láminas y la estanquidad de los canales.
Preferiblemente, el cristalizador puede ser cuadrangular y estar dotado de cuatro paredes de cristalizador y la camisa puede comprender cuatro paredes de camisa vinculadas entre sí en una situación de uso y enfrentadas respectivamente a las paredes de cristalizador. Las paredes de la camisa pueden comprender dos primeras paredes con unos primeros taladros que se extienden perpendiculares a la superficie interna y dos segundas paredes dotadas de unos segundos taladros que se extienden paralelos a la superficie interna, donde los taladros están destinados a alojar unos elementos de unión y cada primera pared está unida a las dos segundas paredes de manera removible.
De este modo el ensamblaje de las paredes de camisa entre sí es muy sencillo y se reduce a una simple secuencia de operaciones mecánicas que no requieren de utillajes complejos y costosos. Así, se puede comprobar la limpieza de los elementos y su estado asiduamente, como, por ejemplo, cada vez que se cambie el cristalizador. El conjunto para molde de colada continua está destinado a la producción de productos longitudinales, comúnmente llamados “long products” o producto de colada, cuya sección transversal está definida por la sección transversal del cristalizador. El cristalizador, alternativamente a la sección cuadrangular descrita, puede tener cualquier forma poligonal, puede ser tipo “neat ner”, BBL o una sección circular teniendo en una única pared de cristalizador con al menos una cavidad y al menos una pared de camisa que lo rodee. El cristalizador, puede ser recto o curvo, según los requisitos de fabricación, y los elementos de la camisa están adaptados a la curvatura de la cara externa del mismo.
Al final del montaje, para garantizar el flujo adecuado de agua de refrigeración, no es necesario realizar alineamientos y ajustes para calibrar el hueco entre el cristalizador y la camisa, todo sucede automáticamente. Esto significa que el ensamblaje es repetitivo y se garantiza en todos los moldes el que no sea posible tener un ajuste asimétrico de dicho hueco.
Las láminas de guiado pueden comprender una forma de sección transversal complementaria a la sección trasversal de la cavidad de manera que optimiza el cierre de los canales.
Las láminas de guiado pueden ser de un material polimérico, como, por ejemplo, teflón o de cualquier otro material que cumpla con los requisitos de durabilidad y resistencia. Preferentemente las piezas se conforman mediante corte por láser o mediante tecnologías similares evitando la fabricación mecánica. El conjunto para molde puede comprender unos tubos elásticos alojados en los canales verticales que contactan con las láminas de guiado y con un fondo de las ranuras de guiado y que mejoran el ajuste evitando que las láminas se dañen además de que tienen la tarea de permitir la expansión del cristalizador sometido al flujo térmico
Preferiblemente, la cavidad se puede extender desde la altura del menisco hacia el extremo de salida y/o hacia el extremo de entrada del cristalizador, de manera que, según los requisitos del molde, la extracción de calor puede optimizarse, además de en la zona del menisco, en la zona inmediatamente después que este hacia el extremo superior o hacia el extremo inferior. Adicionalmente la cavidad puede extenderse hasta dichos extremos. Además, la profundidad de la cavidad preferiblemente disminuye, según se extiende hacia el extremo de salida, optimizando la capacidad de extracción de calor en la zona del menisco, que es la zona de máximo intercambio de calor, mediante la reducción máxima del grosor del cristalizador en la zona del menisco y aumentándolo a medida que se extiende hacia el extremo de salida y/o el extremo de entrada, donde el intercambio de calor no es tan elevado. La cavidad puede ser de varias formas como poligonal, cuadrangular, circular u ovalada, siendo preferentemente cuadrangular.
Así, la configuración del conjunto para molde garantiza una rigidez estructural que elimina los riesgos de deformaciones y distorsiones permanentes, sin reducir la capacidad refrigerante necesaria para la solidificación del metal colado, optimizando el mantenimiento del conjunto para molde y reduciendo los costes de mantenimiento.
DESCRIPCIÓN DE LOS DIBUJOS
Para implementar la presente descripción y para proporcionar una mejor comprensión de las características de la invención, de acuerdo con una realización preferida de la misma, se adjunta un conjunto para dibujos como parte de esta descripción, con un propósito ilustrativo, pero no limitante, que representa lo siguiente:
Figura 1.- Muestra una figura en perspectiva de un conjunto para molde de colada continua.
Figura 2.- Muestra una vista explosionada de una primera configuración de un conjunto para molde.
Figura 3A.- Muestra una vista superior de un cristalizador de una primera configuración. Figura 3B.- Muestra una vista de un cristalizador según un corte longitudinal. Figura 4A.- Muestra una vista en sección longitudinal de una primera configuración conjunto para molde.
Figura 4B.- Muestra una vista en sección según un corte A-A de la figura 4A.
Figura 4C.- Muestra es una vista en perspectiva de la primera configuración.
Figura 5A.- Muestra una vista en sección longitudinal de una segunda configuración conjunto para molde.
Figura 5B.- Muestra una vista en sección según un corte B-B de la figura 5A.
Figura 5C.- Muestra es una vista en perspectiva de la segunda configuración.
Figura 6A.- Muestra una vista en sección longitudinal de una tercera configuración conjunto para molde.
Figura 6B.- Muestra una vista en sección según un corte C-C de la figura 6A.
Figura 6C.- Muestra es una vista en perspectiva de la tercera configuración.
REALIZACIÓN PREFERIDA DE LA INVENCIÓN
La figura 1 , muestra una figura en perspectiva de un conjunto para molde de colada continua, según la presente invención, destinado a la fabricación de productos longitudinales de metal, que comprende un cristalizador (1) tubular monolítico que está destinado a alojar el metal y que está dotado de un extremo de salida (2) y una camisa
(8) de refrigeración dotada de al menos una pared de camisa (12, 13) que abraza al cristalizador (1).
La figura 2 muestra una vista explosionada de un conjunto para molde, según la presente invención, donde se aprecia que la pared de cristalizador (3) comprende una cara interna (4) que está destinada a contactar con el metal y que está dotada de una zona de menisco (5), no visible en la figura, una cara externa (6) opuesta a la cara interna (4) y al menos una cavidad (7) en la cara externa (6).
Concretamente, el conjunto para molde está dotado de una estructura de separación
(9) longitudinal, que está entre la camisa (8) y el cristalizador (1). En una situación de uso la estructura de separación (9) está alojada parcialmente en la cavidad (7).
Como se aprecia mejor en el detalle de la figura, la estructura de separación (9) está dotada de una pluralidad de láminas de guiado (10) entre las que se definen una pluralidad de canales verticales (11) que quedan limitados por la pared de camisa (12) y por donde fluye un fluido refrigerante en situación de uso. Como se aprecia en la figura la anchura de la estructura de separación (9) es menor que la anchura de la cavidad
(7). La estructura de separación (9) es de mayor longitud que la cavidad (7) en la realización mostrada.
En dicha realización, el cristalizador (1) es cuadrangular, concretamente de sección transversal cuadrada y está dotado de cuatro paredes de cristalizador (3) y la camisa
(8) comprende cuatro paredes de camisa (12, 13) que están enfrentadas a las paredes de cristalizador (3).
Más concretamente, las paredes de camisa (12, 13) tienen dos primeras paredes (12) dotadas de unos primeros taladros (15) que se extienden perpendiculares a la superficie interna (20) y dos segundas paredes (13) dotadas de unos segundos taladros (16) que se extienden paralelos a la superficie interna (20), donde los taladros (15, 16) están destinados a alojar unos elementos de unión (21) de tipo perno y cada primera pared
(12) está unida a las dos segundas paredes (13) de manera removible.
El conjunto para molde comprende unos tubos elásticos (17) alojados en los canales verticales (11) que contactan con las láminas de guiado (10) y con un fondo de las ranuras de guiado (14). El conjunto para molde comprende dos abrazaderas (19) que en una situación de uso abrazan las paredes de camisa (12,13).
Las dos segundas paredes de camisa (13) tienen dos salientes longitudinales (22) curvados que se extiende desde cada canto lateral de las segundas paredes de camisa
(13) de forma complementaria al cristalizador (1) y que contactan con una lámina (10) de una las otras dos primeras paredes de camisa (12). Entre los salientes longitudinales (22) y las paredes externas (6) se forma un hueco constante, también conocido como “gap” de unos pocos milímetros en las esquinas.
La figura 3A muestra una vista superior de un cristalizador (1), según la presente invención, donde se aprecia la curvatura que puede tener el mismo.
La figura 3B muestra una vista de un cristalizador, según un corte longitudinal, donde se observa que la cavidad extiende desde la altura de la zona del menisco (5) unos milímetros hacia el extremo de entrada (29) y hacia el extremo de salida (2). La profundidad de la cavidad (7) disminuye según se extiende hacia el extremo de salida (2) y de entrada (29) y el grosor mínimo del cristalizador (1) se tiene a la altura del menisco (5). Las láminas de guiado (10) describen una forma de sección longitudinal complementaria a la sección longitudinal de la cavidad (7) como se muestra en el detalle de la figura 2.
La figura 4A muestra una vista en sección longitudinal de una primera configuración del conjunto para molde, según la presente invención, donde las abrazaderas (19) están destinadas a apoyar en el cuerpo del molde. Como se aprecia en la figura el conjunto para molde comprende un anillo inferior (25) que rodea el extremo de salida (2) de manera que define un hueco inferior (26) entre una cara interna del anillo inferior (25) y la cara externa (6) del cristalizador (1). Del mismo modo comprende un anillo superior (28) que rodea el extremo de entada (29), definiendo un hueco superior (30) entre una cara interior del anillo superior (28) y la cara externa (6) del cristalizador (1), de modo que se crean alrededor de los extremos del cristalizador (2, 29) gaps de un grosor constante por donde circula el fluido refrigerante.
Las láminas de guiado (10) comprenden una hendidura inferior (24) en la cara de guiado interna (27) que se extiende desde el extremo inferior de la lámina de guiado (10) y una hendidura superior (23) en la cara de guiado interna (27) que se extiende desde el extremo superior de la lámina de guiado (10) en una situación de montaje como la mostrada.
Asimismo, el anillo inferior (25) tiene un resalte inferior (33) destinado a alojarse en la hendidura inferior (24) y el anillo superior (28) tiene un resalte superior (31) destinado a alojarse en la hendidura superior (23) de manera que se retienen las láminas de guiado en su situación predeterminada y la posición viene dada por la propia instalación. Adicionalmente las paredes de la camisa (12, 13) tienen unas hendiduras inferiores y superiores correspondientes a dichas hendiduras (23, 24).
La figura 4B muestra una vista en sección según un corte A-A de la figura 4A de la primera configuración conjunto para molde, según la presente invención, donde está en una situación de uso, las paredes de camisa (12, 13) están unidas entre sí mediante los elementos de unión, que son preferiblemente unos pernos no mostrados en la figura. Las láminas de guiado (10) son del mismo grosor que las ranuras (14) cerrando por completo el canal vertical (11). Así se aprecian las 4 zonas con refrigeración controlada a través de la canalización vertical y con un cristalizador para aumentar el intercambio de calor en el menisco. La figura 4C es una vista en perspectiva de la primera configuración.
La figura 5A muestra una vista en sección longitudinal de una segunda configuración del conjunto para molde, según la presente invención, donde el cristalizador (1) es monolítico, concretamente un tubo de cobre, y la pared de cristalizador (3) es de un grosor muy reducido, de manera que facilita la refrigeración. En la zona cercana al extremo de entrada el espesor es mayor para permitir la unión de las abrazaderas (19).
Reduciendo el espesor de la pared de cobre se consigue un menor coste y una construcción extremadamente sencilla del cristalizador, consiguiendo distribución adecuada del flujo de agua y optimización del intercambio de calor.
La figura 5B es una vista en sección según un corte B-B de la figura 5A y la figura 5C muestra una vista en perspectiva de dicha segunda configuración.
La figura 6A muestra una vista en sección longitudinal de una tercera configuración conjunto para molde, según la presente invención, donde la pared del cristalizador (3) está dotada de una cavidad (7) y un tubo secundario (34) rodea dicha cavidad (7) y está unido y al ras de la cara externa (6). La figura 6B muestra una vista en sección según un corte C-C de la figura 6A, según la presente invención y la figura 6C muestra una vista en perspectiva de la tercera configuración.
La tercera configuración es especialmente adecuada para aceros especiales y altas velocidades de colada relacionadas donde se requiere una alta estabilidad dimensional del cristalizador (1) y un enfriamiento intensivo del menisco. Se permite que el cristalizador (1) se expanda bajo el efecto del flujo de calor, pero de forma limitada, garantizando así la estabilidad y la rigidez del conjunto. La cavidad (7) queda así limitada por el tubo secundario (34), con formas y tamaños variables en función de los cálculos tecnológicos.

Claims

1.- Conjunto para molde de colada continua, destinado a la fabricación de productos longitudinales de metal y a ser alojado parcialmente en un cuerpo de molde, que comprende: un cristalizador (1) que está destinado a alojar el metal y está dotado de un extremo de salida (2), un extremo de entrada (29) y al menos una pared de cristalizador (3), donde la pared de cristalizador (3) comprende: o una cara interna (4) que está destinada a contactar con el metal y está dotada de una zona de menisco (5), o una cara externa (6) opuesta a la cara interna (4), una camisa (8) de refrigeración dotada de al menos una pared de camisa (12,
13) que abraza al cristalizador (1), caracterizado porque comprende: una estructura de separación (9) longitudinal, que está retenida entre la camisa (8) y el cristalizador (1) donde la estructura de separación (9) está dotada de una pluralidad de láminas de guiado (10) longitudinales dotadas de una cara de guiado interna (27) que contacta con la cara externa (6) del cristalizador (1) entre las que se definen una pluralidad de canales verticales (11) limitados por la pared de camisa (12) y que están destinados a alojar un fluido refrigerante.
2.- El conjunto para molde de la reivindicación 1 , en el que la pared de cristalizador (3) comprende al menos una cavidad (7) en la cara externa (6) que se extiende desde al menos la altura de la zona del menisco (5) hacia el extremo de salida (2), donde la estructura de separación (9) está alojada parcialmente en la cavidad (7) y la anchura de la estructura de separación (9) es menor que la anchura de la cavidad (7).
3.- El conjunto para molde de la reivindicación 2, en el que la cavidad (7) se extiende desde la altura del menisco (5) hacia el extremo de salida (2) y/o hacia el extremo de entrada (29) del cristalizador (1).
4.- El conjunto para molde de la reivindicación 2, en el que las láminas de guiado (10) comprenden una forma de sección transversal complementaria a la sección trasversal de la cavidad (7).
5.- El conjunto para molde de la reivindicación 2, en el que la profundidad de la cavidad (7) disminuye según se extiende hacia el extremo de salida (2).
6.- El conjunto para molde de la reivindicación 1 , en el que la pared de camisa (12, 13) comprende una superficie interna (20) dotada de una pluralidad de ranuras de guiado (14) longitudinales donde cada ranura de guiado (14) aloja una lámina de guiado (10).
7.- El conjunto para molde de la reivindicación 6, que comprende unos tubos elásticos (17) alojados en los canales verticales (11) que contactan con las láminas de guiado (10) y con un fondo de las ranuras de guiado (14).
8.- El conjunto para molde de la reivindicación 6, que comprende al menos dos abrazaderas (19) que abrazan las paredes de camisa (12,13).
9.- El conjunto para molde de la reivindicación 1 , en el que el cristalizador (1) es cuadrangular y está dotado de cuatro paredes de cristalizador (3) y la camisa (8) comprende cuatro paredes de camisa (12, 13) vinculadas entre sí en una situación de uso y enfrentadas respectivamente a las paredes de cristalizador (3).
10.- El conjunto para molde de la reivindicación 1 , en el que las paredes de camisa (12, 13) comprenden dos primeras paredes (12) dotadas de unos primeros taladros (15) que se extienden perpendiculares a la superficie interna (20) y dos segundas paredes (13) dotadas de unos segundos taladros (16) que se extienden paralelos a la superficie interna (20), donde los taladros (15, 16) están destinados a alojar unos elementos de unión (21) y cada primera pared (12) está unida a las dos segundas paredes (13) de manera removible.
11.- El conjunto para molde de la reivindicación 1 , en el que dos de las paredes de camisa (12,13) comprenden dos salientes longitudinales (22) que se extienden desde unos cantos laterales de las paredes de camisa (12,13) de forma complementaria al cristalizador (1) y que contactan con una lámina de guiado (10) de una de las otras dos paredes de camisa (12,13)
12- El conjunto para molde de la reivindicación 1 , que comprende un anillo superior (28) que rodea el extremo de entada (29), definiendo un hueco superior (30) entre del anillo superior (28) y la cara externa (6) del cristalizador (1). 14
13.- El conjunto para molde de la reivindicación 1 , en el que las láminas de guiado (10) comprenden una hendidura superior (23) en la cara de guiado interna (27) que se extiende desde el extremo superior de la lámina de guiado (10) en una situación de montaje y el anillo superior (28) comprende un resalte superior (31) destinado a alojarse en la hendidura superior (23).
14- El conjunto para molde de la reivindicación 1 , que comprende un anillo inferior (25) que rodea el extremo de salida (2), definiendo un hueco inferior (26) entre del anillo inferior (25) y la cara externa (6) del cristalizador (1).
15.- El conjunto para molde de la reivindicación 14, en el que las láminas de guiado (10) comprenden una hendidura inferior (24) en la cara de guiado interna (27) que se extiende desde el extremo inferior de la lámina de guiado (10) en una situación de montaje y el anillo inferior (25) comprende un resalte inferior (33) destinado a alojarse en la hendidura inferior (24).
PCT/ES2021/070676 2021-09-20 2021-09-20 Conjunto para molde de colada continua WO2023041814A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070676 WO2023041814A1 (es) 2021-09-20 2021-09-20 Conjunto para molde de colada continua

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070676 WO2023041814A1 (es) 2021-09-20 2021-09-20 Conjunto para molde de colada continua

Publications (1)

Publication Number Publication Date
WO2023041814A1 true WO2023041814A1 (es) 2023-03-23

Family

ID=78528976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070676 WO2023041814A1 (es) 2021-09-20 2021-09-20 Conjunto para molde de colada continua

Country Status (1)

Country Link
WO (1) WO2023041814A1 (es)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES384660A1 (es) 1969-11-14 1973-03-16 Kabel Metallwerke Ghh Perfeccionamientos en las coquillas para la colada continuade metales, en especial, para la colada de acero fundido.
US4535832A (en) * 1981-04-29 1985-08-20 Gus Sevastakis Continuous casting apparatus
JPH0852537A (ja) * 1994-08-09 1996-02-27 Sumitomo Heavy Ind Ltd 連続鋳造用モールドのモールド壁
WO2002047848A1 (de) * 2000-12-11 2002-06-20 Concast Standard Ag Kokille zum stranggiessen einer stahlschmelze
EP1468760A1 (de) * 2003-04-16 2004-10-20 Concast Ag Rohrkokille zum Stranggiessen
EP1792676A1 (de) * 2005-12-05 2007-06-06 KM Europa Metal Aktiengesellschaft Kokille zum Stranggiessen von Metall
EP3096901B1 (en) 2014-01-20 2018-03-14 Danieli & C. Officine Meccaniche, S.p.A. Crystallizer for continuous casting and method for its production
EP3592484A1 (en) 2017-03-10 2020-01-15 EM Moulds S.p.a. A Socio Unico Crystallizer for continuous casting and method for obtaining the same
EP3013498B1 (en) 2013-06-28 2020-09-16 Danieli & C. Officine Meccaniche, S.p.A. Crystallizer for continuous casting and method for its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES384660A1 (es) 1969-11-14 1973-03-16 Kabel Metallwerke Ghh Perfeccionamientos en las coquillas para la colada continuade metales, en especial, para la colada de acero fundido.
US4535832A (en) * 1981-04-29 1985-08-20 Gus Sevastakis Continuous casting apparatus
JPH0852537A (ja) * 1994-08-09 1996-02-27 Sumitomo Heavy Ind Ltd 連続鋳造用モールドのモールド壁
WO2002047848A1 (de) * 2000-12-11 2002-06-20 Concast Standard Ag Kokille zum stranggiessen einer stahlschmelze
EP1468760A1 (de) * 2003-04-16 2004-10-20 Concast Ag Rohrkokille zum Stranggiessen
EP1792676A1 (de) * 2005-12-05 2007-06-06 KM Europa Metal Aktiengesellschaft Kokille zum Stranggiessen von Metall
EP3013498B1 (en) 2013-06-28 2020-09-16 Danieli & C. Officine Meccaniche, S.p.A. Crystallizer for continuous casting and method for its production
EP3096901B1 (en) 2014-01-20 2018-03-14 Danieli & C. Officine Meccaniche, S.p.A. Crystallizer for continuous casting and method for its production
EP3592484A1 (en) 2017-03-10 2020-01-15 EM Moulds S.p.a. A Socio Unico Crystallizer for continuous casting and method for obtaining the same

Similar Documents

Publication Publication Date Title
CA2570085C (en) Permanent chill mold for the continuous casting of metals
ES2390372T3 (es) Procedimiento de fabricación de un tubo de cobre de múltiples canales, y aparato de fabricación del tubo
US2479191A (en) Fluid cooled mold
CA2412202C (en) Chill tube for the continuous casting of metals
WO2023041814A1 (es) Conjunto para molde de colada continua
ES2302894T3 (es) Procedimiento para la colada continua de barras de palanquillas y desbastes y cavidad de conformacion de una lingotera de colada continua.
ES2219294T3 (es) Cristalizador para colada continua.
EP3291931B1 (en) Crystallizer for continuous casting
ES2272018T3 (es) Deflector de posta de vidrio enfriado internamente y metodo de transferencia de postas que usan dicho deflector.
KR960000356A (ko) 열교환 증가된 연속-주조용 결정화기와 연속 주조 결정화기에서 열교환을 증대시키는 방법
CA2415517C (en) Chill tube
EP3734211B1 (en) Header plateless type heat exchanger
KR101225806B1 (ko) 몰드
ES2882292T3 (es) Cristalizador para colada continua y método para obtener el mismo
ES2784370T3 (es) Boquilla de colada que comprende deflectores de flujo
ES2702551T3 (es) Molde para colada continua
ES2794843T3 (es) Cabeza de lanza de soplado
WO2007068687A2 (en) Crystallizer
ES2629754T3 (es) Dispositivo para la colada continua de metales
US2769218A (en) Continuous casting mold
JP4202718B2 (ja) 溶融金属の連続鋳造用高周波電磁界鋳造鋳型
ES2955310T3 (es) Molde coincidente para un dispositivo de colada continua de barras metálicas huecas
ES2345610T3 (es) Coquilla para la colada continua de metales liquidos, de manera especial para acero liquido.
ES2955012T3 (es) Placa de lingotera
RU2152843C1 (ru) Гильзовый кристаллизатор для высокоскоростного непрерывного литья

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21802788

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21802788

Country of ref document: EP

Kind code of ref document: A1