EP1212159B1 - Ingot mould for the continuous casting of steel into billet and cogged ingot formats - Google Patents

Ingot mould for the continuous casting of steel into billet and cogged ingot formats Download PDF

Info

Publication number
EP1212159B1
EP1212159B1 EP00960417A EP00960417A EP1212159B1 EP 1212159 B1 EP1212159 B1 EP 1212159B1 EP 00960417 A EP00960417 A EP 00960417A EP 00960417 A EP00960417 A EP 00960417A EP 1212159 B1 EP1212159 B1 EP 1212159B1
Authority
EP
European Patent Office
Prior art keywords
coating
mould according
chill
chill mould
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00960417A
Other languages
German (de)
French (fr)
Other versions
EP1212159A1 (en
Inventor
Adalbert Roehrig
Adrian Stilli
Franz Kawa
Holger Braun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Concast Standard AG
Original Assignee
Concast Standard AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Concast Standard AG filed Critical Concast Standard AG
Publication of EP1212159A1 publication Critical patent/EP1212159A1/en
Application granted granted Critical
Publication of EP1212159B1 publication Critical patent/EP1212159B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/057Manufacturing or calibrating the moulds

Definitions

  • the invention relates to a mold for continuous casting steel according to the preamble of claim 1.
  • Such Kokillenrohre usually consist of a Copper tube made by a variety of costly operations or a copper alloy with a wall thickness of 8 - 25 mm.
  • mold tubes made of copper or a copper alloy are usually cold drawn to a Solidification, which gives the mold tube the required strength gives.
  • the mold tube is provided in the mold cavity with a casting cone and is provided on the outside with a smooth wall or with smooth walls.
  • the mold cavity is in many cases with electroplated coatings made of chrome and nickel.
  • JP 58-221 636 A a mold is described, whose Mold cavity walls are made of copper or a copper alloy and mold cavity side to improve the high temperature strength in one upper part with molybdenum or a molybdenum alloy and in a lower one Part are coated with nickel or a nickel alloy.
  • the copper pipes provide continuous casting of billet and billet formats Wear parts that replaced after 120 - 200 casts because of scratches, warping, etc. Need to become. To increase the economy are different Methods have become known, all of which have the goal of such expensive copper tubes a second and possibly third use to supply.
  • the wear pattern of such molds is usually in the bathroom mirror area through Warpage and cracking caused by the high thermal stress, and in the lower mold half by abrasive wear and scratches characterized. Are such errors in the mold cavity by cutting Machining removed, so increases the mold cavity, and the Cross-sectional dimension of the cast strands becomes larger.
  • the invention is based on the object described in the prior art Disadvantages and in particular the mold design for tube molds redesigned so that the costly production of billets and Pre-block molds with cold-drawn tubes of copper or copper alloys can be avoided. Another goal is seen in a mold design, which has a much longer life and by recalibration can be brought back to target dimensions in the region of the mold cavity.
  • the coating carrier re-coat as often as desired, without casting parameters how to change strand size or water gap.
  • the coating which is introduced as a thick film and with a preferably machining to the desired mold cavity dimensions can, with respect to cooling performance and, if desired, also with respect Wear the specific requirements of continuous casting depending on from the Stranggiessparametern, for example, the casting temperature or the steel composition. It is assumed that the coating at the casting temperature an adequate heat resistance having.
  • the mold tube In the tube molds, the mold tube on the one hand has a high heat output and on the other hand to ensure the required stability. As measure for the stability is considered the service life during the casting operation. At least two factors contribute to the stability of a mold tube.
  • the Stability of a mold tube is determined by its ability to the high thermal load in the casting operation, due to the contact with a melt on the inside at a simultaneous intense Cooling on the outside, withstand.
  • the stability of a mold tube is still determined by his ability to withstand the mechanical stresses to withstand casting.
  • the mold according to the invention has the freedom to meet the requirements in terms of the heat dissipation and the stability of the mold cavity forming inner body to optimize independently by choosing appropriate Materials for the coating carrier on the one hand and the coating on the other hand.
  • the coating carrier can be designed so that it provides a high mechanical strength of the inner body and thus ensures the desired stability of the inner body, while the coating in terms of thermal properties and the Thickness suitable can be chosen to heat dissipation of the inner body to optimize.
  • a coating carrier made of a material with increased mechanical Strength is made, may have a reduced wall thickness and therefore allow an increase in the thermal output of the mold. Provided, the coating is embarrassable, then can be done by repeated repair a much longer life of the mold can be achieved.
  • the coating carrier is made of aluminum or an aluminum alloy, for example from the as Anticorodal WN 6082 known alloy AIMgSi1, to manufacture.
  • Aluminum or aluminum alloys have a thermal conductivity in the range of 130 - 220 W / mK on. Since the coating carrier in the casting operation always in a finite, given by the thickness of the coating distance from one into the mold cavity introduced melt is located and the inner body also Is cooled, can made of aluminum or an aluminum alloy Coating carrier in the casting operation are kept at a temperature at the aluminum or aluminum alloys a particularly high strength respectively. Furthermore, solidified moldings made of aluminum or an aluminum alloy relatively inexpensive to produce, for example by Extrusion.
  • the coating can meet the specific requirements of continuous casting in Lengthwise of the mold varies and also with regard to different to be poured Be adapted to steel grades.
  • a highly heat-conductive one Material for example copper or a copper alloy with a thermal conductivity from 200 - 400 W / mK, chosen.
  • a highly heat-conductive one Material for example copper or a copper alloy with a thermal conductivity from 200 - 400 W / mK, chosen.
  • In the lower part of the mold cavity are also harder coatings, such as nickel, conceivable.
  • the coating is a thick film 0.5 5 mm, preferably 1 - 4 mm executed.
  • a coating can be galvanic or by plating or by thermal spraying, for example Flame spraying or plasma spraying, manufactured and processed by be provided with a surface, the desired shape of the mold cavity with the required accuracy.
  • lubricant for lubrication of the strand shell.
  • lubricants those based on molybdenum and / or tungsten, preferably MoS 2 and / or WS 2 , are proposed.
  • the coating carrier and for the coating are the same or even higher heat outputs than the classic, achievable in the prior art mold, even if the thermal conductivity of the coating carrier is lower than the thermal conductivity of Coating.
  • the decisive for the heat transfer wall thickness, in particular of the coating carrier, can be made relatively thin.
  • the coating carrier on the mold cavity turned away side be provided with cooling fins.
  • the cooling parameter may be a distance between the cooling fins of, for example 5 - 8 mm can be selected.
  • the wall thickness of the coating carrier can in such constructions between the cooling fins 2 - 10 mm, preferably 5 - 8 mm, amount. A coating carrier with such thin wall thicknesses guaranteed together with a copper coating of, for example, 3 mm a high heat output.
  • Coating carrier for Molds with a polygonal mold cavity cross-section for example be composed of several flat or curved plates, respectively form one of the mold cavity bounding side walls of the mold.
  • inventive mold With optimal material selection of the coating carrier can in comparison to known molds with a identical stirrer, an increased stirring power can be achieved or to achieve the same stirring effect a weaker-conductor stirrer can be used.
  • the inventive mold Because of the use of aluminum or an aluminum alloy for the Coating carrier is the inventive mold relatively easy in comparison to a corresponding mold of copper or a copper alloy. Because of the lower weight can be the Kokillenoszillation necessary in the casting operation in the inventive mold - in comparison with a corresponding Mold made of copper or a copper alloy - carried out with simplified means become. The lower weight generally results in a lighter one Handling of the inventive mold, especially when replacing or during installation and removal and during transport of the mold. All with one Transport of the mold associated measures can be done with simplified means be performed.
  • the inventive mold therefore has an increased Transparency for radioactive radiation compared to a comparable Mold of copper or a copper alloy.
  • This property of the inventive Mold is useful with regard to the design of Devices for measuring the level of the bath level one in the mold cavity the mold introduced melt. Usually the level will be the bath level of a melt by means of a measurement of the transmission radioactive Radiation through the walls of the mold determined transversely to the casting direction.
  • the mold according to the invention allows such transmission measurements to perform with increased sensitivity and optionally with weaker ones radioactive radiation sources and / or a simpler measurement technique to work.
  • FIG. 1 and 2 is schematically a billet or pre-block mold 3 with a Mold cavity 4 shown for continuous casting of steel.
  • a cooling medium preferably cooling water, cooled.
  • Arrows 5 the direction of the cooling water flow is shown.
  • the construction of the mold is as follows: A coating carrier 6 carries on the mold cavity side a highly heat-conductive renewable coating 7 made of copper or a Copper alloy with a thermal conductivity of 200 - 400 W / mK.
  • This coating 7 can be applied galvanically to the coating carrier 6. But it can also by thermal spraying, such as flame or Plasma spraying, or be applied by plating.
  • the coating 7 in a thickness of 0.5 - 5 mm, preferably from 2 - 4 mm, by machining the mold cavity 4 to the desired Cavity mold cavity and the desired mold cavity surface finish.
  • the mold cavity surface are all in the state of Technique known methods applicable, are particularly suitable for cutting Machining such as milling, grinding, spark erosion or machining with laser beams. With 10, 10 'is a lower and an upper Kokillenab gleichdeckel shown. A sheath is designated 9.
  • the choice of material of the coating carrier 6 is the first priority on the Stability to fulfill the supporting function and to a good dimensional stability aligned at elevated temperature.
  • the strength of the coating carrier 6 should be higher than the one at the temperatures realized in the casting operation the coating.
  • the materials used for the coating carrier are aluminum or aluminum alloys. In the production of a coating carrier 6, for example, the excellent properties of Aluminum and aluminum alloys make the difference during pressing. Also composed of several parts coating carrier 6 can be used without disadvantages, because the coating in the mold cavity the Seamlessly covered seams between the individual parts.
  • the coating carrier can for example be constructed of several parts, which means Welding, using suitable fasteners such as screws or rivets or held together in some other way.
  • the coating carrier 6 is in this example on the mold cavity. 4 side facing with cooling fins 11 provided. To a correspondingly large To obtain cooling surface, the distances between the cooling fins 11 5 - 8 mm. Also, the wall thickness 12 of the coating carrier 6 between the Cooling ribs 11 can be dimensioned with 2 - 10 mm, preferably 5 - 8 mm, thin become.
  • Fig. 3 is a mold 20 having, for example, a square cross section with a Stirring 21 provided.
  • the stirring device 21 can by the different Construction of the mold closer to classic tube molds the mold cavity 22 are brought.
  • the material for the coating carrier 23 and for the jacket 24 in terms of requirements to optimize the operation of the electromagnetic stirring device 21.
  • the coating carrier 23 by a suitable specification for the electrical conductivity the coating carrier 23 the strength of the electromagnetic field, which is generated by the stirring device 21 in the mold cavity 22, maxmiert become.
  • the use of aluminum or an aluminum alloy brings in this context advantages because of the relatively low electrical Conductivity of these materials.
  • a coating 26 of a highly heat conductive material in the bathroom mirror area 25 or in the upper Kokillenhget is a coating 26 of a highly heat conductive material and in the lower part or the lower Mold cavity half is a coating 28 of one opposite copper harder material, such as nickel, applied.
  • lubricants (indicated by dots) stored for lubrication of a strand crust.
  • Molybdenum and / or tungsten-based lubricants preferably MoS 2 and / or WS 2
  • MoS 2 and / or WS 2 can be incorporated into a wide variety of coating materials when the coating is introduced, for example by flame spraying.
  • Other lubricants known in the art which can be incorporated into coatings are also included within the scope of the invention.
  • FIGS. 1-3 only straight molds are shown.
  • the invention but does not limit itself to such molds with a straight mold cavity on. All molds for steel continuous casting of billet and billet formats, which have a tubular coating carrier, fall under the object the invention.
  • the geometry of the mold cavity can be chosen arbitrarily become.
  • Embed measuring probes for example temperature sensors
  • the probes to be embedded can be applied before applying the coating with great accuracy at or near the surface to be coated
  • Coating carrier can be arranged and when applying the coating are wrapped with the coating forming material.
  • the probes can be placed inside the coating, without being instructed to drill holes after application of the coating produced, which end in the coating and for receiving the probes are suitable.
  • the positioning of probes in holes only relatively inaccurately controlled.
  • Such inaccuracies the one Cause of inaccuracies in measurements by means of the probes, are avoided when the probes - as described above - during manufacture the coating be embedded in the coating.
  • Aluminum is a relatively base metal. Parts made of aluminum or an aluminum alloy Therefore, they tend to corrode when over an electrolyte mediated connection to other metals.
  • the corrosion resistance of the Coating carrier of the inventive mold can by known means be achieved, for example, by applying suitable protective layers in exposed areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Continuous Casting (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

Die Erfindung betrifft eine Kokille zum Stahlstranggiessen gemäss dem Oberbegriff des Anspruchs 1.The invention relates to a mold for continuous casting steel according to the preamble of claim 1.

Beim Stranggiessen von Knüppel- und kleinen Vorblockformaten werden heute fast ausschliesslich Rohrkokillen verwendet, deren Formhohlraum durch ein Kokillenrohr definiert ist. Solche Kokillenrohre bestehen in der Regel aus einem durch eine Vielzahl kostspieliger Operationen hergestellten Rohr aus Kupfer oder einer Kupferlegierung mit einer Wandstärke von 8 - 25 mm. Kokillenrohre aus Kupfer oder einer Kupferlegierung werden in der Regel kaltgezogen, um eine Verfestigung zu erzielen, die dem Kokillenrohr die erforderliche Festigkeit gibt. Neben den Materialkosten treiben insbesondere die Massnahmen zur Verfestigung des Werkstoffs und zur Formgebung die Herstellungskosten in die Höhe. Das Kokillenrohr ist im Formhohlraum mit einem Giesskonus versehen und ist auf der Aussenseite mit einer glatten Wand bzw. mit glatten Wänden versehen. Der Formhohlraum ist in vielen Fällen mit galvanisch aufgetragenen Ueberzügen aus Chrom und Nickel ausgestattet.Continuous casting of billets and small pre-block formats is today almost exclusively tube molds used, the mold cavity through a mold tube is defined. Such Kokillenrohre usually consist of a Copper tube made by a variety of costly operations or a copper alloy with a wall thickness of 8 - 25 mm. mold tubes made of copper or a copper alloy are usually cold drawn to a Solidification, which gives the mold tube the required strength gives. In addition to the material costs, in particular the measures to solidify of the material and for shaping the manufacturing costs in the amount. The mold tube is provided in the mold cavity with a casting cone and is provided on the outside with a smooth wall or with smooth walls. The mold cavity is in many cases with electroplated coatings made of chrome and nickel.

In der Zusammenfassung der JP 58-221 636 A ist eine Kokille beschrieben, deren Formhohlraumwände aus Kupfer oder einer Kupferlegierung gefertigt sind und formhohlraumseitig zur Verbesserung der Hochtemperaturfestigkeit in einem oberen Teil mit Molybdän oder einer Molybdänlegierung und in einem unteren Teil mit Nickel oder einer Nickellegierung beschichtet sind.In the abstract of JP 58-221 636 A a mold is described, whose Mold cavity walls are made of copper or a copper alloy and mold cavity side to improve the high temperature strength in one upper part with molybdenum or a molybdenum alloy and in a lower one Part are coated with nickel or a nickel alloy.

Zur Kühlung solcher Rohrkokillen wird Wasser mit hoher Geschwindigkeit, z.B. mit 6 - 14 m/s, auf der Aussenseite des Kupferrohres in einem Wasserspalt durchgepresst. Für eine gleichmässige Kühlung des Kupferrohres ist ein Wasserspalt mit regelmässiger Wasserspaltbreite erforderlich. Der Wasserspalt wird einerseits durch das Aussenmass des Kupferrohres und anderseits durch einen auf dieses Aussenmass abgestimmten Wassermantel bestimmt.For cooling such tube molds, high velocity water, e.g. with 6 - 14 m / s, on the outside of the copper pipe in a water gap by pressed. For a uniform cooling of the copper pipe is a water gap with regular water gap width required. The water gap is on the one hand by the external dimensions of the copper tube and on the other hand by a Determined to this external size water jacket.

Die Kupferrohre stellen beim Stranggiessen von Knüppel- und Vorblockformaten Verschleissteile dar, die nach 120 - 200 Güssen wegen Kratzern, Verzug etc. ersetzt werden müssen. Zur Erhöhung der Wirtschaftlichkeit sind verschiedene Verfahren bekannt geworden, die alle zum Ziel haben, solche kostspielige Kupferrohre einer zweiten und eventuell dritten Verwendung zuzuführen. The copper pipes provide continuous casting of billet and billet formats Wear parts that replaced after 120 - 200 casts because of scratches, warping, etc. Need to become. To increase the economy are different Methods have become known, all of which have the goal of such expensive copper tubes a second and possibly third use to supply.

Das Verschleissbild solcher Kokillen ist in der Regel im Badspiegelbereich durch Verzug und Rissbildung, hervorgerufen durch die hohe thermische Beanspruchung, und in der unteren Kokillenhälfte durch abrasiven Verschleiss und Kratzer gekennzeichnet. Werden solche Fehler im Formhohlraum durch spanabhebende Bearbeitung entfernt, so vergrössert sich der Formhohlraum, und das Querschnittmass der gegossenen Stränge wird grösser. The wear pattern of such molds is usually in the bathroom mirror area through Warpage and cracking caused by the high thermal stress, and in the lower mold half by abrasive wear and scratches characterized. Are such errors in the mold cavity by cutting Machining removed, so increases the mold cavity, and the Cross-sectional dimension of the cast strands becomes larger.

Um solche Vergrösserungen des Strangquerschnittes zu vermeiden, ist das Explosionsverformen von Kokillenrohren auf einen auf das Formhohlraummass abgestimmten Dorn bekannt geworden. Auch andere Pressverfahren zum Zurückformen der ausgeweiteten Rohre sind bekannt geworden. Alle diese Rückformungsverfahren, wie Explosions- oder Pressrekalibrierung, weisen als gemeinsamen Nachteil eine Verkleinerung des Aussenquerschnittes des Kokillenrohres auf. Durch diese Querschnittsverkleinerung wird der Wasserspalt zwischen Kokillenrohr und Wassermantel unkontrolliert vergrössert, was wiederum einen nachteiligen Einfluss auf die Kühlung der Kokille ausübt.In order to avoid such enlargements of the strand cross-section, this is explosion deformation from Kokillenrohren on a tuned to the cavity shape Dorn become known. Other pressing methods for molding back the expanded tubes have become known. All of these recovery methods, like explosion or press recalibration, have as common Disadvantage of a reduction of the outer cross-section of the mold tube on. By this cross-sectional reduction of the water gap between mold tube and water jacket uncontrollably increased, which in turn one adversely affects the cooling of the mold.

Der Erfindung liegt die Aufgabe zugrunde, die im Stand der Technik beschriebenen Nachteile auszuschalten und insbesondere den Kokillenaufbau für Rohrkokillen neu so zu gestalten, dass die kostspielige Herstellung von Knüppel- und Vorblockkokillen mit kaltgezogenen Rohren aus Kupfer oder Kupferlegierungen vermieden werden kann. Ein weiteres Ziel wird in einem Kokillenaufbau gesehen, der eine wesentlich längere Lebensdauer aufweist und durch Rekalibrierung wieder auf Soll-Abmessungen im Bereich des Formhohlraums bringbar ist.The invention is based on the object described in the prior art Disadvantages and in particular the mold design for tube molds redesigned so that the costly production of billets and Pre-block molds with cold-drawn tubes of copper or copper alloys can be avoided. Another goal is seen in a mold design, which has a much longer life and by recalibration can be brought back to target dimensions in the region of the mold cavity.

Diese Aufgabe wird gemäss der Erfindung durch die Summe der Merkmale von Anspruch 1 gelöst.This object is achieved according to the invention by the sum of the features of Claim 1 solved.

Mit der erfindungsgemässen Kokille ist es möglich, die im Stand der Technik beschriebenen Nachteile bei Rohrkokillen zu überwinden und die kostspielige Herstellung von Knüppel- und Vorblockkokillen aus kaltgezogenen Kupferrohren zu vermeiden. Falls die Beschichtung emeuerbar ist, so ist es möglich, den Beschichtungsträger so oft wie gewünscht neu zu beschichten, ohne dabei Giessparameter wie Strangformat oder Wasserspalt zu verändern. Durch die gegebene Freiheit in der Gestaltung und der Werkstoffwahl des Beschichtungsträgers kann die Wärmeleistung der Kokille spezifischen Bedürfnissen leicht angepasst werden. Auch die Beschichtung, die als Dickschicht eingebracht und mit einer vorzugsweise spanabhebenden Bearbeitung auf das Formhohlraum-Sollmass gebracht wird, kann, bezüglich Kühlleistung und, wenn erwünscht, auch bezüglich Verschleiss den spezifischen Erfordernissen beim Stranggiessen in Abhängigkeit von den Stranggiessparametern, beispielsweise der Giesstemperatur bzw. der Stahlzusammensetzung, angepasst werden. Es ist vorausgesetzt, dass die Beschichtung bei der Giesstemperatur eine angemessene Warmfestigkeit aufweist. With the inventive mold, it is possible to those described in the prior art To overcome disadvantages in tube molds and the costly production of billet and block molds of cold drawn copper tubes avoid. If the coating is renewable, it is possible to use the coating carrier re-coat as often as desired, without casting parameters how to change strand size or water gap. By the given Freedom in the design and the choice of material of the coating carrier The heat output of the mold can be adjusted to specific needs become. Also, the coating, which is introduced as a thick film and with a preferably machining to the desired mold cavity dimensions can, with respect to cooling performance and, if desired, also with respect Wear the specific requirements of continuous casting depending on from the Stranggiessparametern, for example, the casting temperature or the steel composition. It is assumed that the coating at the casting temperature an adequate heat resistance having.

Bei den Rohrkokillen hat das Kokillenrohr einerseits eine hohe Wärmeleistung und andererseits die erforderliche Standfestigkeit zu gewährleisten. Als Mass für die Standfestigkeit wird die Standzeit während des Giessbetriebes angesehen. Zur Standfestigkeit eines Kokillenrohres tragen zumindest zwei Faktoren bei. Die Standfestigkeit eines Kokillenrohres wird zum einen bestimmt durch sein Vermögen, der hohen thermischen Belastung im Giessbetrieb, bedingt durch den Kontakt mit einer Schmelze auf der Innenseite bei einer gleichzeitigen intensiven Kühlung auf der Aussenseite, zu widerstehen. Die Standfestigkeit eines Kokillenrohres ist weiterhin bestimmt durch sein Vermögen, den mechanischen Beanspruchungen im Giessbetrieb zu widerstehen. Um eine hinreichende Formstabilität des Kokillenrohres zu ermöglichen, muss seine Druckfestigkeit so dimensioniert sein, dass es dem Druck des Kühlwassers standhält, zumal der Druck des Kühlwassers praktisch auf den gesamten äusseren Mantel des Kokillenrohres einwirkt, während auf der Formhohlraumseite oberhalb des Giessspiegels kein entsprechender Gegendruck vorhanden ist und lediglich von der Schmelze ein mit dem Abstand vom Giessspiegel wachsender Gegendruck bewirkt wird. Kupferrohre, die trotz der thermischen und mechanischen Belastungen im Giessbetrieb eine akzeptable Standfestigkeit zeigen sollen, haben gewöhnlich - je nach Giessformat - Wandstärken von 8 - 25 mm. Mit zunehmender Wandstärke wird auch bei hochwärmeleitfähigen Werkstoffen die Wärmeleistung reduziert. Bei der erfindungsgemässen Kokille besteht die Freiheit, die Erfordernisse hinsichtlich der Wärmeabfuhr und der Standfestigkeit des den Formhohlraum bildenden inneren Körpers unabhängig voneinander zu optimieren durch die Wahl geeigneter Materialien für den Beschichtungsträger einerseits und die Beschichtung andererseits. Beispielsweise kann der Beschichtungsträger so ausgelegt werden, dass er für eine hohe mechanische Festigkeit des inneren Körpers sorgt und somit die gewünschte Standfestigkeit des inneren Körpers gewährleistet, während die Beschichtung hinsichtlich der thermischen Eigenschaften und der Dicke geeignet gewählt werden kann, um die Wärmeabfuhr des inneren Körpers zu optimieren. Ein Beschichtungsträger, der aus einem Material mit erhöhter mechanischer Festigkeit gefertigt ist, kann eine reduzierte Wandstärke aufweisen und deshalb eine Erhöhung der Wärmeleistung der Kokille ermöglichen. Vorausgesetzt, die Beschichtung ist emeuerbar, dann kann durch wiederholte Instandsetzung eine wesentlich längere Standzeit der Kokille erreicht werden.In the tube molds, the mold tube on the one hand has a high heat output and on the other hand to ensure the required stability. As measure for the stability is considered the service life during the casting operation. At least two factors contribute to the stability of a mold tube. The Stability of a mold tube is determined by its ability to the high thermal load in the casting operation, due to the contact with a melt on the inside at a simultaneous intense Cooling on the outside, withstand. The stability of a mold tube is still determined by his ability to withstand the mechanical stresses to withstand casting. To a sufficient dimensional stability To allow the mold tube, its compressive strength must be sized be that it withstands the pressure of the cooling water, especially the pressure of the Cooling water practically on the entire outer shell of Kokillenrohres acts while on the mold cavity side above the Giessspiegelels no corresponding back pressure is present and only from the melt with the distance from the Giessspiegel growing counterpressure is effected. Copper tubes, despite the thermal and mechanical loads in the casting operation should show an acceptable stability, usually - depending on Casting format - Wall thicknesses from 8 to 25 mm. With increasing wall thickness becomes even with highly heat-conductive materials reduces the heat output. at The mold according to the invention has the freedom to meet the requirements in terms of the heat dissipation and the stability of the mold cavity forming inner body to optimize independently by choosing appropriate Materials for the coating carrier on the one hand and the coating on the other hand. For example, the coating carrier can be designed so that it provides a high mechanical strength of the inner body and thus ensures the desired stability of the inner body, while the coating in terms of thermal properties and the Thickness suitable can be chosen to heat dissipation of the inner body to optimize. A coating carrier made of a material with increased mechanical Strength is made, may have a reduced wall thickness and therefore allow an increase in the thermal output of the mold. Provided, the coating is embarrassable, then can be done by repeated repair a much longer life of the mold can be achieved.

Erfindungsgemäss wird vorgeschlagen, den Beschichtungsträger aus Aluminium oder einer Aluminium-Legierung, beispielsweise aus der als Anticorodal WN 6082 bekannten Legierung AIMgSi1, zu fertigen. Aluminium oder Aluminium-Legierungen weisen eine Wärmeleitfähigkeit im Bereich von 130 - 220 W/mK auf. Da sich der Beschichtungsträger im Giessbetrieb immer in einem endlichen, durch die Dicke der Beschichtung gegebenen Abstand von einer in den Formhohlraum eingebrachten Schmelze befindet und der innere Körper ausserdem gekühlt ist, kann ein aus Aluminium bzw. einer Aluminium-Legierung gefertigter Beschichtungsträger im Giessbetrieb auf einer Temperatur gehalten werden, bei der Aluminium bzw. Aluminium-Legierungen eine besonders hohe Festigkeit aufweisen. Weiterhin sind verfestigte Formteile aus Aluminium bzw. einer Aluminiumlegierung verhältnismässig kostengünstig herstellbar, beispielsweise durch Strangpressen.According to the invention, the coating carrier is made of aluminum or an aluminum alloy, for example from the as Anticorodal WN 6082 known alloy AIMgSi1, to manufacture. Aluminum or aluminum alloys have a thermal conductivity in the range of 130 - 220 W / mK on. Since the coating carrier in the casting operation always in a finite, given by the thickness of the coating distance from one into the mold cavity introduced melt is located and the inner body also Is cooled, can made of aluminum or an aluminum alloy Coating carrier in the casting operation are kept at a temperature at the aluminum or aluminum alloys a particularly high strength respectively. Furthermore, solidified moldings made of aluminum or an aluminum alloy relatively inexpensive to produce, for example by Extrusion.

Die Beschichtung kann den spezifischen Erfordernissen beim Stranggiessen in Längsrichtung der Kokille variiert und auch hinsichtlich verschiedener zu giessender Stahlsorten angepasst werden. Vorzugsweise wird für die Beschichtung mindestens im oberen badspiegelnahen Bereich ein hochwärmeleitfähiger Werkstoff, beispielsweise Kupfer bzw. eine Kupferlegierung mit einer Wärmeleitfähigkeit von 200 - 400 W/mK, gewählt. Im unteren Bereich des Formhohlraums sind auch härtere Beschichtungen, beispielsweise aus Nickel, denkbar.The coating can meet the specific requirements of continuous casting in Lengthwise of the mold varies and also with regard to different to be poured Be adapted to steel grades. Preferably, for the coating at least in the upper region close to the bath level a highly heat-conductive one Material, for example copper or a copper alloy with a thermal conductivity from 200 - 400 W / mK, chosen. In the lower part of the mold cavity are also harder coatings, such as nickel, conceivable.

Um zu erreichen, dass der Beschichtungsträger im Giessbetrieb nicht überhitzt und selbst unter extremen Bedingungen ein hohes Mass an Festigkeit und Formstabilität zeigt, ist die Beschichtung als Dickschicht mit einer Dicke von 0.5 - 5 mm, vorzugsweise 1 - 4 mm, ausgeführt. Eine solche Beschichtung kann galvanisch oder durch Plattieren oder mittels thermischem Spritzen, beispielsweise Flammspritzen oder Plasmaspritzen, hergestellt und durch eine Bearbeitung mit einer Oberfläche versehen werden, die der gewünschten Form des Formhohlraums mit der erforderlichen Genauigkeit entspricht.In order to ensure that the coating carrier does not overheat in the casting operation and even under extreme conditions a high degree of strength and Dimensional stability, the coating is a thick film 0.5 5 mm, preferably 1 - 4 mm executed. Such a coating can be galvanic or by plating or by thermal spraying, for example Flame spraying or plasma spraying, manufactured and processed by be provided with a surface, the desired shape of the mold cavity with the required accuracy.

Bei der Wahl des Werkstoffes für die Beschichtung können neben der Wärmeleistung oder der Verschleissfestigkeit auch Fragen der Schmierung des entstehenden Stranges berücksichtigt werden. Es wird deshalb vorgeschlagen, gemäss einem Ausführungsbeispiel, in die Beschichtung ein Schmiermittel zur Schmierung der Strangschale einzulagern. Als Schmiermittel werden solche auf Molybdän- und/oder Wolframbasis, vorzugsweise MoS2 und/oder WS2, vorgeschlagen.When choosing the material for the coating, in addition to the heat output or the wear resistance also questions of lubrication of the resulting strand can be considered. It is therefore proposed, according to one embodiment, to store in the coating a lubricant for lubrication of the strand shell. As lubricants, those based on molybdenum and / or tungsten, preferably MoS 2 and / or WS 2 , are proposed.

Je nach Wahl der Werkstoffe für den Beschichtungsträger und für die Beschichtung sind gleiche oder sogar höhere Wärmeleistungen als bei der klassischen, im Stand der Technik beschriebenen Kokille erreichbar, auch wenn die Wärmeleitfähigkeit des Beschichtungsträgers niedriger ist als die Wärmeleitfähigkeit der Beschichtung. Die für den Wärmedurchgang massgebenden Wandstärken, insbesondere des Beschichtungsträgers, können relativ dünn gestaltet werden.Depending on the choice of materials for the coating carrier and for the coating are the same or even higher heat outputs than the classic, achievable in the prior art mold, even if the thermal conductivity of the coating carrier is lower than the thermal conductivity of Coating. The decisive for the heat transfer wall thickness, in particular of the coating carrier, can be made relatively thin.

Zur Vergrösserung der Oberfläche, die vom Kühlmittel umströmt ist, kann, gemäss einem Ausführungsbeispiel, der Beschichtungsträger auf der dem Formhohlraum abgekehrten Seite mit Kühlrippen versehen werden. Zur Einstellung der Kühlparameter kann ein Abstand zwischen den Kühlrippen von beispielsweise 5 - 8 mm gewählt werden. Die Wandstärke des Beschichtungsträgers kann bei solchen Konstruktionen zwischen den Kühlrippen 2 - 10 mm, vorzugsweise 5 - 8 mm, betragen. Ein Beschichtungsträger mit solch dünnen Wandstärken gewährleistet zusammen mit einer Kupferbeschichtung von beispielsweise 3 mm eine hohe Wärmeleistung.To increase the surface, which is flowed around by the coolant, can, according to an embodiment, the coating carrier on the mold cavity turned away side be provided with cooling fins. To adjustment the cooling parameter may be a distance between the cooling fins of, for example 5 - 8 mm can be selected. The wall thickness of the coating carrier can in such constructions between the cooling fins 2 - 10 mm, preferably 5 - 8 mm, amount. A coating carrier with such thin wall thicknesses guaranteed together with a copper coating of, for example, 3 mm a high heat output.

Es ist denkbar, dass der Beschichtungsträger aus einer pressbaren Aluminium-Legierung mit entsprechenden Kühlrippen in einer Pressoperation hergestellt wird. Es ist auch möglich, den Beschichtungsträger aus mehreren Teilen zusammenzusetzen und anschliessend innen zu beschichten. Beschichtungsträger für Kokillen mit einem polygonalen Formhohlraumquerschnitt können beispielsweise aus mehreren ebenen oder gebogenen Platten zusammengesetzt sein, die jeweils eine der den Formhohlraum begrenzenden Seitenwände der Kokille bilden.It is conceivable that the coating carrier of a pressable aluminum alloy made with appropriate cooling fins in a pressing operation becomes. It is also possible to assemble the coating carrier from several parts and then to coat inside. Coating carrier for Molds with a polygonal mold cavity cross-section, for example be composed of several flat or curved plates, respectively form one of the mold cavity bounding side walls of the mold.

Die gegenüber der klassischen Rohrkokille unterschiedlichen Werkstoffe verleihen der erfindungsgemässen Kokille bei optimaler Wahl der Wandstärke des Beschichtungsträgers und der Dicke der Beschichtung eine Reihe von Eigenschaften, die im Hinblick auf den Giessbetrieb und die Konstruktion von Giessanlagen mit Vorteil genutzt werden können. Die erfindungsgemässe Kokille bringt Vorteile hinsichtlich der Verwendung eines elektromagnetischen Rührers auf der Aussenseite des Beschichtungsträgers. Bei optimaler Werkstoffauswahl des Beschichtungsträgers kann im Vergleich zu bekannten Kokillen mit einem identischen Rührer eine erhöhte Rührleistung erzielt werden oder zur Erzielung der gleichen Rührwirkung ein leitstungsschwächerer Rührer verwendet werden. Verglichen mit Kupfer oder Kupferlegierungen führen Aluminium oder Aluminium-Legierungen nämlich zu einer wesentlich geringeren Abschwächung des von einem elektromagnetischen Rührer erzeugten elektromagnetischen Feldes. Wegen der Verwendung von Aluminium bzw. einer Aluminium-Legierung für den Beschichtungsträger ist die erfindungsgemässe Kokille relativ leicht im Vergleich zu einer entsprechenden Kokille aus Kupfer bzw. einer Kupferlegierung. Wegen des geringeren Gewichts kann die im Giessbetrieb notwendige Kokillenoszillation bei der erfindungsgemässen Kokille - im Vergleich mit einer entsprechenden Kokille aus Kupfer oder einer Kupferlegierung - mit vereinfachten Mitteln durchgeführt werden. Das geringere Gewicht führt allgemein zu einer leichteren Handhabung der erfindungsgemässen Kokille, insbesondere beim Auswechseln bzw. beim Ein- und Ausbau und beim Transport der Kokille. Alle mit einem Transport der Kokille verbundenen Massnahmen können mit vereinfachten Mitteln durchgeführt werden.The lend compared to the classic tube mold different materials the inventive mold with optimal choice of wall thickness of Coating carrier and the thickness of the coating a number of properties, with regard to the casting operation and the construction of Casting plants can be used with advantage. The inventive mold brings advantages in terms of the use of an electromagnetic stirrer on the outside of the coating carrier. With optimal material selection of the coating carrier can in comparison to known molds with a identical stirrer, an increased stirring power can be achieved or to achieve the same stirring effect a weaker-conductor stirrer can be used. Compared with copper or copper alloys lead aluminum or aluminum alloys namely to a much smaller weakening of the an electromagnetic field generated electromagnetic field. Because of the use of aluminum or an aluminum alloy for the Coating carrier is the inventive mold relatively easy in comparison to a corresponding mold of copper or a copper alloy. Because of the lower weight can be the Kokillenoszillation necessary in the casting operation in the inventive mold - in comparison with a corresponding Mold made of copper or a copper alloy - carried out with simplified means become. The lower weight generally results in a lighter one Handling of the inventive mold, especially when replacing or during installation and removal and during transport of the mold. All with one Transport of the mold associated measures can be done with simplified means be performed.

Weiterhin wirkt Aluminium in geringerem Masse als Kupfer absorbierend für radioaktive Strahlung. Die erfindungsgemässe Kokille weist deshalb eine erhöhte Transparenz für radioaktive Strahlung auf im Vergleich zu einer vergleichbaren Kokille aus Kupfer bzw. einer Kupferlegierung. Diese Eigenschaft der erfindungsgemässen Kokille ist mit Vorteil nutzbar im Hinblick auf die Auslegung von Vorrichtungen zur Messung des Niveaus des Badspiegels einer in den Formhohlraum der Kokille eingebrachten Schmelze. Ueblicherweise wird das Niveau des Badspiegels einer Schmelze mit Hilfe einer Messung der Transmission radioaktiver Strahlung durch die Wände der Kokille quer zur Giessrichtung bestimmt. Die erfindungsgemässe Kokille erlaubt es, solche Transmissionsmessungen mit erhöhter Empfindlichkeit durchzuführen und wahlweise mit schwächeren radioaktiven Strahlungsquellen und/oder einer einfacheren Messtechnik zu arbeiten.Furthermore, aluminum acts to a lesser extent than copper absorbing radioactive Radiation. The inventive mold therefore has an increased Transparency for radioactive radiation compared to a comparable Mold of copper or a copper alloy. This property of the inventive Mold is useful with regard to the design of Devices for measuring the level of the bath level one in the mold cavity the mold introduced melt. Usually the level will be the bath level of a melt by means of a measurement of the transmission radioactive Radiation through the walls of the mold determined transversely to the casting direction. The mold according to the invention allows such transmission measurements to perform with increased sensitivity and optionally with weaker ones radioactive radiation sources and / or a simpler measurement technique to work.

Im Nachfolgenden wird anhand von Beispielen die Erfindung zusätzlich erläutert. Dabei zeigen:

Fig. 1
einen Vertikalschnitt durch eine Kokille,
Fig. 2
einen Horizontalschnitt durch die Kokille entlang der Linie I-I der Fig. 1 und
Fig. 3
einen Vertikalschnitt durch ein weiteres Beispiel einer Kokille.
In the following, the invention is additionally explained by means of examples. Showing:
Fig. 1
a vertical section through a mold,
Fig. 2
a horizontal section through the mold along the line II of Fig. 1 and
Fig. 3
a vertical section through another example of a mold.

In Fig. 1 und 2 ist schematisch eine Knüppel- oder Vorblockkokille 3 mit einem Formhohlraum 4 zum Stranggiessen von Stahl dargestellt. Solche Kokillen werden intensiv mit einem Kühlmedium, vorzugsweise Kühlwasser, gekühlt. Mit Pfeilen 5 ist die Richtung des Kühlwasserflusses dargestellt. Der Aufbau der Kokille ist wie folgt: Ein Beschichtungsträger 6 trägt auf der Formhohlraumseite eine hochwärmeleitfähige erneuerbare Beschichtung 7 aus Kupfer oder einer Kupferlegierung mit einer Wärmeleitfähigkeit von 200 - 400 W/mK. Diese Beschichtung 7 kann galvanisch auf den Beschichtungsträger 6 aufgetragen werden. Sie kann aber auch durch thermisches Spritzen, beispielsweise Flammoder Plasmaspritzen, oder durch Plattieren aufgebracht werden. Nach dem Aufbringen der Beschichtung 7 in einer Dicke von 0.5 - 5 mm, vorzugsweise von 2 - 4 mm, wird durch eine Bearbeitung der Formhohlraum 4 auf das gewünschte Formhohlraummass und die gewünschte Formhohlraumoberflächengüte gebracht. Für die Bearbeitung der Formhohlraumoberfläche sind alle im Stand der Technik bekannten Verfahren anwendbar, insbesondere eignen sich spanabhebende Bearbeitungen wie Fräsen, Schleifen, Funkenerosion oder Bearbeitungen mit Laserstrahlen. Mit 10, 10' ist ein unterer und ein oberer Kokillenabschlussdeckel dargestellt. Eine Ummantelung ist bezeichnet mit 9.In Fig. 1 and 2 is schematically a billet or pre-block mold 3 with a Mold cavity 4 shown for continuous casting of steel. Such molds will be intensively with a cooling medium, preferably cooling water, cooled. With Arrows 5, the direction of the cooling water flow is shown. The construction of the mold is as follows: A coating carrier 6 carries on the mold cavity side a highly heat-conductive renewable coating 7 made of copper or a Copper alloy with a thermal conductivity of 200 - 400 W / mK. This coating 7 can be applied galvanically to the coating carrier 6. But it can also by thermal spraying, such as flame or Plasma spraying, or be applied by plating. After application the coating 7 in a thickness of 0.5 - 5 mm, preferably from 2 - 4 mm, by machining the mold cavity 4 to the desired Cavity mold cavity and the desired mold cavity surface finish. For the processing of the mold cavity surface are all in the state of Technique known methods applicable, are particularly suitable for cutting Machining such as milling, grinding, spark erosion or machining with laser beams. With 10, 10 'is a lower and an upper Kokillenabschlussdeckel shown. A sheath is designated 9.

Die Materialwahl des Beschichtungsträgers 6 wird mit erster Priorität auf die Standfestigkeit zur Erfüllung der Tragfunktion und auf eine gute Formstabilität bei erhöhter Temperatur ausgerichtet. Die Festigkeit des Beschichtungsträgers 6 sollte bei den im Giessbetrieb realisierten Temperaturen höher sein als diejenige der Beschichtung. Als Werkstoffe für den Beschichtungsträger bieten sich Aluminium oder Aluminium-Legierungen an. Bei der Herstellung eines Beschichtungsträgers 6 können beispielsweise auch die vorzüglichen Eigenschaften von Aluminium und Aluminium-Legierungen beim Pressen den Ausschlag geben. Auch aus mehreren Teilen zusammengesetzte Beschichtungsträger 6 können ohne Nachteile verwendet werden, weil die Beschichtung im Formhohlraum die Nahtstellen zwischen den einzelnen Teilen nahtlos überdeckt. Der Beschichtungsträger kann beispielsweise aus mehreren Teilen aufgebaut sein, die mittels Schweissen, mit Hilfe geeigneter Befestigungsmittel wie Schrauben oder Nieten oder auf andere Weise zusammengehalten werden.The choice of material of the coating carrier 6 is the first priority on the Stability to fulfill the supporting function and to a good dimensional stability aligned at elevated temperature. The strength of the coating carrier 6 should be higher than the one at the temperatures realized in the casting operation the coating. The materials used for the coating carrier are aluminum or aluminum alloys. In the production of a coating carrier 6, for example, the excellent properties of Aluminum and aluminum alloys make the difference during pressing. Also composed of several parts coating carrier 6 can be used without disadvantages, because the coating in the mold cavity the Seamlessly covered seams between the individual parts. The coating carrier can for example be constructed of several parts, which means Welding, using suitable fasteners such as screws or rivets or held together in some other way.

Der Beschichtungsträger 6 ist in diesem Beispiel auf der dem Formhohlraum 4 abgekehrten Seite mit Kühlrippen 11 versehen. Um eine entsprechend grosse Kühlfläche zu erhalten, betragen die Abstände zwischen den Kühlrippen 11 5 - 8 mm. Auch die Wandstärke 12 des Beschichtungsträgers 6 zwischen den Kühlrippen 11 kann mit 2 - 10 mm, vorzugsweise 5 - 8 mm, dünn dimensioniert werden.The coating carrier 6 is in this example on the mold cavity. 4 side facing with cooling fins 11 provided. To a correspondingly large To obtain cooling surface, the distances between the cooling fins 11 5 - 8 mm. Also, the wall thickness 12 of the coating carrier 6 between the Cooling ribs 11 can be dimensioned with 2 - 10 mm, preferably 5 - 8 mm, thin become.

In Fig. 3 ist eine Kokille 20 mit beispielsweise quadratischem Querschnitt mit einer Rühreinrichtung 21 versehen. Die Rühreinrichtung 21 kann durch den unterschiedlichen Aufbau der Kokille gegenüber klassischen Rohrkokillen näher an den Formhohlraum 22 gebracht werden. Auch ist es möglich, den Werkstoff für den Beschichtungsträger 23 und für den Mantel 24 hinsichtlich der Anforderungen an den Betrieb der elektromagnetischen Rühreinrichtung 21 zu optimieren. Beispielsweise kann durch eine geeignete Vorgabe für die elektrische Leitfähigkeit des Beschichtungsträgers 23 die Stärke des elektromagnetischen Feldes, das von der Rühreinrichtung 21 im Formhohlraum 22 erzeugt wird, maxmiert werden. Die Verwendung von Aluminium bzw. einer Aluminium-Legierung bringt in diesem Zusammenhang Vorteile wegen der verhältnismässig geringen elektrischen Leitfähigkeit dieser Materialien.In Fig. 3 is a mold 20 having, for example, a square cross section with a Stirring 21 provided. The stirring device 21 can by the different Construction of the mold closer to classic tube molds the mold cavity 22 are brought. It is also possible to use the material for the coating carrier 23 and for the jacket 24 in terms of requirements to optimize the operation of the electromagnetic stirring device 21. For example, by a suitable specification for the electrical conductivity the coating carrier 23 the strength of the electromagnetic field, which is generated by the stirring device 21 in the mold cavity 22, maxmiert become. The use of aluminum or an aluminum alloy brings in this context advantages because of the relatively low electrical Conductivity of these materials.

Im Badspiegelbereich 25 bzw. in der oberen Kokillenhälfte ist eine Beschichtung 26 aus einem hochwärmeleitfähigen Material und im unteren Teil bzw. der unteren Formhohlraumhälfte ist eine Beschichtung 28 aus einem gegenüber Kupfer härteren Material, beispielsweise Nickel, aufgetragen.In the bathroom mirror area 25 or in the upper Kokillenhälfte is a coating 26 of a highly heat conductive material and in the lower part or the lower Mold cavity half is a coating 28 of one opposite copper harder material, such as nickel, applied.

In den Beschichtungen 26 und 28 sind Schmiermittel (durch Punkte angedeutet) zur Schmierung einer Strangkruste eingelagert. Schmiermittel auf Molybdänund/oder Wolframbasis, vorzugsweise MoS2 und/oder WS2, können beim Einbringen der Beschichtung, beispielsweise durch Flammspritzen, in verschiedenste Beschichtungsmaterialien eingelagert werden. Auch andere im Stand der Technik bekannte Schmiermittel, die in Beschichtungen einlagerbar sind, sind im Sinne der Erfindung eingeschlossen.In the coatings 26 and 28 are lubricants (indicated by dots) stored for lubrication of a strand crust. Molybdenum and / or tungsten-based lubricants, preferably MoS 2 and / or WS 2 , can be incorporated into a wide variety of coating materials when the coating is introduced, for example by flame spraying. Other lubricants known in the art which can be incorporated into coatings are also included within the scope of the invention.

In den Beispielen der Figuren 1 - 3 sind nur gerade Kokillen dargestellt. Die Erfindung schränkt sich aber nicht auf solche Kokillen mit geradem Formhohlraum ein. Alle Kokillen zum Stahlstranggiessen von Knüppel- und Vorblockformaten, die einen rohrförmigen Beschichtungsträger aufweisen, fallen unter den Gegenstand der Erfindung. Die Geometrie des Formhohlraums kann beliebig gewählt werden.In the examples of FIGS. 1-3, only straight molds are shown. The invention but does not limit itself to such molds with a straight mold cavity on. All molds for steel continuous casting of billet and billet formats, which have a tubular coating carrier, fall under the object the invention. The geometry of the mold cavity can be chosen arbitrarily become.

Für bestimmte Stahllegierungen, insbesondere peritektische Stähle, kann es vorteilhaft sein, wenn im Bereich des Badspiegels 25 zwischen der hochwärmeleitfähigen Beschichtung 26 und dem Beschichtungsträger 23 eine Zwischenschicht 29 aus einem Material mit geringerer Wärmeleitfähigkeit als Kupfer, beispielsweise Nickel, aufgetragen ist.For certain steel alloys, especially peritectic steels, it can be advantageous if in the region of the bath level 25 between the highly heat-conductive Coating 26 and the coating carrier 23 an intermediate layer 29 of a material with lower thermal conductivity than copper, for example Nickel, is applied.

Es ist möglich, beim Aufbringen der Beschichtung an ausgewählten Stellen Messsonden, beispielsweise Temperaturfühler, in die Beschichtung einzubetten. Die einzubettenden Messsonden können vor dem Aufbringen der Beschichtung mit grosser Genauigkeit an oder nahe der zu beschichtenden Oberfläche des Beschichtungsträgers angeordnet werden und beim Aufbringen der Beschichtung mit dem die Beschichtung bildenden Material umhüllt werden. Auf diese Weise können die Messsonden innerhalb der Beschichtung angeordnet werden, ohne darauf angewiesen zu sein, nach Aufbringen der Beschichtung Bohrungen herzustellen, die in der Beschichtung enden und zur Aufnahme der Messsonden geeignet sind. Bekanntlich kann die Positionierung von Messsonden in Bohrungen nur relativ ungenau kontrolliert werden. Solche Ungenauigkeiten, die eine Ursache für Ungenauigkeiten bei Messungen mittels der Messsonden darstellen, werden vermieden, wenn die Messsonden - wie oben beschrieben - bei der Herstellung der Beschichtung in der Beschichtung eingebettet werden.It is possible to apply the coating at selected locations Embed measuring probes, for example temperature sensors, in the coating. The probes to be embedded can be applied before applying the coating with great accuracy at or near the surface to be coated Coating carrier can be arranged and when applying the coating are wrapped with the coating forming material. To this Way the probes can be placed inside the coating, without being instructed to drill holes after application of the coating produced, which end in the coating and for receiving the probes are suitable. As is known, the positioning of probes in holes only relatively inaccurately controlled. Such inaccuracies, the one Cause of inaccuracies in measurements by means of the probes, are avoided when the probes - as described above - during manufacture the coating be embedded in the coating.

Aluminium ist ein relativ unedles Metall. Teile aus Aluminium oder einer Aluminium-Legierung neigen deshalb zu Korrosion bei einer über einen Elektrolyten vermittelten Verbindung zu anderen Metallen. Die Korrosionsbeständigkeit des Beschichtungsträgers der erfindungsgemässen Kokille kann mit bekannten Mitteln erzielt werden, beisielsweise durch Aufbringen geeigneter Schutzschichten an exponierten Stellen.Aluminum is a relatively base metal. Parts made of aluminum or an aluminum alloy Therefore, they tend to corrode when over an electrolyte mediated connection to other metals. The corrosion resistance of the Coating carrier of the inventive mold can by known means be achieved, for example, by applying suitable protective layers in exposed areas.

Claims (22)

  1. A chill mould for the continuous casting of steel in billet and bloom formats, consisting of an inner body forming the mould cavity (4), which is cooled by means of a cooling medium and which comprises a coating substrate (6, 23) which is provided on the mould-cavity side with a coating (7, 26), characterised in that the coating substrate is manufactured from aluminium or an aluminium alloy and the coating, after its introduction into the mould cavity (4), is brought to the dimension of the mould cavity by a processing operation.
  2. Chill mould according to Claim 1, characterised in that the coating is highly thermally conductive at least in the upper region close to the surface-level of the bath.
  3. Chill mould according to Claim 1 or 2, characterised in that lubricants for lubricating a strand crust are intercalated within the coating.
  4. Chill mould according to Claim 3, characterised in that lubricants based on molybdenum and/or tungsten, preferably MoS2 and/or WS2, are intercalated.
  5. Chill mould according to one of Claims 1 - 4,
    characterised in that the thermal conductivity of the coating substrate is lower than the thermal conductivity of the coating in the upper region close to the surface-level of the bath.
  6. Chill mould according to one of Claims 1 - 5,
    characterised in that the stability under load of the coating substrate (6, 23) is higher than that of the coating (7, 26).
  7. Chill mould according to one of Claims 1 - 6,
    characterised in that the thickness of the coating (7, 26) amounts to 0.5 - 5 mm, preferably 2 - 4 mm.
  8. Chill mould according to one of Claims 1 - 7,
    characterised in that after its introduction the coating (7, 26) is processed in metal-cutting manner, in erosive manner, or by means of laser beams to predetermined mould-cavity dimensions.
  9. Chill mould according to one of Claims 1 - 8,
    characterised in that the coating (28) in a lower part of the mould cavity (22) is resistant to abrasive wear.
  10. Chill mould according to one of Claims 1 - 9,
    characterised in that an interlayer (29) consisting of a material that exhibits a lower thermal conductivity than the coating is applied in the bath-level region (25) between the coating (7, 26) and the coating substrate (6, 23).
  11. Chill mould according to one of Claims 1 - 10,
    characterised in that the coating (7, 26) consists, at least in one part of the mould cavity (22), of copper or of a copper alloy having a thermal conductivity of 200 - 400 W/mK.
  12. Chill mould according to Claim 9, characterised in that the coating (28) in the lower part of the mould cavity (22) consists of nickel.
  13. Chill mould according to one of Claims 1 - 12,
    characterised in that the coating (7, 26) in the upper and/or lower regions is galvanic, clad or thermally sprayed, for example flame-sprayed or plasma-sprayed.
  14. Chill mould according to one of Claims 1 - 13,
    characterised in that after its processing to mould-cavity dimension the coating (7, 26) is covered with a layer of chromium, preferably with a layer of hard chromium.
  15. Chill mould according to one of Claims 1 - 14,
    characterised in that the chill mould is provided with a stirring device (21).
  16. Chill mould according to one of Claims 1 - 15,
    characterised in that the coating substrate (6, 23) is provided with cooling fins (11) on the side facing away from the mould cavity (4, 22).
  17. Chill mould according to Claim 16, characterised in that the wall thickness of the coating substrate (6) between the cooling fins (11) amounts to 2 - 10 mm, preferably 5 - 8 mm.
  18. Chill mould according to Claim 16 or 17, characterised in that the spacing between the cooling fins (11) amounts to 5 - 8 mm.
  19. Chill mould according to one of Claims 1 - 18,
    characterised in that the coating substrate (6, 23) is assembled from several parts.
  20. Chill mould according to one of Claims 1 - 19,
    characterised in that one or more measuring probes is/are embedded in the coating.
  21. Chill mould according to one of Claims 1 - 20,
    characterised in that the coating substrate exhibits a protective layer against corrosion.
  22. Chill mould according to one of Claims 1 - 21,
    characterised in that the coating is renewable.
EP00960417A 1999-08-26 2000-08-09 Ingot mould for the continuous casting of steel into billet and cogged ingot formats Expired - Lifetime EP1212159B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH156099 1999-08-26
CH156099 1999-08-26
PCT/EP2000/007716 WO2001014084A1 (en) 1999-08-26 2000-08-09 Ingot mould for the continuous casting of steel into billet and cogged ingot formats

Publications (2)

Publication Number Publication Date
EP1212159A1 EP1212159A1 (en) 2002-06-12
EP1212159B1 true EP1212159B1 (en) 2003-05-28

Family

ID=4213281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00960417A Expired - Lifetime EP1212159B1 (en) 1999-08-26 2000-08-09 Ingot mould for the continuous casting of steel into billet and cogged ingot formats

Country Status (20)

Country Link
EP (1) EP1212159B1 (en)
JP (1) JP4603746B2 (en)
KR (1) KR100607855B1 (en)
CN (1) CN1187147C (en)
AR (1) AR025350A1 (en)
AT (1) ATE241440T1 (en)
AU (1) AU7273600A (en)
CA (1) CA2383075C (en)
CZ (1) CZ295184B6 (en)
DE (1) DE50002384D1 (en)
DK (1) DK1212159T3 (en)
EG (1) EG22198A (en)
ES (1) ES2194770T3 (en)
MY (1) MY122657A (en)
PE (1) PE20010411A1 (en)
PT (1) PT1212159E (en)
RU (1) RU2243849C2 (en)
TR (1) TR200200502T2 (en)
TW (1) TW464564B (en)
WO (1) WO2001014084A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH695210A5 (en) * 2000-12-11 2006-01-31 Concast Ag Mold for the continuous casting of molten steel.
EP1468760B1 (en) * 2003-04-16 2005-05-25 Concast Ag Tube mould for continuous casting
EP1815925B1 (en) * 2005-12-24 2011-07-27 Concast Ag Method and apparatus for the continuous casting of double-T-bleam blanks
DE102006037728A1 (en) * 2006-08-11 2008-02-14 Sms Demag Ag Mold for the continuous casting of liquid metal, in particular of steel materials
CN102527958A (en) * 2011-12-09 2012-07-04 太原科技大学 Crystallizing device for continuous casting steel
CN103341598A (en) * 2013-07-19 2013-10-09 烟台孚信达双金属股份有限公司 Crystallizer for casting of copper-clad aluminum composite materials
DE102014223922A1 (en) * 2014-11-25 2016-05-25 Volkswagen Aktiengesellschaft Die casting mold in shell construction with multilayer shell
CN106834759A (en) * 2016-12-30 2017-06-13 东莞市佳乾新材料科技有限公司 A kind of processing method of high-strength high-tractility magnadure
RU2672460C1 (en) * 2017-11-07 2018-11-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method of manufacturing products of non-oxygen copper for a continuous casting machine crystallizer

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2315344A1 (en) * 1975-06-27 1977-01-21 Siderurgie Fse Inst Rech ELECTROROTATIVE CONTINUOUS CASTING LINGOTIER
JPS5586658A (en) * 1978-11-30 1980-06-30 Sumitomo Metal Ind Ltd Continuous casting method
JPS5686656A (en) * 1979-12-17 1981-07-14 Mitsubishi Heavy Ind Ltd Mold for continuous casting
JPS57202949A (en) * 1981-06-10 1982-12-13 Mitsubishi Heavy Ind Ltd Assembled mold for continuous casting
JPS58353A (en) * 1981-06-24 1983-01-05 Mishima Kosan Co Ltd Mold for continuous casting
JPS589749A (en) * 1981-07-10 1983-01-20 Nippon Kokan Kk <Nkk> Mold for continuous casting of steel
JPS58221636A (en) * 1982-06-16 1983-12-23 Mishima Kosan Co Ltd Casting mold for continuous casting
JPS5973152A (en) * 1982-10-21 1984-04-25 Mishima Kosan Co Ltd Mold for continuous casting and its production
DE3415050A1 (en) * 1984-04-21 1985-10-31 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover METHOD FOR PRODUCING A CONTINUOUS CASTING CHILL WITH A WEAR-RESISTANT LAYER
JPH0160744U (en) * 1987-10-05 1989-04-18
EP0355940A3 (en) * 1988-06-27 1991-10-30 Chaparral Steel Company Continuous casting mold with removable insert
JP2895100B2 (en) * 1989-08-09 1999-05-24 三島光産株式会社 Continuous casting mold
FR2747400B1 (en) * 1996-04-12 1998-05-22 Usinor Sacilor PROCESS FOR CONDITIONING THE EXTERNAL COPPER OR COPPER ALLOY SURFACE OF AN ELEMENT OF A CONTINUOUS METAL CASTING LINGOTIER, OF THE TYPE INCLUDING A NICKELING STEP AND A DENICKELING STEP
JPH10286651A (en) * 1997-04-15 1998-10-27 Mitsubishi Materials Corp Mold for continuous casting

Also Published As

Publication number Publication date
CA2383075C (en) 2008-08-26
CZ2002670A3 (en) 2002-07-17
AU7273600A (en) 2001-03-19
TR200200502T2 (en) 2002-06-21
DK1212159T3 (en) 2003-09-29
PE20010411A1 (en) 2001-04-18
ATE241440T1 (en) 2003-06-15
CA2383075A1 (en) 2001-03-01
CN1187147C (en) 2005-02-02
EP1212159A1 (en) 2002-06-12
CZ295184B6 (en) 2005-06-15
RU2243849C2 (en) 2005-01-10
KR20020026549A (en) 2002-04-10
PT1212159E (en) 2003-10-31
DE50002384D1 (en) 2003-07-03
WO2001014084A1 (en) 2001-03-01
TW464564B (en) 2001-11-21
CN1371313A (en) 2002-09-25
KR100607855B1 (en) 2006-08-02
EG22198A (en) 2002-10-31
MY122657A (en) 2006-04-29
JP4603746B2 (en) 2010-12-22
AR025350A1 (en) 2002-11-20
JP2003507190A (en) 2003-02-25
ES2194770T3 (en) 2003-12-01

Similar Documents

Publication Publication Date Title
DE2734388C2 (en) Method and device for continuous casting
EP1212159B1 (en) Ingot mould for the continuous casting of steel into billet and cogged ingot formats
EP0911095B2 (en) Mould for continuous casting machine
EP0931609B1 (en) Fluid cooled mould
EP1499462A1 (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
DE102005061135A1 (en) Mold for a continuous casting plant and process for producing a mold
DE69709899T2 (en) DEVICE FOR HIGH-SPEED CONTINUOUS CASTING OF STEEL THIN SLABS WITH GOOD PROPERTIES
DE19852473C5 (en) Chill plate of a continuous casting plant
EP0158898B1 (en) Equipment for continuous casting, and method for its manufacture
CH695210A5 (en) Mold for the continuous casting of molten steel.
EP1019208B1 (en) Mould pipe for a continuous casting mould for the continuous casting of steels, especially peritectic steels
DE69029467T2 (en) Continuous casting mold and process
DE60131005T2 (en) DEVICE AND METHOD FOR MAKING METALS
EP3083103B1 (en) Casting mould for casting steel melt
EP0492264B1 (en) Mold for continuous steel casting
DE102009023677A1 (en) Method for controlling the liquid cooling of continuous casting molds
EP0268909A2 (en) Process for manufacturing channels in cast pieces for conducting temperature-influencing mediums, and cast pieces for use as a temperature-controlled component or tool
DE10252505A1 (en) Mold for a continuous casting installation comprises a mold-forming mold body made from a material of high conductivity, such as copper or a copper alloy
EP0565990A1 (en) Steel mould, specially for metal casting in permanent moulds
DE2408500B2 (en) METHOD FOR PRODUCING COMPONENTS OF CAST IRON WITH SPHERICAL GRAPHITE
DE1005172B (en) Electrical device with cooling, preferably machine or converter
CH690566A5 (en) Aluminum mold for casting aluminum metals has a hollow molding zone with an untreated surface or with a coating of deposited nickel to give cost and time savings with lightweight molds
DE4039230C2 (en) Process for coating the inner surfaces of a continuous mold and a mold coated in this way
DE19933026A1 (en) Continuous casting mold
DE1811295C (en) Process for the production of a furnace-dependent continuous casting mold

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030528

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50002384

Country of ref document: DE

Date of ref document: 20030703

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030403179

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030528

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040302

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

Ref country code: CH

Ref legal event code: PFA

Owner name: CONCAST AG

Free format text: CONCAST STANDARD AG#TOEDISTRASSE 9#8027 ZUERICH (CH) -TRANSFER TO- CONCAST AG#TOEDISTRASSE 9#8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100813

Year of fee payment: 11

Ref country code: CH

Payment date: 20100825

Year of fee payment: 11

Ref country code: ES

Payment date: 20100823

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100812

Year of fee payment: 11

Ref country code: LU

Payment date: 20100812

Year of fee payment: 11

Ref country code: IT

Payment date: 20100827

Year of fee payment: 11

Ref country code: FR

Payment date: 20100901

Year of fee payment: 11

Ref country code: FI

Payment date: 20100812

Year of fee payment: 11

Ref country code: DE

Payment date: 20100823

Year of fee payment: 11

Ref country code: AT

Payment date: 20100812

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100819

Year of fee payment: 11

Ref country code: GR

Payment date: 20100824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20100803

Year of fee payment: 11

Ref country code: DK

Payment date: 20100810

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100810

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20120209

BERE Be: lapsed

Owner name: *CONCAST STANDARD A.G.

Effective date: 20110831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110809

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20030403179

Country of ref document: GR

Effective date: 20120302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110809

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120302

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110809

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50002384

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110809

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 241440

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110810