EP1239944A1 - Procede et dispositif pour produire un melange homogene constitue d'un hydrocarbure aromatique a l'etat de vapeur et d'un gaz contenant de l'oxygene - Google Patents

Procede et dispositif pour produire un melange homogene constitue d'un hydrocarbure aromatique a l'etat de vapeur et d'un gaz contenant de l'oxygene

Info

Publication number
EP1239944A1
EP1239944A1 EP00985245A EP00985245A EP1239944A1 EP 1239944 A1 EP1239944 A1 EP 1239944A1 EP 00985245 A EP00985245 A EP 00985245A EP 00985245 A EP00985245 A EP 00985245A EP 1239944 A1 EP1239944 A1 EP 1239944A1
Authority
EP
European Patent Office
Prior art keywords
aromatic hydrocarbon
oxygen
xylene
gas
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00985245A
Other languages
German (de)
English (en)
Other versions
EP1239944B1 (fr
Inventor
Ulrich Block
Rolf Seubert
Bernhard Ulrich
Helmut Wunschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1239944A1 publication Critical patent/EP1239944A1/fr
Application granted granted Critical
Publication of EP1239944B1 publication Critical patent/EP1239944B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/916Turbulent flow, i.e. every point of the flow moves in a random direction and intermixes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions

Definitions

  • the invention relates to a method and a device for producing a homogeneous mixture of a vaporous aromatic hydrocarbon and an oxygen-containing gas for catalytic gas phase reactions, in particular a homogeneous
  • Phthalic anhydride (PA) is an important intermediate for the production of synthetic resins 15, phthalate,
  • PSA Phthalocyanine dyes and other fine chemicals.
  • PSA is mainly produced from o-xylene and mainly by gas phase oxidation of o-xylene with air as an oxidant.
  • plants for carrying out such a PSA manufacturing process consist essentially of the functional units for the production of the o-xylene vapor-air mixture, the reactor for the implementation of the o-xylene vapor-air mixture and a device for PSA separation and processing.
  • reaction by catalytic gas phase oxidation mostly takes place on V 2 Os-containing catalysts.
  • o-xylene is evaporated, mixed with an excess of air and passed at 340 ° C to 440 ° C over the catalyst in the tubes of a tube bundle reactor.
  • the catalyst consists, for example, of a mixture of V 2 0 5 and Ti0 2 with promoters on ceramic bodies, such as porcelain or SiC balls or rings, for example 6 x 6 mm in size.
  • Ceramic bodies such as porcelain or SiC balls or rings, for example 6 x 6 mm in size.
  • Large reactors have 10,000 to 40,000 tubes in the tube bundle.
  • reaction conditions in the tubes Due to inhomogeneities in the loading, the reaction conditions in the tubes also differ. This results in an increased amount of by-products which reduce the yields and which have to be separated from the PSA and disposed of in later cleaning stages. 0
  • DE-A 1 793 453 discloses a process for producing a homogeneous mixture of vaporous o-xylene and air for the catalytic oxidation to phthalic anhydride.
  • an o-xylene stream is sprayed into drops with a diameter of less than 1 mm, for example in a size of predominantly less than 0.3 mm, and introduced into an air stream preheated above the boiling point of o-xylene.
  • This airflow is turbulent; a Reynolds number above 200,000 is recommended.
  • the dwell time from the o-xylene injection to the reactor must be at least 0.2 seconds in order to obtain a homogeneous gas mixture and thus an even exposure to all tubes.
  • the raw materials can be more or less contaminated.
  • the air can contain, inter alia, N0 X , H 2 S, sulfur oxides such as S0 2 , NH 3 and their salts, for example with C0 2 , which can lead to narrowing of one or more nozzles.
  • Corrosion particles can also change the drop size and shape of the atomized o-xylene jet. Similar effects arise from erosion of the nozzles in long-term operation.
  • the o-xylene can also contain m- and p-xylene, toluene, ethylbenzene, isopropylbenzene, nonane and small amounts of styrene. Such compounds can affect the surface tension of the Q o-xylene.
  • Drops can occur that fly farther than the aforementioned drops with a size of, for example, predominantly below 0.3 mm. These can wet the wall of the reaction tube and form a liquid film there. Another difficulty is that it is not possible in practice to install the nozzles used to atomize the o-xylene stream in such a way that no drops of the atomized o-xylene stream come into contact with the wall of the guide tube.
  • the method according to DE-A 1 793 453 can also lead to unintentional, negatively acting changes in the set parameters, such as pressure and temperature and the amount of air.
  • admixtures containing air and o-xylene can be added and the drops of the atomized o-xylene stream can touch the pipe wall. In this respect, the above-mentioned method is still in need of improvement.
  • a vaporous aromatic hydrocarbon such as o-xylene and / or naphthalene
  • an oxygen-containing gas in particular air
  • the invention solves the above-mentioned problems in that, in a generic method, the atomization of the liquid aromatic hydrocarbon takes place by using a nozzle to form a hollow atomizing cone, preferably a swirl nozzle.
  • the atomizing hollow cone can initially be a coherent film made of the liquid hydrocarbon, which at greater distance from the swirl nozzle tears into small pieces that contract to form individual drops with a diameter of less than 1 mm due to interfacial forces.
  • the present invention therefore relates to a method for
  • a homogeneous mixture of a vaporous aromatic hydrocarbon, such as o-xylene and / or naphthalene and an oxygen-containing gas, such as air, for catalytic gas phase reactions whereby the liquid aromatic hydrocarbon is atomized into drops with a diameter of less than 1 mm and in an oxygen-containing gas stream preheated above the boiling point of the aromatic hydrocarbon is injected, the process being characterized in that the liquid aromatic hydrocarbon is atomized by means of nozzles to form a hollow cone, preferably by means of swirl nozzles.
  • the method according to the invention enables the generation of a very homogeneous, streak-free mixture of gaseous oxygen, preferably in air or another gas containing oxygen, and a hydrocarbon vapor.
  • the process according to the invention is preferably used in the production of carboxylic acids or carboxylic anhydrides by catalytic gas-phase oxidation of aromatic hydrocarbons, such as xylenes, in particular o-xylene and / or naphthalene, in fixed bed reactors.
  • aromatic hydrocarbons such as xylenes, in particular o-xylene and / or naphthalene
  • PSA phthalic anhydride
  • the hollow atomizing cone preferably has an opening angle of 30 ° to 70 °.
  • the atomizing hollow cone particularly preferably has an opening angle of approximately 60 °.
  • the axis of the hollow atomizing cone lies in the direction of flow of the oxygen-containing gas, that is to say approximately the air, but can deviate from this by up to 30 °.
  • a further measure for this can in particular be to maintain a certain distance, approximately one third of the pipe radius, from the wall. It is preferable to use several nozzles, approximately 2 to 6, preferably 4 to 6, at approximately equal intervals.
  • swirl nozzles are preferably used to atomize the liquid hydrocarbon.
  • These swirl nozzles which are also referred to as hollow cone nozzles, preferably have a guide body with oblique inflow surfaces in front of the outlet opening, which impart swirl or rotation about the flow axis to the liquid to be atomized.
  • Swirl nozzles of this type are known for other uses, such as rapid impulse transmission in water jet pumps, injection condensers, etc. (cf. Grassmann "Physical principles of process engineering", Verlag Sauerators (1970), pages 355 and 805).
  • hollow cone nozzles are particularly preferred in the method according to the invention, full cone nozzles or slot nozzles can also be used in other embodiments of the invention.
  • the liquid hydrocarbon stream is atomized into drops with a diameter of less than 1 mm, preferably less than 0.8 mm. Most preferably, the liquid stream is atomized into drops of 0.02 to 0.2 mm.
  • the swirl nozzles used to form the hollow atomizing cone with an opening angle of 30 ° to 70 ° are advantageously in ⁇
  • the nozzle outlet openings are directed in the direction of the gas flow.
  • the axis of the hollow cone can deviate from the direction of flow of the gas by up to 30 °. It can thereby be achieved that fewer drops of the hollow cone touch the wall.
  • Axial hollow cone nozzles of the type KS 1 (Lechler, Metzingen, Germany) are particularly suitable for the purposes of the method according to the invention. Such nozzles enable generation
  • drops of 0.8 to 1 mm can fly 50 to 100 cm until they evaporate completely, touching and wetting the wall.
  • thermoplates of this type are used in Germany, for example, produced by the companies BUCO, Geesthacht or DEG, Gelsenmün. Droplets of hydrocarbon that hit the heated pipe cannot deposit as a liquid film, but are evaporated immediately. This finally creates the desired mixture of hydrocarbon vapor and air, for example.
  • the pipe gap of the double jacket pipe can be heated with high pressure steam, preferably with water steam of approx. 20 bar with a temperature of 214 ° C.
  • the above-mentioned thermoplates can have a particularly narrow pipe gap.
  • Thermo sheet metal tubes are relatively simple and therefore more cost-effective. Intensive heating can prevent cold spots in the thermo sheet. 5
  • the steam-air mixture is then passed through a mixing device in accordance with a further advantageous process variant.
  • Static mixers are preferably used as the mixing device. These are baffles attached in the flow-through tube, which divide the flow to be mixed several times and bring it back together, as a result of which the homogenization 5 takes place completely. Static mixers of this type are manufactured, for example, by Sulzer, Winterthur, Switzerland. Static mixers are also described in German patent applications DE 25 250 20 AI, DE 196 223 051 AI and DE 196 23 105 AI.
  • the present invention also relates to a device for producing a homogeneous mixture of a vaporous aromatic hydrocarbon and an oxygen-containing gas with gas channels for a preheated, oxygen-containing gas stream, an atomization device opening into the gas channels for a stream of a liquid aromatic hydrocarbon , which is characterized in that the atomizing device has swirl nozzles, and that the gas channels have walls, at least downstream of the swirl nozzles, which can be heated at least to the boiling point of the hydrocarbon.
  • the gas channels preferably comprise a heatable tube, in particular a double-jacket tube or a tube made of thermoplate.
  • a static mixer is particularly preferably arranged downstream of the swirl nozzles in the gas channels.
  • the temperature on the hot tube wall is set so that 5 to 50% by weight of the liquid hydrocarbon, in particular 5 to 40% by weight, particularly preferably 5 to 30% by weight, meet the tube wall and can be evaporated there, the exact Proportion depends on the contamination of the raw materials, the shape of the hollow cone and the change in the nozzle (erosion) during operation.
  • further functional units may be about connect for the production of PSA, for example, 0 t he reactor for reacting the o-xylene to PSA, and the device for PSA separation and PSA obtain pure, as known from the prior art are.
  • FIG. 10 In the figure of the drawing is a device 10 for generating a homogeneous mixture of vaporous o-xylene and / or
  • the device has gas channels 11 which bring a preheated air flow (symbolized by arrow 12 in the figure).
  • the gas channels 11 are designed as a tube in the example shown.
  • a 5 atomizing device 13 is provided in the tube 11, which consists of supply lines 14 for liquid o-xylene and swirl nozzles 15 arranged at the end of the lines.
  • the feed lines 14 are fed by a supply pipe (not shown) concentrically surrounding the pipe 11.
  • the swirl nozzles 15 produce a hollow cone 16 made of liquid o-xylene, which disintegrates into the finest drops with an average diameter between 0.02 and 0.2 mm.
  • a static mixer 17 is arranged in the tube 11, through which the steam / air mixture is passed. Downstream of the swirl nozzles 15, the tube 11 is designed as a heatable double-jacket tube 18. The tube is heated with steam to a temperature above the boiling point of o-xylene. Atomized o-xylene droplets falling on the
  • the tube 11 opens into a tube bundle reactor in which phthalic anhydride is produced by catalytic gas phase oxidation of the o-xylene.
  • the device for o-xylene evaporation in a plant for the production of PSA consisted of a vertical thermoplate with a diameter of 1200 mm.
  • the oxidizing air which had been preheated to 200 ° C. using a preheater, was passed through this to the reactor.
  • the pressure was approximately 1.5 bar absolute.
  • the air was charged with o-xylene with a load of 100 g per Nm 3 .
  • the air was sucked in from the environment without any special purification, only through an air filter.
  • the thermoplate was heated to 214 ° C with 20 bar steam.
  • the o-xylene was injected via 6 swirl nozzles, which were attached to a rim 600 mm in diameter and whose axis was pointing vertically upwards. These were axial hollow cone nozzles (KS 1 type 216.324 made of steel, Lechler company). The admission pressure was 8 bar. Static mixers were installed in the horizontal pipe section at a distance of 4.5 m behind the nozzles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Accessories For Mixers (AREA)
  • Hydrogen, Water And Hydrids (AREA)
EP00985245A 1999-12-23 2000-12-22 Procede et dispositif pour produire un melange homogene constitue d'un hydrocarbure aromatique a l'etat de vapeur et d'un gaz contenant de l'oxygene Expired - Lifetime EP1239944B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19962616A DE19962616A1 (de) 1999-12-23 1999-12-23 Verfahren und Vorrichtung zur Erzeugung eines homogenen Gemisches aus einem dampfförmigen aromatischen Kohlenwasserstoff und einem Sauerstoff enthaltenden Gas
DE19962616 1999-12-23
PCT/EP2000/013165 WO2001047622A1 (fr) 1999-12-23 2000-12-22 Procede et dispositif pour produire un melange homogene constitue d'un hydrocarbure aromatique a l'etat de vapeur et d'un gaz contenant de l'oxygene

Publications (2)

Publication Number Publication Date
EP1239944A1 true EP1239944A1 (fr) 2002-09-18
EP1239944B1 EP1239944B1 (fr) 2004-03-24

Family

ID=7934237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00985245A Expired - Lifetime EP1239944B1 (fr) 1999-12-23 2000-12-22 Procede et dispositif pour produire un melange homogene constitue d'un hydrocarbure aromatique a l'etat de vapeur et d'un gaz contenant de l'oxygene

Country Status (13)

Country Link
US (1) US20030013931A1 (fr)
EP (1) EP1239944B1 (fr)
JP (1) JP4669184B2 (fr)
KR (1) KR100655339B1 (fr)
CN (1) CN1174793C (fr)
AT (1) ATE262372T1 (fr)
AU (1) AU2172001A (fr)
DE (2) DE19962616A1 (fr)
ES (1) ES2218265T3 (fr)
MX (1) MXPA02005852A (fr)
MY (1) MY125936A (fr)
TW (1) TW581710B (fr)
WO (1) WO2001047622A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835443B1 (fr) * 2002-02-01 2004-03-05 Commissariat Energie Atomique Procede et dispositif de melange de gaz
DE102004052827B4 (de) * 2004-11-02 2010-05-06 Lurgi Gmbh Vorrichtung zur Erzeugung eines o-Xylol-Luft-Gemisches für die Phthalsäureanhydrid-Herstellung
DE102005030416B4 (de) * 2005-06-30 2007-06-21 Stockhausen Gmbh Anordnung und Verfahren zur Erwärmung und Begasung eines polymerisationsfähigen Stoffes sowie Vorrichtung und Verfahren zur Herstellung hochreiner (Meth)Acrylsäure
DE102005059971A1 (de) * 2005-12-15 2007-06-21 Fisia Babcock Environment Gmbh Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom, insbesondere zum Einbringen eines Reduktionsmittels in ein Stickoxide enthaltendes Rauchgas
DE102006004068A1 (de) * 2006-01-28 2007-08-09 Fisia Babcock Environment Gmbh Verfahren und Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom
GB0718995D0 (en) 2007-09-28 2007-11-07 Exxonmobil Chem Patents Inc Improved vaporisation in oxidation to phthalic anhydride
GB0718994D0 (en) * 2007-09-28 2007-11-07 Exxonmobil Chem Patents Inc Improved mixing in oxidation to phthalic anhydride
US8648007B2 (en) * 2008-04-22 2014-02-11 Fina Technology, Inc. Vaporization and transportation of alkali metal salts
CN103949171A (zh) * 2014-04-28 2014-07-30 德合南京智能技术有限公司 一种气体与溶液快速混合的方法及装置
EP2955219B1 (fr) * 2014-06-12 2020-03-25 The Procter and Gamble Company Sachet soluble dans l'eau comprenant une zone en relief
JP6941473B2 (ja) * 2017-04-26 2021-09-29 株式会社日本製鋼所 ディスプレイの製造方法、ディスプレイ及び液晶テレビ
CN107096405A (zh) * 2017-06-08 2017-08-29 江苏天宇石化冶金设备有限公司 一种高效气液混合器
CN112546889B (zh) * 2020-11-16 2021-07-20 哈尔滨工业大学 一种用于储释热系统热稳定输出的气体混合装置
KR102469555B1 (ko) * 2020-11-26 2022-11-22 현대제철 주식회사 입자 및 가스 물질 처리장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1350202A (en) * 1918-07-05 1920-08-17 G A Buhl Company Liquid and gas contact apparatus
FR2019460A1 (en) * 1968-09-19 1970-07-03 Zieren Chemiebau Gmbh Dr A Control apparatus for bore pipes and similar bodies
DE2517756A1 (de) * 1975-04-22 1976-11-04 Christian Coulon Verfahren und einrichtung zum zerstaeuben und verbrennen von fluessigen brennstoffen
US4157241A (en) * 1976-03-29 1979-06-05 Avion Manufacturing Co. Furnace heating assembly and method of making the same
CH608587A5 (en) * 1977-03-16 1979-01-15 Michel Suaton Swirl device for burner using liquid fuel atomised at high pressure
DE3044518A1 (de) * 1980-11-26 1982-07-01 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von phthalsaeureanhydrid
JPS5895103A (ja) * 1981-11-30 1983-06-06 ガデリウス株式会社 圧力噴霧式多孔型減温器
DE3371599D1 (en) * 1982-01-29 1987-06-25 Shell Int Research Process for contacting a gas with atomized liquid
JPS63248445A (ja) * 1987-04-03 1988-10-14 Kawasaki Steel Corp 無水フタル酸製造用触媒の再生方法
US5108583A (en) * 1988-08-08 1992-04-28 Mobil Oil Corporation FCC process using feed atomization nozzle
DE3925580A1 (de) * 1989-08-02 1991-02-07 Hoechst Ag Verfahren und vorrichtung zum herstellen von gas/dampf-gemischen
JPH0775658B2 (ja) * 1990-05-10 1995-08-16 株式会社新潟鐵工所 気体混合装置
US5242577A (en) * 1991-07-12 1993-09-07 Mobil Oil Corporation Radial flow liquid sprayer for large size vapor flow lines and use thereof
ES2110619T3 (es) * 1992-06-18 1998-02-16 Amoco Corp Metodo para preparar acidos carboxilicos aromaticos.
JPH07332847A (ja) * 1994-06-03 1995-12-22 Mitsubishi Chem Corp 噴霧乾燥方法
JPH08198807A (ja) * 1995-01-30 1996-08-06 Mitsubishi Chem Corp テレフタル酸の製造方法
JP4025891B2 (ja) * 1997-02-27 2007-12-26 ビーエーエスエフ アクチェンゲゼルシャフト 芳香族炭化水素の接触気相酸化用シェル触媒の製造方法
JP3745489B2 (ja) * 1997-03-18 2006-02-15 富士写真フイルム株式会社 乳化物の製造方法
DE19755275A1 (de) * 1997-12-12 1999-06-17 Basf Ag Verfahren zum Verdampfen von Flüssigkeiten in Gasströmen
JP4026784B2 (ja) * 1998-01-08 2007-12-26 富士重工業株式会社 筒内噴射式エンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0147622A1 *

Also Published As

Publication number Publication date
WO2001047622A1 (fr) 2001-07-05
CN1411392A (zh) 2003-04-16
AU2172001A (en) 2001-07-09
US20030013931A1 (en) 2003-01-16
DE19962616A1 (de) 2001-06-28
ES2218265T3 (es) 2004-11-16
JP4669184B2 (ja) 2011-04-13
MXPA02005852A (es) 2002-10-23
KR20020062374A (ko) 2002-07-25
MY125936A (en) 2006-09-29
DE50005821D1 (de) 2004-04-29
ATE262372T1 (de) 2004-04-15
EP1239944B1 (fr) 2004-03-24
CN1174793C (zh) 2004-11-10
TW581710B (en) 2004-04-01
JP2003518433A (ja) 2003-06-10
KR100655339B1 (ko) 2006-12-08

Similar Documents

Publication Publication Date Title
EP1239944B1 (fr) Procede et dispositif pour produire un melange homogene constitue d'un hydrocarbure aromatique a l'etat de vapeur et d'un gaz contenant de l'oxygene
DE2429291C2 (de) Verfahren und Vorrichtung zur chemischen und/oder physikalischen Behandlung von Fluiden
DE4430307A1 (de) Verfahren und Vorrichtung zur gleichzeitigen Dispergierung und Zerstäubung von mindestens zwei Flüssigkeiten
EP2252567B1 (fr) Procede et dispositif d'oxydation thermique partielle d'hydrocarbures
DE1567685A1 (de) Verfahren und Vorrichtung zur Herstellung gasfoermiger,Wasserstoff und Kohlenmonoxyd enthaltender Mischungen
DE1926919B2 (de) Verfahren zur Herstellung von Kohlenmonoxid und Wasserstoff enthaltenden Gasgemischen
DE69205715T2 (de) Verfahren zur Erzeugung von Russ.
WO2002023089A1 (fr) Bruleur a pulverisation pour le craquage thermique de residus sulfureux
CH675623A5 (fr)
EP3368473B1 (fr) Dispositif et procédé pour produire un gaz de synthèse
DE2506438A1 (de) Verfahren zur thermischen spaltung von abfallschwefelsaeure
EP3338883B1 (fr) Dispositif et procédé d'introduction de gaz dans une multitude de fluides de traitement
DE68919320T2 (de) Verfahren zur ermässigung der konzentration von schadstoffen in abgasen.
DE2309821C2 (de) Verfahren und Brenner zur Herstellung einer hauptsächlich Wasserstoff und Kohlenmonoxid enthaltenden Gasmischung
DE2363569A1 (de) Verfahren und vorrichtung zur herstellung von gasen durch unvollstaendige verbrennung von kohlenwasserstoffen
DE2320609C3 (de) Ejektormischvorrichtung
DE69717158T2 (de) Sprühdüse und ein anwendungsverfahren
DE2410847A1 (de) Vorrichtung zur verbrennung von schwefel
DE2253385A1 (de) Verfahren und brenner zur synthesegasherstellung
DE10212081A1 (de) Vorrichtung zur Zufuhr von Edukten in einen Reaktionsraum
DE1049365B (de) Verfahren und Vorrichtung zur Umsetzung gas- bzw. dampfförmiger oder/ und flüssiger Stoffe, gegebenenfalls zusammen mit festen feinverteilten Stoffen
DE1793453C2 (de) Verfahren zur Herstellung eines homogenen Gemisches aus dampfförmigem o-XyIoI und Luft
DE892454C (de) Verfahren zur Durchfuehrung von exotherm verlaufenden Reaktionen zwischen verschiedenen Gasen oder Daempfen
DE2249961C3 (de) Verfahren zur Synthesegasherstellung
AT225336B (de) Verfahren und Vorrichtung zur einstufigen kontinuierlichen thermischen Umwandlung von Kohlenwasserstoffen, insbesondere von Leicht- oder Schwerölen, mittels Vergasungsmitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040324

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50005821

Country of ref document: DE

Date of ref document: 20040429

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040624

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040324

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2218265

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041222

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041222

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091216

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180124

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181231

Year of fee payment: 19

Ref country code: BE

Payment date: 20181221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181221

Year of fee payment: 19

Ref country code: DE

Payment date: 20190228

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50005821

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231