JPH01306047A - 半溶融金属の製造方法 - Google Patents
半溶融金属の製造方法Info
- Publication number
- JPH01306047A JPH01306047A JP13294188A JP13294188A JPH01306047A JP H01306047 A JPH01306047 A JP H01306047A JP 13294188 A JP13294188 A JP 13294188A JP 13294188 A JP13294188 A JP 13294188A JP H01306047 A JPH01306047 A JP H01306047A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- semi
- molten
- current
- crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 title claims abstract description 85
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000007790 solid phase Substances 0.000 claims abstract description 13
- 239000007791 liquid phase Substances 0.000 claims abstract description 7
- 239000004020 conductor Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 abstract description 27
- 238000000034 method Methods 0.000 abstract description 17
- 239000013078 crystal Substances 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 8
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 abstract description 7
- 238000010907 mechanical stirring Methods 0.000 abstract description 6
- 238000005266 casting Methods 0.000 abstract description 4
- 230000007547 defect Effects 0.000 abstract description 3
- 239000013589 supplement Substances 0.000 abstract description 2
- 229910018182 Al—Cu Inorganic materials 0.000 abstract 1
- 238000013021 overheating Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 22
- 238000012545 processing Methods 0.000 description 14
- 239000003990 capacitor Substances 0.000 description 10
- 238000007796 conventional method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010128 melt processing Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910021652 non-ferrous alloy Inorganic materials 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、晶出した同相の結晶粒径が粗大化すること
を防止しつつ、微細な結晶粒を有する半溶融金属を連続
的に製造する半溶融金属の製造方法に関する。
を防止しつつ、微細な結晶粒を有する半溶融金属を連続
的に製造する半溶融金属の製造方法に関する。
[従来の技術]
一般に、溶融金属を原料として一次製品を製造する場合
は、溶融金属を鋳型内に鋳込み、鋳塊又は鋳片等を形成
し、その後、これを熱間加工及び冷間加工する。このよ
うな製造プロセスによれば、中間工程における熱エネル
ギ及び資源の損失が大きく、特に、製品が大型化又は多
量化した場合に、製造コストが大幅に上昇する。
は、溶融金属を鋳型内に鋳込み、鋳塊又は鋳片等を形成
し、その後、これを熱間加工及び冷間加工する。このよ
うな製造プロセスによれば、中間工程における熱エネル
ギ及び資源の損失が大きく、特に、製品が大型化又は多
量化した場合に、製造コストが大幅に上昇する。
近時、省エネルギ及び省資源を目的として、一つの工程
で溶融金属から一次製品をつくりだす半溶融加工プロセ
スが開発実用化されつつある。所謂、半溶融加工プロセ
スとは、鋳造工程及び熱間加工工程を複合化させたもの
をいい、中間工程を経由することなく、溶融金属から一
次製品を直接製造する方法をいう。すなわち、溶融金属
を所定温度域に冷却し、液相中に微細な固相を所定の割
合いで晶出させ、固液共存状態の半溶融金属とし、次い
で、これを加工装置に供給し、半溶融状態で成形加工し
て可能な限り最終製品に近い形状の一次製品を直接つく
りだす。
で溶融金属から一次製品をつくりだす半溶融加工プロセ
スが開発実用化されつつある。所謂、半溶融加工プロセ
スとは、鋳造工程及び熱間加工工程を複合化させたもの
をいい、中間工程を経由することなく、溶融金属から一
次製品を直接製造する方法をいう。すなわち、溶融金属
を所定温度域に冷却し、液相中に微細な固相を所定の割
合いで晶出させ、固液共存状態の半溶融金属とし、次い
で、これを加工装置に供給し、半溶融状態で成形加工し
て可能な限り最終製品に近い形状の一次製品を直接つく
りだす。
従来、半溶融金属の製造方法として、特開昭51−90
04及び特開昭55−73445が知られている。これ
らの先行技術においては、水冷用冷却管で巻回された耐
火物るつぼに過熱状態の溶融金属を装入し、これを固液
共存温度域に冷却して液相中に固相を晶出させ、半溶融
状態とする一方、撹゛伴棒をるつぼ内に挿入して軸中心
に回転させ、溶融金属を撹伴する。半溶融状態の溶湯を
機械的に撹伴すると、粗大化した固相、特に樹脂状品が
分断されて微細化する。このように、るつぼ内にて溶湯
を強制撹拌しつつ、これを鍛造装置等の加工機に直接供
給し、加工成形する。
04及び特開昭55−73445が知られている。これ
らの先行技術においては、水冷用冷却管で巻回された耐
火物るつぼに過熱状態の溶融金属を装入し、これを固液
共存温度域に冷却して液相中に固相を晶出させ、半溶融
状態とする一方、撹゛伴棒をるつぼ内に挿入して軸中心
に回転させ、溶融金属を撹伴する。半溶融状態の溶湯を
機械的に撹伴すると、粗大化した固相、特に樹脂状品が
分断されて微細化する。このように、るつぼ内にて溶湯
を強制撹拌しつつ、これを鍛造装置等の加工機に直接供
給し、加工成形する。
このような半溶融加工プロセスによれば、省資源・省エ
ネルギを達成することができると共に、一般的に、粗大
樹脂状品の発達が抑制され、微細な組織が得られる。ま
た、鋳造工程を省略して直接加工成形するので、内部割
れ及び偏析等の鋳造欠陥のない均一な組織が得られる。
ネルギを達成することができると共に、一般的に、粗大
樹脂状品の発達が抑制され、微細な組織が得られる。ま
た、鋳造工程を省略して直接加工成形するので、内部割
れ及び偏析等の鋳造欠陥のない均一な組織が得られる。
[発明が解決しようとする課題]
半溶融加工プロセスにおいて、製品に実質的に欠陥がな
く、微細で均一な組織を得るためには、加工時における
固相の初晶粒径が100ミクロン以下にあることが要求
される。
く、微細で均一な組織を得るためには、加工時における
固相の初晶粒径が100ミクロン以下にあることが要求
される。
しかしながら、従来の加工プロセスにおける半溶融金属
の製造方法においては、成長粗大化した樹脂状品を10
0ミクロン以下のサイズに分断するには、撹拌棒の回転
数を1500 rpa+以上にする必要があるが、撹拌
棒を高速回転させると、装置の可動部分の負荷が増大す
ると共に、装置の振動が増大して不安定になる。このた
め、装置の改良が種々試みられているが、高温流体を高
精度に処理することから、撹拌棒回転数を150Orp
m以上とすることは実用的な見地から非常に困難である
。
の製造方法においては、成長粗大化した樹脂状品を10
0ミクロン以下のサイズに分断するには、撹拌棒の回転
数を1500 rpa+以上にする必要があるが、撹拌
棒を高速回転させると、装置の可動部分の負荷が増大す
ると共に、装置の振動が増大して不安定になる。このた
め、装置の改良が種々試みられているが、高温流体を高
精度に処理することから、撹拌棒回転数を150Orp
m以上とすることは実用的な見地から非常に困難である
。
この発明は、かかる事情に鑑みてなされたものであって
、撹拌棒を高速回転させることなく、すなわち装置の可
動部分の負荷を増大させることなく、半溶融金属の結晶
粒粗大化を防止することができる半溶融金属の製造方法
を提供することを目的とする。
、撹拌棒を高速回転させることなく、すなわち装置の可
動部分の負荷を増大させることなく、半溶融金属の結晶
粒粗大化を防止することができる半溶融金属の製造方法
を提供することを目的とする。
[課題を解決するための手段]
この発明に係る半溶融金属の製造方法は、良導体からな
る溶湯を、溶湯容器内にて冷却して液相中に固相が混在
する半溶融状態とし、これを機械的に撹伴する半溶融金
属の製造方法において、前記溶湯容器内に存在する半溶
融状態の溶湯に、所定電流密度の電流を間欠的に印加す
ることを特徴とする。この場合に、印加電流の電流密度
を100A/cd以上とすることが好ましい。
る溶湯を、溶湯容器内にて冷却して液相中に固相が混在
する半溶融状態とし、これを機械的に撹伴する半溶融金
属の製造方法において、前記溶湯容器内に存在する半溶
融状態の溶湯に、所定電流密度の電流を間欠的に印加す
ることを特徴とする。この場合に、印加電流の電流密度
を100A/cd以上とすることが好ましい。
[作用]
この発明に係る半溶融金属の製造方法においては、過熱
状態にある良導体溶湯を溶湯容器に収容し、これを冷却
して液相中に固相が混在する半溶融状態とする。すなわ
ち、過熱溶湯を液相線及び固相線に挟まれた温度領域の
適正温度に冷却すると、樹脂状品が晶出成長し、これが
粗大化するが、撹拌手段により溶湯を機械的に撹伴する
と共に、溶湯に電流を間欠的に印加し、溶湯を撹伴する
力を補助する。すなわち、通電時にはピンチ効果による
力が溶湯に作用し、非通電時には力が作用しないので、
溶湯が周期的に揺動し、機械的撹拌との相乗作用により
粗大樹脂状晶が分断され、微細化する。このため、撹拌
手段による機械的撹拌が軽減される。
状態にある良導体溶湯を溶湯容器に収容し、これを冷却
して液相中に固相が混在する半溶融状態とする。すなわ
ち、過熱溶湯を液相線及び固相線に挟まれた温度領域の
適正温度に冷却すると、樹脂状品が晶出成長し、これが
粗大化するが、撹拌手段により溶湯を機械的に撹伴する
と共に、溶湯に電流を間欠的に印加し、溶湯を撹伴する
力を補助する。すなわち、通電時にはピンチ効果による
力が溶湯に作用し、非通電時には力が作用しないので、
溶湯が周期的に揺動し、機械的撹拌との相乗作用により
粗大樹脂状晶が分断され、微細化する。このため、撹拌
手段による機械的撹拌が軽減される。
[実施例]
以下、添附の図面を参照して、この発明の実施例につい
て具体的に説明する。
て具体的に説明する。
第1図は、この発明の実施例に係る半溶融金属の製造方
法に使用された製造装置の一例を模式的に示す図である
。″所定容量のるっぽ1oに溶融金属5が収容されてい
る。るつぼの本体11は、セラミック系耐火物でつくら
れており、その上部側壁に溶湯供給用の注入管12を有
すると共に、その底部に吐出口13が形成されている。
法に使用された製造装置の一例を模式的に示す図である
。″所定容量のるっぽ1oに溶融金属5が収容されてい
る。るつぼの本体11は、セラミック系耐火物でつくら
れており、その上部側壁に溶湯供給用の注入管12を有
すると共に、その底部に吐出口13が形成されている。
冷却管15が本体11の外周にコイル状に巻回され、本
体11が水冷されるようになっている。この場合に、冷
却管15は、本体11の下部から溶融金属5の場面レベ
ル以上までの領域に巻回されていることが好ましい。蓋
16が本体11の開口に被せられ、蓋16の孔を介して
撹拌棒18がるつぼ内に挿入され、その下部が溶融金属
5に浸漬されている。撹拌棒18の下端は吐出口13に
嵌合するように形成されている。また、撹拌棒18の上
部は、回転装置(図示せず)及び昇降装置(図示せず)
に連結されている。るつぼ本体の底部吐出口13は、加
工機40のキャビティに連通しており、これを介して半
溶融状態の溶湯がるつぼ10から加工機40に供給され
るようになっている。
体11が水冷されるようになっている。この場合に、冷
却管15は、本体11の下部から溶融金属5の場面レベ
ル以上までの領域に巻回されていることが好ましい。蓋
16が本体11の開口に被せられ、蓋16の孔を介して
撹拌棒18がるつぼ内に挿入され、その下部が溶融金属
5に浸漬されている。撹拌棒18の下端は吐出口13に
嵌合するように形成されている。また、撹拌棒18の上
部は、回転装置(図示せず)及び昇降装置(図示せず)
に連結されている。るつぼ本体の底部吐出口13は、加
工機40のキャビティに連通しており、これを介して半
溶融状態の溶湯がるつぼ10から加工機40に供給され
るようになっている。
1対の電極22が、蓋16を貫通してるつぼ10内に挿
入され、それぞれの先端が溶湯5に浸漬されており、溶
湯5に電流が印加されるようになっている。これら1対
の電極22は、コンデンサ24を有する回路に接続され
、回路の電源30から所定の電流が供給されると溶湯を
介して電極22.22間に電流が流れるようになってい
る。
入され、それぞれの先端が溶湯5に浸漬されており、溶
湯5に電流が印加されるようになっている。これら1対
の電極22は、コンデンサ24を有する回路に接続され
、回路の電源30から所定の電流が供給されると溶湯を
介して電極22.22間に電流が流れるようになってい
る。
すなわち、コンデンサ24及びスイッチ26が直列に接
続され、整流器28.交流電源30並びに抵抗32で構
成された直列回路がコンデンサ24に対して並列に接続
されている。スイッチ26は、′自動的にON・OFF
するように構成されている。
続され、整流器28.交流電源30並びに抵抗32で構
成された直列回路がコンデンサ24に対して並列に接続
されている。スイッチ26は、′自動的にON・OFF
するように構成されている。
この場合に、溶融金属5が非鉄系の溶湯である場合は、
撹拌棒18にハイアルミナ等の高融点耐火物を用い、電
極22に黒鉛(C)、炭化珪素(S i C)若しくは
炭化タングステン(WC)を用いることが好ましい。一
方、溶融金属5が鉄系の溶湯である場合は、撹拌棒18
にハイアルミナ以外の高融点耐火物を用い、電極22に
マグネシア・カーボン(M g O−C)又はタングス
テン(W)を用いることが好ましい。また、この場合に
、コンデンサ24の容量は、例えば1oooμFである
。
撹拌棒18にハイアルミナ等の高融点耐火物を用い、電
極22に黒鉛(C)、炭化珪素(S i C)若しくは
炭化タングステン(WC)を用いることが好ましい。一
方、溶融金属5が鉄系の溶湯である場合は、撹拌棒18
にハイアルミナ以外の高融点耐火物を用い、電極22に
マグネシア・カーボン(M g O−C)又はタングス
テン(W)を用いることが好ましい。また、この場合に
、コンデンサ24の容量は、例えば1oooμFである
。
次に、上記装置を用いて、アルミニウムー銅(A、i’
−24Cu)合金の鍛造品を製造する場合について説明
する。
−24Cu)合金の鍛造品を製造する場合について説明
する。
溶湯注入前において、るつぼ本体11を所定温度に予熱
すると共に、撹拌棒18の下端を吐出口13に嵌合させ
、溶湯5が鍛造用加工機40の側へ流出しないようにし
ておく。過熱状態の溶融アルミニウムー銅(A)−24
Cu)合金を、注入管12を介してるつぼ10に注入す
る。注入溶湯を、合金の液相線より低く、固相線より高
い温度領域の適正温度に水冷し、液相中に所定瓜の固相
(主として樹脂状晶)を晶出させ、半溶融状態とする。
すると共に、撹拌棒18の下端を吐出口13に嵌合させ
、溶湯5が鍛造用加工機40の側へ流出しないようにし
ておく。過熱状態の溶融アルミニウムー銅(A)−24
Cu)合金を、注入管12を介してるつぼ10に注入す
る。注入溶湯を、合金の液相線より低く、固相線より高
い温度領域の適正温度に水冷し、液相中に所定瓜の固相
(主として樹脂状晶)を晶出させ、半溶融状態とする。
撹拌棒】8を約80Orpmで回転させ、溶湯5を撹拌
する。この撹拌により粗大樹脂状品が分断されて微細化
する。すなわち、溶湯5をるつぼ内において長時間保持
する場合に、樹脂状品が大きく成長し、約200ミクロ
ンを超えるサイズに粗大化するが、これを機械的撹拌に
より分断・微細化する。この場合に、撹拌棒18による
機械的撹拌には限界があり、goo rpi程度の回転
数では平均初晶粒子径を約100ミクロン以下のサイズ
にすることができない。
する。この撹拌により粗大樹脂状品が分断されて微細化
する。すなわち、溶湯5をるつぼ内において長時間保持
する場合に、樹脂状品が大きく成長し、約200ミクロ
ンを超えるサイズに粗大化するが、これを機械的撹拌に
より分断・微細化する。この場合に、撹拌棒18による
機械的撹拌には限界があり、goo rpi程度の回転
数では平均初晶粒子径を約100ミクロン以下のサイズ
にすることができない。
しかしながら、この実施例のるつぼ10においては、電
極22を介して溶湯5に電流を間欠的に印加し、所謂ピ
ンチ効果により溶湯を周期的に揺動させ、撹拌棒による
機械的撹拌力を補うので、樹脂状品が更に微細化する。
極22を介して溶湯5に電流を間欠的に印加し、所謂ピ
ンチ効果により溶湯を周期的に揺動させ、撹拌棒による
機械的撹拌力を補うので、樹脂状品が更に微細化する。
すなわち、スイッチ26を開の状態でコンデンサ24に
約4000ボルトの電圧をかけて充電し、次いで、スイ
ッチ26を閉じてコンデンサ24に蓄えられた電気エネ
ルギを電極22に放出すると、溶湯中を平行電流が流れ
、この平行電流が相互に引合うことにより生じる力、所
謂ピンチ効果による力(以下、ピンチ力という)が発生
する。ピンチ力Fが溶湯に作用すると、るつぼ10内の
溶湯が揺動し、粗大樹脂状品が分断される。このピンチ
力Fは、電流密度■の二乗に比例して増大するので、電
流密度を高くするに従って樹脂状品の分断効果が高まる
。この場合に、スイッチ26を、例えば、約10秒間隔
で0N−OFFさせ、コンデンサ24に蓄えられた電気
エネルギを周期的に放出し、電極22を介して溶湯5に
間欠的に電流を印加する。また、この場合に、印加電流
の電流密度を1平方センチメートル当り100アンペア
(A /d)以上とする。このようにして樹脂状晶の平
均初晶粒子径が100ミクロン以下にすると共に、半溶
融金属の固相率を約o、eに調整する。
約4000ボルトの電圧をかけて充電し、次いで、スイ
ッチ26を閉じてコンデンサ24に蓄えられた電気エネ
ルギを電極22に放出すると、溶湯中を平行電流が流れ
、この平行電流が相互に引合うことにより生じる力、所
謂ピンチ効果による力(以下、ピンチ力という)が発生
する。ピンチ力Fが溶湯に作用すると、るつぼ10内の
溶湯が揺動し、粗大樹脂状品が分断される。このピンチ
力Fは、電流密度■の二乗に比例して増大するので、電
流密度を高くするに従って樹脂状品の分断効果が高まる
。この場合に、スイッチ26を、例えば、約10秒間隔
で0N−OFFさせ、コンデンサ24に蓄えられた電気
エネルギを周期的に放出し、電極22を介して溶湯5に
間欠的に電流を印加する。また、この場合に、印加電流
の電流密度を1平方センチメートル当り100アンペア
(A /d)以上とする。このようにして樹脂状晶の平
均初晶粒子径が100ミクロン以下にすると共に、半溶
融金属の固相率を約o、eに調整する。
次いで、撹拌棒18を若干引き上げ、吐出口13を開け
、半溶融状態の金属溶湯を加工機40に供給する。この
場合に、図示しない圧送装置によりるつぼ10の内圧を
高め、溶湯5を圧送することが好ましい。このようにし
て微細な固相を有する半溶融金属を、鍛造用加工機40
のキャビティに圧入し、所定形状の製品に成形する。
、半溶融状態の金属溶湯を加工機40に供給する。この
場合に、図示しない圧送装置によりるつぼ10の内圧を
高め、溶湯5を圧送することが好ましい。このようにし
て微細な固相を有する半溶融金属を、鍛造用加工機40
のキャビティに圧入し、所定形状の製品に成形する。
第2図は、横軸に電流密度■をとり、縦軸にピンチ力F
をとって、両者の関係を曲線Aを用いて示すグラフ図で
ある。図から明らかなように、電流密度Iが増加するに
従って、ピンチ力Fが急速に増大する。
をとって、両者の関係を曲線Aを用いて示すグラフ図で
ある。図から明らかなように、電流密度Iが増加するに
従って、ピンチ力Fが急速に増大する。
ところで、発明者等は、鉄系及び非鉄系の各種合金の粗
大樹脂状品を分断するに必要なピンチ力Fについて検討
した結果、合金の種類に実質的に関係なく、Fが0.2
ニユ一トン以上の条件で200ミクロンを超える粗大樹
脂状品を分断できるという知見を得た。これは、換言す
ると、印加電流の電流密度が100(A/cII2)以
上の値に相当するものである。因みに、分断に必要な最
小限の力Fが合金の種類に拘らずほぼ一定の値となる理
由は、固液共存の不安定状態におい゛ては成分の相違が
結晶の結合力に影響する程度が低く、結晶に僅かなエネ
ルギを加えるだけでその連鎖が崩壊するためと考えられ
ている。
大樹脂状品を分断するに必要なピンチ力Fについて検討
した結果、合金の種類に実質的に関係なく、Fが0.2
ニユ一トン以上の条件で200ミクロンを超える粗大樹
脂状品を分断できるという知見を得た。これは、換言す
ると、印加電流の電流密度が100(A/cII2)以
上の値に相当するものである。因みに、分断に必要な最
小限の力Fが合金の種類に拘らずほぼ一定の値となる理
由は、固液共存の不安定状態におい゛ては成分の相違が
結晶の結合力に影響する程度が低く、結晶に僅かなエネ
ルギを加えるだけでその連鎖が崩壊するためと考えられ
ている。
次に、第3図を参照しつつ実施例の効果について説明す
る。
る。
第3図は、横軸に撹拌棒の回転数Nをとり、縦軸に固相
の平均初晶粒子径dをとって、固相率0.6の条件で回
転数Nを種々変化させたときにおいて、本発明の方法及
び従来の方法のそれぞれについて調査した結果を示すグ
ラフ図である。図中、白丸は従来の製造方法おける測定
結果をプロットしたものであり、曲線Bはこれらを相互
に結んだものである。また、図中、黒丸は本発明の製造
方法における測定結果をプロットしたものであり、曲線
Cはこれらを相互に結んだものである。図から明らかな
ように、平均初晶粒子径dを100ミクロン以下にする
には、従来の方法では回転数Nを約1700 rpo+
以上とする必要があるが、本発明の方法では約500
rpI1以上であれば十分である。例えば、回転数Nを
800 rpmとすると、従来の方法では平均初晶粒子
径dが400ミクロン以上にも達し、著しく粗大化する
が、本発明の方法によれば平均初晶粒子径dを100ミ
クロン以下に維持することができた。
の平均初晶粒子径dをとって、固相率0.6の条件で回
転数Nを種々変化させたときにおいて、本発明の方法及
び従来の方法のそれぞれについて調査した結果を示すグ
ラフ図である。図中、白丸は従来の製造方法おける測定
結果をプロットしたものであり、曲線Bはこれらを相互
に結んだものである。また、図中、黒丸は本発明の製造
方法における測定結果をプロットしたものであり、曲線
Cはこれらを相互に結んだものである。図から明らかな
ように、平均初晶粒子径dを100ミクロン以下にする
には、従来の方法では回転数Nを約1700 rpo+
以上とする必要があるが、本発明の方法では約500
rpI1以上であれば十分である。例えば、回転数Nを
800 rpmとすると、従来の方法では平均初晶粒子
径dが400ミクロン以上にも達し、著しく粗大化する
が、本発明の方法によれば平均初晶粒子径dを100ミ
クロン以下に維持することができた。
なお、上記実施例では、アルミニウム−24銅合金の鍛
造品を製造する場合について説明したが、これに限られ
ることなく、この発明により他の非鉄合金又は鉄系合金
からなるダイキャスト製品又は圧延製品を製造すること
もできる。
造品を製造する場合について説明したが、これに限られ
ることなく、この発明により他の非鉄合金又は鉄系合金
からなるダイキャスト製品又は圧延製品を製造すること
もできる。
また、上記実施例では、コンデンサ及び0N−OFFス
イッチを有する回路を用いて溶湯に間欠的に電流を印加
する場合について説明したが、これに限られることなく
、他の回路を用いることも可能である。例えば、回路の
抵抗を小さくすることにより、コンデンサの放電間隔を
短縮することも可能である。
イッチを有する回路を用いて溶湯に間欠的に電流を印加
する場合について説明したが、これに限られることなく
、他の回路を用いることも可能である。例えば、回路の
抵抗を小さくすることにより、コンデンサの放電間隔を
短縮することも可能である。
[発明の効果]
この発明によれば、撹拌棒を高速回転させることなく、
すなわち装置の可動部分の負荷を増大させることなく、
半溶融金属の結晶粒粗大化を有効に防止することができ
る。このため、半溶融加工プロセスの特徴を損うことな
く、製造装置を大型化することが可能になる。
すなわち装置の可動部分の負荷を増大させることなく、
半溶融金属の結晶粒粗大化を有効に防止することができ
る。このため、半溶融加工プロセスの特徴を損うことな
く、製造装置を大型化することが可能になる。
第1図はこの発明の実施例に係る半溶融金属の製造方法
に使用された装置を模式的に示す断面図、第2図は電流
密度とピンチ力との関係を示すグラフ図、第3図は従来
の方法とこの発明の方法とを比較してこの発明の効果に
ついて説明するためのグラフ図である。 5;半溶融金属、10:るつぼ、12;注入管、13;
吐出口、15;冷却管;18;撹拌棒、22;電極、2
4;コンデンサ、26;スイッチ、28;整流器、30
;電源、32;抵抗、40、加工機 出願人代理人 弁理士 鈴江武彦 第1図 tyrLIEILl(Alcrt?> 第 2 図 撹拝秤の回転衣N (rpn) 第3図
に使用された装置を模式的に示す断面図、第2図は電流
密度とピンチ力との関係を示すグラフ図、第3図は従来
の方法とこの発明の方法とを比較してこの発明の効果に
ついて説明するためのグラフ図である。 5;半溶融金属、10:るつぼ、12;注入管、13;
吐出口、15;冷却管;18;撹拌棒、22;電極、2
4;コンデンサ、26;スイッチ、28;整流器、30
;電源、32;抵抗、40、加工機 出願人代理人 弁理士 鈴江武彦 第1図 tyrLIEILl(Alcrt?> 第 2 図 撹拝秤の回転衣N (rpn) 第3図
Claims (2)
- (1)良導体からなる溶湯を、溶湯容器内にて冷却して
液相中に固相が混在する半溶融状態とし、これを機械的
に撹拌する半溶融金属の製造方法において、前記溶湯容
器内に存在する半溶融状態の溶湯に、所定電流密度の電
流を間欠的に印加することを特徴とする半溶融金属の製
造方法。 - (2)印加電流の電流密度を100A/cm^2以上と
することを特徴とする請求項1記載の半溶融金属の製造
方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13294188A JPH01306047A (ja) | 1988-05-31 | 1988-05-31 | 半溶融金属の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13294188A JPH01306047A (ja) | 1988-05-31 | 1988-05-31 | 半溶融金属の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01306047A true JPH01306047A (ja) | 1989-12-11 |
Family
ID=15093077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13294188A Pending JPH01306047A (ja) | 1988-05-31 | 1988-05-31 | 半溶融金属の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01306047A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6308768B1 (en) * | 1996-10-04 | 2001-10-30 | Semi-Solid Technologies, Inc. | Apparatus and method for semi-solid material production |
EP1344589A2 (de) * | 2002-03-13 | 2003-09-17 | Evgenij Dr. Sterling | Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang |
CN108380851A (zh) * | 2018-01-24 | 2018-08-10 | 重庆文理学院 | 一种多场耦合细化金属凝固组织的装置及其细化工艺 |
-
1988
- 1988-05-31 JP JP13294188A patent/JPH01306047A/ja active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6308768B1 (en) * | 1996-10-04 | 2001-10-30 | Semi-Solid Technologies, Inc. | Apparatus and method for semi-solid material production |
EP1344589A2 (de) * | 2002-03-13 | 2003-09-17 | Evgenij Dr. Sterling | Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang |
JP2004025302A (ja) * | 2002-03-13 | 2004-01-29 | Evgenij Sterling | 鋳造過程用に合金溶湯を調製するための方法および装置 |
EP1344589A3 (de) * | 2002-03-13 | 2005-05-18 | Evgenij Dr. Sterling | Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang |
JP4541650B2 (ja) * | 2002-03-13 | 2010-09-08 | スターリング エフゲニー | 鋳造過程用に合金溶湯を調製するための方法および装置 |
KR100995490B1 (ko) * | 2002-03-13 | 2010-11-19 | 에브게니즈 슈테링 | 주조과정을 위한 합금 용융물 처리 방법 및 장치 |
CN108380851A (zh) * | 2018-01-24 | 2018-08-10 | 重庆文理学院 | 一种多场耦合细化金属凝固组织的装置及其细化工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3650311A (en) | Method for homogeneous refining and continuously casting metals and alloys | |
JPH0366985B2 (ja) | ||
JP2007046071A (ja) | Mg合金及びその鋳造又は鍛造方法 | |
CN105803257B (zh) | 一种提高TiAl‑Nb合金液态流动性的方法 | |
JP3949208B2 (ja) | 連続鋳造体を製造するための金属の再溶解方法およびそれに用いる装置 | |
JPH06142870A (ja) | 高機械的性能の部品を半流動体金属合金の射出によって製造するダイカスト方法 | |
JPH01306047A (ja) | 半溶融金属の製造方法 | |
JPH09137239A (ja) | 半溶融金属の成形方法 | |
CN111057911A (zh) | 一种Al-Bi偏晶合金及其制备方法 | |
US4167963A (en) | Method and apparatus for feeding molten metal to an ingot during solidification | |
JP3246358B2 (ja) | 半溶融金属の成形方法 | |
JPH01306046A (ja) | 半溶融金属の製造方法 | |
Langenberg et al. | Grain refinement by solidification in a moving electromagnetic field | |
JP3208941B2 (ja) | 高純度アルミニウム合金の連続鋳造方法 | |
JP3783275B2 (ja) | 半溶融金属の成形方法 | |
JPH02311394A (ja) | Wターゲット材 | |
JP3473214B2 (ja) | 半溶融金属の成形方法 | |
JPH10128516A (ja) | 半溶融金属の成形方法 | |
JPS6333167A (ja) | 滴下式鋳造方法 | |
US4588019A (en) | Methods of controlling solidification of metal baths | |
JP2003221630A (ja) | チタンインゴットの製造方法 | |
JP2975189B2 (ja) | アルミ合金のダイカスト法 | |
US20040168788A1 (en) | Riser(s) size reduction and/or metal quality improving in gravity casting of shaped products by moving electric arc | |
JPH08120366A (ja) | チタン鋳塊の連続鋳造方法 | |
JPH0987771A (ja) | 半溶融Al−Mg合金の製造方法 |