EP1468760A1 - Tube mould for continuous casting - Google Patents
Tube mould for continuous casting Download PDFInfo
- Publication number
- EP1468760A1 EP1468760A1 EP03008681A EP03008681A EP1468760A1 EP 1468760 A1 EP1468760 A1 EP 1468760A1 EP 03008681 A EP03008681 A EP 03008681A EP 03008681 A EP03008681 A EP 03008681A EP 1468760 A1 EP1468760 A1 EP 1468760A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- copper tube
- support
- support plates
- mold according
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009749 continuous casting Methods 0.000 title claims abstract description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 115
- 229910052802 copper Inorganic materials 0.000 claims abstract description 115
- 239000010949 copper Substances 0.000 claims abstract description 115
- 238000001816 cooling Methods 0.000 claims abstract description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 8
- 239000010959 steel Substances 0.000 claims abstract description 8
- 239000000498 cooling water Substances 0.000 claims description 17
- 239000010410 layer Substances 0.000 claims description 5
- 239000011241 protective layer Substances 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 abstract 2
- 238000005266 casting Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000003754 machining Methods 0.000 description 4
- 238000003801 milling Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 240000007643 Phytolacca americana Species 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/055—Cooling the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/114—Treating the molten metal by using agitating or vibrating means
- B22D11/115—Treating the molten metal by using agitating or vibrating means by using magnetic fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
Definitions
- the invention relates to a tubular mold for continuous casting of round and polygonal Billet and billet sections according to the preamble of claim 1 or 2.
- Vorblockqueritese Tube molds used in continuous casting of steel in billets and small blooms.
- Such tube molds consist of a copper tube, which in a water jacket is installed.
- To a circulation cooling with a high To reach the flow velocity of the cooling water is outside the copper tube a tubular displacer with a small gap opposite the copper tube. Between the displacer and the copper pipe, the cooling water on the entire Circumference of the copper pipe with high pressure and high flow velocity up to 10 m / s and more pressed through.
- the copper pipe in the casting operation by the high Temperature differences between the mold cavity side and the cooling water side no damaging deformations suffers
- the copper tubes which are essentially only be held at the lower and upper pipe end by flanges, a minimum wall thickness exhibit. This minimal wall thickness depends on the casting format and is between 8 - 15 mm.
- the cooling capacity of a mold wall or of the entire mold cavity is considered by many Factors influenced. Essential factors are the thermal conductivity of the copper pipe, the wall thickness of the mold wall, the dimensional stability of the mold cavity to Avoid distortion or air gaps between the strand crust and mold wall, etc.
- the aim of the invention is to provide a continuous casting mold for billet and bloom formats create, in particular, a higher cooling performance and thus higher casting speeds allows, without reaching the limits of the thermal capacity of the copper material to poke.
- this mold is in Giess congress a higher Have dimensional stability and thus less abrasive wear on the one hand Passage of the strand crust through the mold and on the other hand a more uniform cooling or produce a better strand quality.
- an emergence Spiesskantiger strand cross sections are avoided.
- the mold should additionally one achieve extended total service life and thus reduce the chill cost per ton of steel.
- the tube mold according to the invention With the tube mold according to the invention, the following advantages can be achieved in continuous casting be achieved.
- the comparison with the prior art lower wall thickness of the Copper pipe provides a higher cooling capacity with corresponding increase in performance Continuous casting plant safe.
- the arranged substantially over the entire circumference Support plates stabilize the geometry of the mold cavity against distortion of the heat-loaded Copper walls of Kokillenrohres, so that on the one hand Kokillenverschleiss reduced and on the other hand, the strand quality, in particular by a more uniform Cooling, is improved.
- An extended Kokillenstandzeit results from diminished thermal stress of the copper material and less abrasive wear between the strand crust and the mold walls.
- the total lifetime is extended but also by reworking in the mold cavity, such as coppering of wear points followed by subsequent machining, etc., where the Copper pipe during the reworking with the support jacket or with the support plates remains connected.
- This facilitates clamping during machining and vibrations of the copper pipe during milling or planing etc. are caused by the Support plates prevents what higher machining speeds with high dimensional accuracy of the mold cavity.
- the whereabouts of the support plates on the copper tube during the repair of the copper pipe but also reduces the dismantling work the water circulation cooling of the mold, which reduces recovery costs.
- the cooling channels can partially into the support plates and in the outer tube shell of the Copper tube be embedded or milled.
- the wall thickness of the copper pipe Reduce by about 30 - 50% in the area of the cooling channels.
- cooling ducts are milled into the copper pipe on the pipe jacket, so can between the cooling channels supporting and connecting ribs without substantial reduction of Cooling capacity can be arranged.
- the cooling channels 65% - 95%, preferably 70% - 80%, of the outer surface claim the copper tube.
- Residual wall thickness of the copper pipe in the area of the cooling channels is about 4 mm to 10 mm set.
- the support plates can be the copper tube playfully and rigidly clamped, or polygonal formats can be used between the individual support plates in the overlaps small column for seals, preferably elastic seals, are provided.
- Such small gaps can be one thermal expansion of the copper pipe walls and / or dimensional tolerances of the copper pipe jacket field.
- the copper pipe on the support plates or supported on the support shell and / or connect with these.
- the pipe jacket of the copper pipe pro Strand side along the corner areas narrow support surfaces and in the middle of the Extruded pages format dependent one or two connecting ribs arranged, the Connecting ribs with retaining devices against movements transverse to the strand axis are provided.
- Such retaining means can be made of, for example, a Dovetail profile, a T-profile for sliding blocks or generally a force or consist positive locking device. Because at a recovery position the mold cavity, the support plates are not removed with advantage, are also solder Adhesive connections applicable.
- the two support plates which are the arcuate Support side walls of the mold, with advantage with flat outer sides provided so that the mold during reworking without tension on a table can be spanned a processing machine.
- the support plates for example, commercially available steel, if the mold is not equipped with an electromagnetic stirring device.
- an electromagnetic stirring device Of the compact construction of the copper tube with its support plates and intervening Cooling channels facilitates the use of electromagnetic stirring devices.
- Other advantages for electromagnetic stirring devices may be due to the choice of materials the support plates are achieved.
- the Support plates or the support jacket made of a readily penetrable for a magnetic field metallic (austenitic steel etc.) or non-metallic (plastic etc.) material be made. Also composites are to be included in the choice of materials.
- the support plates made of a metallic material, so it is from Advantage, if the electrolytic corrosion caused by the cooling water through an the support plates and the copper tube arranged protective layer is prevented.
- a such protective layer can be constructed, for example, by a copper-plating of the support plate become. But it is also possible, the recessed cooling channels in the copper tube to close with a galvanic copper layer.
- the cooling channels in the copper pipe are provided with water supply and discharge lines to the support plates or connected to the support jacket. According to one embodiment, it is of Advantage, if the water supply and discharge lines on the support plates at the upper Kokillenende arranged side by side and by means of a quick coupling with the cooling water system are connectable.
- FIG. 1 and 2 is a Stranggiesskokille for round billets or billets shown.
- a copper tube 3 forms a mold cavity 4.
- This water circulation cooling consists of Cooling channels 6, over the entire circumference and substantially over the entire length of the copper tube 3 are distributed.
- the individual cooling channels 6 are by supporting and connecting ribs 8 and 9 limited, as an additional task, the leadership of the cooling water circuit in the cooling channels 6 from a water supply line 10 to a water discharge line 11 take over.
- a support jacket is shown, which is the copper tube 3 over the entire circumference and over the entire length encloses and the copper pipe 3 on the outer tube jacket 5 via the support ribs 8 is supported.
- the connecting ribs 9 connect the copper tube 3 to the support shell 12.
- the support shell 12 forms with his inner jacket, the outer boundary of the cooling channels. 6
- the cooling channels 6 are embedded in the outer surface of the copper tube 3 and thereby reduce the wall thickness of the copper tube 3 by 20% - 70%, preferably by 30% - 50% compared to the copper tube thickness at the support ribs 8.
- the thinner the Wall thickness of the copper pipe 3 in the region of the cooling channels 6 can be designed to so the heat transfer from the strand to the cooling water, at the same time
- the operating temperature of the copper wall during casting is lower.
- lower Operating temperatures in the copper wall not only reduce the distortion of the Kokillenrohres 3, also the wear such as cracks in the bathroom mirror area or abrasive wear in the lower mold area is thereby reduced.
- Fig. 1 is schematically a stirring coil for stirring the liquid sump at Continuous casting shown in the mold. It can easily be seen that the stirring coil 14 due to the compact structure of the mold and its reduced copper wall thickness very close to the mold cavity 4 and thus opposite magnetic field losses classic molds are reduced in size.
- backing plates are used or the support shell 12 made of a magnetic fields easily penetrable metallic Material, preferably made of austenitic stainless steel. It is but also possible, the support shell 12 or support plates made of non-metallic materials, for example, from carbon laminate, etc., produce.
- FIG. 3 and 4 20 with a mold for square or polygonal billets and Vorblockstrlinde shown.
- a bent copper tube 23 forms a curved one Mold cavity 24 for a circular arc continuous casting machine.
- a water circulation cooling is disposed between the copper tube 23 and support plates 32-32 '' 'in cooling channels 26 support and connecting ribs 28 and 29 are provided.
- the water circulation cooling is designed substantially the same as described in FIGS. 1 and 2.
- the copper tube 23 in FIG. 3 and 4 between four support plates 32 - 32 '' ' forming a support box, clamped.
- the support plates 32 - 32 "'with the copper tube 23rd connected and support ribs 28 may be the outer tube jacket 25 of the copper tube 23 are supported on the support plates 32-32 "', the four support plates 32-32"' are thus closed screwed together a rigid box around the copper tube 23, that each Support plate 32 - 32 "'on an adjacent plate frontally abuts and the other adjacent Plate overlaps.
- symbols 34 are screws or other fasteners indicated.
- the support plates 32 - 32 "' for example, by Dovetail or sliding block guides, clamping screws, threaded bolts, etc. releasably connected to the copper tube 23.
- the copper tube 23 is clamped or supported on the box of the support plates 32 - 32 "at four corner regions 35 with support ribs 28 '
- the copper tube 23 is generally produced by cold drawing and has in the corner regions and in the support ribs 28, 28' resulting from the manufacturing process wall thickness. This wall thickness is substantially dependent on the to be cast strand format and 120 mm is usually in a strand size of 120 x 2 11 mm and mm at 200 x 200 2 16 mm.
- the cooling channels 6, 26 is by milling
- the copper tube 23 has a residual wall thickness of 4 to 10 mm in the area of the cooling channels. 26 an area of 65% - 95%, preferably 70% - 80% e narrow support surfaces 28 'on both sides of the four pipe corners essential. They ensure that the four angles of the copper tube 23 do not distort during the casting operation. As a result, part of the danger of producing spies-edged strands is eliminated.
- connection ribs 29 are provided, which are the copper tube 23 connect with the support plates 32 - 32 "'via retention devices. bending the copper pipe walls toward the mold cavity 24 or laterally Moving transversely to the strand direction can be avoided.
- positive and non-positive connections are conceivable, such as Dovetail profiles or T-profiles for sliding blocks, welded Bolts etc.
- a support plate 51 overlaps a support plate 52 which abuts with its end face 53 the support plate 51 abuts.
- an elastic Seal 54 arranged in addition to the sealing task against escaping cooling water small tolerances in the outer dimensions of the copper pipe, but also small dimensions the copper pipe wall can catch transversely to the strand extraction direction.
- the support plates 51, 52 With a Protective layer 57 of copper or an electrically non-conductive layer coated become.
- a protective layer 57 for example, the cooling channels 55 'after milling into the copper wall with a galvanically applied copper layer 58 are closed.
- a connecting rib is shown fixed by soldering or gluing connected to the support plate.
- Fig. 6 is an example of a water circulation cooling in cooling channels 61, 61 'along an outer tubular jacket 62 of a copper tube 63 shown.
- a pipe system 64 outside of support plates 65 cooling water is supplied to the cooling channels 61.
- the cooling water is deflected by 180 ° and the cooling channels 61 'forwarded.
- a pipe system 68 the cooling water is removed from the mold.
- 67 schematically a coupling plate is shown, the settling when Mold on a mold table, not shown, the pipe systems 64, 68 to a water supply engage or disengage.
- measuring points 69 are in the outer tube jacket 62 of the copper tube 63 built-in temperature sensor indicated that during the Giess Wilsones the Measure temperatures at various points of copper pipe 63. With such measurements On a screen, a temperature image of the entire copper tube 63 can be graphically displayed being represented.
- the cooling channels in FIGS. 1-6 can by means of various manufacturing processes in the copper pipe are let in. It is possible to use the cooling channels in the outer or Milling the inner tube shell of the copper tube and then with a galvanic to close the applied layer. To the wear resistance in the mold cavity in addition to increase, known in the art known hard chrome plating be provided in the mold cavity.
- FIG. 7 cooling channels 71 in support plates 72, 72 'are arranged.
- a copper tube 70 is in its wall thickness chosen very thin, for example 3 mm - 8 mm.
- Such thin Copper pipes 70 are correspondingly often by support surfaces 74, which are on the support plates 72, 72 'are mounted, supported.
- Mounting surfaces 77 or connecting profiles 78 are usually provided on the copper pipe 70.
- fastening devices such as a connecting bolt 75 or a dovetail profile plate 76 with one or more tie rod (s) 79, the copper tube 70 with the support plates 72, 72 'releasably or firmly connected.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
Die Erfindung betrifft eine Rohrkokille zum Stranggiessen von runden und polygonalen
Knüppel- und Vorblockquerschnitten gemäss dem Oberbegriff von Anspruch 1 oder 2.The invention relates to a tubular mold for continuous casting of round and polygonal
Billet and billet sections according to the preamble of
Beim Stranggiessen von Stahl in Knüppel- und kleine Vorblockquerschnitte werden Rohrkokillen verwendet. Solche Rohrkokillen bestehen aus einem Kupferrohr, das in einen Wassermantel eingebaut ist. Um eine Zirkulationskühlung mit einer hohen Fliessgeschwindigkeit des Kühlwassers zu erreichen, ist ausserhalb des Kupferrohres ein rohrförmiger Verdränger mit einem kleinen Spalt gegenüber dem Kupferrohr angeordnet. Zwischen dem Verdränger und dem Kupferrohr wird das Kühlwasser am gesamten Umfang des Kupferrohres mit hohem Druck und hoher Fliessgeschwindigkeit bis 10 m/s und mehr hindurchgepresst. Damit das Kupferrohr im Giessbetrieb durch die hohen Temperaturunterschiede zwischen der Formhohlraumseite und der Kühlwasserseite keine schädlichen Deformationen erleidet, müssen die Kupferrohre, die im wesentlichen nur am unteren und oberen Rohrende durch Flansche gehalten werden, eine Minimal-Wandstärke aufweisen. Diese Minimal-Wandstärke ist vom Giessformat abhängig und beträgt zwischen 8 - 15 mm.In continuous casting of steel in billets and small blooms are Vorblockquerschnitte Tube molds used. Such tube molds consist of a copper tube, which in a water jacket is installed. To a circulation cooling with a high To reach the flow velocity of the cooling water is outside the copper tube a tubular displacer with a small gap opposite the copper tube. Between the displacer and the copper pipe, the cooling water on the entire Circumference of the copper pipe with high pressure and high flow velocity up to 10 m / s and more pressed through. Thus, the copper pipe in the casting operation by the high Temperature differences between the mold cavity side and the cooling water side no damaging deformations suffers, the copper tubes, which are essentially only be held at the lower and upper pipe end by flanges, a minimum wall thickness exhibit. This minimal wall thickness depends on the casting format and is between 8 - 15 mm.
Seit dem industriellen Beginn des Stranggiessens bemühte sich die Fachwelt, die Giessgeschwindigkeit zu erhöhen, um höhere Produktionsleistungen pro Strang zu erreichen. Die Erhöhung der Giessleistung ist eng mit der Kühlleistung der Kokille verbunden. Die Kühlleistung einer Kokillenwand bzw. des gesamten Formhohlraumes wird von vielen Faktoren beeinflusst. Wesentliche Faktoren sind die Wärmeleitfähigkeit des Kupferrohres, die Wanddicke der Kokillenwand, die Formstabilität des Formhohlraumes um Verzug bzw. Luftspalte zwischen Strangkruste und Kokillenwand zu vermeiden etc.Since the industrial beginning of continuous casting, the professional world, the To increase casting speed in order to achieve higher production per strand. The increase in casting performance is closely linked to the cooling performance of the mold. The cooling capacity of a mold wall or of the entire mold cavity is considered by many Factors influenced. Essential factors are the thermal conductivity of the copper pipe, the wall thickness of the mold wall, the dimensional stability of the mold cavity to Avoid distortion or air gaps between the strand crust and mold wall, etc.
Neben der Kühlleistung, die bei einem vorgegebenen Strangformat einen direkten Einfluss auf die Produktionsleistung pro Strang ausüben kann, bildet aber auch die Standzeit der Kokille für die Wirtschaftlichkeit der Stranggiessanlage einen wesentlichen Kostenfaktor. Die Standzeit einer Kokille drückt aus, wieviele Tonnen Stahl in eine Kokille gegossen werden können, bis Verschleisserscheinungen im Formhohlraum, wie abrasiver Verschleiss, Materialschädigungen, insbessondere Brandrisse, oder schädliche Deformationen des Formhohlraumes, einen Kokillenwechsel erfordern. Je nach dem Verschleisszustand ist das Kokillenrohr zu verschrotten oder einer Nachbearbeitung und einer Wiederverwendung zuzuführen. Bei konischen Standardkokillen weisen in der Regel Kokillen mit etwas grösseren Kupferrohrwandstärken höhere Formstabilitäten auf. In addition to the cooling capacity, which has a direct influence on a given strand format can exert on the production output per strand, but also forms the service life the mold for the efficiency of the continuous casting plant a significant cost factor. The life of a mold expresses how many tons of steel in a mold can be poured until wear phenomena in the mold cavity, such as abrasive Wear, damage to materials, in particular fire cracks, or damaging deformations of the mold cavity, requiring a mold change. Depending on the state of wear is the mold tube to scrap or post-processing and to be reused. In conical standard molds usually exhibit Molds with slightly larger copper pipe wall thicknesses higher dimensional stability.
Ziel der Erfindung ist es, eine Stranggiesskokille für Knüppel- und Vorblockformate zu schaffen, die insbesondere eine höhere Kühlleistung erbringt und damit höhere Giessgeschwindigkeiten zulässt, ohne an die Grenzen der thermischen Belastbarkeit des Kupferwerkstoffes zu stossen. Im weiteren soll diese Kokille im Giessbetrieb eine höhere Formstabilität aufweisen und damit einerseits weniger abrasiven Verschleiss beim Durchlauf der Strangkruste durch die Kokille und anderseits eine gleichmässigere Kühlung bzw. eine bessere Strangqualität erzeugen. Insbesondere soll eine Entstehung spiesskantiger Strangquerschnitte vermieden werden. Die Kokille soll zusätzlich eine verlängerte Totalstandzeit erreichen und damit die Kokillenkosten pro Tonne Stahl reduzieren.The aim of the invention is to provide a continuous casting mold for billet and bloom formats create, in particular, a higher cooling performance and thus higher casting speeds allows, without reaching the limits of the thermal capacity of the copper material to poke. In addition, this mold is in Giessbetrieb a higher Have dimensional stability and thus less abrasive wear on the one hand Passage of the strand crust through the mold and on the other hand a more uniform cooling or produce a better strand quality. In particular, an emergence Spiesskantiger strand cross sections are avoided. The mold should additionally one achieve extended total service life and thus reduce the chill cost per ton of steel.
Nach der Erfindung wird diese Zielsetzung durch die kennzeichnenden Merkmale von
Anspruch 1 oder 2 erfüllt.According to the invention, this object is achieved by the characterizing features of
Mit der erfindungsgemässen Rohrkokille können folgende Vorteile beim Stranggiessen erreicht werden. Die gegenüber dem Stand der Technik geringere Wandstärke des Kupferrohres stellt eine höhere Kühlleistung mit entsprechender Leistungssteigerung der Stranggiessanlage sicher. Die im wesentlichen über den ganzen Umfang angeordneten Stützplatten stabilisieren die Geometrie des Formhohlraumes gegen Verzug der wärmebelasteten Kupferwände des Kokillenrohres, so dass einerseits der Kokillenverschleiss vermindert und anderseits die Strangqualität, insbesondere durch eine gleichmässigere Abkühlung, verbessert wird. Eine verlängerte Kokillenstandzeit ergibt sich durch verminderte thermische Belastung des Kupferwerkstoffs und geringeren abrasiven Verschleiss zwischen der Strangkruste und den Kokillenwänden. Die Totalstandzeit verlängert sich aber auch durch Nachbearbeitungen im Formhohlraum, wie Aufkupferungen von Verschleissstellen mit anschliessender spanabhebender Nachbearbeitung etc., wobei das Kupferrohr bei den Nachbearbeitungen mit dem Stützmantel bzw. mit den Stützplatten verbunden bleibt. Das erleichtert bei einer spanabhebenden Bearbeitung das Aufspannen und Vibrationen des Kupferrohres beim Fräsen oder Hobeln etc. werden durch die Stützplatten verhindert, was höhere Bearbeitungsgeschwindigkeiten bei hoher Massgenauigkeit des Formhohlraumes zulässt. Der Verbleib der Stützplatten am Kupferrohr während der Instandstellung des Kupferrohres vermindert aber auch die Demontagearbeit der Wasserzirkulationskühlung der Kokille, was Wiederinstandstellungskosten reduziert.With the tube mold according to the invention, the following advantages can be achieved in continuous casting be achieved. The comparison with the prior art lower wall thickness of the Copper pipe provides a higher cooling capacity with corresponding increase in performance Continuous casting plant safe. The arranged substantially over the entire circumference Support plates stabilize the geometry of the mold cavity against distortion of the heat-loaded Copper walls of Kokillenrohres, so that on the one hand Kokillenverschleiss reduced and on the other hand, the strand quality, in particular by a more uniform Cooling, is improved. An extended Kokillenstandzeit results from diminished thermal stress of the copper material and less abrasive wear between the strand crust and the mold walls. The total lifetime is extended but also by reworking in the mold cavity, such as coppering of wear points followed by subsequent machining, etc., where the Copper pipe during the reworking with the support jacket or with the support plates remains connected. This facilitates clamping during machining and vibrations of the copper pipe during milling or planing etc. are caused by the Support plates prevents what higher machining speeds with high dimensional accuracy of the mold cavity. The whereabouts of the support plates on the copper tube during the repair of the copper pipe but also reduces the dismantling work the water circulation cooling of the mold, which reduces recovery costs.
Die Kühlkanäle können teilweise in die Stützplatten und in den äusseren Rohrmantel des Kupferrohres eingelassen bzw. eingefräst sein. Zur Erhöhung der Kontaktfläche Kupferrohr - Kühlmedium ist es von Vorteil, wenn die Kühlkanäle die Wanddicke des Kupferrohres im Bereich der Kühlkanäle um etwa 30 - 50 % reduzieren.The cooling channels can partially into the support plates and in the outer tube shell of the Copper tube be embedded or milled. To increase the contact surface copper tube - Cooling medium, it is advantageous if the cooling channels, the wall thickness of the copper pipe Reduce by about 30 - 50% in the area of the cooling channels.
Werden die Kühlkanäle am Rohrmantel in das Kupferrohr eingefräst, so können zwischen
den Kühlkanälen Stütz- und Verbindungsrippen ohne wesentliche Reduktion der
Kühlleistung angeordnet werden. Gemäss einem Ausführungsbeispiel wird vorgeschlagen,
dass die Kühlkanäle 65 % - 95 %, vorzugsweise 70 % - 80 %, der äusseren Oberfläche
des Kupferrohres beanspruchen. Je nach dem Formhohlraumquerschnitt wird die
Restwandstärke des Kupferrohres im Bereich der Kühlkanäle auf etwa 4 mm bis 10 mm
eingestellt. Durch passende Wahl der Kühlkanalgeometrie und/oder Kühlkanalbeschichtung
kann der Wärmeübergang zum Kühlwasser den örtlichen Anforderungen entsprechend
eingestellt werden.If the cooling ducts are milled into the copper pipe on the pipe jacket, so can between
the cooling channels supporting and connecting ribs without substantial reduction of
Cooling capacity can be arranged. According to one embodiment, it is proposed
that the
Bei rechteckigen Strangformaten werden vier Stützplatten am Kupferrohr lösbar oder fest angebracht. Um ein spielfreies Anliegen der Stützplatten am Kupferrohr unabhängig von den Fertigungstoleranzen sicher zu stellen, können, gemäss einem Ausführungsbeispiel, die Stützplatten gegenüber ihren benachbarten Platten einmal stirnseitig anschlagen und einmal überlappen. Benachbarte Stützplatten werden in den Eckbereichen des Kupferrohres verschraubt und bilden so einen rund um das Kupferrohr angeordneten Stützkasten.In rectangular strand formats four support plates on the copper pipe are solvable or fixed appropriate. To a play-free concern of the support plates on the copper tube regardless of to ensure the manufacturing tolerances can, according to an embodiment, once the front plates against their adjacent plates strike the front and overlap once. Adjacent support plates are in the corner areas of the copper tube screwed and thus form a arranged around the copper tube support box.
Je nach dem Einspannkonzept des Kupferrohres können die Stützplatten das Kupferrohr spiellos und starr einspannen, oder es können bei polygonalen Formaten zwischen den einzelnen Stützplatten bei den Ueberlappungen kleine Spalte für Dichtungen, vorzugsweise elastische Dichtungen, vorgesehen werden. Solche kleine Spalte können eine thermische Ausdehnung der Kupferrohrwände und/oder Masstoleranzen des Kupferrohrmantels auffangen.Depending on the clamping concept of the copper tube, the support plates can be the copper tube playfully and rigidly clamped, or polygonal formats can be used between the individual support plates in the overlaps small column for seals, preferably elastic seals, are provided. Such small gaps can be one thermal expansion of the copper pipe walls and / or dimensional tolerances of the copper pipe jacket field.
Je nach der Grösse der thermischen und mechanischen Belastung der Formhohlrauminnenwand durch flüssigen Stahl bzw. eine dünne Strangkruste, oder durch eine vorbestimmte Strangkrustenverformung innerhalb des Formhohlraumes, sind entsprechend Stütz- und Verbindungsrippen anzuordnen, die das Kupferrohr an den Stützplatten bzw. am Stützmantel abstützen und/oder mit diesen verbinden.Depending on the size of the thermal and mechanical load of the inner cavity wall by liquid steel or a thin strand crust, or by a predetermined Strangkrustenverformung within the mold cavity, are corresponding To arrange supporting and connecting ribs, the copper pipe on the support plates or supported on the support shell and / or connect with these.
Gemäss einem Ausführungsbeispiel werden am Rohrmantel des Kupferrohres pro Strangseite entlang der Eckbereiche schmale Stützflächen und im Mittelbereich der Strangseiten formatabhängig eine oder zwei Verbindungsrippen angeordnet, wobei die Verbindungsrippen mit Festhalteeinrichtungen gegen Bewegungen quer zur Strangachse versehen sind. Solche Festhalteeinrichtungen können aus beispielsweise einem Schwalbenschwanzprofil, einem T-Profil für Gleitsteine oder allgemein einer kraft- oder formschlüssigen Festhalteeinrichtung bestehen. Weil bei einer Wiederinstandstellung des Formhohlraumes die Stützplatten mit Vorteil nicht entfernt werden, sind auch Lötund Klebeverbindungen anwendbar.According to one embodiment, the pipe jacket of the copper pipe pro Strand side along the corner areas narrow support surfaces and in the middle of the Extruded pages format dependent one or two connecting ribs arranged, the Connecting ribs with retaining devices against movements transverse to the strand axis are provided. Such retaining means can be made of, for example, a Dovetail profile, a T-profile for sliding blocks or generally a force or consist positive locking device. Because at a recovery position the mold cavity, the support plates are not removed with advantage, are also solder Adhesive connections applicable.
Bei Kokillen mit bogenförmigem Formhohlraum sind die beiden Stützplatten, die die bogenförmigen Seitenwände der Kokille abstützen, mit Vorteil mit ebenen Aussenseiten versehen, damit die Kokille beim Nachbearbeiten ohne Verspannung auf einen Tisch einer Bearbeitungsmaschine aufgespannt werden kann.In molds with arcuate mold cavity, the two support plates, which are the arcuate Support side walls of the mold, with advantage with flat outer sides provided so that the mold during reworking without tension on a table can be spanned a processing machine.
Als Werkstoff für die Stützplatten eignet sich beispielsweise handelsüblicher Stahl, wenn die Kokille nicht mit einer elektromagnetischen Rühreinrichtung ausgerüstet ist. Der kompakte Aufbau des Kupferrohres mit seinen Stützplatten und dazwischen liegenden Kühlkanälen erleichtert die Anwendung von elektromagnetischen Rühreinrichtungen. Weitere Vorteile für elektromagnetische Rühreinrichtungen können durch die Materialwahl der Stützplatten erreicht werden. Gemäss einem Ausführungsbeispiel können die Stützplatten bzw. der Stützmantel aus einem für ein Magnetfeld leicht durchdringbaren metallischen (austenitischem Stahl etc.) oder nichtmetallischen (Kunststoff etc.) Material gefertigt werden. Auch Verbundstoffe sind in die Materialwahl einzubeziehen.As a material for the support plates, for example, commercially available steel, if the mold is not equipped with an electromagnetic stirring device. Of the compact construction of the copper tube with its support plates and intervening Cooling channels facilitates the use of electromagnetic stirring devices. Other advantages for electromagnetic stirring devices may be due to the choice of materials the support plates are achieved. According to one embodiment, the Support plates or the support jacket made of a readily penetrable for a magnetic field metallic (austenitic steel etc.) or non-metallic (plastic etc.) material be made. Also composites are to be included in the choice of materials.
Gemäss einem weiteren Ausführungsbeispiel wird vorgeschlagen, ausserhalb der Stützplatten bzw. des Stützmantels elektromagnetische Spulen anzuordnen oder bewegbare Dauermagnete in die Stützplatten bzw. den Stützmantel einzubauen.According to a further embodiment, it is proposed outside the support plates or the support jacket to arrange electromagnetic coils or movable Permanent magnets in the support plates or the support jacket to install.
Werden die Stützplatten aus einem metallischen Werkstoff hergestellt, so ist es von Vorteil, wenn die elektrolytische Korrosion durch das Kühlwasser durch eine zwischen den Stützplatten und dem Kupferrohr angeordneten Schutzschicht verhindert wird. Eine solche Schutzschicht kann beispielsweise durch eine Aufkupferung der Stützplatte aufgebaut werden. Es ist aber auch möglich, die eingelassenen Kühlkanäle im Kupferrohr mit einer galvanisch erzeugten Kupferschicht zu verschliessen.If the support plates made of a metallic material, so it is from Advantage, if the electrolytic corrosion caused by the cooling water through an the support plates and the copper tube arranged protective layer is prevented. A such protective layer can be constructed, for example, by a copper-plating of the support plate become. But it is also possible, the recessed cooling channels in the copper tube to close with a galvanic copper layer.
Die Kühlkanäle im Kupferrohr sind mit Wasserzu- und Abführleitungen an den Stützplatten bzw. am Stützmantel verbunden. Gemäss einem Ausführungsbeispiel ist es von Vorteil, wenn die Wasserzu- und Abführleitungen an den Stützplatten am oberen Kokillenende nebeneinander angeordnet und mittels einer Schnellkupplung mit dem Kühlwassersystem verbindbar sind.The cooling channels in the copper pipe are provided with water supply and discharge lines to the support plates or connected to the support jacket. According to one embodiment, it is of Advantage, if the water supply and discharge lines on the support plates at the upper Kokillenende arranged side by side and by means of a quick coupling with the cooling water system are connectable.
Im nachfolgenden werden anhand von Figuren Ausführungsbeispiele der Erfindung erläutert.In the following, embodiments of the invention will be explained with reference to figures.
Dabei zeigen:
- Fig. 1
- einen Längsschnitt durch eine erfindungsgemässe Kokille für runde Stränge,
- Fig. 2
- einen Horizontalschnitt entlang der Linie II - II in Fig. 1,
- Fig. 3
- einen Längsschnitt durch eine Bogenkokille für einen quadratischen Knüppelquerschnitt,
- Fig. 4
- einen Horizontalschnitt entlang der Linie IV - IV in Fig. 3,
- Fig. 5
- einen teilweisen Horizontalschnitt durch eine Kokillenecke,
- Fig. 6
- einen Vertikalschnitt durch ein weiteres Beispiel einer Kokille und
- Fig. 7
- einen teilweisen Horizontalschnitt durch eine Kokillenecke eines weiteren Ausführungsbeispiels
- Fig. 1
- a longitudinal section through an inventive mold for round strands,
- Fig. 2
- a horizontal section along the line II - II in Fig. 1,
- Fig. 3
- a longitudinal section through a curved mold for a square billet cross section,
- Fig. 4
- a horizontal section along the line IV - IV in Fig. 3,
- Fig. 5
- a partial horizontal section through a mold corner,
- Fig. 6
- a vertical section through another example of a mold and
- Fig. 7
- a partial horizontal section through a mold corner of another embodiment
In Fig. 1 und 2 ist mit 2 eine Stranggiesskokille für runde Knüppel- oder Vorblockstränge
dargestellt. Ein Kupferrohr 3 bildet einen Formhohlraum 4. An der Aussenseite des
Kupferrohres 3, die den äusseren Rohrmantel 5 bildet, ist eine Wasserzirkulationskühlung
für das Kupferrohr 3 vorgesehen. Diese Wasserzirkulationskühlung besteht aus
Kühlkanälen 6, die über den ganzen Umfang und im wesentlichen über die ganze Länge
des Kupferrohres 3 verteilt sind. Die einzelnen Kühlkanäle 6 sind durch Stütz- und Verbindungsrippen
8 bzw. 9 begrenzt, die als zusätzliche Aufgabe die Führung des Kühlwasserkreislaufes
in den Kühlkanälen 6 von einer Wasserzuführleitung 10 zu einer Wasserabführleitung
11 übernehmen. Mit 12 ist ein Stützmantel dargestellt, der das Kupferrohr
3 über den ganzen Umfang und über die ganze Länge umschliesst und das Kupferrohr
3 am äusseren Rohrmantel 5 über die Stützrippen 8 abstützt. Die Verbindungsrippen
9 verbinden das Kupferrohr 3 mit dem Stützmantel 12. Der Stützmantel 12 bildet mit
seinem Innenmantel die äussere Begrenzung der Kühlkanäle 6.In Fig. 1 and 2, 2 is a Stranggiesskokille for round billets or billets
shown. A copper tube 3 forms a
Die Kühlkanäle 6 sind in die äussere Mantelfläche des Kupferrohres 3 eingelassen und
reduzieren dadurch die Wanddicke des Kupferrohres 3 um 20 % - 70 %, vorzugsweise
um 30 % - 50 % gegenüber der Kupferrohrdicke bei den Stützrippen 8. Je dünner die
Wanddicke des Kupferrohres 3 im Bereich der Kühlkanäle 6 gestaltet werden kann, um
so grösser wird der Wärmedurchgang vom Strang zum Kühlwasser, wobei gleichzeitig
auch die Betriebstemperatur der Kupferwand während des Giessens niedriger wird. Geringere
Betriebstemperaturen in der Kupferwand verringern nicht nur den Verzug des
Kokillenrohres 3, auch der Verschleiss wie beispielsweise Risse im Badspiegelbereich
oder abrasiver Verschleiss im unteren Kokillenbereich wird dadurch reduziert.The
Mit 14 ist in Fig. 1 schematisch eine Rührspule zum Rühren des flüssigen Sumpfes beim
Stranggiessen in der Kokille dargestellt. Es ist leicht erkennbar, dass die Rührspule 14
durch den kompakten Aufbau der Kokille und mit seiner reduzierten Kupferwandstärke
sehr nahe an den Formhohlraum 4 angrenzt und damit Magnetfeldverluste gegenüber
klassischen Kokillen verkleinert sind. Bei Magnetfeldanwendungen werden Stützplatten
bzw. der Stützmantel 12 aus einem für Magnetfelder leicht durchdringbaren metallischen
Werkstoff, vorzugsweise aus nicht rostendem austenitischem Stahl, hergestellt. Es ist
aber auch möglich, den Stützmantel 12 oder Stützplatten aus nichtmetallischen Werkstoffen,
beispielsweise aus Carbonlaminat etc., herzustellen.With 14 in Fig. 1 is schematically a stirring coil for stirring the liquid sump at
Continuous casting shown in the mold. It can easily be seen that the stirring
In Fig. 3 und 4 ist mit 20 eine Kokille für quadratische bzw. polygonale Knüppel- und
Vorblockstränge dargestellt. Ein gebogenes Kupferrohr 23 bildet einen gebogenen
Formhohlraum 24 für eine Kreisbogenstranggiessmaschine. Eine Wasserzirkulationskühlung
ist zwischen dem Kupferrohr 23 und Stützplattten 32 - 32"' angeordnet. In Kühlkanälen
26 sind Stütz- und Verbindungsrippen 28 bzw. 29 vorgesehen. Die Wasserzirkulationskühlung
ist im wesentlichen gleich ausgeführt wie in Fig. 1 und 2 beschrieben.
Anstelle des rohrförmigen Stützmantels 12 in Fig. 1 und 2 ist das Kupferrohr 23 in Fig. 3
und 4 zwischen vier Stützplatten 32 - 32"' die einen Stützkasten bilden, eingespannt.
Ueber die Verbindungsrippen 29 sind die Stützplatten 32 - 32"' mit dem Kupferrohr 23
verbunden und an Stützrippen 28 kann sich der äussere Rohrmantel 25 des Kupferrohres
23 an den Stützplatten 32 - 32"' abstützen. Die vier Stützplatten 32 - 32"' sind so zu
einem starren Kasten rund um das Kupferrohr 23 zusammengeschraubt, dass jede
Stützplatte 32 - 32"' an eine benachbarte Platte stirnseitig anschlägt und die andere benachbarte
Platte überlappt. Durch Symbole 34 sind Schrauben oder andere Verbindungselemente
angedeutet. Die Stützplatten 32 - 32"' können beispielsweise durch
Schwalbenschwanz- oder Gleitsteinführungen, Klemmschrauben, Gewindebolzen etc.
lösbar mit dem Kupferrohr 23 verbunden sein. Es ist aber auch möglich, durch Löt- oder
Klebeverbindungen etc. das Kupferrohr 23 mit den Stützplatten 32 bzw. dem Stützmantel
12 (Fig. 1 + 2) zu verbinden, weil für eine Nachbearbeitung des Kupferrohres 23, wie ein
elektrolytisches Aufkupfern und anschliessendes spanabhebendes Bearbeiten, das
Kupferrohr 23 mit den Stützplatten 32 bzw. dem Stützmantel 12 verbunden bleibt. In Fig. 3 and 4, 20 with a mold for square or polygonal billets and
Vorblockstränge shown. A
An vier Eckbereichen 35 mit Stützrippen 28' ist das Kupferrohr 23 am Kasten der Stützplatten
32 - 32"' eingespannt bzw. abgestützt. Das Kupferrohr 23 wird in der Regel durch
Kaltziehen hergestellt und weist in den Eckbereichen und bei den Stützrippen 28, 28' die
aus dem Herstellungsverfahren resultierende Wandstärke auf. Diese Wandstärke ist im
wesentlichen vom zu giessenden Strangformat abhängig und beträgt in der Regel bei
einem Strangformat 120 x 120 mm2 11 mm und bei 200 x 200 mm2 16 mm. Die Kühlkanäle
6, 26 werden durch Einfräsen so gestaltet, dass ein vorbestimmter Wasserkreislauf
zwischen einer Kühlwassereinlauf- und einer Kühlwasserauslauföffnung sichergestellt
ist. Das Kupferrohr 23 weist im Bereich der Kühlkanäle eine Restwandstärke von
4 - 10 mm auf. Von der äusseren Oberfläche (Rohrmantel 25) des Kupferrohres 23 beanspruchen
die Kühlkanäle 6, 26 eine Fläche von 65 % - 95 %, vorzugsweise 70 % - 80
%. Für den Erhalt der Formhohlraumgeometrie tragen die schmalen Stützflächen 28'
beidseits der vier Rohrecken wesentlich bei. Sie sorgen dafür, dass sich die vier Winkel
des Kupferrohres 23 während des Giessbetriebes nicht verziehen. Dadurch ist ein Teil
der Gefahr, spiesskantige Stränge zu produzieren, ausgeschaltet.The
Zwischen den Eckbereichen sind Verbindungsrippen 29 vorgesehen, die das Kupferrohr
23 mit den Stützplatten 32 - 32"' über Festhalteeinrichtungen verbinden. Sie sorgen dafür,
dass ein Verbiegen der Kupferrohrwände zum Formhohlraum 24 hin oder ein seitliches
Verschieben quer zur Stranglaufrichtung vermieden werden kann. Als Festhalteeinrichtungen
sind bekannte form- und kraftschlüssige Verbindungen denkbar, wie beispielsweise
Schwalbenschwanzprofile oder T-Profile für Gleitsteine, angeschweisste
Bolzen etc.Between the corner
Bei Bogenkokillen ist es vorteilhaft, wenn die beiden Stützplatten 32, 32", die die bogenförmigen
Seitenwände des Kupferrohres 23 abstützen, an ihren den bogenförmigen
Stützflächen gegenüberliegenden Seiten ebene Begrenzungsflächen 36, 36" aufweisen.When Bogenkokillen it is advantageous if the two
In Fig. 5 überlappt eine Stützplatte 51 eine Stützplatte 52, die mit ihrer Stirnseite 53 an
die Stützplatte 51 anschlägt. Zwischen den beiden Platten 51, 52 ist eine elastische
Dichtung 54 angeordnet, die neben der Dichtungsaufgabe gegen austretendes Kühlwasser
kleine Toleranzen bei den Aussenmassen am Kupferrohr, aber auch geringe Ausdehnungen
der Kupferrohrwand quer zur Strangauszugsrichtung auffangen kann.In FIG. 5, a
Um eine elektrolytische Korrosion zwischen den Kühlkanälen 55 der Kupferkokille 56
und den Stützplatten 51, 52 auszuschalten, können die Stützplatten 51, 52 mit einer
Schutzschicht 57 aus Kupfer oder einer elektrisch nicht leitenden Schicht überzogen
werden. Als Alternative zu einer Schutzschicht 57 können beispielsweise die Kühlkanäle
55' nach dem Einfräsen in die Kupferwand mit einer galvanisch aufgebrachten Kupferschicht
58 verschlossen werden.To an electrolytic corrosion between the cooling
Mit 59 ist in Fig. 5 eine Verbindungsrippe dargestellt, die durch Löten oder Kleben fest mit der Stützplatte verbunden ist.At 59 in Fig. 5, a connecting rib is shown fixed by soldering or gluing connected to the support plate.
In Fig. 6 ist ein Beispiel einer Wasserzirkulationskühlung in Kühlkanälen 61, 61' entlang
eines äusseren Rohrmantels 62 eines Kupferrohres 63 dargestellt. Durch ein Rohrsystem
64 ausserhalb von Stützplatten 65 wird Kühlwasser den Kühlkanälen 61 zugeführt.
Im unteren Teil 66 der Kokille wird das Kühlwasser um 180° umgelenkt und den Kühlkanälen
61' zugeleitet. Ueber ein Rohrsystem 68 wird das Kühlwasser aus der Kokille abgeführt.
Mit 67 ist schematisch eine Kupplungsplatte dargestellt, die beim Absetzen der
Kokille auf einen nicht dargestellten Kokillentisch die Rohrsysteme 64, 68 an eine Wasserversorgung
an- bzw. abkuppeln.In Fig. 6 is an example of a water circulation cooling in
Stellvertretend für weitere Messstellen 69 sind im äusseren Rohrmantel 62 des Kupferrohres
63 eingebaute Temperaturfühler angedeutet, die während des Giessbetriebes die
Temperaturen an verschiedenen Stellen des Kupferrohres 63 messen. Mit solchen Messungen
kann an einem Bildschirm ein Temperaturbild des ganzen Kupferrohres 63 grafisch
dargestellt werden.Representative of other measuring points 69 are in the
Die in der Kupferwand eingelassenen Kühlkanäle 61', die das Kühlwasser zurückführen
und dem Rohrsystem 68 zuleiten, können auch als geschlossene Rückführkanäle in die
Stützplatten 65 verlegt werden. Bei einer solchen Anordnung kann die Erwärmung des
Kühlwassers bzw. können die Kupferwandtemperaturen zusätzlich reduziert werden.The recessed in the copper wall cooling channels 61 ', which return the cooling water
and the
Die Kühlkanäle in den Fig. 1 - 6 können mittels verschiedener Herstellungsverfahren in das Kupferrohr eingelassen werden. Es ist möglich, die Kühlkanäle in den äusseren oder inneren Rohrmantel des Kupferrohres einzufräsen und anschliessend mit einer galvanisch aufgebrachten Schicht zu verschliessen. Um den Verschleisswiderstand im Formhohlraum zusätzlich zu erhöhen, können im Stand der Technik bekannte Hartverchromungen im Formhohlraum vorgesehen werden.The cooling channels in FIGS. 1-6 can by means of various manufacturing processes in the copper pipe are let in. It is possible to use the cooling channels in the outer or Milling the inner tube shell of the copper tube and then with a galvanic to close the applied layer. To the wear resistance in the mold cavity in addition to increase, known in the art known hard chrome plating be provided in the mold cavity.
In Fig. 7 sind Kühlkanäle 71 in Stützplatten 72, 72' angeordnet. Ein Kupferrohr 70 ist in
seiner Wandstärke sehr dünn gewählt, beispielsweise 3 mm - 8 mm. Solche dünne
Kupferrohre 70 sind entsprechend häufig durch Stützflächen 74, die an den Stützplatten
72, 72' angebracht sind, abgestützt. Befestigungsflächen 77 oder Verbindungsprofile 78
sind in der Regel am Kupferrohr 70 vorgesehen. Mit Befestigungseinrichtungen, wie beispielsweise
einem Verbindungsbolzen 75 oder einer Schwalbenschwanzprofilplatte 76
mit einem oder mehreren Zuganker(n) 79 wird das Kupferrohr 70 mit den Stützplatten
72, 72' lösbar oder fest verbunden.In Fig. 7
Claims (17)
Priority Applications (22)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03008681A EP1468760B1 (en) | 2003-04-16 | 2003-04-16 | Tube mould for continuous casting |
AT03008681T ATE296174T1 (en) | 2003-04-16 | 2003-04-16 | TUBE MILL FOR CONTINUOUS CASTING |
DE50300582T DE50300582D1 (en) | 2003-04-16 | 2003-04-16 | Tubular mold for continuous casting |
ES03008681T ES2242119T3 (en) | 2003-04-16 | 2003-04-16 | TUBULAR LINGOTERA FOR CONTINUOUS COLADA. |
PT03008681T PT1468760E (en) | 2003-04-16 | 2003-04-16 | TUBULAR INJECTION FOR CONTINUOUS LEAKING |
JP2006505043A JP4610548B2 (en) | 2003-04-16 | 2004-04-07 | Tubular mold for continuous casting |
PCT/EP2004/003712 WO2004091826A1 (en) | 2003-04-16 | 2004-04-07 | Tubular mould for continuous casting |
RU2005135447/02A RU2316409C2 (en) | 2003-04-16 | 2004-04-07 | Tubular mold for continuous casting of billets |
BRPI0409449-2A BRPI0409449B1 (en) | 2003-04-16 | 2004-04-07 | cast steel casting mold. |
CNB200480010049XA CN100344394C (en) | 2003-04-16 | 2004-04-07 | Tube mould for continuous casting |
PL377699A PL207539B1 (en) | 2003-04-16 | 2004-04-07 | Tubular mould for continuous casting |
MXPA05009765A MXPA05009765A (en) | 2003-04-16 | 2004-04-07 | Tubular mould for continuous casting. |
CA002522190A CA2522190C (en) | 2003-04-16 | 2004-04-07 | Tubular mould for continuous casting |
KR1020057019234A KR101082901B1 (en) | 2003-04-16 | 2004-04-07 | Tubular mould for continuous casting |
AU2004230206A AU2004230206B2 (en) | 2003-04-16 | 2004-04-07 | Tubular mould for continuous casting |
US10/550,373 US7422049B2 (en) | 2003-04-16 | 2004-04-07 | Tubular mould for continuous casting |
TW093110157A TWI240660B (en) | 2003-04-16 | 2004-04-12 | Tubular mould for continuous casting |
MYPI20041352A MY136189A (en) | 2003-04-16 | 2004-04-13 | Tubular mould for continuous casting |
ARP040101305A AR043879A1 (en) | 2003-04-16 | 2004-04-19 | TUBULAR LINGOTERA FOR CONTINUOUS COLADA |
UAA200510838A UA79695C2 (en) | 2003-04-16 | 2004-07-04 | Tubular crystallizer for continuous casting |
ZA2005/06874A ZA200506874B (en) | 2003-04-16 | 2005-08-26 | Tubular mould for continuous casting |
EGNA2005000605 EG23891A (en) | 2003-04-16 | 2005-10-02 | Tubular mould for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03008681A EP1468760B1 (en) | 2003-04-16 | 2003-04-16 | Tube mould for continuous casting |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1468760A1 true EP1468760A1 (en) | 2004-10-20 |
EP1468760B1 EP1468760B1 (en) | 2005-05-25 |
Family
ID=32892888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03008681A Expired - Lifetime EP1468760B1 (en) | 2003-04-16 | 2003-04-16 | Tube mould for continuous casting |
Country Status (22)
Country | Link |
---|---|
US (1) | US7422049B2 (en) |
EP (1) | EP1468760B1 (en) |
JP (1) | JP4610548B2 (en) |
KR (1) | KR101082901B1 (en) |
CN (1) | CN100344394C (en) |
AR (1) | AR043879A1 (en) |
AT (1) | ATE296174T1 (en) |
AU (1) | AU2004230206B2 (en) |
BR (1) | BRPI0409449B1 (en) |
CA (1) | CA2522190C (en) |
DE (1) | DE50300582D1 (en) |
EG (1) | EG23891A (en) |
ES (1) | ES2242119T3 (en) |
MX (1) | MXPA05009765A (en) |
MY (1) | MY136189A (en) |
PL (1) | PL207539B1 (en) |
PT (1) | PT1468760E (en) |
RU (1) | RU2316409C2 (en) |
TW (1) | TWI240660B (en) |
UA (1) | UA79695C2 (en) |
WO (1) | WO2004091826A1 (en) |
ZA (1) | ZA200506874B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1792676A1 (en) * | 2005-12-05 | 2007-06-06 | KM Europa Metal Aktiengesellschaft | Mould for continuous casting of metal |
WO2008148465A1 (en) * | 2007-06-04 | 2008-12-11 | Concast Ag | Casting die for continuous casting of blooms, slabs, and billets |
EP2055410A1 (en) | 2007-11-01 | 2009-05-06 | KME Germany AG & Co. KG | Liquid-cooled canister for continuous casting of metals |
DE102010047392A1 (en) * | 2010-10-02 | 2012-04-05 | Egon Evertz Kg (Gmbh & Co.) | continuous casting |
CN103056317A (en) * | 2013-01-28 | 2013-04-24 | 青岛云路新能源科技有限公司 | Cooling structure of copper bush of amorphous crystallizer |
ITUD20120192A1 (en) * | 2012-11-16 | 2014-05-17 | Danieli Off Mecc | METHOD FOR THE REALIZATION OF A CRYSTALLIZER FOR CONTINUOUS CASTING, AND CRYSTALLIZER SO IT GETED |
ITUD20130090A1 (en) * | 2013-06-28 | 2014-12-29 | Danieli Off Mecc | CRYSTALLIZER FOR CONTINUOUS CASTING AND PROCEDURE FOR ITS REALIZATION |
WO2016166215A1 (en) * | 2015-04-16 | 2016-10-20 | Primetals Technologies Austria GmbH | Supported tubular mould for billet and ingot installations |
EP2620236A3 (en) * | 2012-01-30 | 2017-07-19 | Primetals Technologies Austria GmbH | Flow-through mould for the strand casting of a strand, especially with billets or bloom profile |
EP3284550A1 (en) | 2016-08-18 | 2018-02-21 | SMS Concast AG | Method for producing a mould for continuous casting of metallic products, and a mould |
EP3406368A1 (en) | 2017-05-23 | 2018-11-28 | SMS Concast AG | Mould for continuous casting of metallic products |
WO2019007656A1 (en) | 2017-07-03 | 2019-01-10 | Primetals Technologies Austria GmbH | Installation of a fiber-optic temperature sensor into an ingot mold and ingot mold having a plurality of fiber-optic temperature sensors |
WO2020126206A1 (en) | 2018-12-21 | 2020-06-25 | Primetals Technologies Austria GmbH | Mould unit for the continuous casting of metal products and continuous casting installation |
EP3695918A1 (en) | 2019-02-15 | 2020-08-19 | Primetals Technologies Austria GmbH | Mould unit for continuous casting of metallic products and strand casting system |
WO2023041814A1 (en) * | 2021-09-20 | 2023-03-23 | Sarralle Steel Melting Plant, S.L. | Continuous casting mold assembly |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2025432B2 (en) * | 2007-07-27 | 2017-08-30 | Concast Ag | Method for creating steel long products through strand casting and rolling |
DE102008007082A1 (en) * | 2007-11-01 | 2009-05-07 | Kme Germany Ag & Co. Kg | Liquid-cooled mold for continuous casting of metals |
KR101067967B1 (en) * | 2009-04-27 | 2011-09-26 | 김기창 | Molding jig |
JP5423564B2 (en) * | 2010-04-27 | 2014-02-19 | 新日鐵住金株式会社 | Continuous casting mold equipment |
US20120111524A1 (en) * | 2010-11-05 | 2012-05-10 | Schlichting Kevin W | Shot tube plunger for a die casting system |
EP2548675A1 (en) * | 2011-07-19 | 2013-01-23 | SMS Concast AG | Mould for strand casting metallic long products |
CA2844450C (en) * | 2011-11-09 | 2017-08-15 | Nippon Steel & Sumitomo Metal Corporation | Continuous casting apparatus for steel |
ITBS20120016A1 (en) * | 2012-01-31 | 2013-08-01 | Sama S R L | PLATE OF A PLANT FOR CONTINUOUS CASTING |
CN102527960A (en) * | 2012-02-15 | 2012-07-04 | 曲沃县民政福利企业有限公司 | Novel crystallizer for horizontal continuous casting |
JP5689434B2 (en) * | 2012-03-23 | 2015-03-25 | 三島光産株式会社 | Continuous casting mold |
JP5896811B2 (en) * | 2012-04-02 | 2016-03-30 | 株式会社神戸製鋼所 | Mold for continuous casting of ingot made of titanium or titanium alloy and continuous casting apparatus provided with the same |
CN103341598A (en) * | 2013-07-19 | 2013-10-09 | 烟台孚信达双金属股份有限公司 | Crystallizer for casting of copper-clad aluminum composite materials |
CN104624990B (en) * | 2015-02-26 | 2023-08-25 | 周嘉平 | Copper pipe of uniform cooling crystallizer and manufacturing method thereof |
KR101613668B1 (en) * | 2015-04-28 | 2016-04-29 | 주식회사 케이유신소재 | Cooler for continuous casting |
IT201700027045A1 (en) * | 2017-03-10 | 2018-09-10 | Em Moulds S P A A Socio Unico | CRYSTALLIZER FOR CONTINUOUS CASTING AND METHOD TO OBTAIN THE SAME |
CN109894585B (en) * | 2019-04-29 | 2021-01-26 | 攀钢集团攀枝花钢铁研究院有限公司 | Continuous casting tube type crystallizer |
CN110039013B (en) * | 2019-04-29 | 2021-01-26 | 攀钢集团攀枝花钢铁研究院有限公司 | Small deformation continuous casting pipe type crystallizer |
CN110076326A (en) * | 2019-05-20 | 2019-08-02 | 沈阳铸造研究所有限公司 | A kind of electroslag smelting casting shaped piece crystallizer water route control method |
CN110076303B (en) * | 2019-05-22 | 2024-05-03 | 中冶赛迪工程技术股份有限公司 | Method for changing convexity of crystallizer copper pipe and variable convexity crystallizer copper pipe |
KR102122682B1 (en) * | 2019-07-29 | 2020-06-12 | 현대제철 주식회사 | Apparatus of manufacturing roll for hot rolling |
KR102133133B1 (en) * | 2019-09-26 | 2020-07-10 | 현대제철 주식회사 | Apparatus of manufacturing roll for hot rolling |
CN111468690A (en) * | 2020-04-22 | 2020-07-31 | 江西耐乐科技协同创新有限公司 | Crystallizer for orderly crystallizing by utilizing induction coil |
RU198654U1 (en) * | 2020-04-23 | 2020-07-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | TUBULAR CRYSTALLIZER |
CN113441700A (en) * | 2021-07-30 | 2021-09-28 | 上海睿昇半导体科技有限公司 | Cooling water jacket and processing method thereof |
CN113579183B (en) * | 2021-08-02 | 2023-10-27 | 成都冶金实验厂有限公司 | Cooling system for crystallizer |
IT202100026519A1 (en) * | 2021-10-06 | 2023-04-06 | Danieli Off Mecc | CRYSTALLIZER FOR CONTINUOUS CASTING |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4078600A (en) * | 1976-02-03 | 1978-03-14 | Cashdollar Sr Robert E | Continuous casting |
EP0268143A2 (en) * | 1986-11-19 | 1988-05-25 | Concast Standard Ag | Method and mould for the continuous casting of metallic strands, especially steel strands |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3667534A (en) * | 1971-03-11 | 1972-06-06 | Sumitomo Metal Ind | Steel ingot making method |
US3730257A (en) * | 1971-06-24 | 1973-05-01 | Koppers Co Inc | Continuous casting sleeve mold |
US3763920A (en) * | 1972-03-16 | 1973-10-09 | United States Steel Corp | Water inlet construction for continuous-casting molds |
DE2613745A1 (en) * | 1976-03-31 | 1977-10-06 | Linde Ag | HEAT EXCHANGER |
FR2423285A1 (en) * | 1978-04-17 | 1979-11-16 | Siderurgie Fse Inst Rech | COOLING SHIRT FOR CONTINUOUS METAL CASTING LINGOTIER |
JPS6110833Y2 (en) * | 1980-02-27 | 1986-04-07 | ||
JPS5758953A (en) * | 1980-09-26 | 1982-04-09 | Mitsubishi Heavy Ind Ltd | Block type casting for continuous casting |
JPS59135850U (en) * | 1983-02-23 | 1984-09-11 | 三島光産株式会社 | Continuous casting mold |
JPS60176858U (en) * | 1984-04-26 | 1985-11-22 | 株式会社神戸製鋼所 | Continuous casting mold with built-in electromagnetic stirring device |
JPS61176445A (en) * | 1985-01-31 | 1986-08-08 | Sumitomo Heavy Ind Ltd | Construction of casting mold of continuous casting device |
JPS62142453U (en) * | 1986-02-28 | 1987-09-08 | ||
JPH0160745U (en) * | 1987-10-12 | 1989-04-18 | ||
JPH01128945U (en) * | 1988-02-24 | 1989-09-01 | ||
JPH0659523B2 (en) * | 1988-09-09 | 1994-08-10 | ノムラテクノリサーチ株式会社 | Continuous casting mold manufacturing method |
JPH0593644U (en) * | 1992-05-23 | 1993-12-21 | 神鋼メタルプロダクツ株式会社 | Tubular mold for continuous casting |
CN2142764Y (en) * | 1992-12-05 | 1993-09-29 | 章仲禹 | Crystallizer for continuous casting square billet horizontally |
CN2151828Y (en) * | 1992-12-28 | 1994-01-05 | 吉林市钢厂 | Horizontal continuous casting small square block crystal device |
CN2206685Y (en) * | 1994-12-01 | 1995-09-06 | 马鞍山钢铁股份有限公司 | High-seal continuous metal cast crystallizer |
CN2236374Y (en) * | 1995-10-13 | 1996-10-02 | 冶金工业部钢铁研究总院 | Directly cooling secondary crystallizer |
CN2301273Y (en) * | 1997-06-09 | 1998-12-23 | 李建勇 | Spraying vapourizing mould |
CN2300464Y (en) * | 1997-08-20 | 1998-12-16 | 桂源 | Crystallizer copper tube |
CA2383075C (en) * | 1999-08-26 | 2008-08-26 | Concast Standard Ag | Ingot mould for the continuous casting of steel into billet and cogged ingot formats |
US6374903B1 (en) * | 2000-09-11 | 2002-04-23 | Ag Industries, Inc. | System and process for optimizing cooling in continuous casting mold |
-
2003
- 2003-04-16 ES ES03008681T patent/ES2242119T3/en not_active Expired - Lifetime
- 2003-04-16 DE DE50300582T patent/DE50300582D1/en not_active Expired - Lifetime
- 2003-04-16 EP EP03008681A patent/EP1468760B1/en not_active Expired - Lifetime
- 2003-04-16 PT PT03008681T patent/PT1468760E/en unknown
- 2003-04-16 AT AT03008681T patent/ATE296174T1/en active
-
2004
- 2004-04-07 WO PCT/EP2004/003712 patent/WO2004091826A1/en active Application Filing
- 2004-04-07 KR KR1020057019234A patent/KR101082901B1/en not_active IP Right Cessation
- 2004-04-07 CN CNB200480010049XA patent/CN100344394C/en not_active Expired - Lifetime
- 2004-04-07 JP JP2006505043A patent/JP4610548B2/en not_active Expired - Lifetime
- 2004-04-07 MX MXPA05009765A patent/MXPA05009765A/en active IP Right Grant
- 2004-04-07 AU AU2004230206A patent/AU2004230206B2/en not_active Ceased
- 2004-04-07 PL PL377699A patent/PL207539B1/en unknown
- 2004-04-07 CA CA002522190A patent/CA2522190C/en not_active Expired - Fee Related
- 2004-04-07 RU RU2005135447/02A patent/RU2316409C2/en not_active IP Right Cessation
- 2004-04-07 US US10/550,373 patent/US7422049B2/en not_active Expired - Lifetime
- 2004-04-07 BR BRPI0409449-2A patent/BRPI0409449B1/en not_active IP Right Cessation
- 2004-04-12 TW TW093110157A patent/TWI240660B/en not_active IP Right Cessation
- 2004-04-13 MY MYPI20041352A patent/MY136189A/en unknown
- 2004-04-19 AR ARP040101305A patent/AR043879A1/en active IP Right Grant
- 2004-07-04 UA UAA200510838A patent/UA79695C2/en unknown
-
2005
- 2005-08-26 ZA ZA2005/06874A patent/ZA200506874B/en unknown
- 2005-10-02 EG EGNA2005000605 patent/EG23891A/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4078600A (en) * | 1976-02-03 | 1978-03-14 | Cashdollar Sr Robert E | Continuous casting |
EP0268143A2 (en) * | 1986-11-19 | 1988-05-25 | Concast Standard Ag | Method and mould for the continuous casting of metallic strands, especially steel strands |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1978091B (en) * | 2005-12-05 | 2011-04-13 | Km欧洲钢铁股份有限公司 | Tubular crystallizer for continuous casting metal |
EP1792676A1 (en) * | 2005-12-05 | 2007-06-06 | KM Europa Metal Aktiengesellschaft | Mould for continuous casting of metal |
CN101772387B (en) * | 2007-06-04 | 2013-11-20 | Sms康卡斯特股份公司 | Casting die for continuous casting of blooms, slabs, and billets |
WO2008148465A1 (en) * | 2007-06-04 | 2008-12-11 | Concast Ag | Casting die for continuous casting of blooms, slabs, and billets |
EP2014393A1 (en) | 2007-06-04 | 2009-01-14 | Concast Ag | Mould for strand casting of blooms, cogged blooms or billets |
EA017205B1 (en) * | 2007-06-04 | 2012-10-30 | Смс Конкаст Аг | Casting die for continuous casting of blooms, slabs, and billets |
EP2055410A1 (en) | 2007-11-01 | 2009-05-06 | KME Germany AG & Co. KG | Liquid-cooled canister for continuous casting of metals |
DE102010047392A1 (en) * | 2010-10-02 | 2012-04-05 | Egon Evertz Kg (Gmbh & Co.) | continuous casting |
AT512433B1 (en) * | 2012-01-30 | 2017-08-15 | Primetals Technologies Austria GmbH | CONTINUOUS COIL FOR THE CONTINUOUS CASTING OF A STRING WITH A BILL OR PRE-BLOCK PROFILE |
EP2620236A3 (en) * | 2012-01-30 | 2017-07-19 | Primetals Technologies Austria GmbH | Flow-through mould for the strand casting of a strand, especially with billets or bloom profile |
ITUD20120192A1 (en) * | 2012-11-16 | 2014-05-17 | Danieli Off Mecc | METHOD FOR THE REALIZATION OF A CRYSTALLIZER FOR CONTINUOUS CASTING, AND CRYSTALLIZER SO IT GETED |
CN103056317A (en) * | 2013-01-28 | 2013-04-24 | 青岛云路新能源科技有限公司 | Cooling structure of copper bush of amorphous crystallizer |
WO2014207729A3 (en) * | 2013-06-28 | 2015-04-16 | Danieli & C. Officine Meccaniche S.P.A. | Crystallizer for continuous casting and method for its production |
WO2014207729A2 (en) | 2013-06-28 | 2014-12-31 | Danieli & C. Officine Meccaniche S.P.A. | Crystallizer for continuous casting and method for its production |
ITUD20130090A1 (en) * | 2013-06-28 | 2014-12-29 | Danieli Off Mecc | CRYSTALLIZER FOR CONTINUOUS CASTING AND PROCEDURE FOR ITS REALIZATION |
WO2016166215A1 (en) * | 2015-04-16 | 2016-10-20 | Primetals Technologies Austria GmbH | Supported tubular mould for billet and ingot installations |
EP3284550A1 (en) | 2016-08-18 | 2018-02-21 | SMS Concast AG | Method for producing a mould for continuous casting of metallic products, and a mould |
EP3406368A1 (en) | 2017-05-23 | 2018-11-28 | SMS Concast AG | Mould for continuous casting of metallic products |
WO2019007656A1 (en) | 2017-07-03 | 2019-01-10 | Primetals Technologies Austria GmbH | Installation of a fiber-optic temperature sensor into an ingot mold and ingot mold having a plurality of fiber-optic temperature sensors |
WO2020126206A1 (en) | 2018-12-21 | 2020-06-25 | Primetals Technologies Austria GmbH | Mould unit for the continuous casting of metal products and continuous casting installation |
KR20210105356A (en) * | 2018-12-21 | 2021-08-26 | 프리메탈스 테크놀로지스 오스트리아 게엠베하 | Mold units and continuous casting equipment for continuous casting of metal products |
EP3695918A1 (en) | 2019-02-15 | 2020-08-19 | Primetals Technologies Austria GmbH | Mould unit for continuous casting of metallic products and strand casting system |
WO2023041814A1 (en) * | 2021-09-20 | 2023-03-23 | Sarralle Steel Melting Plant, S.L. | Continuous casting mold assembly |
Also Published As
Publication number | Publication date |
---|---|
CA2522190C (en) | 2009-09-29 |
CN1774309A (en) | 2006-05-17 |
EP1468760B1 (en) | 2005-05-25 |
US20060237161A1 (en) | 2006-10-26 |
TW200425975A (en) | 2004-12-01 |
PL207539B1 (en) | 2010-12-31 |
ATE296174T1 (en) | 2005-06-15 |
RU2316409C2 (en) | 2008-02-10 |
ES2242119T3 (en) | 2005-11-01 |
AU2004230206B2 (en) | 2008-12-11 |
WO2004091826A1 (en) | 2004-10-28 |
CA2522190A1 (en) | 2004-10-28 |
PL377699A1 (en) | 2006-02-06 |
AR043879A1 (en) | 2005-08-17 |
UA79695C2 (en) | 2007-07-10 |
JP4610548B2 (en) | 2011-01-12 |
TWI240660B (en) | 2005-10-01 |
KR20050109626A (en) | 2005-11-21 |
RU2005135447A (en) | 2006-03-10 |
JP2006523534A (en) | 2006-10-19 |
US7422049B2 (en) | 2008-09-09 |
BRPI0409449A (en) | 2006-05-02 |
AU2004230206A1 (en) | 2004-10-28 |
BRPI0409449B1 (en) | 2011-11-16 |
ZA200506874B (en) | 2006-05-31 |
CN100344394C (en) | 2007-10-24 |
MY136189A (en) | 2008-08-29 |
DE50300582D1 (en) | 2005-06-30 |
EG23891A (en) | 2007-12-12 |
PT1468760E (en) | 2005-10-31 |
MXPA05009765A (en) | 2006-05-19 |
KR101082901B1 (en) | 2011-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1468760B1 (en) | Tube mould for continuous casting | |
EP0912271B1 (en) | Liquid-cooled mould | |
CH623759A5 (en) | ||
DE2641261A1 (en) | MOLD WITH INDUCTOR COILS ARRANGED IN THE COOLING DUCT | |
DE60025053T2 (en) | Continuous casting plant for steel | |
DE2353449C2 (en) | Liquid-cooled mold | |
EP1795281B1 (en) | Mould for continuous casting | |
EP1007246B1 (en) | Continuous casting mould | |
DE2858250C2 (en) | Continuous casting mold | |
EP1212159B1 (en) | Ingot mould for the continuous casting of steel into billet and cogged ingot formats | |
DE10024587A1 (en) | Cooling plate | |
EP0268143A2 (en) | Method and mould for the continuous casting of metallic strands, especially steel strands | |
DE2847581C2 (en) | ||
EP2255140B1 (en) | Cooling element for cooling the fireproof lining of a metallurgical furnace | |
EP2897746B1 (en) | Apparatus for the continuous casting of metals | |
WO2008017374A1 (en) | Die for continuous casting of liquid metal, in particular of steel materials | |
DE10218957B4 (en) | Continuous casting mold for liquid metals, especially for liquid steel | |
DE19716450A1 (en) | Liquid-cooled mold | |
DE3736956C2 (en) | ||
EP0246423A2 (en) | Method of and installation for resistant connection of ceramic mould parts with metals | |
AT18150U1 (en) | Guide table for the guided transfer of a metal strip and method for operating such a guide table | |
DE102009018213A1 (en) | vacuum pump housing | |
EP1535678A1 (en) | Assembly of a copper plate cartridge | |
DE19628271A1 (en) | Mould for continuous casting of metals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
17P | Request for examination filed |
Effective date: 20041029 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050525 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050525 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050525 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050525 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050525 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050525 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50300582 Country of ref document: DE Date of ref document: 20050630 Kind code of ref document: P |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050825 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050825 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050825 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Effective date: 20050823 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2242119 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051126 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060430 |
|
26N | No opposition filed |
Effective date: 20060228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: LUCHS & PARTNER PATENTANWAELTE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130418 Year of fee payment: 11 Ref country code: SE Payment date: 20130418 Year of fee payment: 11 Ref country code: BE Payment date: 20130418 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20130416 Year of fee payment: 11 Ref country code: FI Payment date: 20130411 Year of fee payment: 11 Ref country code: FR Payment date: 20130515 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20141016 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140416 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20141231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141016 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140416 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140416 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20170324 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180416 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20210503 Year of fee payment: 19 Ref country code: ES Payment date: 20210621 Year of fee payment: 19 Ref country code: TR Payment date: 20210415 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220421 Year of fee payment: 20 Ref country code: DE Payment date: 20220420 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20220421 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50300582 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230530 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 296174 Country of ref document: AT Kind code of ref document: T Effective date: 20230416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220416 |