EP0158898B1 - Equipment for continuous casting, and method for its manufacture - Google Patents

Equipment for continuous casting, and method for its manufacture Download PDF

Info

Publication number
EP0158898B1
EP0158898B1 EP85103786A EP85103786A EP0158898B1 EP 0158898 B1 EP0158898 B1 EP 0158898B1 EP 85103786 A EP85103786 A EP 85103786A EP 85103786 A EP85103786 A EP 85103786A EP 0158898 B1 EP0158898 B1 EP 0158898B1
Authority
EP
European Patent Office
Prior art keywords
chill
die
continuous casting
casting apparatus
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85103786A
Other languages
German (de)
French (fr)
Other versions
EP0158898A2 (en
EP0158898A3 (en
Inventor
Werner S. Horst
Bernardo P. Muellers
Hans Horst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT85103786T priority Critical patent/ATE53313T1/en
Publication of EP0158898A2 publication Critical patent/EP0158898A2/en
Publication of EP0158898A3 publication Critical patent/EP0158898A3/en
Application granted granted Critical
Publication of EP0158898B1 publication Critical patent/EP0158898B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Definitions

  • the invention relates to a continuous casting device and a method for producing a cooling mold or a cooling tube of a continuous casting device according to the preamble of claims 1 and 18 respectively.
  • graphite molds also have a major disadvantage.
  • the graphite material is not resistant to oxidation in the range above 550 ° C, and its structure is very often flawed. Imperfections, cracks, etc. and is also very sensitive to frictional stress caused by the hard strand shell. As a result, grooves are formed which increasingly impair the surface quality of the cast strands in the course of the continuous casting.
  • graphite molds are very sensitive to impact, beige and tensile loads.
  • a disadvantage of the previous systems is the warping of the coolers surrounding the graphite mold, which often occurs after a relatively short period of use.
  • the cooler bulges due to uncontrolled thermal stresses. This creates an air gap between the outer mold wall and the cooler, which greatly reduces the cooling capacity and thus the casting capacity.
  • mold wear is a major factor in manufacturing cost accounting.
  • proportionate mold costs are currently at least DM 0.10 per kg of cast iron produced.
  • a mold divided into two or three parts in the longitudinal direction is known, the overall length of which is relatively large due to the different conditions. This is because only a small amount of heat is to be dissipated below the crucible bottom in the first mold section and a large proportion of the heat in the subsequent section for cooling. In addition, these molds have not proven themselves in this respect, since only very poor casting results can be achieved if graphite is not used.
  • a generic continuous casting device has become known from GB-A 1 307 423. Similar to the prior art documents mentioned above, it has comparable disadvantages.
  • the known continuous casting device has a large overall length. Despite the division into at least three cooling zones, the continuous casting result cannot be satisfactory.
  • the object of the invention is to overcome the disadvantages of the prior art and to provide a continuous casting device and a method for its production, the manufacturer. Design costs of the mold significantly minimized, the time required for manufacturing is reduced and the quality of the cast products in use of the mold is significantly improved in terms of dimensional accuracy, surface quality and physical properties compared to conventional continuous casting products.
  • the object is achieved according to the device according to the features specified in the characterizing part of claim 1 and with regard to the method according to the features specified in the characterizing part of claim 18.
  • Advantageous embodiments of the invention are specified in the subclaims.
  • the cast strands produced with the continuous casting apparatus according to the invention have a fine-wave, uniform, matt, glossy surface without the longitudinal striations which, with a more or less long casting time, otherwise appear with increasing graphite molds.
  • a separate cooling tube is provided inside the body of the cooling mold, which also contains the separating agent comprising at least graphite.
  • the surface of the cooling mold or the internal cooling tube is also machined and additionally provided with a lubricant and separating agent which also comprises graphite.
  • FIG. 1 shows a lower part of an upstream melting container in the form of a holding crucible or furnace, in which a melt 2 is located.
  • a feed part 4 of a continuous casting mold 7a is fitted, which is suitable for the continuous casting of solid profiles.
  • the feed part 4 which consists of low heat conductive, refractory material that is not attacked or only slightly attacked or wetted by the melt, channels 15 are incorporated in a known manner, through which the liquid melt enters the cooling part of the cooling mold 7.
  • the feed part 4 of the continuous casting mold 7a is connected to the cooling mold 7 by known components such as e.g. a conical or cylindrical seat 5 and dowel pins 8 or also connected with a suitable conical or cylindrical thread, with insulating seals 6 also being provided for sealing the liquid melt.
  • the cooling part 7 of the mold consists of a cast body 10 made of highly heat-conducting material, which at the same time comprises cooling spirals 9 and an inner cooling tube 13 made of highly heat-conductive, high-strength metal in the form of a shrink connection.
  • the inner tube has the shape of a rotational paraboloid and has the surface formation typical of the method, as can be seen from FIGS. 3, 4 and 5.
  • a coolant inlet or outlet is designated 11 and 12.
  • Insulating seals of the crucible, with respect to the upper part of the cooling mold 7, are denoted by 14.
  • thermocouples 16 and 17 are firmly cast in, by means of which the temperature at the inlet or outlet end of the cooling mold 7 is measured and by means of which the coolant temperature and quantity can be regulated. Details of the relationship of the crucible, as well as the arrangement and insulation are not shown in detail since they are of no importance for the invention.
  • FIG. 2 in which an embodiment of a continuous casting installation according to the invention is shown in a further exemplary embodiment, as is particularly suitable for the casting of larger hollow cross sections or hollow profiles.
  • the feed part 4 of the continuous casting mold 7a is seated here in the opening or bore 3 of a highly refractory insert 1a in the furnace bottom 26, which is thermally insulated against the lower part 28 of the steel structure of the furnace floor by an insulating layer 27.
  • the feed part 4 is provided with a conical seat 5 and dowel pins 8 and is insulated and sealed from the cooling mold 7 by means of insulating seals. With 14 an insulating seal of the opening 3 against the cooling part 7 of the mold 7a is designated.
  • the feed part 4 consisting of low heat-conducting material that cannot be wetted by the melt takes place through a precisely centered element, eg. B. a conical thread 22 on the refractory insert 21, to which preferably a hollow casting mandrel 25a, which has proven to be favorable, is fastened by means of a thread 24 and the centering 23.
  • this hollow casting mandrel 25a can also consist of a highly refractory, non-wettable material with self-lubricating or / and separating properties, the thermal expansion of which is equal to or greater than that of the insert 21.
  • the casting mandrel 25a is also formed in two parts like the mold and comprises the upper insert 21 and the lower part 25 fastened underneath.
  • the cooling mold 7 or, in the case of a design with an internal cooling tube 13 at least this one made of iron or Copper alloy with integrated finely divided release agent is produced in a solid dispersion.
  • Iron alloys with an addition of carbon are particularly suitable for this purpose, for example an iron alloy with 2 to 3.2% C, 0.4 to 2.2% Si and 15 to 25% Cr.
  • the carbon is present as a fine-laminar graphite in a pearlitic matrix, whereby in this heat-resistant gray cast iron, graphite crystals are also provided in addition to the graphitically precipitated carbon as an alloying component in an evenly finely distributed form.
  • Austenitic cast iron grades with preferably laminar graphite layers have also proven to be particularly favorable.
  • gray cast iron alloys DIN 1694.
  • GGL-Ni Cu Cr (1562) with a content of 3.0% C, 1.0 to 2.8% Si, 1.0 to 1.5 Mn, 13.5 to 17.5% Ni, 1.5 up to 2.5% Cr, 5.5 to 7.5% Cu, or
  • GGL-Ni Cu Cr (1563) with an identical composition as above, but with a chromium content of 2.5 to 3.5%, which results in increased corrosion and erosion resistance, or
  • GGL-Ni Cr (202), with the same copper, silicon and manganese content, but the nickel content deviates from 18 to 22% and the chromium content is 1 to 2.5%.
  • the separating agent is used in grain sizes between 0.01 and 0.5 mm, which is ultimately preferably statistically predominantly oriented in the cooling tube or in the cooling mold 7 with its preferred sliding plane parallel to the longitudinal axis of the inner cooling tube.
  • FIG. 7 shows in vertical section a heat-resistant molded body 50 with an internal molded body half 50a and an external molded body half 50b.
  • the arrangement is such that the two molded body halves 50a and 50b can rotate relative to one another, for example in such a way that the inner molded body half 50a rotates while the outer molded body half 50b is stationary.
  • the rotating molded body half in the exemplary embodiment shown the inner one, is furthermore provided with vertical ribs 53, as is shown in detail in FIG. 8, which leaves slightly wedge-shaped gaps, the meaning of which will be discussed below.
  • a corresponding alloy with a temperature above the liquidus line preferably a temperature which is only slightly above the liquidus line
  • the release agent is then added to the inner molded body half 50a with constant rotation of at least one molded part half, the above-mentioned powdered release agent being Mixing in particular using graphite may be considered, and the grain spectrum should also be at least 70% between 0.01 and 0.5 mm.
  • the temperature is lowered below the liquidus line. The rotation results in a uniform distribution of the release agent, since the pulp-like alloy is carried along in particular by the ribs 53 of the inner molded body half 50a.
  • centrifugal forces also produce the effect that, on the one hand, the lighter release agent components diffuse inward due to the centrifugal forces and thus come to lie with a higher density on the inner surface of the inner cooling tube 13.
  • the density of the release agent parts with a low specific weight increases due to gravity from bottom to top.
  • the thyxotropic behavior - similar to a sludge - of the supercooled alloy reduces the separation through buoyancy and centrifugal force.
  • the ribs 53 not only create the above-mentioned orientation and condensed accumulation of the finely divided release agent particles in the cooling mold to be produced, but above all also an improved and increased heat transfer surface to achieve a shrink connection. If the outer molded body half 50b is also insulated or heated accordingly, slow cooling of the melt can be achieved in a targeted manner. Since the release agent has a much lower thermal expansion than the surrounding metal alloy, the sliding and separating particles are shrink-wrapped by the metal alloy as it cools down.
  • the pouring into the rotary casting mold can also take place from top to bottom through a partially hollow internal molded body 50a (casting mandrel) which at the same time serves in its lower part as a brake core and ejector.
  • the inner cooling tube 13 is shrunk onto its refractory jacket, the hollow core serving as the inner molded body 50a then being pushed off from the cooling tube 13 thus produced. Due to the shrinkage process, the hollow core is usually destroyed, especially in the case of larger dimensions.
  • B from sand grains bound with furan resin, from clay graphite and z.
  • B. alumina compounds B from sand grains bound with furan resin, from clay graphite and z.
  • the separating agent which essentially consists of graphite, can also be previously introduced into the liquid iron or, for example, copper alloy at a temperature above the liquidus line before it is poured into the moldings.
  • the release agent is thus internally deposited with an increased concentration on the cooling mold or on the cooling pipe, so that sufficient sliding properties can be achieved.
  • Some of these can be improved by etching the inner surface of the cooling mold 7 or the cooling tube 13, the graphite portions emerging from the pearlitic matrix by this etching process. Surface treatment is also possible and sometimes useful.
  • FIGS. 3 to 5 show greatly enlarged sections (approx. 10: 1) of the process-typical surfaces of the cooling surfaces of the mold (or of the inner cooling tube 13), as can be seen after processing and coating, that is to say in the ready-to-cast state appearance.
  • the hollow part 25 of the casting mandrel 25a can also be provided with this surface).
  • FIG. 3 illustrates a surface typical of the method, such as is obtained by preparing the surface according to the invention by cutting a multi-thread saw or tooth thread with a low pitch after smoothing and applying the separating layer, in 10 times magnification.
  • the thickness or thickness of the shrinked cooling tube 13 and the depth of the thread turns after the smoothing process, in particular grinding, are illustrated by 43. With 31 the valleys fully pressed with the release agent are designated, while with 32 the raised, ground thread tips are shown. In all three enlarged representations, the counter-conicity appears to be greatly exaggerated due to the shape of the paraboloid of revolution according to the invention.
  • the reference number 13 shows the inner cooling pipe with the saw thread threads cut in crosswise fashion (left and right) with an incline of approximately 15 °.
  • the area 31 filled with the release agent predominates by far the surface of the stubbed truncated pyramids 32, the flanks of which are intentionally more and more rounded by the grinding and polishing process according to the manufacture, by the subsequent hard chrome plating and by use, until a state is reached which not changed or hardly changed.
  • Figure 5 illustrates a ready-to-cast surface as it results from cords.
  • the thickness of the inner mold tube which in practice is between 3.5 and about 16 mm, depending on the starting diameter and the alloy to be cast, is again indicated at 43.
  • Reference number 32 in turn relates to the remaining truncated cones and reference number 31 to the cooling surface occupied by the separating agent.
  • thermocouples cast on the strand entry and exit sides allow the amount of coolant to be regulated according to the principle of differential control so that the casting speed is controlled and optimized solely according to the strand exit temperature.
  • coolant is softened water, which is fed through the quantity-controllable feed pump under pressure to the cooling coils of the mold depending on the temperature difference - as explained above - in such an amount and temperature that the coolant on its way in countercurrent through the coil of the mold evaporates according to the forced flow principle and in the upper turns to the desired rule bare, optimal temperature is heated.
  • an amount of coolant adjusted to idle value is first conveyed by the control system through the cooling coils, as a result of which the mold wall heats up to the desired operating temperature very quickly and without any signs of condensation, and then increases as the casting speed increases.
  • the required amount of coolant can be readjusted infinitely depending on the increasing temperature values using the differential control described above.
  • cooling coils mentioned can be provided in a single-thread manner in the case of smaller molds, but can also be wound in a multi-thread manner in the larger ones.
  • FIG. 6 a hollow punch 45 with openings 47 for the release of the separating agent is shown in part and schematically, via which the cooling tube 13 or, if the mold is used without a cooling tube, the surface of the cooling mold 7 itself is appropriately surface-treated.
  • the desired controllable temperature control can be achieved by means of the feed pump 49 shown in FIG.

Description

Die Erfindung betrifft eine Stranggießvorrichtung sowie ein Verfahren zur Herstellung einer Kühlkokille oder eines Kühlrohres einer Stranggießvorrichtung nach dem Oberbegriff des Anspruches 1 bzw. 18.18. The invention relates to a continuous casting device and a method for producing a cooling mold or a cooling tube of a continuous casting device according to the preamble of claims 1 and 18 respectively.

Bekanntgewordene Kühlformen zum kontinuierlichen Stranggießen benötigen hochwertige, formgepreßte und aus Elektrographit bestehende Kokillen, die in Abhängigkeit von den ständig steigenden Energiekosten immer teurer werden, da jede Kokille praktisch für jeden Guß als Präzisionsdrehteil neu gefertigt werden muß.Known cooling molds for continuous casting require high-quality, compression-molded and made of electrographite molds, which become more and more expensive depending on the constantly increasing energy costs, since each mold has to be manufactured as a precision turned part for practically every cast.

Die für die heute in Anwendung stehenden kontinuierlichen Stranggießverfahren benutzten Graphitkokillen ragen mit ihrem Oberteil in den Warmhaltetiegel oder -ofen und sitzen mit ihrem Kühlteil eingepaßt in einem Metallkühler. Man verwendet bisher fast ausschließlich Graphit, da dieser Werkstoff als einziger die Gesamtheit aller Eigenschaften besitzt, die für diese Stranggießverfahren erwünscht und erforderlich sind. Es handelt sich dabei um die Nichtbenetzharkeit und Nichtlöslichkeit des Graphits durch die zu vergießenden Metalle, um die hohe, ausreichende Formbeständigkeit bei der Gießtemperatur, die relativ gute Wärmeleitfähigkeit und die selbstschmierenden bzw. Trenn-Eigenschaften.The upper part of the graphite molds used for the continuous continuous casting processes in use today protrude into the holding crucible or furnace and their cooling part is fitted in a metal cooler. Up to now, graphite has been used almost exclusively, since this material is the only one that has all the properties that are desired and required for these continuous casting processes. These are the non-wettability and insolubility of the graphite due to the metals to be cast, the high, sufficient dimensional stability at the casting temperature, the relatively good thermal conductivity and the self-lubricating or separating properties.

Graphitkokillen weisen aber auch einen großen Nachteil auf. Der Werkstoff Graphit ist im Bereich über 550°C nicht oxydationsfest, ist sehr häufig in seinem Gefügeaufbau mit Fehlern. Ungänzen, Risse usw. versehen und ist ferner sehr empfindlich gegenüber Reibungsbeanspruchung durch die harte Strangschale. Es bilden sich dadurch Riefen, die die Oberflächengüte der Gußstränge im Lauf des Stranggießens mehr und mehr beeinträchtigen. Ferner sind Graphitkokillen sehr empfindlich gegenüber Schlag-, Beige- und Zugbeanspruchung.However, graphite molds also have a major disadvantage. The graphite material is not resistant to oxidation in the range above 550 ° C, and its structure is very often flawed. Imperfections, cracks, etc. and is also very sensitive to frictional stress caused by the hard strand shell. As a result, grooves are formed which increasingly impair the surface quality of the cast strands in the course of the continuous casting. Furthermore, graphite molds are very sensitive to impact, beige and tensile loads.

Da die Gießleistung einer Graphitkokille neben werkstoffeigenschaftsbedingten Größen vor allem aber auch von dem Wärmedurchgang durch die Kokillenwand abhängig ist, geht man, um die Gießleistung zu steigern, sehr oft zu relativ geringen Kokillenwandstärken über. Insbesondere aber bei großformatigen Kokillen werden dann die großen und dünnwandigen Hohlzylinder sehr zerbrechlich und sind wenig betriebssicher. Schon geringe Querkräfte oder ein hartes Aufsetzen der Kokille können zu Rissen oder zu einem Bruch führen, der oft nicht vor dem Angießen erkennbar ist, woraus schwere und gefährliche Unfälle entstehen können, nämlich Durchbrüche oder sogenannte runouts.Since the casting performance of a graphite mold depends not only on the properties of the material properties, but above all on the heat transfer through the mold wall, very often in order to increase the casting performance, the mold wall thicknesses are relatively small. But especially with large-sized molds, the large and thin-walled hollow cylinders become very fragile and are not very reliable. Even slight transverse forces or a hard contact with the mold can lead to cracks or breakage, which is often not recognizable before casting, which can result in serious and dangerous accidents, namely breakthroughs or so-called runouts.

Ein wieterer schwerwiegender Nachteil der aus Graphit bestehenden Kokille liegt, wie schon erwähnt, zum einen in den hohen Werkstoffkosten, zum anderen darin begründet, daß viel Sachkenntnis, Sorgfalt und Zeit bei der Fertigung einer Graphitkokille erforderlich sich. Ferner werden teure Werkzeuge, Spezial-Absauge-Einrichtungen etc. benötigt. Als ferner nachteilhaft ergibt sich, daß jede Kokille sehr genau in den sie umgebenden Metallkühler eingepaßt, eingeschliffen oder eingepreßt werden muß, um einen ausreichenden Wärmeübergang zu gewährleisten. Sehr selten gleicht ein Paßsitz den anderen und oft zerbrechen auch gerade die großen; dünnwandigen Kokillen beim Wieder-Ausschlagen aus dem Metallkühler infolge der erforderlichen hohen Haftreibung.Another serious disadvantage of the mold made of graphite is, as already mentioned, on the one hand in the high material costs, and on the other hand is due to the fact that a lot of expertise, care and time are required to manufacture a graphite mold. Expensive tools, special suction devices etc. are also required. Another disadvantage is that each mold must be fitted, ground or pressed in very precisely into the metal cooler surrounding it, in order to ensure adequate heat transfer. Very rarely does one fit fit the other and often the big ones break; thin-walled molds when knocking out of the metal cooler due to the high static friction required.

Zusätzlich treten erhebliche Probleme bei der Herstellung mit häufigen Werkstoff-Fehlern auf. Nachteilig bei den bisherigen Systemen ist auch die oft schon nach relativ kurzer Benutzungsdauer eintretende Verwerfung der die Graphitkokille umgebenden Kühler. Durch unkontrollierte Wärmespannungen baucht der Kühler auf. Dadurch bildet sich ein Luftspalt zwischen Kokillen-Außenwand und Kühler, der die Kühlleistung und damit die Gießleistung stark herabsetzt.In addition, there are considerable problems in production with frequent material defects. A disadvantage of the previous systems is the warping of the coolers surrounding the graphite mold, which often occurs after a relatively short period of use. The cooler bulges due to uncontrolled thermal stresses. This creates an air gap between the outer mold wall and the cooler, which greatly reduces the cooling capacity and thus the casting capacity.

Schließlich und endlich ist der Kokillenverschleiß ein Hauptfaktor in der Fertigungskostenrechnung. Im Durchschnitt liegen die anteiligen Kokillenkosten immerhin bei gegenwärtig mindestens DM 0,10 pro kg erzeugtem Guß.Ultimately, mold wear is a major factor in manufacturing cost accounting. On average, the proportionate mold costs are currently at least DM 0.10 per kg of cast iron produced.

Zwar sind grundsätzlich gemäß der DE-OS 20 58 051 und dem DE-GM 1854884 eine in Längsrichtung zwei- bzw. dreigeteilte Kokille vorbekannt, deren gesamte Baulänge aufgrund der unterschiedlichen Bedingungen relativ groß ist. Denn so soll unterhalb des Schmelztiegelbodens im ersten Kokillenabschnitt nur wenig Wärme und im daran anschließenden Abschnitt zum Kühlen ein großer Wärmeanteil abgeführt werden. Zudem haben sich diese Kokillen insoweit nicht bewährt, da bei Nichtverwendung von Graphit nur ganz mangelhafte Gießergebnisse erzielbar sind.Basically, according to DE-OS 20 58 051 and DE-GM 1854884, a mold divided into two or three parts in the longitudinal direction is known, the overall length of which is relatively large due to the different conditions. This is because only a small amount of heat is to be dissipated below the crucible bottom in the first mold section and a large proportion of the heat in the subsequent section for cooling. In addition, these molds have not proven themselves in this respect, since only very poor casting results can be achieved if graphite is not used.

Eine gattungsbildende Stranggießvorrichtung ist aus der GB-A 1 307 423 bekannt geworden. Sie weist ähnlich wie die vorstehend genannten Druckschriften zum Stand der Technik vergleichbare Nachteile auf. Die bekannte Stranggießvorrichtung weist vor allem eine große Baulänge auf. Trotz der Gliederung in zumindest drei Kühlzonen kann das Stranggießergebnis nicht befriedigen.A generic continuous casting device has become known from GB-A 1 307 423. Similar to the prior art documents mentioned above, it has comparable disadvantages. The known continuous casting device has a large overall length. Despite the division into at least three cooling zones, the continuous casting result cannot be satisfactory.

Aufgabe der Erfindung ist es die Nachteile nach dem Stand der Technik zu überwinden und eine Stranggießvorrichtung sowie ein Verfahren zu deren Herstellung zu schaffen, wobei die Herstel-. lungskosten der Kokille deutlich minimiert, der zeitliche Aufwand zum Herstellen verringert und die Qualität der Gießprodukte im Einsatz der Kokille hinsichtlich Maßhaltigkeit, Oberflächengüte und physikalischer Eigenschaften gegenüber herkömmlichen Stranggießprodukten deutlich verbessert wird. Die Aufgabe wird erfindungsgemäß entsprechend der Vorrichtung gemäß den im kennzeichnenden Teil des Anspruches 1 sowie hinsichtlich des Verfahrens gemäß den im kennzeichnenden Teil des Anspruches 18 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The object of the invention is to overcome the disadvantages of the prior art and to provide a continuous casting device and a method for its production, the manufacturer. Design costs of the mold significantly minimized, the time required for manufacturing is reduced and the quality of the cast products in use of the mold is significantly improved in terms of dimensional accuracy, surface quality and physical properties compared to conventional continuous casting products. The object is achieved according to the device according to the features specified in the characterizing part of claim 1 and with regard to the method according to the features specified in the characterizing part of claim 18. Advantageous embodiments of the invention are specified in the subclaims.

Durch die vorliegende Erfindung wird auf dem Gebiet des Stranggießverfahrens ein gegenüber dem bisher bekanntgewordenen Stand der Technik ganz enormer und als durchaus überraschend zu bezeichnender technischer Fortschritt erzielt. Durch die vorliegende Erfindung können Metalle und Metallegierungen optimal stranggegossen werden, wobei die Kokille geteilt ausgebildet ist und das obere Zuführungsteil von dem in Strangtransportrichtung anschließenden Kühlteil wärmeisoliert ist. Ferner bieten die Kühlflächen-Ausbildung und vor allem auch die geometrische Form der Kokille sowie die unabhängige Temperatursteuerung weitere vorteile.By means of the present invention, in the field of the continuous casting process, a state of the art that has become known up to now technically enormous and can be described as quite surprising. By means of the present invention, metals and metal alloys can be optimally cast, the mold being split and the upper feed part being thermally insulated from the cooling part which follows in the direction of the strand transport. Furthermore, the cooling surface design and above all the geometric shape of the mold as well as the independent temperature control offer further advantages.

Wie sich in Versuchen herausstellte, zeigen die mit der erfindungsgemäßen Stranggießvorrichtung erzeugten Gußstränge eine feinstwellige gleichmäßige mattglänzende Oberfläche ohne die sonst bei massiven Graphitkokillen nach mehr oder weniger langer Gießzeit im steigenden Maße hervortretenden Längsriefen.As has been found in tests, the cast strands produced with the continuous casting apparatus according to the invention have a fine-wave, uniform, matt, glossy surface without the longitudinal striations which, with a more or less long casting time, otherwise appear with increasing graphite molds.

Nach einer besonders bevorzugten Ausführungsform nach Anspruch 2 ist im Inneren des Körpers der Kühlkokille ein separates Kühlrohr vorgesehen, welches das zumindest Graphit .umfassende Trennmittel mitenthält. Hierdurch werden noch weitere vereinfachte Herstellungsbedingungen bei optimalen Stranggießmöglichkeiten realisiert.According to a particularly preferred embodiment according to claim 2, a separate cooling tube is provided inside the body of the cooling mold, which also contains the separating agent comprising at least graphite. As a result, even more simplified manufacturing conditions with optimal continuous casting options are realized.

Verbesserte Kühlbedingungen ohne nachteilhafte Einwirkungen durch Wärmespannung werden gemäß einer Weiterbildung nach Anspruch 3 dann realisiert, wenn das innere Kühlrohr und der Gußkörper der Kühlkokille über eine Schrumpfverbindung eingepaßt sind.Improved cooling conditions without adverse effects due to thermal stress are realized according to a development according to claim 3 when the inner cooling tube and the cast body of the cooling mold are fitted via a shrink connection.

Besonders kurze Baulängen lassen sich in einer Weiterbildung gemäß Anspruch 6 verwirklichen.Particularly short lengths can be realized in a further development according to claim 6.

Durch die erfinderische Anordnung nach Anspruch 10 wird durch den zunehmenden Abstand der Kühlrohre vom inneren Kühlmantel bewirkt, daß im Zusammenwirken mit der von der Eintrittsseite bis zur Austrittsseite an den Kühlrohren stetig steigende Kühlmitteltemperatur analog auch die Wandtemperatur des Kühlteiles der Kokille von der Strangausstrittsseite bis zur Strangeintrittsseite ansteigt.By the inventive arrangement according to claim 10 is caused by the increasing distance of the cooling tubes from the inner cooling jacket that in cooperation with the steadily increasing coolant temperature from the inlet side to the outlet side of the cooling tubes analogously also the wall temperature of the cooling part of the mold from the strand outlet side to the strand inlet side increases.

Durch die Verwendung des graphitisch ausgeschiedenen Kohlenstoffes sowie des dispergierten Trennmittels in einer Weiterbildung nach Anspruch 13 werden nicht nur die Graphitkosten gegenüber dem Stand der Technik drastisch verringert, sondern bei einfachster Ausgestaltung der Kühlkokille auch hervorragende Gleit- und Gießeigenschaften erzielt.By using the graphitically precipitated carbon and the dispersed release agent in a further development according to claim 13, not only the graphite costs are drastically reduced compared to the prior art, but also excellent sliding and casting properties are achieved with the simplest design of the cooling mold.

In einer Weiterbildung gemäß Anspruch 14 wird zudem noch die Oberfläche der Kühlkokille bzw. des innenliegenden Kühlrohres bearbeitet und zusätzlich noch mit einem ebenfalls Graphit umfassenden Gleit- und Trennmittel versehen.In a further development according to claim 14, the surface of the cooling mold or the internal cooling tube is also machined and additionally provided with a lubricant and separating agent which also comprises graphite.

Die Ansprüche 18 bis 23 betreffen ein Verfahren zur Herstellung einer Kühlkokille bzw. eines Kühlrohres der erfindungsgemaßen Stranggießvorrichtung.

  • Figur 1: eine erste schematische Vertikalschnittdarstellung der erfindungsgemäßen Stranggießvorrichtung;
  • Figur 2: ein zweites schematisches Ausführungsbeispiel in Vertikalschnittdarstellung der erfindungsgemäßen Stranggießvorrichtung;
  • Figur 3 bis 5: drei Beispiele einer auszugsweisen Draufsicht auf die innenliegende Oberfläche der Kühlkokille bzw. des inneren Kühlrohres und eine zugehörige Vertikalschnittdarstellung;
  • Figur 6: schematische Schnittdarstellung eines Hohlkörpers zur Oberflächenbehandlung;
  • Figur 7: eine Schnittdarstellung durch einen Formkörper zur Herstellung eines Kühlrohres;
  • Figur 8: eine schematische ausschnittweise Draufsicht auf die Oberfläche des äußeren Formkörpers.
Claims 18 to 23 relate to a method for producing a cooling mold or a cooling tube of the continuous casting device according to the invention.
  • Figure 1: a first schematic vertical sectional view of the continuous casting device according to the invention;
  • Figure 2: a second schematic embodiment in vertical section of the continuous casting device according to the invention;
  • Figure 3 to 5: three examples of a partial plan view of the inner surface of the cooling mold or the inner cooling tube and an associated vertical sectional view;
  • Figure 6: schematic sectional view of a hollow body for surface treatment;
  • FIG. 7 shows a sectional illustration through a shaped body for producing a cooling tube;
  • Figure 8: a schematic partial plan view of the surface of the outer molded body.

Nachfolgend wird auf Figur 1 Bezug genommen, in der mit 1 ein Unterteil eines vorgeordneten Schmelzen behälter in Form eines Warmhaltetiegels oder Ofens gezeigt ist, in dem sich eine Schmelze 2 befindet. In eine Bohrung 3 im Tiegel oder Ofen 1 ist ein Zuführungsteil 4 einer Stranggiekokille 7a eingepaßt, die sich zum Stranggießen von Vollprofilen eignet. In dem Zuführungsteil 4, der aus niedrigwärmeleitendem, feuerfestem Material besteht, das von der Schmelze nicht oder nur in geringem Maße angegriffen oder benetzt wird, sind in bekannter Weise Kanäle 15 eingearbeitet, durch die die flüssige Schmelze in den Kühlteil der Kühlkokille 7 gelangt. Das Zuführungsteil 4 der Stranggießkokille 7a ist mit der Kühlkokille 7 durch bekannte Bauelemente wie z.B. einem konischen oder zylindrischen Sitz 5 und Paßstifte 8 oder aber auch mit einem geeigneten konischen oder zylindrischen Gewinde verbunden, wobei ferner isolierende Abdichtungen 6 zur Abdichtung der flüssigen Schmelze vorgesehen sind.Reference is made below to FIG. 1, in which 1 shows a lower part of an upstream melting container in the form of a holding crucible or furnace, in which a melt 2 is located. In a bore 3 in the crucible or furnace 1, a feed part 4 of a continuous casting mold 7a is fitted, which is suitable for the continuous casting of solid profiles. In the feed part 4, which consists of low heat conductive, refractory material that is not attacked or only slightly attacked or wetted by the melt, channels 15 are incorporated in a known manner, through which the liquid melt enters the cooling part of the cooling mold 7. The feed part 4 of the continuous casting mold 7a is connected to the cooling mold 7 by known components such as e.g. a conical or cylindrical seat 5 and dowel pins 8 or also connected with a suitable conical or cylindrical thread, with insulating seals 6 also being provided for sealing the liquid melt.

Der Kühlteil 7 der Kokille besteht aus einem Gußkörper 10 aus hochwärmeleitendem Material, der zugleich Kühlspiralen 9 und ein inneres Kühlrohr 13 aus hochwärmeleitendem, hochfestem Metall in Form einer Schrumpfverbindung umfaßt. Das Innenrohr hat die Form eines Rotations-Paraboloides und besitzt die verfahrenstypische Oberflächenausbildung, wie sie aus den Figuren 3, 4 und 5 ersichtlich ist.The cooling part 7 of the mold consists of a cast body 10 made of highly heat-conducting material, which at the same time comprises cooling spirals 9 and an inner cooling tube 13 made of highly heat-conductive, high-strength metal in the form of a shrink connection. The inner tube has the shape of a rotational paraboloid and has the surface formation typical of the method, as can be seen from FIGS. 3, 4 and 5.

Ein Kühlmitteleintritt bzw. -austritt ist mit 11 und 12 bezeichnet. Isolierende Abdichtungen des Tiegels, gegenüber dem Oberteil der Kühlkokille 7 sind mit 14 bezeichnet. Ferner sind Thermopaare 16 und 17 fest eingegossen, durch die die Temperatur am Einlauf- bzw. Auslaufende der Kühlkokille 7 gemessen und mit deren Hilfe die Kühlmitteltemperatur und -menge geregelt werden kann. Einzelheiten der Beziehung des Tiegels, sowie der Anordnung und Isolierung sind nicht näher gezeigt, da sie für die Erfindung ohne Bedeutung sind.A coolant inlet or outlet is designated 11 and 12. Insulating seals of the crucible, with respect to the upper part of the cooling mold 7, are denoted by 14. Furthermore, thermocouples 16 and 17 are firmly cast in, by means of which the temperature at the inlet or outlet end of the cooling mold 7 is measured and by means of which the coolant temperature and quantity can be regulated. Details of the relationship of the crucible, as well as the arrangement and insulation are not shown in detail since they are of no importance for the invention.

Nachfolgend wird auf Figur 2 Bezug genommen, in der eine erfindungsgemäße Ausführung einer Stranggießanlage in einem weiteren Ausführungsbeispiel, wie es sich vor allem für das Gießen von größeren Hohlquerschnitten bzw. Hohlprofilen eignet, gezeigt ist.Reference is made below to FIG. 2, in which an embodiment of a continuous casting installation according to the invention is shown in a further exemplary embodiment, as is particularly suitable for the casting of larger hollow cross sections or hollow profiles.

Das Zuführungsteil 4 der Stranggießkokille 7a sitzt hier in der Öffnung oder Bohrung 3 eines hochfeuerfesten Einsatzes 1a des Ofenbodens 26, der durch eine Isolierschicht 27 gegenüber dem Unterteil 28 der Stahlkonstruktion des Ofenbodens wärmegedämmt ist. Das Zuführungsteil 4 ist wie in Figur 1 mit einem konischen Sitz 5 und Paßstiften 8 versehen und mittels isolierender Abdichtungen gegenüber der Kühlkokille 7 isoliert und abgedichtet. Mit 14 ist eine isolierende Abdichtung der Öffnung 3 gegenüber dem Kühlteil 7 der Kokille 7a bezeichnet. Das aus niedrigwärmeleitendem, von der Schmelze nicht benetzbarem Material bestehende Zuführungsteil 4 nimmt durch ein ganau mittenzentriertes Element, z. B. ein konisches Gewinde 22 den feuerfesten Einsatz 21 auf, an dem vorzugsweise mittels eines Gewindes 24 und der Zentrierung 23 ein sich als günstig erwiesener hohler Gießdorn 25a befestigt ist.The feed part 4 of the continuous casting mold 7a is seated here in the opening or bore 3 of a highly refractory insert 1a in the furnace bottom 26, which is thermally insulated against the lower part 28 of the steel structure of the furnace floor by an insulating layer 27. As in FIG. 1, the feed part 4 is provided with a conical seat 5 and dowel pins 8 and is insulated and sealed from the cooling mold 7 by means of insulating seals. With 14 an insulating seal of the opening 3 against the cooling part 7 of the mold 7a is designated. The feed part 4 consisting of low heat-conducting material that cannot be wetted by the melt takes place through a precisely centered element, eg. B. a conical thread 22 on the refractory insert 21, to which preferably a hollow casting mandrel 25a, which has proven to be favorable, is fastened by means of a thread 24 and the centering 23.

Dieser kann aus hochfeuerfestem, niedrigwärmeleitendem Material bestehen, wobei seine Oberfläche zur Aufnahme eines Trennmittels besonders präpariert ist, wobei dies mittels eines Rohres derart erfolgen kann, daß das Trennmittel in der in den Ansprüchen geschilderten Weise aufgetragen wird. Ebenso kann dieser hohle Gießdorn 25a aber auch aus einem hochfeuerfestem, nicht benetzbarem Material mit selbstschmierenden oder/und Trenneigenschaften bestehen, dessen Wärmedehnung gleich oder größer als die des Einsatzes 21 ist.This can consist of highly refractory, low heat-conducting material, its surface being specially prepared for receiving a release agent, which can be done by means of a tube such that the release agent is applied in the manner described in the claims. Likewise, this hollow casting mandrel 25a can also consist of a highly refractory, non-wettable material with self-lubricating or / and separating properties, the thermal expansion of which is equal to or greater than that of the insert 21.

Wie also aus der Figur 2 hervorgeht, ist der Gießdorn 25a ebenfalls wie die Kokille zweigeteilt ausgebildet und umfaßt den oberen Einsatz 21 und das darunter befestigte Unterteil 25.As can be seen from FIG. 2, the casting mandrel 25a is also formed in two parts like the mold and comprises the upper insert 21 and the lower part 25 fastened underneath.

Die übrigen Elemente sind analog zu Figur 1 ausgebildet und mit entsprechenden Bezugsziffern versehen.The remaining elements are designed analogously to FIG. 1 and provided with corresponding reference numbers.

Um nunmehr bei noch vereinfachtem Aufbau und vereinfachter Herstellung der Kühlkokille bzw. des innenliegenden Kühlrohres eine ausreichende Gleit- und Trennwirkung bei einem Stranggießverfahren zu erzielen, ist vorgesehen, daß die Kühlkokille 7 bzw. bei einer Ausbildung mit einem innenliegenden Kühlrohr 13 zumindest dieses aus einer Eisenoder Kupferlegierung mit integriertem feinverteiltem Trennmittel in einer Festkörper-Dispersion hergestellt wird. Hierzu eignen sich insbesondere Eisenlegierungen mit einem Zusatz von Kohlenstoff, beispielsweise eine Eisenlegierung mit 2 bis 3,2% C, 0,4 bis 2,2% Si und 15 bis 25% Cr. In diesem Falle ist der Kohlenstoff als fein-laminarer Graphit in einer perlitischen Grundmasse vorhanden, wobei bei diesem hitzebeständigen Grauguß ferner neben dem graphitisch ausgeschiedenen Kohlenstoff als Legierungsbestandteil noch zusätzlich in gleichmäßig fein verteilter Form Graphitkristalle vorgesehen sind.In order to achieve a sufficient sliding and separating effect in a continuous casting process with an even simpler construction and simplified manufacture of the cooling mold or the internal cooling tube, it is provided that the cooling mold 7 or, in the case of a design with an internal cooling tube 13, at least this one made of iron or Copper alloy with integrated finely divided release agent is produced in a solid dispersion. Iron alloys with an addition of carbon are particularly suitable for this purpose, for example an iron alloy with 2 to 3.2% C, 0.4 to 2.2% Si and 15 to 25% Cr. In this case, the carbon is present as a fine-laminar graphite in a pearlitic matrix, whereby in this heat-resistant gray cast iron, graphite crystals are also provided in addition to the graphitically precipitated carbon as an alloying component in an evenly finely distributed form.

Als besonders günstig haben sich auch austenitische Gußeisensorten mit vorzugsweise laminarer Graphitschichtung erweisen. Insbesondere die Graugußlegierungen (DIN 1694).Austenitic cast iron grades with preferably laminar graphite layers have also proven to be particularly favorable. In particular the gray cast iron alloys (DIN 1694).

GGL-Ni Cu Cr (1562) mit einem Anteil von 3,0% C, 1,0 bis 2,8% Si, 1,0 bis 1,5 Mn, 13,5 bis 17,5% Ni, 1,5 bis 2,5% Cr, 5,5 bis 7,5% Cu, bzw.GGL-Ni Cu Cr (1562) with a content of 3.0% C, 1.0 to 2.8% Si, 1.0 to 1.5 Mn, 13.5 to 17.5% Ni, 1.5 up to 2.5% Cr, 5.5 to 7.5% Cu, or

GGL-Ni Cu Cr (1563) mit einer identischen Zusammensetzung wie vorstehend, jedoch mit einem Chromgehalt von 2,5 bis 3,5%, wodurch sich eine erhöhte Korrosions- bzw. Erosionsbeständigkeit ergibt, bzw.GGL-Ni Cu Cr (1563) with an identical composition as above, but with a chromium content of 2.5 to 3.5%, which results in increased corrosion and erosion resistance, or

GGL-Ni Cr (202), mit gleichem Kupfer-, Silicium-und Mangangehalt, wobei jedoch abweischen der Nickelgehalt 18 bis 22% und der Chromgehalt 1 bis 2,5% beträgt.GGL-Ni Cr (202), with the same copper, silicon and manganese content, but the nickel content deviates from 18 to 22% and the chromium content is 1 to 2.5%.

Als besonders günstig erweist sich, wenn das Trennmittel in Korngrößen zwischen 0,01 bis 0,5 mm verwendet wird, welches im Kühlrohr bzw. in der Kühlkokille 7 letztlich vorzugsweise statistisch überwiegend mit ihrer bevorzugten Gleitebene parallel zur Längsachse des inneren Kühlrohres orientiert vorliegt.It proves to be particularly favorable if the separating agent is used in grain sizes between 0.01 and 0.5 mm, which is ultimately preferably statistically predominantly oriented in the cooling tube or in the cooling mold 7 with its preferred sliding plane parallel to the longitudinal axis of the inner cooling tube.

Die Herstellung einer derartigen Kühlkokille bzw. insbesondere des innenliegenden Kühlrohres 13 wird nachfolgend anhand von Figur 7 und 8 näher erläutert.The manufacture of such a cooling mold or in particular the internal cooling tube 13 is explained in more detail below with reference to FIGS. 7 and 8.

In Figur 7 ist im Vertikalschnitt ein hitzebeständiger Formkörper 50 mit einer innenliegenden Formkörperhälfte 50a und einer außenliegenden Formkörperhälfte 50b gezeigt.FIG. 7 shows in vertical section a heat-resistant molded body 50 with an internal molded body half 50a and an external molded body half 50b.

Die Anordnung ist derart, daß die beiden Formkörperhälften 50a und 50b relativ zueinander rotieren können, beispielsweise dergestalt, daß die innere Formkörperhälfte 50a rotiert, während die äußere Formkörperhälfte 50b stillsteht. Die rotierende Formkörperhälfte, im gezeigten Ausführungsbeispiel die innere, ist ferner-wie sich aus Figur 8 ausschnittweise ergibt-mit vertikalen Rippen 53 versehen, wodurch leicht keilförmige Zwischenräume zurückbleiben, auf deren Bedeutung nachfolgend noch eingegangen wird.The arrangement is such that the two molded body halves 50a and 50b can rotate relative to one another, for example in such a way that the inner molded body half 50a rotates while the outer molded body half 50b is stationary. The rotating molded body half, in the exemplary embodiment shown the inner one, is furthermore provided with vertical ribs 53, as is shown in detail in FIG. 8, which leaves slightly wedge-shaped gaps, the meaning of which will be discussed below.

In den zwischen den beiden Formkörperhälften verbleibenden Raum 54 wird zur Erstellung des Kühlrohres 13 eine entsprechende Legierung mit einer Temperatur oberhalb der Liquiduslinie, vorzugsweise einer Temperatur, die nur geringfügig über der Liquiduslinie liegt, eingegossen. Das Trennmittel wird dann unter ständiger Rotation zumindest einer Formkörperhälfte im gezeigten Ausführungsbeispiel der innere Formkörperhälfte 50a hinzugefügt, wobei als pulverförmiges Trennmittel die o. g. Beimischung insbesondere unter Verwendung von Graphit in Frage kommen, wobei ferner das Kornspektrum wenigstens zu 70% zwischen 0,01 bis 0,5 mm liegen sollte. Gleichzeitig wird die Temperatur unter die Liquiduslinie abgesenkt. Durch die Rotation erfolgt eine gleichmäßige Verteilung des Trennmittels, da insbesondere durch die Rippen 53 der inneren Formkörperhälfte 50a die breiflüssige Legierung mitgenommen wird. Durch die Fliehkräfte wird ferner der Effekt erzeilt, daß zum einen die leichteren Trennmittelbestandteile aufgrund der Fliehkräfte nach innen diffundieren und somit mit höherer Dichte an der innenliegenden Oberfläche des inneren Kühlrohres 13 zu liegen kommen. Ebenso nimmt die Dichte der Trennmittelteile mit geringem spezifischem Gewicht aufgrund der Schwerkraft von unten nach oben hin zu. Das thyxotrope Verhalten-ähnlich einem Schlamm--der unterkühlten Legierung reduziert dabei die Separation durch Auftrieb und Fliehkraft.In order to create the cooling tube 13, a corresponding alloy with a temperature above the liquidus line, preferably a temperature which is only slightly above the liquidus line, is poured into the space 54 remaining between the two molded body halves. The release agent is then added to the inner molded body half 50a with constant rotation of at least one molded part half, the above-mentioned powdered release agent being Mixing in particular using graphite may be considered, and the grain spectrum should also be at least 70% between 0.01 and 0.5 mm. At the same time, the temperature is lowered below the liquidus line. The rotation results in a uniform distribution of the release agent, since the pulp-like alloy is carried along in particular by the ribs 53 of the inner molded body half 50a. The centrifugal forces also produce the effect that, on the one hand, the lighter release agent components diffuse inward due to the centrifugal forces and thus come to lie with a higher density on the inner surface of the inner cooling tube 13. Likewise, the density of the release agent parts with a low specific weight increases due to gravity from bottom to top. The thyxotropic behavior - similar to a sludge - of the supercooled alloy reduces the separation through buoyancy and centrifugal force.

Auch hierdurch im Zusammenhang mit vorstehend genannten Vorteilen ergibt sich, daß aufgrund der dichteren Anlagerung der Trennmittelkörper an der innenliegenden Oberfläche der Kühlkokille die Gleit- und Trenneigenschaften verbessert werden. Dabei läßt sich die Lage, die Verteilung und Orientierung der Gleitmittelkörperchen, also z. B. der Graphitkristalle durch entsprechende optimale Wahl der Temperatur der Drehzahl sowie der Kühlintensität in weiten Bereichen steuern.This also results in connection with the above-mentioned advantages that the sliding and separating properties are improved due to the denser attachment of the release agent bodies to the inner surface of the cooling mold. The location, the distribution and orientation of the lubricant body, so z. B. control the graphite crystals by appropriate optimal choice of the temperature of the speed and the cooling intensity in a wide range.

Ferner soll noch angemerkt werden, daß durch die Rippen 53 nicht nur die vorstehend erläuterte Orientierung und verdichtete Anlagerung der fein verteilten Trennmittelteilchen in der herzustellenden Kühlkokille, sondern vor allem auch eine verbesserte und erhöhte Wärmeübergangsfläche zur Erzielung einer Schrumpfverbindung geschaffen wird. Wenn auch die äußere Formkörperhälfte 50b entsprechend isoliert oder beheizt ist, kann in gezielter Weise eine langsame Abkühlung der Schmelze erzielt werden. Da das Trennmittel eine wesentlich niedrigere Wärme-Dehnung als die umgebende Metallegierung aufweist, werden die Gleit- und Trennpartikel beim Abkühlen der Metallegierung von dieser fest umschrumpft.Furthermore, it should also be noted that the ribs 53 not only create the above-mentioned orientation and condensed accumulation of the finely divided release agent particles in the cooling mold to be produced, but above all also an improved and increased heat transfer surface to achieve a shrink connection. If the outer molded body half 50b is also insulated or heated accordingly, slow cooling of the melt can be achieved in a targeted manner. Since the release agent has a much lower thermal expansion than the surrounding metal alloy, the sliding and separating particles are shrink-wrapped by the metal alloy as it cools down.

Wie in Figur 7 gezeigt ist, kann der Einguß in die Rotationsgießform (Formkörper 50) auch von oben nach unten durch einen teilweise hohlen innenliegenden Formkörper 50a (Gießdorn) erfolgen, der gleichzeitig in seinem Unterteil als Bremskern und Auswerfer dient. Um dessen feuerfesten Mantel wird das innere Kühlrohr 13 nach der Erstarrung aufgeschrumpft, wobei dann der als innere Formkörper 50a dienende Hohlkern vom so hergestellten Kühlrohr 13 abgeschoben wird. Aufgrund des Schrumpfungsprozesses wird dabei insbesondere bei größeren Abmessungen in der Regel der Hohlkern zerstört werden, der z. B aus mit Furanharz gebundenen Sandkörnern, aus Ton-Graphit und z. B. Tonerde-Verbindungen besteht.As shown in FIG. 7, the pouring into the rotary casting mold (molded body 50) can also take place from top to bottom through a partially hollow internal molded body 50a (casting mandrel) which at the same time serves in its lower part as a brake core and ejector. After its solidification, the inner cooling tube 13 is shrunk onto its refractory jacket, the hollow core serving as the inner molded body 50a then being pushed off from the cooling tube 13 thus produced. Due to the shrinkage process, the hollow core is usually destroyed, especially in the case of larger dimensions. B from sand grains bound with furan resin, from clay graphite and z. B. alumina compounds.

Abweichend von erläuterten Verfahren kann das Trennmittel, das im wesentlichen aus Graphit besteht, auch vorher in die flüssige Eisen- oder beispielsweise Kupferlegierung mit einer Temperatur oberhalb der Liquiduslinie vor dem Eingießen in die Formkörper eingegeben werden.In a departure from the methods explained, the separating agent, which essentially consists of graphite, can also be previously introduced into the liquid iron or, for example, copper alloy at a temperature above the liquidus line before it is poured into the moldings.

Nach dem Herstellungsprozeß ist also das Trennmittel mit erhöhter Konzentration innenliegend an der Kühlkokille bzw. an dem Kühlrohr angelagert, so daß ausreichende Gleiteigenschaften erzielbar sind. Diese können teilweise noch dadurch verbessert werden, daß die innenliegende Oberfläche der Kühlkokille 7 bzw. des Kühlrohres 13 geätzt wird, wobei durch diesen Ätzprozeß die Graphitanteile aus der perlitischen Grundmasse erhaben hervortreten. Ferner ist aber auch eine Oberflächenbehandlung möglich und manchmal zweckmäßig.After the manufacturing process, the release agent is thus internally deposited with an increased concentration on the cooling mold or on the cooling pipe, so that sufficient sliding properties can be achieved. Some of these can be improved by etching the inner surface of the cooling mold 7 or the cooling tube 13, the graphite portions emerging from the pearlitic matrix by this etching process. Surface treatment is also possible and sometimes useful.

Nachfolgend wird auf die Figuren 3 bis 5 Bezug genommen, die stark vergrößerte Ausschnitte (ca. 10:1) verfahrenstypische Oberflächen der Kühlflächen der Kokille (bzw. des inneren Kühlrohres 13) darstellen, wie sich nach der Bearbeitung und Beschichtung, also im gießbereiten Zustand aussehen. (Mit dieser Oberfläche kann auch das Hohlteil 25 des Gießdornes 25a versehen werden).In the following, reference is made to FIGS. 3 to 5, which show greatly enlarged sections (approx. 10: 1) of the process-typical surfaces of the cooling surfaces of the mold (or of the inner cooling tube 13), as can be seen after processing and coating, that is to say in the ready-to-cast state appearance. (The hollow part 25 of the casting mandrel 25a can also be provided with this surface).

Figur 3 veranschaulicht eine verfahrenstypische Oberfläche, wie sie durch Verbereitung der erfindungsgemäßen Oberfläche mittels Schneidens eines vielgängigen Säge- oder Zahngewindes mit niedriger Steigung nach dem Glätten und Aufbringen der Trennschicht entstehen, in 10 facher Vergrößerung.FIG. 3 illustrates a surface typical of the method, such as is obtained by preparing the surface according to the invention by cutting a multi-thread saw or tooth thread with a low pitch after smoothing and applying the separating layer, in 10 times magnification.

Dabei ist mit 43 die Stärke bzw. Dicke des eingeschrumpften Kühlrohres 13 und mit Bezugszeichen 30 die Tiefe der Gewindegänge nach dem Glättevorgang, insbesondere Schleifen veranschaulicht. Mit 31 sind die mit dem Trennmittel vollgepreßten Täler bezeichnet, während mit 32 die erhabenen, abgeschliffenen Gewindespitzen dargestellt sind. Bei allen drei vergrößerten Darstellungen erscheint die Gegenkonizität durch die Form des erfindungsgemäßen Rotationsparaboloides stark übertrieben.The thickness or thickness of the shrinked cooling tube 13 and the depth of the thread turns after the smoothing process, in particular grinding, are illustrated by 43. With 31 the valleys fully pressed with the release agent are designated, while with 32 the raised, ground thread tips are shown. In all three enlarged representations, the counter-conicity appears to be greatly exaggerated due to the shape of the paraboloid of revolution according to the invention.

In der Figur 4 ist mit dem Bezugszeichen 13 das Innenkühlrohr mit den kreuzweise (links und rechts) geschnittenen Sägefeingewinden mit ca. 15° Steigung gezeigt. Hier überwiegt die mit dem Trennmittel ausgefüllte Fläche 31 bei weitem die Oberfläche der stehenbleibenden Pyramindenstümpfe 32, deren Flanken durch den herstellungsgemäßen Schleif- und Poliergang, durch das nachfolgende Hartverchromen und durch die Benutzung gewollt mehr und mehr gerundet werden, bis ein Zustand erreicht ist, der sich nicht oder kaum noch verändert.In FIG. 4, the reference number 13 shows the inner cooling pipe with the saw thread threads cut in crosswise fashion (left and right) with an incline of approximately 15 °. Here, the area 31 filled with the release agent predominates by far the surface of the stubbed truncated pyramids 32, the flanks of which are intentionally more and more rounded by the grinding and polishing process according to the manufacture, by the subsequent hard chrome plating and by use, until a state is reached which not changed or hardly changed.

Figur 5 veranschaulicht eine gießfertige Oberfläche, wie sie sich durch Kordeln ergibt. Hier ist mit 43 wieder die Dicke des inneren Kokillenrohres, die in der Praxis je nach Ausgangsdurchmesser und zu vergießene Legierung zwischen 3, 5 bis etwa 16 mm liegen, benannt.Figure 5 illustrates a ready-to-cast surface as it results from cords. The thickness of the inner mold tube, which in practice is between 3.5 and about 16 mm, depending on the starting diameter and the alloy to be cast, is again indicated at 43.

Mit 34 ist die ursprüngliche Wandstärke dieses Innenkühlrohres vor dem Glätten der Spitzen und mit 33 die durch den Glätteprozeß abgenommene Oberflächenschicht benannt. Bezugsziffer 32 betrifft wiederum die stehengebliebenen Kegelstümpfe und Bezugsziffer 31 die durch das Trennmittel belegte Kühlfläche.With 34 the original wall thickness of this inner cooling tube before smoothing the tips and 33 with the surface layer removed by the smoothing process is named. Reference number 32 in turn relates to the remaining truncated cones and reference number 31 to the cooling surface occupied by the separating agent.

Ferner wird nach darauf hingewiesen, daß durch die je an der Strangeintritts- und -austrittsseite eingegossenen Thermoelemente die Regelung der Kühlmittelmenge nach dem Prinzip der Differentialregelung so vorgenommen werden kann, daß die Gießgeschwindigkeit ausschließlich nach der Strangaustritts-Temperatur gesteuert und optimiert wird.Furthermore, it is pointed out that the thermocouples cast on the strand entry and exit sides allow the amount of coolant to be regulated according to the principle of differential control so that the casting speed is controlled and optimized solely according to the strand exit temperature.

Als Kühlmittel eignet sich insbesondere enthärtetes Wasser, das durch die mengelregelbare Speisepumpe unter Druck den Kühlschlangen der Kokille in Abhängigkeit von der Temperaturdifferenz-wie vorstehend erläutert-in solcher Menge und Temperatur zugeführt wird, daß das Kühlmittel auf seinem Weg im Gegenstrom durch die Wendel der Kokille entsprechend dem Zwangsdurchlaufprinzip verdampft und in den oberen Windungen auf die gewünschte, regelbare, optimale Temperatur erhitzt wird. Hierdurch ergibt sich eine erfindungsgemäße, nicht vorhersehbare gegenüber dem Stand der Technik deutlich verbesserte Strangqualität.Particularly suitable as coolant is softened water, which is fed through the quantity-controllable feed pump under pressure to the cooling coils of the mold depending on the temperature difference - as explained above - in such an amount and temperature that the coolant on its way in countercurrent through the coil of the mold evaporates according to the forced flow principle and in the upper turns to the desired rule bare, optimal temperature is heated. This results in a strand quality according to the invention which is not predictable and clearly improved compared to the prior art.

Beim Anfahrvorgang (Start) des Gießprozesses bei entsprechend nach niedrigen Wandtemperaturen der Kokille wird zunächst eine auf Leerlaufwert einjustierte Kühlmittelmenge von der Steueranlage durch die Kühlwendeln gefördert, wodurch sich die Kokillenwand sehr schnell und ohne Kondensationserscheinungen auf die gewünschte Betriebstemperatur aufheizt, um dann bei zunehmender Gießgeschwindigkeit die notwendige Kühlmittelmenge durch die vorbeschriebene Differentialregelung stufenlos in Abhängigkeit von den steigenden Temperaturwerten nachzuregeln.During the start-up process (start) of the casting process with appropriately low wall temperatures of the mold, an amount of coolant adjusted to idle value is first conveyed by the control system through the cooling coils, as a result of which the mold wall heats up to the desired operating temperature very quickly and without any signs of condensation, and then increases as the casting speed increases The required amount of coolant can be readjusted infinitely depending on the increasing temperature values using the differential control described above.

Als vorteilhaft hat sich ferner noch herausgestellt, daß die erwähnten Kühlschlangen bei kleineren Kokillen eingängig, bei größeren aber auch mehrgängig gewickelt vorgesehen sein können.It has also been found to be advantageous that the cooling coils mentioned can be provided in a single-thread manner in the case of smaller molds, but can also be wound in a multi-thread manner in the larger ones.

In Figur 6 ist auszugsweise und schematisch noch ein Hohlstempel 45 mit Öffnungen 47 zum Austritt des Trennmittels gezeigt, über den das Kühlrohr 13 oder, wenn die Kokille ohne Kühlrohr verwendet wird, die Oberfläche der Kühlkokille 7 selbst entsprechend oberflächenbehandelt wird.In FIG. 6, a hollow punch 45 with openings 47 for the release of the separating agent is shown in part and schematically, via which the cooling tube 13 or, if the mold is used without a cooling tube, the surface of the cooling mold 7 itself is appropriately surface-treated.

Durch die in Figur 2 gezeigte Speisepumpe 49 läßt sich die gewünschte regelbare Temperatursteuerung erzielen.The desired controllable temperature control can be achieved by means of the feed pump 49 shown in FIG.

In bestimmten Fällen kann es auch von Vorteil sein, das innenliegende Kühlröhr 13 vom unteren Ende der Kühlkokille 7 aus nicht bis zu deren oberen Ende verlaufen zu lassen, sondern bereits in einem gewissen Abstand vor dem oberen Ende der Kühlkokille 7 enden zu lassen. In diesem Fall kann noch darüber bis zur Höhe der Kokille 7 ein Graphitring eingesetzt werden.In certain cases, it can also be advantageous not to let the internal cooling tube 13 run from the lower end of the cooling mold 7 to its upper end, but rather to let it end at a certain distance in front of the upper end of the cooling mold 7. In this case, a graphite ring can be used up to the height of the mold 7.

Claims (23)

1. A continuous casting apparatus comprising a continuous casting die (7a), which is adapted to be mounted on the crucible bottom (1) of an upstream melt container, which is divided into at least two parts, and which is subdivided into a supply part (4), possibly receiving a casting mandril (25a) and, transversely in relation to the direction of continuous casting, into a chill die (7), whose temperature is able to be regulated, with a chill means surrounding it, said supply part (4) being made of a refractory material, which preferably has a low thermal conductivity and is practically not attacked by the melt, and the chill die (7) consists of a basis material of metal, or, respectively, a metal alloy with a good thermal conductivity, characterized in that the chill die (7) is provided with encircling cooling tubes (9), which for the purpose of providing a shrink fit, have the alloy material of the casting (10) forming the chill die (7) cast around them, and in that the alloy material of the chill die (7) comprises a stripping agent, which preferably contains graphite and in that the chill die is thermally insulated in relation to the feed part (4) and also to the crucible bottom (1) or, respectively, under the insert (1a) provided there with a sealing means (6 and 14).
2. The continuous casting apparatus as claimed in claim 1, characterized in that the chill die (7) possesses an external casting (10) which surrounds the chill tubes (9) and internally possesses a chill tube (13), only the internal chill tube (13) containing a stripping agent which is preferably made of graphite.
3. The continuous casting apparatus as claimed in claim 1 or claim 2, characterized in thatthe inner chill tube (13) and the casting (10) are fitted using a shrink joint.
4. The continuous casting apparatus as claimed in any one of the preceding claims 1 through 3, characterized in that the chill tube (13) extends along at least part of the height of the chill die (7) from its lower end upwards.
5. The continuous casting apparatus as claimed in any one of the preceding claims 1 through 4, characterized in that the chill die (7) consists of a casting (10) of material with a high thermal conductivity and the inner chill tube (13) consists of a material with a high strength and good thermal conductivity or of such an alloy.
6. The continuous casting as claimed in any one of the preceding claims 1 through 5, characterized in that the chill die (7) extends as far as the direct vicinity of the crucible bottom (1) or, respectively, of an insert (1 a) located there and the chill die (7) is arranged in the crucible bottom (1) or, respectively, in an insert (1a) arranged there.
7. The continuous casting apparatus as claimed in any one of the preceding claims 1 through 6, characterized in that the inner chill surface, which is preferably circular in cross section, of the chill die (7) or, respectively, of the internal chill tube (13) has essentially the form of a concave paraboloid of revolution in longitudinal section.
8. The continuous casting apparatus as claimed in any one of the preceding claims 7, characterized in that the geometrical form of the inner surface of the chill die (7) or, respectively, of the inner chill tube (13) conforms to a concave paraboloid of revolution, whose internal diameter, which decreases downwards, is functionally dependent on the shrinkage of the cast material related to its speed of draw.
9. The continuous casting apparatus as claimed in any one of the preceding claims 1 through 8, characterized in that the distance of the chill tubes (9) apart decreases in the axial direction of the chill die (7) in the direction of casting of the cast material.
10. The continuous casting apparatus as claimed in any one of the preceding claims 1 through 9, characterized in that the distance of the chill tubes (9) from the inner surface of the die decreases in the direction of casting and accordingly the upward slope of the inner surface, formed as a paraboloid of revolution, is exaggerated.
11. The continuous casting apparatus as claimed in any one of the preceding claims 1 through 10, characterized in that in the chill die (7) both on cast material inlet side and also on the cast material outlet side thermoelements (16 and 17) are cast in place for controlling the flow rate of the coolant in accordance with the differential principle as a function of the cast material output temperature.
12. The continuous casting apparatus as claimed in any one of the preceding claims 1 through 11, characterized in that the chill die (7) as a whole or, respectively, the chill tube (13) consists of a perlitic, finely laminar alloy, more especially cast iron and comprises 2 to 3.2% C, 0.4 to 2.2% Si and 15 to 25% Cr.
13. The continuous casting apparatus as claimed in claim 12, characterized in that the alloy comprises as an alloy component graphitically precipitated carbon and equally finely distributed graphite crystals in a disperse phase.
14. The continuous casting apparatus as claimed in any one of the preceding claims 13, characterized in that the inner chill tube (13) consists of austenitic types of cast iron.
15. The continuous casting apparatus as claimed in any one of the preceding claims 1 through 14, characterized in that the metallic inner surface of the chill die (7) or, respectively, of the inner chill tube (13) is provided with a roughened surface or, respectively, with depressions (31) in the form of craters or waves, whose crests (32) are smoothed away, the inner surfaces of the chill die (7) or, respectively, of the inner chill tube (13) being coated with a lubricant and a stripping agent.
16. The continuous casting apparatus as claimed in claim 15, characterized in that additives of carbonates, oxides and nitrides, preferably with a high melting point, are mixed with the lubricant and stripping agent in accordance with the metal to be cast or, respectively, the metallic alloy to be cast.
17. The continuous casting apparatus as claimed in any one of the preceding claims 1 through 16, characterized in that more especially for small cast material cross sections with a diameter of preferably less that 50 cm the inner chill tube (13) is made of thin-walled steel or of aluminium bronze.
18. A method for manufacturing a chill die or of a chill tube of a continuous casting apparatus as claimed in any one of the preceding claims 1 through 17, characterized in that the liquid alloy is cast at a temperature above the liquidus line while continuously stirring into a mold (50) consists of an inner and an outer die half (50a and 50b) of refractory material, the stripping agent being added before or after teeming into the die (50) while performing further stirring of the liquid alloy and the melt is cooled at a controlled rate under the liquidus line.
19. The method as claimed in claim 18, characterized in that the stirring operation is performed by turning the two die halves (50a and 50b), that is to say an inner and an outer die half (50a and 50b) in relation to each other.
20. The method as claimed in claim 18 or claim 19, characterized in that the inner die half (50a) rotates while the outer die half (50b) is stationary.
21. The method as claimed in any one of the preceding claims 18 through 20, characterized in that for the process of stirring a rotating die half (50b) is used with substantially vertically extending ribs (53) to be placed on the molding.
22. The method as claimed in any one of the preceding claims 18 through 21, characterized in that for the inner die half (50a) use is made of a hollow casting mandril for the supply of the liquid alloy.
23. The method as claimed in any one of the preceding claims 18 through 22, characterized in that when the stripping agent and lubricant have been used up for restoring the continuous casting apparatus the perforated surface to be treated (chill die (7) or, respectively, the inner chill tube (13)) is removed by brushing and fresh lubricant and stripping agent are applied.
EP85103786A 1984-04-13 1985-03-29 Equipment for continuous casting, and method for its manufacture Expired - Lifetime EP0158898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85103786T ATE53313T1 (en) 1984-04-13 1985-03-29 CONTINUOUS CASTING DEVICE AND METHOD OF MANUFACTURE THEREOF.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3414066 1984-04-13
DE3414066 1984-04-13
DE3431622 1984-08-29
DE3431622 1984-08-29

Publications (3)

Publication Number Publication Date
EP0158898A2 EP0158898A2 (en) 1985-10-23
EP0158898A3 EP0158898A3 (en) 1987-04-29
EP0158898B1 true EP0158898B1 (en) 1990-06-06

Family

ID=25820396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85103786A Expired - Lifetime EP0158898B1 (en) 1984-04-13 1985-03-29 Equipment for continuous casting, and method for its manufacture

Country Status (4)

Country Link
US (1) US4665969A (en)
EP (1) EP0158898B1 (en)
CA (1) CA1256264A (en)
DE (1) DE3578045D1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3714139A1 (en) * 1987-04-28 1987-10-22 Werner S Horst CONTINUOUS CASTING DEVICE
US6216829B1 (en) * 1998-12-31 2001-04-17 Hayes Lemmerz International, Inc. Rotor with tubular vent ducts
US7264464B2 (en) * 2003-06-09 2007-09-04 Husky Injection Molding Systems Ltd. Cooling tube with a low friction coating
CN101137453B (en) * 2005-03-10 2012-09-05 Sms西马格股份公司 Method for producing a continuous casting mold and corresponding continuous casting mold
DE102009037283A1 (en) * 2009-08-14 2011-02-17 Kme Germany Ag & Co. Kg mold
KR101892771B1 (en) * 2011-02-25 2018-08-28 도호 티타늄 가부시키가이샤 Melting furnace for smelting metal
EP3315226B1 (en) * 2015-06-25 2020-03-18 Nissan Motor Co., Ltd. Casting device and casting method
CN110842048B (en) * 2019-11-27 2021-05-28 杭州富通电线电缆有限公司 Method for producing copper rod and copper rod wire drawing device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2126808A (en) * 1935-04-24 1938-08-16 Albert J Phillips Apparatus for casting metal
DE1011585B (en) * 1953-06-03 1957-07-04 Eisenwerke Gelsenkirchen Ag Continuous casting mold
DE1037661B (en) * 1953-10-27 1958-08-28 Deutsche Edelstahlwerke Ag Steel mill mold for standing casting
DE1028300B (en) * 1956-11-12 1958-04-17 Olsson Erik Allan Mold for continuous casting
US3093503A (en) * 1959-12-29 1963-06-11 Avco Corp Coated materials having an undercut substrate surface and method of preparing same
US3204460A (en) * 1962-08-13 1965-09-07 United States Steel Corp System for indicating the liquid level in a continuous-casting mold or the like
US3353584A (en) * 1964-12-10 1967-11-21 Anaconda American Brass Co Continuous casting cooling method and apparatus
GB1242925A (en) * 1969-02-19 1971-08-18 Monsanto Chemicals Improved ceramic moulds for metal casting
DE2047041A1 (en) * 1969-09-26 1971-04-01 Toyoda Chuo Kenkyusho Kk Iron melt containers with protective oxide - layers
BE757226A (en) * 1969-10-08 1971-03-16 Alusuisse DEVICE FOR THE CONTINUOUS VERTICAL CASTING WITH SEVERAL JETS (MULTIPLE) OF ALUMINUM AND ITS ALLOYS
CA931319A (en) * 1969-11-25 1973-08-07 General Motors Corporation Control of continuous casting operation
DE2409820A1 (en) * 1974-03-01 1975-09-04 Benteler Geb Paderwerk Mould for the continuous casting of steel - using formula for obtaining tapered mould walls to prevent fissures in cast billet
US3937269A (en) * 1974-04-08 1976-02-10 Crucible Inc Mold powder composition and method for continuously casting employing the same
DE2657207C2 (en) * 1976-12-17 1978-10-05 Kreidler Werke Gmbh, 7000 Stuttgart Process for the continuous casting of metal alloys, in particular brass alloys and continuous casting mold for carrying out the process
US4202523A (en) * 1977-07-11 1980-05-13 International Lead Zinc Research Organization, Inc. Boron nitride/elastomeric polymer composition for coating steel casting dies
CH633206A5 (en) * 1978-11-03 1982-11-30 Alusuisse CHOCOLATE WITH Roughened Surface For Casting Metals.
SU880615A1 (en) * 1979-12-26 1981-11-15 Особое Конструкторское Бюро Института Высоких Температур Metal continuous casting mould
DE3009189B1 (en) * 1980-03-11 1981-08-20 Mannesmann Demag Ag, 4100 Duisburg Process for the horizontal continuous casting of liquid metals, in particular steel, and device therefor
GB2100154B (en) * 1981-04-27 1985-11-06 Sumitomo Metal Ind Molds for continuously casting steel
US4523624A (en) * 1981-10-22 1985-06-18 International Telephone And Telegraph Corporation Cast ingot position control process and apparatus
JPS58173061A (en) * 1982-04-01 1983-10-11 Mishima Kosan Co Ltd Casting mold for continuous casting

Also Published As

Publication number Publication date
EP0158898A2 (en) 1985-10-23
US4665969A (en) 1987-05-19
DE3578045D1 (en) 1990-07-12
EP0158898A3 (en) 1987-04-29
CA1256264A (en) 1989-06-27

Similar Documents

Publication Publication Date Title
DE2734388C2 (en) Method and device for continuous casting
DE3638901C2 (en)
EP0158898B1 (en) Equipment for continuous casting, and method for its manufacture
DE60133466T2 (en) METALLIC APPLICATION BODY, METHOD FOR THE PRODUCTION THEREOF AND METALLIC CASTING PART
EP1499462A1 (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
CH617610A5 (en) Horizontal continuous casting machine for metals
DE3044575C2 (en) Process and continuous casting mold for continuous horizontal continuous casting
DE2853867C2 (en) Process for avoiding cracks in the edge area of metal strands cast in a continuous casting mold as well as additive and device for carrying out the process
DE3207777C2 (en) Method and device for continuous pipe casting of metals, inbes. Nickel and cobalt alloys
DE3424457A1 (en) DEVICE FOR CONTINUOUS METAL CASTING
DE1758080C3 (en) Process for the powder-metallurgical production of extruded composite bodies
EP1019208B1 (en) Mould pipe for a continuous casting mould for the continuous casting of steels, especially peritectic steels
DE10392662T5 (en) Copper-nickel-silicon two-phase quenching substrate
DE846900C (en) Casting mold for the continuous casting of metals
EP0268909A2 (en) Process for manufacturing channels in cast pieces for conducting temperature-influencing mediums, and cast pieces for use as a temperature-controlled component or tool
DE2945577A1 (en) MOLD FOR CONTINUOUS CONTINUOUS
DE2406252C3 (en) Method and device for continuous casting and further processing of the cast strand
DE19710887C2 (en) Use of a mold for the production of bars from light metal or a light metal alloy, in particular from magnesium or a magnesium alloy
DE3028957C2 (en) Method and device for continuous casting of battery grids
EP0007664A1 (en) Process for coating and soldering workpieces with hard-metal alloys
EP1284164B1 (en) Process and apparatus for coating with a melted product
EP1189713B1 (en) Cast wheel produced by centrifugal casting
DE1939653A1 (en) Water-cooled continuous casting mold
DE2130380A1 (en) Process or device for the production of a composite superconductor
AT378139B (en) METHOD FOR CONTINUOUS METAL CASTING

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19871013

17Q First examination report despatched

Effective date: 19890209

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900606

Ref country code: NL

Effective date: 19900606

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19900606

Ref country code: BE

Effective date: 19900606

REF Corresponds to:

Ref document number: 53313

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3578045

Country of ref document: DE

Date of ref document: 19900712

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910325

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910422

Year of fee payment: 7

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920331

Ref country code: CH

Effective date: 19920331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940118

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940311

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940318

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950329

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST