EP1344589B1 - Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang - Google Patents

Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang Download PDF

Info

Publication number
EP1344589B1
EP1344589B1 EP03003899A EP03003899A EP1344589B1 EP 1344589 B1 EP1344589 B1 EP 1344589B1 EP 03003899 A EP03003899 A EP 03003899A EP 03003899 A EP03003899 A EP 03003899A EP 1344589 B1 EP1344589 B1 EP 1344589B1
Authority
EP
European Patent Office
Prior art keywords
melt
alloy
crystallisation vessel
vessel
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03003899A
Other languages
English (en)
French (fr)
Other versions
EP1344589A2 (de
EP1344589A3 (de
Inventor
Evgenij Dr. Sterling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to SI200331339T priority Critical patent/SI1344589T1/sl
Publication of EP1344589A2 publication Critical patent/EP1344589A2/de
Publication of EP1344589A3 publication Critical patent/EP1344589A3/de
Application granted granted Critical
Publication of EP1344589B1 publication Critical patent/EP1344589B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase

Definitions

  • the invention relates to a method and an apparatus for processing a melt of an alloy for a casting process which is brought into a partially solidified state and contains crystallization seeds distributed over its volume.
  • the object of the invention is to prepare a melt of an alloy in such a way that the distribution of the crystallization nuclei over the volume of the melt is as fine and homogeneous as possible before it is introduced into a casting mold.
  • This object is achieved by bringing the melt, which has a temperature above the melting temperature of the alloy, into a crystallization vessel heated to a temperature below the melting temperature, adding this melt in the crystallization vessel alloy as powder, and by means of electrical and / or magnetic forces melt and powder in the crystallization vessel are mixed together.
  • the pulverulent particles of the alloy which are immediately enveloped by the melt, form crystallization nuclei, which by means of the electrical and / or magnetic forces are distributed homogeneously within the melt.
  • the melt is introduced as a jet into the crystallization vessel, which extends between two electrodes, to which an electrical voltage is applied. Due to the so-called pinch effect of the jet is narrowed and compressed, which is already partially split during inflow into individual, liquid droplets.
  • the crystallization vessel is thus not filled with a compact jet, but with a dispersed jet.
  • the surface of the melt volume increases significantly, with a degassing takes place.
  • a magnetic field is formed in the crystallization vessel.
  • the magnetic field and the electric field act differently on the melt and the particles therein, so that the mixing effect is promoted.
  • melt is sucked into the set under reduced pressure crystallization vessel.
  • the inflowing jet of melt further dispersed and dissolves into individual drops. This also promotes the formation of nuclei.
  • the melt is supplied to the crystallization vessel with the supply of inert gas.
  • the shielding gas when the shielding gas is supplied under pressure, the process is further improved.
  • the shielding gas prevents chemical reactions of the alloy with the atmosphere, which could adversely affect the subsequent casting process.
  • a crystallization vessel having a melt inlet and a powdered alloy inlet having a heater and provided with electrodes applied to a voltage source in the region of its bottom and inlet.
  • a melt 11 of a metal alloy for example AlSi 9, is maintained at a temperature which is above the melting temperature of this alloy.
  • the oven 10 is closed in a vacuum-tight manner and kept under vacuum by means of a suction device 12.
  • the furnace 10 is connected via a pouring line 13 with a crystallization vessel 14.
  • the crystallization vessel 14 consists of a cylinder 15 of electrically non-conductive material, which has a thermal conductivity between 0.20 and 1.5W / mk.
  • the cylinder 15 is closed at the top with a lid 16, which also consists of electrically non-conductive material.
  • the line 13 connects.
  • the lid is connected to an inlet piece 17 made of electrically conductive material.
  • the inlet piece 17 has a conically widening inlet opening.
  • the lid 16 is followed by a suction line 18, which is connected to an exhaust 19.
  • the lid 16 is further provided with a filler neck 20 through which alloy powder can be introduced into the crystallization vessel 14.
  • a piston 21 which also consists of an electrically non-conductive material.
  • the piston 21 is guided in a subsequent to the crystallization vessel 14 cylinder 22, which is provided with a discharge opening, not shown.
  • the cylinder 15 of the crystallization tank 14 is provided with an electrode 23 in the region of its bottom.
  • the inlet piece 17 is made of electrically conductive material. Between the electrode 23 and the inlet piece 17, a voltage source 24 is arranged, the voltage and above all the current strength of which is adjustable by means of an adjusting device 25.
  • the crystallization vessel 14 is associated with a preferably electric heater 26, which is preferably adjustable and which heats the crystallization vessel 14 at a preselectable temperature and holds at this temperature. Furthermore, the crystallization container 14 is associated with a magnetic coil 27, with which in the interior of the cylinder 15 of the crystallization vessel 14, a magnetic field is buildable.
  • the pouring channel 13 is equipped with a gate valve 28, via which the connection between the furnace 19 and the crystallization vessel 14 can be released and shut off.
  • a supply line 29 connects, via which protective gas can be supplied with excess pressure, for example argon.
  • melt 11 is first introduced into the furnace 10.
  • the furnace 10 is brought by means of the suction 12 to a vacuum of 0.5 mbar to 3 mbar.
  • the crystallization vessel 14 is heated by means of the heater 26 to a temperature which is 3% to 50% lower than the melting temperature of the alloy in question.
  • a vacuum is generated by the suction 19, which is stronger than the vacuum in the furnace 10th
  • melt 11 is sucked into the crystallization tank 14.
  • protective gas is supplied via the line 29. Due to the suction effect, alloy in powder form is also sucked in via the inlet connection 20. The powder is enclosed in the melt and distributed.
  • a voltage is applied to the electrode 23 and the inlet piece 17 so that a current whose size is less than 10 A flows in the jet of the melt.
  • To a homogeneously dispersed mixture To obtain a magnetic field is generated by means of the magnetic coil 27 in the interior of the crystallization vessel 14, which leads to a radial movement of the melt.
  • the circuit is first interrupted. Now the voltage is increased to values of 150V to 400V, so that an arc is ignited, in which a current with a strength up to 1300A can flow.
  • the electromagnetic field generated by the magnetic coil 27 is varied and continuously increased, for example, in the direction of filling.
  • the piston 21 is lowered, so that the melt flows out through the cylinder and its discharge opening and is processed further in a suitable manner. All known casting methods can be used.
  • the electrode 23 is integrated in the piston 21, which forms the bottom of the crystallization vessel 14.
  • the voltage source 24 is connected to two electrodes 30 and 31 of the cylinder 15 of the crystallization vessel 14.
  • the second connection is made to the pouring channel 13.
  • the piston 21 moves during the filling of the melt continuously down, then successively the electrodes 30 and 31 are used, which with the piston movement via switches 32 and 33 and be switched off.
  • the melt prepared in the crystallization vessel 14 is transferred to a storage or transport container 34 in which it is in the processed state is held.
  • This container 34 is provided with a suction 35, so that a negative pressure can be applied to it. It is provided with a heater 36 and a solenoid 37. Likewise, it is equipped with an electrode 38.
  • the two end walls of the container 34 are formed by pistons 39 and 40.
  • the container 34 can also be used for shaping.
  • the nomogram shown can predict the thermokinetic sequence.
  • the nomogram shown applies to the alloy AlSi9Cu 3 .
  • the amount of powdered alloy added with a grain size of about 125 microns to about 400 microns is applied in proportions by weight.
  • the temperature difference ⁇ T in [C °] is the difference between the casting temperature and the melting temperature of the alloy. If an amount of powdery alloy is added, which is in the nomogram region A, this causes only a reduction of the temperature of the melt. The melt is thus placed in a semi-solid state without the powdery particles forming nuclei. However, when an amount of powdered alloy is added to reach the nomogram region B, the powdery particles function as additional, unmelted nuclei. If the addition of powdered particles in the nomogram region C, the two processes will run side by side, ie a reduction of the superheat temperature and nucleation due to unmelted particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • General Induction Heating (AREA)
  • Furnace Details (AREA)
  • Hard Magnetic Materials (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Gießvorgang, die in einen teilerstarrten Zustand gebracht wird und über ihr Volumen verteilte Kristallisationskeime enthält.
  • Das Herstellen von halberstarrter Legierungen ist beispielsweise aus einem Beitrag von J.-P. Gabathuler und J. Erling "Thixocasting: ein moderndes Verfahren zur Herstellung von Formbauteilen" bekannt, der in dem Tagungsband "Aluminium als Leichtbaustoff in Transport und Verkehr", ETH Zürich, S. 63 bis 77 vom 27.05.1994 bekannt.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Schmelze einer Legierung so aufzubereiten, dass eine möglichst feine und homogene Verteilung der Kristallisationskeime über das Volumen der Schmelze vorliegt, bevor diese in eine Gießform eingebracht wird.
  • Diese Aufgabe wird dadurch gelöst, dass Schmelze, die eine oberhalb der Schmelztemperatur der Legierung liegende Temperatur aufweist, in einen auf eine unterhalb der Schmelztemperatur liegende Temperatur beheizten Kristallisationsbehälter gebracht wird, dass dieser Schmelze in dem Kristallisationsbehälter Legierung als Pulver zugegeben wird und dass mittels elektrischer und/oder magnetischer Kräfte Schmelze und Pulver in dem Kristallisationsbehälter miteinander vermischt werden.
  • Insbesondere die pulverförmigen Partikel der Legierung, die von der Schmelze sofort umhüllt werden, bilden Kristallisationskeime, die mittels der elektrischen und/oder magnetischen Kräfte innerhalb der Schmelze homogen verteilt werden.
  • In vorteilhafter Ausgestaltung der Erfindung wird vorgesehen, dass die Schmelze als Strahl in den Kristallisationsbehälter eingebracht wird, der sich zwischen zwei Elektroden erstreckt, an die eine elektrische Spannung angelegt wird. Aufgrund des sogenannten Pinch-Effektes wird der Strahl verengt und zusammengepresst, der während des Einströmens schon teilweise in einzelne, flüssige Tropfen aufgespalten wird. Der Kristallisationsbehälter wird somit nicht mit einem kompakten Strahl gefüllt, sondern mit einem dispergierten Strahl. Damit erhöht sich die Fläche des Schmelzenvolumens deutlich, wobei auch eine Entgasung stattfindet.
  • Wenn die Schmelze vollständig in den Kristallisationsbehälter eingeströmt ist, verschwindet der Schmelzenstrahl, so dass dann auch der Stromfluss unterbrochen wird. Um weiter eine Dispergierung zu erreichen und auch ein elektrisches Feld zu erzeugen, wird dann in weiterer Ausgestaltung der Erfindung vorgesehen, dass nach Einbringen der Schmelze zwischen der Schmelze und einer Elektrode ein Lichtbogen gezündet wird.
  • Um weiter das Durchmischen der in dem Kristallisationsbehälter befindlichen Schmelze zu fördern und dabei die Kristallisationskeime fein zu verteilen, wird in dem Kristallisationsbehälter ein Magnetfeld gebildet. Das Magnetfeld und das elektrische Feld wirken auf die Schmelze und die darin befindlichen Partikel unterschiedlich ein, so dass der Vermischungseffekt gefördert wird.
  • In weiterer Ausgestaltung der Erfindung wird vorgesehen, dass die Schmelze in den unter Unterdruck gesetzten Kristallisationsbehälter eingesaugt wird. Durch die Erzeugung eines Vakuums in dem Kristallisationsbehälter wird weiter erreicht, dass der einströmende Strahl aus Schmelze weiter dispergiert und sich in einzelne Tropfen auflöst. Auch damit wird die Bildung von Kristallisationskeimen gefördert.
  • In weiterer Ausgestaltung der Erfindung wird vorgesehen, dass die Schmelze unter Zufuhr von Schutzgas dem Kristallisationsbehälter zugeführt wird. Insbesondere wenn das Schutzgas unter Druck zugeführt wird, wird der Prozess weiter verbessert. Darüber hinaus verhindert das Schutzgas chemische Reaktionen der Legierung mit der Atmosphäre, was den anschließenden Gießvorgang nachteilig beeinflussen könnte.
    Bei einer Vorrichtung zum Durchführen des Verfahrens wird ein Kristallisationsbehälter mit einem Einlass für die Schmelze und einem Einlass für Legierung in Pulverform vorgesehen, der eine Heizeinrichtung aufweist und der im Bereich seines Bodens und seines Einlasses mit an eine Spannungsquelle angelegten Elektroden versehen ist.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der in der Zeichnung dargestellten Ausführungsformen.
  • Fig. 1
    zeigt eine erfindungsgemäße Vorrichtung im Schnitt in schematischer Darstellung, die direkt an einen Ofen angeschlossen ist,
    Fig. 2
    eine abgewandelte Ausführungsform einer erfindungsgemäßen Vorrichtung,
    Fig. 3
    eine erfindungsgemäße Vorrichtung mit einer Zusatzeinrichtung zur Übernahme der aufbereiteten Schmelze und
    Fig. 4
    ein Nomogramm zur Voraussage des thermokinetischen Ablaufs.
  • In einem Ofen 10 wird eine Schmelze 11 einer Metalllegierung, beispielsweise AlSi 9, auf einer Temperatur gehalten, die oberhalb der Schmelztemperatur dieser Legierung liegt. Der Ofen 10 ist vakuumdicht verschlossen und mittels einer Absaugung 12 unter Vakuum gehalten.
  • Der Ofen 10 ist über eine Gießleitung 13 mit einem Kristallisationsbehälter 14 verbunden. Der Kristallisationsbehälter 14 besteht aus einem Zylinder 15 aus elektrisch nicht leitendem Material, das eine Wärmeleitfähigkeit zwischen 0,20 und 1,5W/mk besitzt. Der Zylinder 15 ist oben mit einem Deckel 16 verschlossen, der ebenfalls aus elektrisch nicht leitendem Material besteht. An den Deckel schließt die Leitung 13 an. Hierzu ist der Deckel mit einem Einlassstück 17 aus elektrisch leitendem Material verbunden. Das Einlassstück 17 besitzt eine sich konisch erweiternde Einlassöffnung. An den Deckel 16 schließt eine Absaugleitung 18 an, die mit einer Absaugung 19 verbunden ist. Der Deckel 16 ist weiter mit einem Einfüllstutzen 20 versehen, durch welchen hindurch Legierung in Pulverform in den Kristallisationsbehälter 14 eingegeben werden kann.
  • Als Boden des Kristallisationsbehälters 14 dient ein Kolben 21, der ebenfalls aus einem elektrisch nicht leitenden Material besteht. Der Kolben 21 ist in einem an den Kristallisationsbehälter 14 anschließenden Zylinder 22 geführt, der mit einer nicht dargestellten Abflussöffnung versehen ist. Der Zylinder 15 des Kristallisationsbehälters 14 ist im Bereich seines Bodens mit einer Elektrode 23 versehen. Wie schon erwähnt wurde, ist das Einlassstück 17 aus elektrisch leitendem Material. Zwischen der Elektrode 23 und dem Einlassstück 17 ist eine Spannungsquelle 24 angeordnet, deren Spannung und vor allem auch deren Stromstärke mittels einer Verstelleinrichtung 25 einstellbar ist.
  • Dem Kristallisationsbehälter 14 ist eine vorzugsweise elektrische Heizeinrichtung 26 zugeordnet, die vorzugsweise regelbar ist und die den Kristallisationsbehälter 14 auf einer vorwählbare Temperatur aufheizt und auf dieser Temperatur hält. Des weiteren ist dem Kristallisationsbehälter 14 eine Magnetspule 27 zugeordnet, mit welcher im Innern des Zylinders 15 des Kristallisationsbehälters 14 ein Magnetfeld aufbaubar ist.
  • Der Gießkanal 13 ist mit einem Absperrschieber 28 ausgerüstet, über welchen die Verbindung zwischen dem Ofen 19 und dem Kristallisationsbehälter 14 freigegeben und abgesperrt werden kann. An den Gießkanal 13 schließt eine Zuführleitung 29 an, über welche Schutzgas mit Überdruck zugeführt werden kann, beispielsweise Argon.
  • Zum Aufbereiten einer Schmelze wird zunächst Schmelze 11 in den Ofen 10 eingefüllt. Der Ofen 10 wird mittels der Absaugung 12 auf ein Vakuum von 0,5mbar bis 3mbar gebracht. Der Kristallisationsbehälter 14 wird mittels der Heizeinrichtung 26 auf eine Temperatur aufgeheizt, die 3% bis 50% niedriger als die Schmelztemperatur der betreffenden Legierung ist. In dem Kristallisationsbehälter 14 wird mittels der Absaugung 19 ein Vakuum erzeugt, das stärker ist als das Vakuum in dem Ofen 10.
  • Sobald der Schieber 28 geöffnet wird, wird Schmelze 11 in den Kristallisationsbehälter 14 eingesaugt. Dabei wird Schutzgas über die Leitung 29 zugeführt. Aufgrund der Saugwirkung wird auch Legierung in Pulverform über den Einlassstutzen 20 angesaugt. Das Pulver wird in die Schmelze eingeschlossen und verteilt.
  • An die Elektrode 23 und das Einlassstück 17 wird eine Spannung angelegt, so dass in dem Strahl der Schmelze ein Strom fließt, dessen Größe weniger als 10A beträgt. Um ein möglichst homogen dispergiertes Gemisch zu erhalten, wird mittels der Magnetspule 27 im Innern des Kristallisationsbehälters 14 ein Magnetfeld erzeugt, das zu einer radialen Bewegung der Schmelze führt.
  • Nachdem die gesamte Schmelze in den Kristallisationsbehälter eingeströmt ist, ist zunächst der Stromkreis unterbrochen. Jetzt wird die Spannung auf Werte von 150V bis 400V erhöht, so dass ein Lichtbogen gezündet wird, in welchem ein Strom mit einer Stärke bis zu 1300A strömen kann. Um eine gerichtete Kristallisation zu vermeiden, wird das elektromagnetische Feld, das mit der Magnetspule 27 erzeugt wird, variiert und beispielsweise in Richtung der Füllung kontinuierlich erhöht.
  • Nachdem die Schmelze in dieser Weise aufbereitet worden ist, wird der Kolben 21 abgesenkt, so dass die Schmelze über den Zylinder und dessen Abflussöffnung ausfließt und in geeigneter Weise weiter verarbeitet wird. Dabei können alle bekannten Gussverfahren angewandt werden.
  • Bei einer abgewandelten Ausführungsform wird vorgesehen, dass die Elektrode 23 in den Kolben 21 integriert ist, der den Boden des Kristallisationsbehälters 14 bildet.
  • Bei dem Ausführungsbeispiel nach Fig. 2 ist die Spannungsquelle 24 an zwei Elektroden 30 und 31 des Zylinders 15 des Kristallisationsbehälters 14 angeschlossen. Der zweite Anschluss erfolgt an den Gießkanal 13. Bei dieser Ausführung bewegt sich der Kolben 21 während des Einfüllens der Schmelze kontinuierlich nach unten, wobei dann nacheinander die Elektroden 30 und 31 zum Einsatz kommen, die mit der Kolbenbewegung über Schalter 32 und 33 zu- und abgeschaltet werden.
  • Bei dem Ausführungsbeispiel nach Fig. 3 wird die in den Kristallisationsbehälter 14 aufbereitete Schmelze in einen Aufbewahrungs- oder Transportbehälter 34 weitergegeben, in welchem sie in dem aufbereiteten Zustand gehalten wird. Dieser Behälter 34 ist mit einer Absaugung 35 versehen, so dass an ihn ein Unterdruck angelegt werden kann. Er ist mit einer Heizeinrichtung 36 und einer Magnetspule 37 versehen. Ebenso ist er mit einer Elektrode 38 ausgerüstet. Die beiden Stirnwände des Behälters 34 werden von Kolben 39 und 40 gebildet. Der Behälter 34 kann auch zur Formgebung eingesetzt werden.
  • Mit dem in Fig. 4 dargestellten Nomogramm lässt sich der thermokinetische Ablauf voraussagen. Das dargestellte Nomogramm gilt für die Legierung AlSi9Cu3. Die Menge an pulverförmiger Legierung, die mit einer Korngröße von etwa 125µm bis etwa 400µm zugegeben wird, ist in Mengenprozentanteilen aufgetragen. Die Temperaturdifferenz ΔT in [C°] ist der Unterschied zwischen der Gießtemperatur und der Schmelztemperatur der Legierung. Wenn eine Menge an pulverförmiger Legierung zugegeben wird, die in dem Nomogrammbereich A liegt, so bewirkt diese nur eine Reduzierung der Temperatur der Schmelze. Die Schmelze wird damit in einem halberstarrten Zustand versetzt, ohne dass die pulverförmigen Partikel Kristallisationskeime bilden. Wenn jedoch eine Menge an pulverförmiger Legierung zugegeben wird, so dass der Nomogrammbereich B erreicht wird, so wirken die pulverförmigen Partikel als zusätzliche, nicht geschmolzene Kristallisationskeime. Erfolgt die Zugabe von pulverförmigen Partikeln in dem Nomogrammbereich C, so werden die beiden Vorgänge nebeneinander ablaufen, d.h. eine Verringerung der Überhitzungstemperatur und eine Keimbildung aufgrund nicht geschmolzener Partikel.
  • Selbstverständlich müssen unterschiedliche Nomogramme für unterschiedliche Legierungen gebildet werden.

Claims (9)

  1. Verfahren zum Aufbereiten einer Schmelze einer Legierung für einen Gießvorgang, die in einen teilerstarrten Zustand gebracht wird und über ihr Volumen verteilte Kristallisationskeime enthält, dadurch gekennzeichnet, dass die Schmelze, die eine oberhalb der Schmelztemperatur der Legierung liegende Temperatur aufweist, in einen auf eine unterhalb der Schmelztemperatur liegende Temperatur beheizten Kristallisationsbehälter gebracht wird, dass dieser Schmelze in den Kristallisationsbehälter Legierung als Pulver zugegeben wird, und dass mittels elektrischer und/oder magnetischer Kräfte Schmelze und Pulver in dem Kristallisationsbehälter miteinander vermischt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schmelze als Strahl in den Kristallisationsbehälter eingebracht wird, der sich zwischen zwei Elektroden erstreckt, an die eine elektrische Spannung angelegt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass nach Einbringen der Schmelze zwischen der Schmelze und eine Elektrode ein Lichtbogen gezündet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in dem Kristallisationsbehälter ein Magnetfeld gebildet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schmelze in den unter Unterdruck gesetzten Kristallisationsbehälter eingesaugt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schmelze unter Zufuhr von Schutzgas dem Kristallisationsbehälter zugeführt wird.
  7. Vorrichtung zum Durchführen des Verfahrens nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Kristallisationsbehälter (14) mit einem Einlass (17) für die Schmelze und einem Einlass (20) für Legierung in Pulverform vorgesehen ist, der eine Heizeinrichtung (26) aufweist, der mit Mitteln (27) zum Erzeugen eines in seinem Inneren wirksamen Magnetfeldes und der im Bereich seines Bodens und seines Einlasses mit an eine Spannungsquelle (24) angelegten Elektroden (17, 23; 17, 30, 31) versehen ist.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Kristallisationsbehälter (14) an Mittel (19) zum Erzeugen von Unterdruck angeschlossen ist.
  9. Vorrichtung nach Anspruch 7 bis 8, dadurch gekennzeichnet, dass der Kristallisationsbehälter (14) über eine Leitung (13) mit einem Ofen (10) verbunden ist, die mit einem Zuführanschluss (29) für Schutzgas versehen ist.
EP03003899A 2002-03-13 2003-02-21 Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang Expired - Lifetime EP1344589B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200331339T SI1344589T1 (sl) 2002-03-13 2003-02-21 Postopek in priprava za pripravo taline zlitine za postopek ulivanja

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10212349A DE10212349C1 (de) 2002-03-13 2002-03-13 Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang
DE10212349 2002-03-13

Publications (3)

Publication Number Publication Date
EP1344589A2 EP1344589A2 (de) 2003-09-17
EP1344589A3 EP1344589A3 (de) 2005-05-18
EP1344589B1 true EP1344589B1 (de) 2008-06-04

Family

ID=7714155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03003899A Expired - Lifetime EP1344589B1 (de) 2002-03-13 2003-02-21 Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang

Country Status (16)

Country Link
US (1) US6988529B2 (de)
EP (1) EP1344589B1 (de)
JP (1) JP4541650B2 (de)
KR (1) KR100995490B1 (de)
CN (1) CN1275725C (de)
AT (1) ATE397503T1 (de)
AU (1) AU2003200990B2 (de)
BR (1) BR0300491B1 (de)
CA (1) CA2420931C (de)
DE (2) DE10212349C1 (de)
DK (1) DK1344589T3 (de)
ES (1) ES2307838T3 (de)
MX (1) MXPA03002089A (de)
NO (1) NO20031112L (de)
PT (1) PT1344589E (de)
SI (1) SI1344589T1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050103461A1 (en) * 2003-11-19 2005-05-19 Tht Presses, Inc. Process for generating a semi-solid slurry
CN102133629A (zh) * 2011-03-01 2011-07-27 大连理工大学 一种轻合金电磁悬浮铸造装置和方法
US20140326424A1 (en) * 2011-11-02 2014-11-06 Tohoku Techno Arch Co., Ltd. Arc melting furnace apparatus and method of arc melting melt material
CN102794432A (zh) * 2012-07-24 2012-11-28 江苏万里活塞轴瓦有限公司 铝合金半固态浆料制备装置
JP6171216B2 (ja) * 2013-05-09 2017-08-02 東芝機械株式会社 半凝固金属の製造装置、半凝固金属の製造方法及び半凝固金属を用いた成形方法
CN109351916B (zh) * 2018-07-31 2021-03-12 湖南人文科技学院 一种高硼合金的制备方法
CN109261940A (zh) * 2018-09-28 2019-01-25 平顶山学院 一种金属材料增材制造成型方法及装置
CN110538587B (zh) * 2019-09-12 2022-03-08 福建省鼎智新材料科技有限公司 一种基于气体搅拌的喷粉半固态制浆装置及其工作方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3813469A (en) * 1973-04-09 1974-05-28 Daido Steel Co Ltd Method for heating vacuum degassing container
FR2275560A1 (fr) * 1974-06-21 1976-01-16 Anvar Perfectionnements au degazage des metaux liquides, notamment de l'acier liquide, par jet sous vide
US4108643A (en) * 1976-09-22 1978-08-22 Massachusetts Institute Of Technology Method for forming high fraction solid metal compositions and composition therefor
GB2037634B (en) * 1978-11-27 1983-02-09 Secretary Industry Brit Casting thixotropic material
JPS5732859A (en) * 1980-08-06 1982-02-22 Nippon Steel Corp Method and device for removing foreign substance from molten metal
JPS57127555A (en) * 1981-01-29 1982-08-07 Nippon Kokan Kk <Nkk> Method for horizontal continuous casting of steel
US4482012A (en) * 1982-06-01 1984-11-13 International Telephone And Telegraph Corporation Process and apparatus for continuous slurry casting
US4709746A (en) * 1982-06-01 1987-12-01 Alumax, Inc. Process and apparatus for continuous slurry casting
JPS63273553A (ja) * 1987-04-30 1988-11-10 Furukawa Alum Co Ltd 中空ビレツトの製造方法および装置
JPH01306047A (ja) * 1988-05-31 1989-12-11 Nkk Corp 半溶融金属の製造方法
JPH01309766A (ja) * 1988-06-09 1989-12-14 Furukawa Electric Co Ltd:The 鋳塊の製造方法とその装置
US5379828A (en) * 1990-12-10 1995-01-10 Inland Steel Company Apparatus and method for continuous casting of molten steel
US5178204A (en) * 1990-12-10 1993-01-12 Kelly James E Method and apparatus for rheocasting
US5494095A (en) * 1992-04-08 1996-02-27 Inland Steel Company Apparatus for continuous casting of molten steel
JPH08290257A (ja) * 1995-04-20 1996-11-05 Mitsubishi Heavy Ind Ltd 耐摩耗性アルミニウム合金鋳物及びその製造法
IT1279642B1 (it) * 1995-10-05 1997-12-16 Reynolds Wheels Spa Metodo e dispositivo per la formatura tixotropica di prodotti in lega metallica
JP3236508B2 (ja) * 1996-06-25 2001-12-10 トヨタ自動車株式会社 金属溶湯供給装置
US5887640A (en) * 1996-10-04 1999-03-30 Semi-Solid Technologies Inc. Apparatus and method for semi-solid material production
DE10002670C2 (de) * 2000-01-24 2003-03-20 Ritter Aluminium Giesserei Gmb Druckgießverfahren und Vorrichtung zu seiner Durchführung

Also Published As

Publication number Publication date
KR100995490B1 (ko) 2010-11-19
NO20031112D0 (no) 2003-03-11
NO20031112L (no) 2003-09-15
CA2420931C (en) 2011-05-03
JP4541650B2 (ja) 2010-09-08
KR20030074297A (ko) 2003-09-19
AU2003200990A1 (en) 2003-10-02
US6988529B2 (en) 2006-01-24
MXPA03002089A (es) 2004-08-11
JP2004025302A (ja) 2004-01-29
ATE397503T1 (de) 2008-06-15
EP1344589A2 (de) 2003-09-17
DK1344589T3 (da) 2008-10-13
SI1344589T1 (sl) 2008-10-31
BR0300491B1 (pt) 2012-02-07
CN1275725C (zh) 2006-09-20
CA2420931A1 (en) 2003-09-13
DE10212349C1 (de) 2003-08-28
BR0300491A (pt) 2004-08-17
AU2003200990B2 (en) 2008-05-22
ES2307838T3 (es) 2008-12-01
EP1344589A3 (de) 2005-05-18
CN1443615A (zh) 2003-09-24
DE50309939D1 (de) 2008-07-17
US20040003912A1 (en) 2004-01-08
PT1344589E (pt) 2008-08-13

Similar Documents

Publication Publication Date Title
EP0451552B1 (de) Verfahren und Vorrichtung zur Formung eines Giesstrahls
EP1742752B1 (de) Verfahren zum giessen von bauteilen aus leichtmetall nach dem kippgiessprinzip
DE4116073A1 (de) Verfahren zum giessen von dentalmetallen
EP1004374B1 (de) Druckgiessverfahren zur Herstellung von Gussstücken aus Legierungen mit thixotropen Eigenschaften sowie Vorrichtung zur Duchführung des Verfahrens
EP1344589B1 (de) Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang
DE60024142T2 (de) Giesssystem und giessverfahren für hochreinen und feinkörnigen metallguss
EP1152854B1 (de) Verwendung eines induktionstiegelofens für das niederdruckgiessen von gussstücken aus aluminium- und magnesiumlegierungen
EP1877212A2 (de) Verfahren zum herstellen einer vielzahl von insbesondere aus titanaluminid bestehenden bauteilen und vorrichtung zur durchführung dieses verfahrens
WO2003074210A2 (de) Verfahren und vorrichtung zur massgenauen feingussherstellung von bauteilen aus ne-metalllegierungen sowie ne-metalllegierungen zur durchführung des verfahrens
DE4116071A1 (de) Verfahren zum vergiessen von dentalmetallen
WO2006056411A1 (de) Vakuumdruckgussverfahren
DE10002670C2 (de) Druckgießverfahren und Vorrichtung zu seiner Durchführung
DE19852747A1 (de) Verfahren zum Einschmelzen und Umschmelzen von Materialien zum Herstellen von homogenen Metallegierungen
DE1558159B2 (de) Verfahren und vorrichtung zum vakuumgiessen von praezisions teilen aus metall mit hoechster reinheit
DE2501603C3 (de)
DE3116792C2 (de) Verfahren zur Gewinnung von Granalien aus einer Legierungsschmelze und Vorrichtung zur Durchführung desselben
DE19504359C1 (de) Verfahren zum Herstellen von Legierungen in einem induktiv beheizten Kaltwandtiegel
DE3734406A1 (de) Verfahren und vorrichtung zur herstellung von gusskoerpern aus druckbehandelten schmelzen aus stahllegierungen
DE102021108933B4 (de) Gießvorrichtung und Gießverfahren zur Herstellung von Metall-Matrix-Komposit-Werkstoffen
DE1483647C3 (de) Beheizung für einen Schmelzofen in einer Vorrichtung zum Herstellen von stickstofflegierten Gußblöcken
DE102020005392A1 (de) Verfahren zum Legieren von Metallen in einer Prozesskammer und Legierungsvorrichtung zur Durchführung eines solchen Verfahrens
WO2024055052A1 (de) GIEßANLAGE ZUM GIEßEN VON METALLISCHEM GIEßMATERIAL SOWIE VERFAHREN ZUM GIEßEN VON METALLISCHEM GIEßMATERIAL
CH606452A5 (en) Vacuum degassing liq metals before casting
DD250478A1 (de) Vorrichtung zum dosierten zufuehren rieselfaehiger zuschlagmittel in eisenschmelzen
DE1091252B (de) Unterdruck-Schmelzofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20051110

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20061123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50309939

Country of ref document: DE

Date of ref document: 20080717

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20080801

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ZIMMERLI, WAGNER & PARTNER AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20080402089

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2307838

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E003906

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080904

26N No opposition filed

Effective date: 20090305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: STERLING, EVGENIJ, DR.

Free format text: STERLING, EVGENIJ, DR.#KATHARINENSTRASSE 62/1#73728 ESSLINGEN (DE) -TRANSFER TO- STERLING, EVGENIJ, DR.#KATHARINENSTRASSE 62/1#73728 ESSLINGEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20100208

Year of fee payment: 8

Ref country code: DK

Payment date: 20100222

Year of fee payment: 8

Ref country code: HU

Payment date: 20100223

Year of fee payment: 8

Ref country code: IE

Payment date: 20100219

Year of fee payment: 8

Ref country code: LU

Payment date: 20100219

Year of fee payment: 8

Ref country code: PT

Payment date: 20100212

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20100219

Year of fee payment: 8

Ref country code: SI

Payment date: 20100209

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100215

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20100218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20110311

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080604

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110221

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20110923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110822

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110221

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110221

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120221

Year of fee payment: 10

Ref country code: FR

Payment date: 20120228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20120221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120223

Year of fee payment: 10

Ref country code: BE

Payment date: 20120221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120220

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120221

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110222

BERE Be: lapsed

Owner name: STERLING, EVGENIJ, DR.

Effective date: 20130228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 397503

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130901

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130221

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 3859

Country of ref document: SK

Effective date: 20130221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110222

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170223

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309939

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901