EP1463851B1 - Dispositif et procede de filage avec soufflerie de refroidissement - Google Patents

Dispositif et procede de filage avec soufflerie de refroidissement Download PDF

Info

Publication number
EP1463851B1
EP1463851B1 EP02806017A EP02806017A EP1463851B1 EP 1463851 B1 EP1463851 B1 EP 1463851B1 EP 02806017 A EP02806017 A EP 02806017A EP 02806017 A EP02806017 A EP 02806017A EP 1463851 B1 EP1463851 B1 EP 1463851B1
Authority
EP
European Patent Office
Prior art keywords
cooling gas
gas stream
cooling
molded bodies
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02806017A
Other languages
German (de)
English (en)
Other versions
EP1463851A1 (fr
Inventor
Stefan Zikeli
Friedrich Ecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LL Plant Engineering AG
Original Assignee
ZiAG Plant Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7711656&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1463851(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ZiAG Plant Engineering GmbH filed Critical ZiAG Plant Engineering GmbH
Publication of EP1463851A1 publication Critical patent/EP1463851A1/fr
Application granted granted Critical
Publication of EP1463851B1 publication Critical patent/EP1463851B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof

Definitions

  • the invention relates to a device for the production of continuous molded articles a molding compound such as a dope containing cellulose, water and tertiary Amine oxide, with a variety of extrusion orifices through which in operation Molding composition is extrudable to continuous moldings, with a precipitation bath and with a between the extrusion openings and the precipitation bath arranged air gap, wherein in operation, the continuous moldings successively through the air gap and the Precipitation are passed and in the region of the air gap, a gas stream to the continuous moldings is directed.
  • a molding compound such as a dope containing cellulose, water and tertiary Amine oxide
  • lyocell fibers or corresponding continuous molded articles are on the one hand in the particularly environmentally friendly manufacturing process, which is an almost complete recovery of the amine oxide, on the other hand to the excellent textile properties of lyocell fibers.
  • the air gap is as large as possible, as at a large air gap, the stretching of the threads over a longer run length spreads and tensions in the extruded EndlosformMechn easier can be reduced.
  • the larger the air gap is the smaller it is the spinning safety or the greater the risk that the manufacturing process must be interrupted due to spun yarn bonds.
  • WO 95/04173 relates to a constructive development of the annular nozzle and the Blowing device, essentially on the device of WO 95/01470 is based.
  • segmented rectangular nozzle arrangements have been developed, i. Nozzles, at those the extrusion openings on a substantially rectangular base are arranged substantially in rows.
  • Such a segmented Rectangular nozzle arrangement is shown in WO 94/28218 in this device takes place a blowing with a cooling air flow transverse to the extrusion direction, wherein the cooling air flow along the longer side of the rectangular nozzle assembly extends. After passing through the continuous molding is at the Device of WO 94/28218 sucked off the cooling air flow again. The suction is necessary so that the air flow through the entire cross section of the Air gap can be directed.
  • WO 98/18983 the concept of rectangular nozzles is arranged in rows Extrusion openings further developed.
  • blowing is substantially transverse to Passage direction of the continuous moldings through the air gap with a different Goal described.
  • the blowing by means of a stream of air does not serve to cool the continuous moldings, but to calm the Desillbadober Design of the precipitation bath in the area in which the continuous moldings in the Hurllbad or immerse in the spinning funnel:
  • the length of the air gap can be significantly increased when the blowing on The immersion of the capillary shares in the precipitation is effective to the movement to calm the spin bath surface.
  • the object of the invention is to provide a device and a method create, through which at low design cost large air gap lengths can be combined with high spinning density combined with high spinning safety.
  • This object is achieved according to the invention for a spinning device mentioned above achieved in that the air gap immediately after the extrusion a shielding area and one through the shielding area from the extrusion ports having separate cooling area, wherein the cooling area through the designed as a cooling gas flow gas stream is determined.
  • the cooling area is therefore the area in which the cooling gas flow on the Endlosform stresses impinges and this cools.
  • the air gap adjacent to the first shielding area a second shielding region through which the cooling region is separated from the Desillbadober Design.
  • the second shielding area it is avoided that the cooling gas flow in the immersion region of the yarn sheets touches the Desillbadober Designs and generates waves that the Endlosfonn redesign could mechanically load when entering the Desillbadober Design.
  • the second shielding area is particularly useful when the cooling gas flow has a high speed.
  • the quality of the continuous shaped bodies produced can be determined according to another surprisingly improve advantageous embodiment, when the inclination of the Cooling gas flow in für effets- or extrusion direction is greater than the expansion the cooling gas flow in the direction of flow.
  • the Cooling gas flow at any point in the field of continuous moldings in a passage direction pointing flow component, the stretching in the air gap supported.
  • a particularly good shielding of the extrusion process from the influence of the Cooling gas flow is achieved when the distance of the cooling area of each extrusion opening is at least 10 mm. At this distance you can even stronger cooling gas flows no longer on the extrusion process in the extrusion openings act.
  • the distance I of the cooling area of each extrusion opening in millimeters can fulfill the following (dimensionless) inequality: I> H + A • [tan ( ⁇ ) - 0.14], where H is the distance of the cooling gas flow upper edge from the plane of the extrusion openings to the outlet of the cooling gas flow in millimeters.
  • A is the distance between the outlet of the cooling gas flow and the last row of continuous moldings in the flow direction in millimeters transverse to the direction of passage in which the continuous moldings are passed through the air gap, usually the horizontal direction.
  • the angle in degrees between the cooling steel direction and the direction transverse to the passage direction is designated.
  • the cooling gas flow direction is determined essentially by the center axis, or - in plane cooling flows - the center plane of the cooling gas flow.
  • the angle ⁇ can assume a value of up to 40 °.
  • the value H should regardless of the angle ⁇ in any case be greater than 0, in order to influence the To avoid extrusion process.
  • the distance A may be at least one thickness E of the curtain of continuous moldings transversely to the direction of passage correspond.
  • the thickness E of the thread curtain is at most 40 mm, preferably at most 30 mm, more preferably at most 25 mm.
  • the distance A can in particular by 5 mm or, preferably, by 10 mm greater than the thickness E of Be thread curtain.
  • the device according to the invention is in particular for the production of continuous moldings from a spinning solution which, before being extruded, has a zero shear viscosity of at least 10,000 Pas, preferably at least 15,000 Pas, have at 85 ° C measuring temperature.
  • a spinning solution which, before being extruded, has a zero shear viscosity of at least 10,000 Pas, preferably at least 15,000 Pas, have at 85 ° C measuring temperature.
  • the cooling gas flow as turbulent flow in particular as turbulent Gas stream is formed. So far, one is well in the art It is assumed that cooling in Lyocell filaments only by a laminar Can be carried out cooling gas flow, as a laminar flow of cooling gas in the EndlosformMechn produces less surface friction than a turbulent stream and the continuous moldings therefore less mechanically loaded and moved.
  • One with the width of the cooling gas flow in the direction of passage and the speed the Reynolds number formed in the cooling gas flow can be at a training of the invention at least 2,500, preferably at least 3,000.
  • a blowing device for Generation of the cooling gas flow to be configured such that on the one hand specific blowing force is high, and on the other hand from the blowing device generated distribution of individual cooling flows to the requirements of the cooled Threads of yarn correspond
  • the distribution of the individual cooling streams should according to an advantageous embodiment give a substantially flat jet pattern (flat jet), wherein the width of the substantially planar beam at least the width of the yarn curtain to be cooled must have.
  • the planar beam pattern distribution also by juxtaposed individual round, oval, rectangle - or other polygon rays be formed, even several superimposed Rows are according to the invention for the formation of a planar beam pattern distribution possible.
  • the specific blowing force is determined as follows: A nozzle for generating the Cooling gas flow with a rectangular (flat) beam pattern distribution and a maximum width of 250 mm is in the blowing direction perpendicular to one on one Weighing device mounted baffle plate with an area of 400 x 500 mm mounted. The nozzle outlet, the outlet of the cooling gas flow from the blowing device forms, is spaced at 50 mm to the baffle plate. The nozzle is with Compressed air subjected to 1 bar overpressure and acting on the baffle plate Force is measured and divided by the width of the nozzle in millimeters. Which Resulting value is the specific blowing force of the nozzle with the unit [m N / m m].
  • a nozzle has a specific blowing force of at least 5-10 mN / mm.
  • the rectangular die may have multiple extrusion orifices arranged in rows have, wherein the rows may be staggered in the direction of cooling gas flow.
  • the last row of continuous moldings can be achieved with the rectangular nozzle the number of extrusion openings in the row direction is greater than in Cooling gas flow direction.
  • the above object is also achieved by a method for manufacturing of continuous molded articles of a molding composition, such as containing a spinning solution Water, cellulose and tertiary amine oxide, wherein first the molding composition to Continuous moldings is extruded, then the continuous moldings through an air gap passed, stretched there and blown with a gas stream and cooled, and then the continuous moldings are passed through a precipitation bath.
  • the continuous moldings in the air gap are initially through a shielding and then passed through a cooling area where they pass through Cooling gas flow to be cooled in the cooling area.
  • Fig. 1 shows an apparatus 1 for the production of continuous molded articles from a Molding compound (not shown).
  • the molding composition may in particular be a spinning solution containing cellulose, water and tertiary amine oxide.
  • a tertiary amine oxide N-methyl-morpholine-N-oxide can be used.
  • the zero shear viscosity of the Molding compound at about 85 ° C is between 10,000 to about 30,000 Pas.
  • the device 1 comprises an extrusion head 2, which at its lower end with a substantially rectangular, fully drilled nozzle plate 3 as Base is provided.
  • nozzle plate 3 In the nozzle plate 3 is a plurality of rows arranged extrusion openings 4 are provided. The one shown in the figures Row number is for illustrative purposes only.
  • each continuous molding can 5 may be formed substantially filiform.
  • the continuous moldings 5 are extruded into an air gap 6, they in a Pass through passage or extrusion direction 7. According to Fig. 1, the Point extrusion 7 in the direction of gravity.
  • the continuous moldings 5 dive as an im Essentially planar curtain in a precipitation 9 from a precipitating agent, for example Water, a.
  • a precipitating agent for example Water
  • a deflection member 10 through the plane curtain 8 from the extrusion direction in the direction of the Kayllbadober Structure deflected as a curtain 11 and thereby to a bundling device 12th is directed.
  • the bundling device 12 By the bundling device 12, the flat curtain to a bundle of threads 13 summarized.
  • the bundling device 12 is outside the precipitation bath 9 is arranged.
  • the continuous moldings can be in the direction of passage 7 are also passed through the precipitation bath and by a Spinning funnel (not shown) on the Seallbadober Structure 11 opposite Exit the side at the bottom of the precipitation bath.
  • this embodiment is disadvantageous in that the consumption of Desillbadproblemkeit is high, in the Spinning funnel turbulences occur and the separation of precipitation bath and fiber cable is problematic at the funnel exit.
  • a blowing device 14 is arranged, off a cooling gas flow 15 exits, the axis 16 transverse to the passage direction 7 runs or the at least one main flow component in this direction having.
  • the cooling gas flow 15 is in essential just.
  • plane gas stream is understood to mean a cooling gas stream, the height B transverse to the direction 16 of the gas stream smaller, preferably is much smaller than the width D of the gas flow in the row direction and the spaced from solid walls.
  • the cooling area 19 is from the extrusion openings 4 through a first shielding area 20 separated, in which no cooling of the continuous molded body. 5 takes place.
  • the first shielding region 20 has the function, the extrusion conditions directly at the extrusion openings as uninfluenced by the following Cooling to let through the cooling gas flow in the cooling area 19.
  • the second In contrast, the shielding region 21 has the function of the precipitation bath surface 11 from Shield cooling gas flow and keep it as calm as possible. One way, the Keep precipitation bath surface 11 steady, it is in the second shielding area 21 to keep the air as still as possible.
  • the blowing device 14 for generating the cooling gas flow 15 has a single or multi-row multi-channel nozzle, as e.g. from the company Lechler GmbH in Metzingen, Germany.
  • this multi-channel nozzle is the cooling gas flow 15 formed by a plurality of circular individual streams with a diameter between 0.5 mm and 5 mm, preferably around 0.8 mm, which depends on one of its diameter and flow speed connect dependent running route to a planar gas flow.
  • the individual streams occur at a speed of at least 20 m / s, preferably at least 30 m / s out. Speeds of more than 50 m / s are also available turbulent cooling gas flows possible.
  • the specific blowing force of such a executed multichannel nozzle should be at least 5 mN / mm, preferably at least 10 mN / mm.
  • This thickness is essentially determined by whether in the gas flow direction 16 last row 22 of the continuous moldings 5 a sufficient cooling effect by the cooling gas flow in the cooling area 16 is generated.
  • thicknesses E are also less than 30 mm or less than 25 mm possible.
  • FIG. 2 shows a special embodiment of that shown in FIG Spinning device 1 described.
  • Elements of the device 1 in Fig. 2 uses the same reference numerals.
  • the embodiment is in a schematic section along the plane II of Fig. 1, which shows the plane of symmetry in the width direction D of the current 15th forms.
  • the distance A from the outlet of the cooling gas flow 15 from the blowing device 14 to the last row 22 of the continuous molding 5 in millimeters and the width B of the cooling gas flow 15 in the direction transverse to the cooling gas flow direction 16 is the dimensionless relationship: L> I + 0.28 • A + B
  • the distance A can be at least the thickness E of the curtain of Endlosformkörpem 5, but also preferably 5 mm and 10 mm larger be as E
  • the variables L, I, A, B are shown in FIG. 3.
  • the angle ⁇ is greater than the propagation angle ⁇ of the cooling gas flow.
  • the boundary area runs 18 a between the gas flow 15 and the first shielding area 20 inclined in the direction of passage 7.
  • the angle ⁇ shown in FIG. 2 can be up to 40 °.
  • the cooling gas flow 15 has at each point in the cooling region 19 a in für effetsraum 7 pointing component.
  • the height should not be at any point in the area of the extrusion openings of the first shielding region 20 may be smaller than 10 mm.
  • the height I of the shielding region can be determined with the aid of FIG. 4, in which an embodiment is described, explain as follows.
  • Fig. 4 is the detail VI of Fig. 3, wherein only a single continuous molding 5 immediately after exiting an extrusion opening 4 in the air gap. 6 is shown as an example.
  • the continuous molding 5 expands immediately afterward the extrusion in a widening region 24 before it under the action of Tensile force is reduced again to approximately the diameter of the extrusion opening 4.
  • the diameter of the continuous molding transverse to the direction of passage 7 can be up to three times the diameter of the extrusion opening.
  • the continuous molding still has a relatively strong Anisotropy, which in the direction of passage 7 gradually under the action reduces the tensile force on the continuous molding.
  • the shielding region 20 at least over the widening region 24. This avoids that the cooling gas flow 15 to the expansion area acts.
  • the first shielding area 20 extends to a region 25 in which the expansion of the continuous molding 5 is only low or no longer exists.
  • Fig. 4 it is shown that the area 25 in the direction of passage 7 behind the largest diameter of the Expansion area is located.
  • the cooling area overlap 19 and the expansion area 25 not, but follow each other directly.
  • the spinning density i.e. the number of extrusion openings per square millimeter, the take-off speed, with the thread bundle 12 is deducted, in meters / second, the molding compound temperature in degrees Celsius, the heating temperature the extrusion openings in degrees Celsius, the air gap height in millimeters, the Reynolds number, the speed of the cooling gas flow immediately at the exit from the blowing device in meters / second, the distance H in millimeters, the angle ⁇ in degrees, the spun fiber titer in dtex, the coefficient of variation in percent, the subjectively evaluated spinning behavior with grades between 1 and 5, the width of the cooling gas flow or at a round flow of cooling gas Diameter and the normalized with the width of the cooling gas flow gas quantity in liters / hour per mm nozzle width. With a grade 1, the spinning behavior as good, with a grade 5 rated as bad.
  • the kinematic viscosity ⁇ was assumed to be 153.5 x 10 -7 m 2 / s for air at a temperature of 20 ° C. If other gases or gas mixtures are assumed to be m 2 / s. If other gases or gas mixtures are generated to produce a cooling gas flow, the value of ⁇ can be adjusted accordingly.
  • a NMMNO spinning mass consisting of 13% cellulose type MoDo Crown Dissolving-DP 510-550, 76% NMMNO and 11% water was at a temperature of 78 ° C stabilized with propyl gallate of an annular spinneret supplied with a ring diameter of about 200 mm.
  • the spinneret existed made up of several drilled individual segments, each containing the extrusion openings in Form of Kapillarbohrept included. The extrusion openings were on a temperature of 85 ° C heated.
  • the space between the precipitation bath surface and the extrusion openings became formed by an air gap of about 5 mm in height.
  • the continuous moldings went through the air gap without blowing.
  • the coagulation of the continuous molded article was carried out in the spinning bath, in which a spinning funnel is arranged below the extrusion openings was.
  • the annular array of Endlosform stressesn was in the spinning funnel through the Bundled exit surface and led out of the spinning cone.
  • the length of the spinning funnel in the direction of passage was about 500 mm.
  • the spinning behavior was very difficult because the spun fiber material had many bonds.
  • the bad conditions also showed up in a strong dispersion of the fiber fineness, their variance in this comparative example was over 30%.
  • Comparative Example 2 was under otherwise the same conditions an externally inwardly directed blowing immediately after the extrusion made without a first shielding area. The blowing took place with a relatively low speed of about 6 m / s.
  • Comparative Example 3 The molding compound used in Comparative Examples 1 and 2 was used in Comparative Example 3 at a temperature of also 78 ° C a rectangular nozzle fed, which consisted of several drilled individual segments. The rectangular nozzle had three rows of individual segments at one temperature held at about 90 ° C.
  • the coagulation of the continuous molding was carried out in the precipitation bath, where the curtain off EndlosformMechn deflected by the deflection and obliquely upwards fed to a bundling device arranged outside the precipitation bath has been.
  • the bundling device By the bundling device, the curtain of the continuous molded body merged into a fiber bundle and then to further processing steps forwarded
  • Comparative Example 3 had a slightly improved spinning behavior, wherein However, spider problems occurred again and again.
  • Comparative Example 4 was otherwise identical to Comparative Example 3 Conditions on a long side of the rectangular nozzle a blowing device with a width B of 8 mm so attached that the cooling area up to the Extrusion openings extended, so no first shielding area available was.
  • the cooling gas flow had a speed at the exit from the blowing device of about 10 m / s.
  • Comparative Example 4 On a long Side of the rectangular nozzle a blowing device with a cooling gas flow width of 6 mm when exiting the blower mounted so that the Cooling area without interposition of a shielding area up to the extrusion openings extended.
  • a segmented rectangular nozzle uses a rectangularly drilled rectangular nozzle.
  • the speed of the cooling gas flow at the outlet at the blowing device was about 12 m / s.
  • the spinning head had a rectangular hole nozzle made of stainless steel drilled all over. Otherwise for example, the spinning system of Comparative Examples 3 to 5 was used.
  • Comparative Example 6 as in Comparative Example 5, the multi-port compressed air nozzle Mounted so that the cooling area directly to the extrusion openings extended, so no first shielding area was present.
  • the cooling gas flow was directed obliquely upwards in the direction of the nozzle and therefore had a component directed counter to the direction of transmission.
  • the cooling gas flow had a direction of flow obliquely down in the direction of Spinnbadober Design on.
  • the cooling gas flow therefore had a velocity component in the direction of transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Claims (21)

  1. Dispositif (1) pour la fabrication de corps moulés continus (5) à partir d'une matière de moulage telle qu'une solution à filer contenant de la cellulose, de l'eau et un oxyde d'amine tertiaire, avec une pluralité d'orifices d'extrusion (4) à travers lesquels, en fonctionnement, la matière de moulage est extrudable en corps moulés continus (5), avec un bain de précipitation (9) et avec un entrefer (6) disposé entre les orifices d'extrusion (4) et le bain de précipitation (9), à travers quoi, en fonctionnement, les corps moulés continus (5) sont dirigés les uns après les autres à travers l'entrefer (6) et le bain de précipitation (9), et un courant de gaz (15) est orienté sur les corps moulés continus (5) dans la zone de l'entrefer (6), caractérisé en ce que l'entrefer (6) comporte directement après l'extrusion une zone d'écran (20) et une zone de refroidissement (19) séparée des orifices d'extrusion (4) par la zone d'écran (20), la zone de refroidissement (19) étant déterminée par le courant de gaz (15) conçu comme courant de gaz de refroidissement (15).
  2. Dispositif selon la revendication 1, caractérisé en ce que, en plus de la zone d'écran (20), la fente d'aération (6) comporte une seconde zone d'écran (21) par l'intermédiaire de laquelle la zone de refroidissement (19) est séparée de la surface du bain de précipitation (11).
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que la largeur dans la direction de transport (7) de la zone d'écran (20) est dimensionnée de telle manière que la zone d'écran (20) s'étend, dans la direction de transport (7), au moins sur une zone d'élargissement (24) des corps moulés continus (5) suivant directement l'extrusion et s'étendant dans la direction de transport (7).
  4. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que les orifices d'extrusion (4) sont placés en rangées sur une surface de base sensiblement rectangulaire, perpendiculairement à la direction (16) du courant de gaz de refroidissement (15).
  5. Dispositif selon la revendication 4, caractérisé en ce que le nombre d'orifices d'extrusion (4) dans la direction des rangées est supérieur à celui dans la direction du courant de gaz de refroidissement (16).
  6. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce qu'un organe déflecteur (10) est prévu dans le bain de précipitation (9) par l'intermédiaire duquel, en fonctionnement, les corps moulés continus (5) sont déviés vers la surface du bain de précipitation (11) sous forme d'un rideau sensiblement plan (8) et en ce que, à l'extérieur du bain de précipitation, il est prévu un dispositif de bottelage (14) par l'intermédiaire duquel, en fonctionnement, les corps moulés continus (5) sont rassemblés en un faisceau de fibres (13).
  7. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que la largeur (D) du courant de gaz de refroidissement (15) perpendiculairement à la direction de transport (7) des corps moulés continus (5) à travers l'entrefer (6) est supérieure à la hauteur (B) du courant de gaz de refroidissement dans la direction de transport.
  8. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que le courant de gaz de refroidissement (15) est composé d'une pluralité de courants de gaz de refroidissement individuels.
  9. Dispositif selon la revendication 8, caractérisé en ce que les courants de gaz de refroidissement individuels sont placés les uns à côté des autres dans la direction des rangées.
  10. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que le courant de gaz de refroidissement est conçu comme un courant de gaz turbulent dans la zone de transport des corps moulés continus (5) à travers l'entrefer (6).
  11. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que le courant de gaz de refroidissement (15) comporte une composante de vitesse orientée dans la direction de transport (7).
  12. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que la pente (β) du courant de gaz de refroidissement (15) dans la direction de transport (7) est supérieure à l'élargissement (γ) du courant de gaz de refroidissement (15).
  13. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que la matière de moulage présente avant son extrusion une viscosité à cisaillement nul d'au moins 10000 Pa, de préférence d'au moins 15 000 Pa, à 85°C.
  14. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que la distance entre la zone de refroidissement (19) et chaque orifice d'extrusion (4) est d'au moins 10 mm dans la direction de transport (7).
  15. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que la distance I entre la zone de refroidissement (19) et chaque orifice d'extrusion (4) dans la direction de transport (7) en millimètres correspond à l'inégalité suivante : I > H + A • [tan (β) - 0,14],    H étant la distance entre l'arête supérieure du courant de gaz de refroidissement dans la direction de transport et le niveau des orifices d'extrusion à la sortie du dispositif de soufflage (14) en millimètres, A la distance perpendiculaire à la direction de transport entre la sortie du courant de gaz de refroidissement (15) du dispositif de soufflage (14) en millimètres et la dernière rangée (22) des corps moulés continus (5) dans la direction du courant (16) en millimètres et β l'angle en degré entre la direction du courant de gaz de refroidissement (16) et la direction perpendiculaire à la direction de transport (7).
  16. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que la hauteur L de l'entrefer (6) dans la direction de transport (7) correspond en millimètres à l'inégalité suivante : L > I + 0,28 • A + B    I étant la distance entre la zone de refroidissement (19) et les orifices d'extrusion (4) dans la zone de transport des corps moulés continus (5) à travers l'entrefer (6), A la distance perpendiculaire à la direction de transport (7) entre la sortie du courant de gaz de refroidissement (15) provenant du dispositif de soufflage (14) et la dernière rangée (22) des corps moulés continus (5) dans la direction du courant (16) en millimètres et B la hauteur du courant de gaz de refroidissement (15) perpendiculaire à la direction du courant de gaz de refroidissement (16) dans la direction de transport (7) à la sortie du courant de gaz de refroidissement (15) provenant du dispositif de soufflage (14).
  17. Dispositif selon l'une quelconque des revendications mentionnées ci-dessus, caractérisé en ce que la première zone d'écran est essentiellement constituée d'air.
  18. Procédé pour la fabrication de corps moulés continus (5) à partir d'une matière de moulage telle qu'une solution à filer contenant de la cellulose, de l'eau et un oxyde d'amine tertiaire, la matière de moulage étant d'abord extrudée en corps moulés continus, puis les corps moulés continus sont dirigés à travers un entrefer (6) et étirés dans ledit entrefer et soumis au soufflage d'un courant de gaz (15) et, ensuite, dirigés à travers un bain de précipitation (9), caractérisé en ce que les corps moulés continus (5) dans l'entrefer (6) sont d'abord dirigés à travers une zone d'écran (20) puis à travers une zone de refroidissement (19), le soufflage étant réalisé à l'aide du courant de gaz conçu comme courant de gaz de refroidissement.
  19. Procédé selon la revendication 18, caractérisé en ce que les corps moulés continus (5), après la zone de refroidissement (19), sont dirigés à travers une seconde zone d'écran (21) avant d'être immergés dans le bain de précipitation.
  20. Procédé selon la revendication 18 ou 19, caractérisé en ce que la vitesse du courant de gaz de refroidissement, W0, est réglée en fonction de sa largeur, B, dans la direction de transport des corps moulés continus à travers l'entrefer, et en ce que le nombre de Reynolds formé avec W0 et B est au moins de 2 500.
  21. Procédé selon l'une quelconque des revendications 18 à 20, caractérisé en ce que la force de soufflage spécifique du courant de gaz de refroidissement est réglée à une valeur d'au moins 5 mN/mm.
EP02806017A 2002-01-08 2002-11-11 Dispositif et procede de filage avec soufflerie de refroidissement Expired - Lifetime EP1463851B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10200405 2002-01-08
DE10200405A DE10200405A1 (de) 2002-01-08 2002-01-08 Spinnvorrichtung und -verfahren mit Kühlbeblasung
PCT/EP2002/012591 WO2003057951A1 (fr) 2002-01-08 2002-11-11 Dispositif et procede de filage avec soufflerie de refroidissement

Publications (2)

Publication Number Publication Date
EP1463851A1 EP1463851A1 (fr) 2004-10-06
EP1463851B1 true EP1463851B1 (fr) 2005-03-16

Family

ID=7711656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02806017A Expired - Lifetime EP1463851B1 (fr) 2002-01-08 2002-11-11 Dispositif et procede de filage avec soufflerie de refroidissement

Country Status (13)

Country Link
US (1) US7364681B2 (fr)
EP (1) EP1463851B1 (fr)
KR (1) KR100590981B1 (fr)
CN (1) CN1325707C (fr)
AT (1) ATE291113T1 (fr)
AU (1) AU2002356578A1 (fr)
BR (1) BR0215466A (fr)
CA (1) CA2465286A1 (fr)
DE (2) DE10200405A1 (fr)
MY (1) MY128961A (fr)
TW (1) TW591135B (fr)
WO (1) WO2003057951A1 (fr)
ZA (1) ZA200405030B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743551A1 (fr) 2012-12-14 2014-06-18 Aurotec GmbH Organe de verrouillage avec rinçage

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200406A1 (de) * 2002-01-08 2003-07-24 Zimmer Ag Spinnvorrichtung und -verfahren mit turbulenter Kühlbeblasung
DE10200405A1 (de) 2002-01-08 2002-08-01 Zimmer Ag Spinnvorrichtung und -verfahren mit Kühlbeblasung
DE10204381A1 (de) 2002-01-28 2003-08-07 Zimmer Ag Ergonomische Spinnanlage
DE10206089A1 (de) 2002-02-13 2002-08-14 Zimmer Ag Bersteinsatz
DE10213007A1 (de) * 2002-03-22 2003-10-09 Zimmer Ag Verfahren und Vorrichtung zur Regelung des Raumklimas bei einem Spinnprozess
DE10223268B4 (de) * 2002-05-24 2006-06-01 Zimmer Ag Benetzungseinrichtung und Spinnanlage mit Benetzungseinrichtung
DE10314878A1 (de) * 2003-04-01 2004-10-28 Zimmer Ag Verfahren und Vorrichtung zur Herstellung nachverstreckter Cellulose-Spinnfäden
DE102004024028B4 (de) * 2004-05-13 2010-04-08 Lenzing Ag Lyocell-Verfahren und -Vorrichtung mit Presswasserrückführung
DE102004024029A1 (de) * 2004-05-13 2005-12-08 Zimmer Ag Lyocell-Verfahren und -Vorrichtung mit Steuerung des Metallionen-Gehalts
DE102004024030A1 (de) 2004-05-13 2005-12-08 Zimmer Ag Lyocell-Verfahren mit polymerisationsgradabhängiger Einstellung der Verarbeitungsdauer
DE102004024065A1 (de) * 2004-05-13 2005-12-08 Zimmer Ag Verfahren zum Herstellen von Endlosformkörpern und Spinnkopf
DE102004059062B4 (de) * 2004-12-07 2006-09-14 Mann + Hummel Gmbh Kraftstofffiltersystem, insbesondere für Kraftfahrzeuge und Verfahren zu dessen Betrieb
DE102005040000B4 (de) * 2005-08-23 2010-04-01 Lenzing Ag Mehrfachspinndüsenanordnung und Verfahren mit Absaugung und Beblasung
EP2061919B1 (fr) * 2006-11-10 2013-04-24 Oerlikon Textile GmbH & Co. KG Procédé et dispositif pour un filage à l'état fondu et un refroidissement de filaments synthétiques
KR101175333B1 (ko) 2007-09-07 2012-08-20 코오롱인더스트리 주식회사 라이오셀 필라멘트 섬유의 제조방법, 라이오셀 필라멘트섬유, 및 타이어 코오드
EP2565303A1 (fr) * 2011-09-02 2013-03-06 Aurotec GmbH Procédé d'extrusion
EP2565304A1 (fr) 2011-09-02 2013-03-06 Aurotec GmbH Procédé et dispositif d'extrusion
EP2719801A1 (fr) 2012-10-10 2014-04-16 Aurotec GmbH Bain de filage et procédé de renforcement d'un corps de formage
TWI667378B (zh) 2014-01-03 2019-08-01 奧地利商蘭精股份有限公司 纖維素纖維
EP3467161A1 (fr) * 2017-10-06 2019-04-10 Lenzing Aktiengesellschaft Procédé de production d'un filament de cellulose de type lyocell
EP3470557A1 (fr) * 2017-10-12 2019-04-17 Lenzing Aktiengesellschaft Dispositif de filage et procédé destiné à rattacher le fil à un dispositif de filage
EP3505659A1 (fr) * 2018-08-30 2019-07-03 Aurotec GmbH Procédé et dispositif de filage des filaments à déviation
CN109137100B (zh) * 2018-09-07 2023-08-18 福建景丰科技有限公司 一种自动化拉丝系统
EP3674454A1 (fr) * 2018-12-28 2020-07-01 Lenzing Aktiengesellschaft Procédé de filament de cellulose
CN110629296A (zh) * 2019-09-29 2019-12-31 台州神马科技股份有限公司 一种抽风装置灵活安装的纺丝箱
CN111155184B (zh) * 2020-01-10 2021-04-20 苏州科知律信息科技有限公司 一种纤维级聚丙烯的生产设备
EP3901333A1 (fr) 2020-04-22 2021-10-27 Aurotec GmbH Fabrication de filaments à débit gazeux commandé
CN112676565B (zh) * 2020-12-17 2021-09-07 苏州市吴中喷丝板有限公司 一种超硬金属陶瓷材料超细喷丝板生产方法
CN117227033B (zh) * 2023-09-18 2024-04-05 江阴济化新材料有限公司 一种pbt塑料粒子加工用冷却设备

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE218121C (fr)
US1655433A (en) 1924-08-23 1928-01-10 Int Paper Co Vacuum relief means for water-pipe lines
US1765883A (en) 1926-07-14 1930-06-24 Ruschke Ewald Safety device for boiler feed and delivery pipings
US2179181A (en) 1936-04-21 1939-11-07 Soc Of Chemical Ind Cellulose solutions and process of making same
US2518827A (en) 1945-02-23 1950-08-15 Dryco Corp Protected metal water confining means
DE858005C (de) 1950-10-20 1952-12-04 Kohorn H Von Maschine zur fortlaufenden Herstellung von Kunstfaeden
US3061402A (en) 1960-11-15 1962-10-30 Dow Chemical Co Wet spinning synthetic fibers
US3404698A (en) 1965-05-26 1968-10-08 Navy Usa Fluid charging valve
CH523087A (de) 1969-03-21 1972-05-31 Luwa Ag Dünnschichtbehandlungsapparat
CH508855A (de) 1969-03-28 1971-06-15 Spolair Engineering Systems Ag Klimatisierungsanlage
IT987063B (it) 1973-04-06 1975-02-20 Smia Viscosa Soc Nazionale Ind Macchina perfezionata per la fila tura ed il trattamento in continuo di filamenti e filati di rayon viscosa
US4043718A (en) 1974-10-03 1977-08-23 Teijin Limited Spinning apparatus with retractable suction gun
US3932576A (en) 1974-12-23 1976-01-13 Concorde Fibers, Inc. Apparatus for and method of melt spinning
US4033742A (en) 1976-02-13 1977-07-05 Kaiser Glass Fiber Corporation Method for producing glass fibers
IT1083507B (it) 1976-07-23 1985-05-21 Ppg Industries Inc Procedimento e dispositivo per la formazione di stoppini de fibre di vetro
US4416698A (en) 1977-07-26 1983-11-22 Akzona Incorporated Shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent and a process for making the article
US4246221A (en) 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
US4144080A (en) 1977-07-26 1979-03-13 Akzona Incorporated Process for making amine oxide solution of cellulose
US4211574A (en) 1977-07-26 1980-07-08 Akzona Incorporated Process for making a solid impregnated precursor of a solution of cellulose
US4142913A (en) 1977-07-26 1979-03-06 Akzona Incorporated Process for making a precursor of a solution of cellulose
ZA785535B (en) 1977-10-31 1979-09-26 Akzona Inc Process for surface treating cellulose products
US4219040A (en) 1978-02-15 1980-08-26 Draft Systems, Inc. Rupture disc safety valve
US4193962A (en) 1978-08-11 1980-03-18 Kling-Tecs, Inc. Melt spinning process
US4477951A (en) 1978-12-15 1984-10-23 Fiber Associates, Inc. Viscose rayon spinning machine
US4263929A (en) 1979-01-08 1981-04-28 Kearney John G Electropneumatic pressure relief indicator
US4261941A (en) 1979-06-26 1981-04-14 Union Carbide Corporation Process for preparing zeolite-containing detergent agglomerates
US4261943A (en) 1979-07-02 1981-04-14 Akzona Incorporated Process for surface treating cellulose products
US4713290A (en) 1982-09-30 1987-12-15 Allied Corporation High strength and modulus polyvinyl alcohol fibers and method of their preparation
JPS59228012A (ja) 1983-06-10 1984-12-21 Asahi Chem Ind Co Ltd 湿式紡糸方法
US4529368A (en) 1983-12-27 1985-07-16 E. I. Du Pont De Nemours & Company Apparatus for quenching melt-spun filaments
US4869860A (en) 1984-08-09 1989-09-26 E. I. Du Pont De Nemours And Company Spinning process for aromatic polyamide filaments
DE3611947A1 (de) 1986-04-07 1987-10-08 Dumitru Dr Ing Cucu Elektrostatisch unterstuetztes, mechanisches faltenfoermiges filterelement
AT392972B (de) 1988-08-16 1991-07-25 Chemiefaser Lenzing Ag Verfahren zur herstellung von loesungen von cellulose sowie einrichtung zur durchfuehrung des verfahrens
AT395724B (de) 1990-12-07 1993-02-25 Chemiefaser Lenzing Ag Verfahren zur herstellung von celluloseformkoerpern
AT395863B (de) 1991-01-09 1993-03-25 Chemiefaser Lenzing Ag Verfahren zur herstellung eines cellulosischen formkoerpers
AT395862B (de) 1991-01-09 1993-03-25 Chemiefaser Lenzing Ag Verfahren zur herstellung eines cellulosischen formkoerpers
US5191990A (en) 1991-06-24 1993-03-09 Bs&B Safety Systems, Inc. Flash gas venting and flame arresting apparatus
DE4306925A1 (de) 1991-09-06 1994-09-08 Akzo Nv Vorrichtung zum Schmelzspinnen von multifilen Fäden und deren Verwendung
US5658524A (en) 1992-01-17 1997-08-19 Viskase Corporation Cellulose article manufacturing method
US5275545A (en) 1992-02-26 1994-01-04 Kabushiki Kaisha San-Al Vacuum cast molding apparatus
ATA53792A (de) 1992-03-17 1995-02-15 Chemiefaser Lenzing Ag Verfahren zur herstellung cellulosischer formkörper, vorrichtung zur durchführung des verfahrens sowie verwendung einer spinnvorrichtung
DE4219658C3 (de) 1992-06-16 2001-06-13 Ostthueringische Materialpruef Verfahren zur Herstellung von Cellulosefasern -filamenten und -folien nach dem Trocken-Naßextrusionsverfahren
GB9220407D0 (en) 1992-09-28 1992-11-11 Courtaulds Plc Pipeline
FR2696253B1 (fr) 1992-09-28 1994-12-09 Siemens Automotive Sa Procédé et dispositif de régulation du courant moyen dans une charge selfique commandée en rapport cyclique d'ouverture variable.
DE4309416A1 (de) 1993-03-15 1994-10-20 August Proett Gmbh & Co Kg K Verfahren und eine Vorrichtung zur Arbeitszonen- und Raumluft-Klimatisierung vorzugsweise für Textilmaschinen
DE4312219C2 (de) 1993-04-14 2002-05-08 Thueringisches Inst Textil Verfahren zur Reduzierung der Fibrillierbarkeit von lösungsgesponnenen Cellulosefasern
ZA943387B (en) * 1993-05-24 1995-02-17 Courtaulds Fibres Holdings Ltd Spinning cell
US5526840A (en) 1993-05-24 1996-06-18 Courtaulds Fibres (Holdings) Limited Emergency dump tank for congealable materials
TW340533U (en) 1993-09-04 1998-09-11 Barmag Barmer Maschf False twist crimping machine
AT403584B (de) * 1993-09-13 1998-03-25 Chemiefaser Lenzing Ag Verfahren und vorrichtung zur herstellung cellulosischer flach- oder schlauchfolien
DE4409609A1 (de) 1994-03-21 1994-10-13 Thueringisches Inst Textil Verfahren zum Erspinnen von Cellulosefasern und -filamentgarnen
DE4419440C2 (de) 1994-06-03 1996-06-13 Ltg Lufttechnische Gmbh Verfahren und Vorrichtung zum Konditionieren von Luft
DE4419441C2 (de) 1994-06-03 1996-07-11 Ltg Lufttechnische Gmbh Verfahren zum Kühlen/Konditionieren von Luft
DE4426966C2 (de) 1994-07-29 2001-02-22 Thueringisches Inst Textil Verfahren zur Herstellung von Cellulosefäden und Folien mit sehr hohen Anteilen von Zusatzstoffen
KR970707328A (ko) 1994-11-03 1997-12-01 뷰거 홀스트 재생 셀룰로오즈의 형성 형상 및 그 제조 방법
DE4439149C2 (de) 1994-11-03 1997-07-31 Thueringisches Inst Textil Verfahren zur Herstellung einer homogenen Celluloselösung
EP0795052B2 (fr) * 1994-12-02 2006-04-26 Akzo Nobel N.V. Procede de production de corps cellulosiques faconnes et fil realise a partir de filaments cellulosiques
US5984655A (en) 1994-12-22 1999-11-16 Lenzing Aktiengesellschaft Spinning process and apparatus
DE19504316C1 (de) 1995-02-10 1996-08-01 Bayer Faser Gmbh Verfahren zur Herstellung von mehrfädigen, naßgesponnenen Elastanfäden
DE29504127U1 (de) 1995-03-09 1996-07-18 Baumgaertner Hans System zum energiesparenden Transport von insbesondere geothermischen Wärmeträgermedien
DE19511151A1 (de) 1995-03-27 1996-10-02 Alfred Steinforth Verfahren und Vorrichtung zum multifilen Spinnen semipermiabeler Hohlfäden aus Cellulose
AT402962B (de) 1995-08-31 1997-10-27 Chemiefaser Lenzing Ag Verfahren zum transportieren einer thermisch instabilen, viskosen masse
JP3865436B2 (ja) 1996-07-11 2007-01-10 塩水港精糖株式会社 分岐シクロデキストリンの製造方法
US6210801B1 (en) 1996-08-23 2001-04-03 Weyerhaeuser Company Lyocell fibers, and compositions for making same
US6605350B1 (en) 1996-08-23 2003-08-12 Weyerhaeuser Company Sawdust alkaline pulp having low average degree of polymerization values and method of producing the same
US6173767B1 (en) 1996-10-11 2001-01-16 Sgcm Partnership, L.P. Pressure release device for cooling coils
DE19753806A1 (de) 1996-12-12 1998-06-18 Barmag Barmer Maschf Verfahren und Vorrichtung zum kontinuierlichen Herstellen von einem Viskose-Faden
EP0853146A3 (fr) 1997-01-09 1999-03-24 Akzo Nobel N.V. Procédé de production de fibres cellulosiques et fibres cellulosiques
DE19717257A1 (de) 1997-04-24 1998-10-29 Akzo Nobel Nv Verfahren zur Herstellung cellulosischer Formkörper
DE19721609A1 (de) 1997-05-23 1998-11-26 Zimmer Ag Verfahren und Vorrichtung zum Verspinnen von Cellulosecarbamat-Lösungen
AT406386B (de) * 1998-07-28 2000-04-25 Chemiefaser Lenzing Ag Verfahren und vorrichtung zur herstellung cellulosischer formkörper
US6117379A (en) * 1998-07-29 2000-09-12 Kimberly-Clark Worldwide, Inc. Method and apparatus for improved quenching of nonwoven filaments
DE19837210C1 (de) 1998-08-17 1999-11-11 Alceru Schwarza Gmbh Verfahren zur Herstellung einer Cellulosesuspension
DE19915235A1 (de) 1999-04-03 2000-10-05 Rieter Ag Maschf Belüftungseinrichtung für Textilmaschine
DE19924508C1 (de) 1999-05-28 2000-11-30 Johns Manville Int Inc Vorrichtung zum Herstellen eines Spinnvlieses durch Spinnen aus einer Überdruckkammer
US6692687B2 (en) * 2000-01-20 2004-02-17 E. I. Du Pont De Nemours And Company Method for high-speed spinning of bicomponent fibers
DE10016307C2 (de) 2000-03-31 2002-05-08 Thueringisches Inst Textil Verfahren zur Herstellung und Verarbeitung einer Celluloselösung
DE10019660B4 (de) 2000-04-20 2004-04-29 Zimmer Ag Verfahren zum Verspinnen einer Spinnlösung und Spinnkopf
DE10023391A1 (de) 2000-05-12 2001-03-15 Lurgi Zimmer Ag Verfahren und Vorrichtung zur zugspannungsfreien Förderung von Endlosformkörpern
DE10029044A1 (de) 2000-06-13 2002-01-03 Lueder Gerking Verfahren und Vorrichtung zur Herstellung von Fäden, Fasern, Folien oder Formkörpern aus Cellulose
DE10037923A1 (de) 2000-08-03 2001-03-29 Zimmer Ag Verfahren und Vorrichtung zur Herstellung von Endlosformkörpern
DE10060879B4 (de) 2000-12-07 2005-08-04 Zimmer Ag Spinntrichtervorrichtung
DE10060877B4 (de) 2000-12-07 2006-01-26 Zimmer Ag Spinntrichtervorrichtung mit Mitteneinspeisung
DE10200405A1 (de) 2002-01-08 2002-08-01 Zimmer Ag Spinnvorrichtung und -verfahren mit Kühlbeblasung
DE10200406A1 (de) 2002-01-08 2003-07-24 Zimmer Ag Spinnvorrichtung und -verfahren mit turbulenter Kühlbeblasung
DE10204381A1 (de) 2002-01-28 2003-08-07 Zimmer Ag Ergonomische Spinnanlage
DE10206089A1 (de) 2002-02-13 2002-08-14 Zimmer Ag Bersteinsatz
DE10213007A1 (de) 2002-03-22 2003-10-09 Zimmer Ag Verfahren und Vorrichtung zur Regelung des Raumklimas bei einem Spinnprozess
DE10223268B4 (de) 2002-05-24 2006-06-01 Zimmer Ag Benetzungseinrichtung und Spinnanlage mit Benetzungseinrichtung
DE10314878A1 (de) 2003-04-01 2004-10-28 Zimmer Ag Verfahren und Vorrichtung zur Herstellung nachverstreckter Cellulose-Spinnfäden

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743551A1 (fr) 2012-12-14 2014-06-18 Aurotec GmbH Organe de verrouillage avec rinçage

Also Published As

Publication number Publication date
DE10200405A1 (de) 2002-08-01
TW200301789A (en) 2003-07-16
WO2003057951A1 (fr) 2003-07-17
EP1463851A1 (fr) 2004-10-06
ZA200405030B (en) 2005-03-10
BR0215466A (pt) 2004-11-30
TW591135B (en) 2004-06-11
KR100590981B1 (ko) 2006-06-19
DE50202515D1 (de) 2005-04-21
CA2465286A1 (fr) 2003-07-17
ATE291113T1 (de) 2005-04-15
CN1608150A (zh) 2005-04-20
MY128961A (en) 2007-03-30
KR20040063968A (ko) 2004-07-15
AU2002356578A1 (en) 2003-07-24
CN1325707C (zh) 2007-07-11
US20050035487A1 (en) 2005-02-17
US7364681B2 (en) 2008-04-29

Similar Documents

Publication Publication Date Title
EP1463851B1 (fr) Dispositif et procede de filage avec soufflerie de refroidissement
EP1463850B1 (fr) Procede de filage avec soufflerie de refroidissement
EP1192301B1 (fr) Procede et dispositif pour produire des fils fins sensiblement continus
DE10065859B4 (de) Verfahren und Vorrichtung zur Herstellung von im Wesentlichen endlosen feinen Fäden
EP0574870B1 (fr) Procédé de fabrication d'articles moulés en cellulose
DE2048006B2 (de) Verfahren und Vorrichtung zur Herstellung einer breiten Vliesbahn
DE102011075924A1 (de) Schmelzspinnverfahren und -vorrichtung
EP1902164A1 (fr) Dispositif de filature pour produire des fils fins par epissurage
EP0887444B1 (fr) Dispositif de filage
EP1630265B1 (fr) Appareil pour la fabrication en continu d'un voile de tissé-lié
DE19512053C1 (de) Verfahren zum Herstellen von cellulosischen Fasern
DE102011087350A1 (de) Schmelzspinnvorrichtung und Schmelzspinnverfahren
DE4219658C3 (de) Verfahren zur Herstellung von Cellulosefasern -filamenten und -folien nach dem Trocken-Naßextrusionsverfahren
DE19954152C2 (de) Verfahren und Vorrichtung zur Herstellung von Cellulosefasern und Cellulosefilamentgarnen
EP0455897B1 (fr) Dispositif pour la fabrication de fibres trés fines
DE1914556A1 (de) Verfahren und Vorrichtung zum Herstellen eines synthetischen multifilen Endlosgarns gleichmaessiger Beschaffenheit
DE3406346A1 (de) Schmelzspinnvorrichtung zur erzeugung einer schar von filamentfaeden
CH640926A5 (de) Schlauch aus einem schmelzspinnbaren synthetischen polymeren sowie verfahren zu seiner herstellung.
DE102005040000B4 (de) Mehrfachspinndüsenanordnung und Verfahren mit Absaugung und Beblasung
EP1521869B1 (fr) Procede de filature
DE3515346A1 (de) Vorrichtung zur herstellung von feinen mineralfasern
WO2006024435A1 (fr) Procede de filage et dispositif destine a sa mise en oeuvre
EP1268888A1 (fr) Procede et dispositif pour produire des fibres de cellulose et des fils continus de cellulose
CH639432A5 (de) Verfahren zur herstellung von monofilen.
DE10011948C2 (de) Verfahren und Vorrichtung zur Herstellung von Cellulosefasern und Cellulosefilamentgarnen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20040112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050316

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050316

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50202515

Country of ref document: DE

Date of ref document: 20050421

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051219

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: ZIMMER A.G.

Effective date: 20051130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081114

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081117

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091111