EP1201583A2 - Vorrichtung und Verfahren zum Ausrichten langer Empfangselemente - Google Patents
Vorrichtung und Verfahren zum Ausrichten langer Empfangselemente Download PDFInfo
- Publication number
- EP1201583A2 EP1201583A2 EP01124261A EP01124261A EP1201583A2 EP 1201583 A2 EP1201583 A2 EP 1201583A2 EP 01124261 A EP01124261 A EP 01124261A EP 01124261 A EP01124261 A EP 01124261A EP 1201583 A2 EP1201583 A2 EP 1201583A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- receiving element
- drive
- motor
- image
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H9/00—Registering, e.g. orientating, articles; Devices therefor
- B65H9/002—Registering, e.g. orientating, articles; Devices therefor changing orientation of sheet by only controlling movement of the forwarding means, i.e. without the use of stop or register wall
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/00362—Apparatus for electrophotographic processes relating to the copy medium handling
- G03G2215/00367—The feeding path segment where particular handling of the copy medium occurs, segments being adjacent and non-overlapping. Each segment is identified by the most downstream point in the segment, so that for instance the segment labelled "Fixing device" is referring to the path between the "Transfer device" and the "Fixing device"
- G03G2215/00409—Transfer device
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/00362—Apparatus for electrophotographic processes relating to the copy medium handling
- G03G2215/00535—Stable handling of copy medium
- G03G2215/00556—Control of copy medium feeding
- G03G2215/00599—Timing, synchronisation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/00362—Apparatus for electrophotographic processes relating to the copy medium handling
- G03G2215/00919—Special copy medium handling apparatus
- G03G2215/00949—Copy material feeding speed switched according to current mode of the apparatus, e.g. colour mode
Definitions
- the present invention relates to electrophotographic reproducing devices and Method for aligning sheets and in particular devices and methods for Controlling a stepper motor drive to control the movement of a receiver sheet in a position for image transmission with an image-bearing element on which a Receiving sheet to be transmitted image is arranged.
- the prior art typically uses an electrophotographic latent image Formed on the element, this image is toned and either directly onto one Transfer sheet or on an intermediate imaging element and then on transfer the receipt sheet.
- This image is toned and either directly onto one Transfer sheet or on an intermediate imaging element and then on transfer the receipt sheet.
- it is important to use an existing one Correct skew of the bow.
- the setting is made by optional Driving the stepper motor driven rollers regardless of the movement of the image-bearing element are controllable.
- the movement of the Receipt sheet and the related one carried out by various stations Machining operations controlled using one or more encoders.
- Known Alignment control systems use a transfer roller, which is an encoder wheel assigned. This encoder is used to control sheet alignment.
- a Alignment device is described for example in US 5,731,680.
- Prior art alignment devices and methods have so far been available however limited in that they only process and align receiver sheets that are no longer than a predetermined maximum length.
- the technology of known systems has been optimized to match the most common sheet formats to be able to record, i.e. sheets of 8.5 or 17 inches in length (21.59 or 43.18 cm).
- These alignment or register systems are unable to accept sheets record and precisely align the longer than this predetermined, optimal Are reception length. For example, systems that have an arc length of 17 Inches (43.18 cm) are not able to arch 18 inches (45.72 cm) long take.
- Receiving sheet in electrophotographic reproducing devices is directed the predominant need for receiver sheet lengths of 17 inches (43.18 cm) or smaller.
- the invention is therefore based on the object of improved methods and devices to provide precise alignment of receiver sheets that are slightly longer than that are predetermined, optimal receiving sheet length to which the respective register system is designed.
- a device for transporting a a leading edge and a trailing edge receiving elements provided by one upstream engagement gap in aligned relationship with an image-bearing element provided that moves at an image transport speed comprises a motor, a drive element, which engages with the receiving element can be brought, and a drive coupling that connects the motor to the drive element combines.
- a controller is provided to match the engine according to a first one To control the speed profile when the receiving element has a predetermined has optimal receiving element length, and around the motor according to a second To control the speed profile if the receiving element is longer than that predetermined, optimal receiving element length.
- a device for transporting a receiving element which has a leading edge, a trailing edge and a Has a length that exceeds the predetermined, optimal receiving element length, and from an upstream engagement gap in an aligned relationship with one image-bearing element that moves at an image transport speed.
- the Device includes a motor, a drive element that engages with the Receiving element can be brought, and a drive clutch that connects the engine to the Drive element connects.
- a sensor is provided around the front edge of the receiving element.
- a controller drives a motor to (1) do that Transporting the drive element into engagement with the receiving element when the Front edge of the receiving element moved a distance beyond the sensor has been, the distance is sufficiently large so that the gap Releases the trailing edge of the receiving element before the receiving element stops brought; the controller also drives a motor to (2) do that Stop receiving element and at (3) the receiving element at the right time and at a speed that is substantially equal to that Image transport speed is to feed the image-bearing element.
- a method for transporting a with a leading edge and a trailing edge receiving elements provided by one upstream engagement gap in aligned relationship with a moving, Image-bearing element provided that is at an image transport speed emotional For this purpose, there is first a motor that can be brought into engagement with the motor Drive element and a drive coupling provided that the motor with the Drive element connects. There is also a control unit for controlling the motor intended. A controller is made according to a first speed profile operated when the receiving element has the predetermined, optimal receiving element length and the controller becomes in accordance with a second speed profile operated when the receiving element is longer than the predetermined, optimal Receiving element length is.
- a method for transporting a Receiving elements provided that have a leading edge, a trailing edge and a length has, which exceeds the predetermined, optimal receiving element length, namely from an upstream engagement gap in an aligned relationship with yourself moving, image-bearing element that moves at an image transport speed emotional.
- the front edge of the receiving element is detected.
- On Drive element is then transported into engagement with the receiving element when the leading edge of the receiving element a distance beyond the sensor has moved, the distance is sufficiently large so that the gap Releases the trailing edge of the receiving element before the receiving element stops brought. Then the receiving element is stopped. Then that will Receiving element at the right time and at a speed that is in the The image-carrying element is essentially equal to the image transport speed fed.
- Sheet register system 100 is in relation to a substantially flat one Sheet transport path P of any known device arranged where sheet in Row can be transported from a feeder (not shown) to a station where this Sheets are edited.
- the device can be, for example Reproduction device, such as a copier or printer, etc., where Marking particles developed images of template information on receiver sheets be applied.
- the marking particles developed images e.g. image I
- a transfer station T from an image bearing Element, such as a moving web or drum (e.g. web W) on a sheet of a receiving material (e.g. a sheet S made of plain paper or transparent material) that moves along the sheet transport path P.
- the leadership the web W takes place via the transfer roller R.
- the Arc S with reference to an image developed from marking particles is aligned so that the image is arranged so that it is suitable for the user acceptable reproduction is possible.
- the sheet register system 100 therefore sees one precise alignment of the receiver sheet in a variety of orthogonal directions in front.
- the sheet with the image developed from marking particles is from the Sheet register system aligned precisely by a possible skew of the Arc (i.e. an angular deviation in relation to the picture) eliminated and the arc in Is moved so that the center line of the arc is towards the Sheet transport movement and the center line of the marking particle image together fall.
- the sheet register system 100 controls the transport of the sheet on the Sheet transport path P in time so that the sheet and the marking particle image in Longitudinally aligned when the sheet is the transfer station T passes.
- the first Drive assembly 102 includes a first shaft 108, which at its ends in the Bearings 110a, 110b, which in turn are held on a frame 110.
- the Bearing of the first shaft 108 is selected such that the first shaft has its longitudinal axis in a plane parallel to the plane through the sheet transport path P and essentially is arranged perpendicular to the direction of a sheet which the sheet transport path P in Direction of arrows V passes through (Fig. 1).
- a first drive roller 112 is on the first Shaft 108 arranged for rotation with the shaft.
- the drive roller 112 includes a curved peripheral segment 112a extending 180 ° around the roller.
- the Circumferential segment 112a has a radius to its surface that, measured from that Longitudinal axis to the first shaft 108, substantially equal to the minimum distance between them Longitudinal axis to the plane of the sheet transport path P is.
- a motor can be operated to drive the drive element via a drive clutch.
- a first stepper motor M 1 which is mounted on the frame 110, is operatively coupled to the first shaft 108 via a gear train 114 to rotate the first shaft when the motor is activated.
- the wheel 114a of the gear train 114 comprises a marking 116, which can be detected by a suitable sensor mechanism 118.
- the sensor mechanism 118 can be either optical or mechanical, depending on the selected marking 116.
- the position of the sensor mechanism 118 is selected such that when the marking 116 is detected, the first shaft 108 is oriented at an angle such that it positions the first drive roller 112 in a starting position positioned.
- the starting position of the first drive roller is the angular orientation in which the surface of the curved peripheral segment 112a of the drive roller 112 contacts an arc in the sheet transport path P as the first shaft 108 rotates further (see FIG. 7a).
- the second drive assembly 104 includes a second shaft 120, which at its ends in the bearings 110c, 110d, which in turn are supported on the frame 110.
- the Bearing of the second shaft 120 is selected such that the second shaft with its Longitudinal axis in a plane parallel to the plane through the sheet transport path P and in Is arranged substantially perpendicular to the direction of an arc that the Through the sheet transport path.
- the longitudinal axis of the second shaft 120 is in the Arranged essentially coaxially to the longitudinal axis of the first shaft 108.
- a second drive roller 122 is arranged on the second shaft 120 for rotation with the shaft.
- the drive roller 122 includes a curved peripheral segment 122a that extends 180 ° around the roller.
- the peripheral segment 122a has a radius on its surface which, measured from the longitudinal axis to the first shaft 108, is substantially equal to the minimum distance of this longitudinal axis from the plane of the sheet transport path P.
- the curved peripheral segment 122a coincides with the curved peripheral segment 112a of the drive roller 112.
- a second, independent stepper motor M 2 which is mounted on the frame 110, is operatively coupled to the second shaft 120 via a gear train 124 to rotate the second shaft when the motor is activated.
- the wheel 124a of the gear train 124 comprises a marking 126, which can be detected by a suitable sensor mechanism 128.
- the sensor mechanism 128, which can be adjustably attached to the frame 110, can be either optical or mechanical, depending on the selected marking 126.
- the position of the sensor mechanism 128 is selected such that when the marking 126 is detected, the second shaft 120 is oriented at an angle such that it second drive roller 122 positioned in a starting position.
- the starting position of the second drive roller is the angular orientation in which the surface of the curved peripheral segment 122a of the drive roller 122 contacts an arc in the sheet transport path P as the first shaft 120 rotates further (as does the angular orientation of the peripheral segment 112a shown in FIG. 7a).
- the third drive assembly 106 includes a tube 130 which surrounds the first shaft 108 and is displaceable in the direction of its longitudinal axis relative to the first shaft.
- Two third drive rollers 132 are mounted on the first shaft 108 and hold the tube 130 for relative rotation with respect to the third drive rollers.
- the third drive rollers 132 each include a curved peripheral segment 132a that extends 180 ° around each roller.
- the peripheral segment 132a has a radius on its surface which, measured from the longitudinal axis to the first shaft 108, is substantially equal to the minimum distance of this longitudinal axis from the plane of the sheet transport path P.
- the curved peripheral segments 132a are angularly offset with respect to the curved peripheral segments 112a, 122a of the first and second drive rollers.
- the two third drive rollers 132 are coupled to the first shaft 108 via a spring or a pin 134 which engages in a groove 136 of the corresponding roller (FIG. 4). Accordingly, the third drive rollers 132 are rotatably driven with the first shaft 108 when the first shaft is rotated by the first stepping motor M 1 , and are slidable in the direction along the longitudinal axis of the first shaft with the pipe 130. For a purpose that will be explained in more detail below, the third drive rollers 132 are angularly aligned such that the curved peripheral segments 132a are offset with respect to the curved peripheral segments 112a and 122a.
- a third independent stepper motor M 3 which is attached to the frame 110, is operatively coupled to the tube 130 of the third drive assembly 106 to selectively move the third drive assembly in either direction along the longitudinal axis of the first shaft 108 when the motor is activated.
- the coupling between the third stepper motor M 3 and the tube 130 takes place by means of a pulley / belt group 138.
- the pulley / belt group 138 comprises two pulleys 138a, 138b which are rotatably arranged in a fixed spatial relationship, for example on a part of the frame 110.
- a drive belt 138c running around the pulleys is connected to a bracket 140, which in turn is connected to the tube 130.
- a drive shaft 142 of the third stepper motor M 3 is in driving engagement with a wheel 144 which is coaxially coupled to the pulley 138a.
- the wheel 144 rotates and this in turn rotates the pulley 138a, so that the drive belt 138c rotates its closed path.
- the holder 140 (and thus the third drive assembly 106) is optionally moved in one of the two directions along the longitudinal axis of the first shaft 108.
- a plate 146 connected to the frame 110 includes a mark 148 that passes through a suitable sensor mechanism 150 can be detected.
- the adjustable on the Frame 140 attached sensor mechanism 150 can be either optical or mechanical depending on the selected marking 148.
- the location of the sensor mechanism 150 is selected such that when the marking 148 is detected, the third drive assembly 106 in a starting position is positioned.
- the starting position of the third Drive assembly 106 is selected such that the third drive assembly in the Essentially centered in relation to the transverse direction of a sheet in the sheet transport path P. is arranged.
- the frame 110 of the sheet register system 100 also holds a shaft 152 that is general is arranged below the plane of the sheet transport path P.
- the two Idler rollers 154 and 156 are freely rotatable on shaft 152.
- the two Idler rollers 154 are on the first drive roller 112 and the second, respectively Drive roller 122 aligned.
- the two idler rollers 156 are on the respective third drive rollers 132 aligned and extend in the longitudinal direction by one Distance that is large enough to align this over the range of Maintain longitudinal movement of the third drive assembly 106.
- the distance of the shaft 152 to the plane of the sheet transport path P and the diameter of the respective two Idler rollers 154 and 156 are selected such that the rollers each close a gap form the curved peripheral segments 112a, 122a and 132a of the drive rollers.
- shaft 152 may be spring loaded in one direction so that the shaft presses against the shafts 108, 120, the two idler rollers 154 in the Engage spacer roller bearings 112b, 122b.
- sheets which pass through the sheet transport path P one after the other can be precisely aligned by eliminating any skew (angular deviation) of the sheet in order to register the sheet at right angles with respect to the transport path, and around the sheet To move the sheet in the transverse direction so that the center line of the sheet in the sheet transport direction and the center line C L of the sheet transport path P coincide.
- the center line C L is of course arranged so that it coincides with the center line of the subsequent processing station (in the exemplary embodiment shown, this is the center line of a marking particle image on the web W).
- the sheet register system 100 controls the transport of the sheet along the sheet transport path P for precise alignment in the longitudinal direction of the transport (in relation to the exemplary embodiment shown, that is, in alignment with the leading edge of the marking particle image on the web W).
- the mechanical elements of the sheet register system 100 are operatively related to a controller.
- Corresponding controls and control systems are described in US 5,731,680.
- the controller receives input signals from a variety of sensors associated with the sheet register system 100 and a downstream processing station. Using these signals and an operating system, the control generates corresponding signals for controlling the independent stepper motors M 1 , M 2 and M 3 of the sheet register system.
- a sheet S located in the sheet transport path P by an upstream transport assembly the inseparable transport roller (not shown) is transported in the vicinity of the sheet register system.
- This sheet can be aligned at an angle to the center line C L of the sheet transport path (eg angle ⁇ in FIG. 5) and may have a center point A which is spaced apart from the center line of the sheet transport path (eg distance d in FIG. 5).
- the undesired angle ⁇ and the undesired distance d generally arise from the type of the upstream transport assembly and differ from sheet to sheet.
- the gap sensors 160a, 160b are arranged above the plane X 1 (see FIG. 5).
- the plane X 1 includes the longitudinal axes of the drive rollers (112, 122, 132) and the idler rollers (154, 156).
- the gap sensors 160a, 160b can be optical or mechanical, for example.
- the gap sensor 160a is arranged on one side (in the transverse direction) of the center line C L , while the gap sensor 160b is arranged at an essentially equal distance on the opposite side of the center line C L.
- the gap sensor 160a detects the leading edge of a sheet being transported on the sheet transport path P, it generates a signal that is sent to the controller to activate the first stepping motor M 1 .
- the gap sensor 160b detects the leading edge of a sheet being transported on the sheet transport path P, it also generates a signal that is sent to the controller to activate the second stepping motor M 2 . If the sheet S as a whole is skewed with respect to the sheet transport path P, the front edge of one side of the center line C L is recognized in front of the front edge of the opposite side of the center line (without skewing, of course, the front edges of the opposite sides of the center line are recognized at the same time).
- the first stepper motor M 1 when activated, ramps up to a speed such that the first drive roller 112 is rotated at an angular speed that produces a predetermined peripheral speed for the curved peripheral segment 112a that is substantially equal to the entry speed of a is transported on the sheet transport path P.
- a section of the sheet S enters the gap between the curved peripheral segment 112a of the first drive roller 112 and the associated roller of the two idler rollers 154, this section of sheet is transported on the sheet transport path P essentially without interruption (see FIG. 7b).
- the second stepper motor M 2 When the second stepper motor M 2 is activated by the control unit, it also runs up to a speed such that the second drive roller 122 is rotated at an angular speed which produces a predetermined circumferential speed for the curved circumferential segment 122a which is substantially equal to the entry speed is transported on the sheet transport path P.
- the portion of the sheet S enters the gap between the curved peripheral segment 122a of the second drive roller 122 and the associated roller of the two idler rollers 154, this portion of the sheet is transported on the sheet transport path P substantially without interruption.
- the sensor 160b detects the leading edge of the sheet based on the angle ⁇ of the sheet S before the sensor 160a detects the leading edge.
- the stepping motor M 2 is therefore activated before the stepping motor M 1 is activated.
- Two track length sensors 162a, 162b are arranged below the plane X 1 . These longitudinal track sensors 162a, 162b are therefore arranged below the gaps formed by the respective curved peripheral segments 112a, 122a and the associated rollers of the two idler rollers 154. The arch S is therefore controlled by this column.
- the longitudinal track sensors 162a, 162b can, for example, be of an optical or mechanical type.
- the track length sensor 162a is arranged on one side (in the transverse direction) of the center line C L , while the track length sensor 162b is arranged at an essentially equal distance on the opposite side of the center line C L.
- the sensor 162a detects the leading edge of a sheet that is transported on the sheet transport path P by the drive roller 112, it generates a signal that is sent to the controller to deactivate the first stepping motor M 1 . Also, when the gap sensor 162b detects the leading edge of a sheet being transported by the drive roller 122 on the sheet transport path P, it generates a signal that is sent to the controller to deactivate the second stepping motor M 2 . If the sheet S as a whole is skewed with respect to the sheet transport path P, the front edge of one side of the center line C L is recognized in front of the front edge of the opposite side of the center line.
- the speed decreases to a stop so that the first drive roller 112 has a zero angular velocity around the engaged portion of the sheet in the gap between the curved peripheral segment 112a to stop the first drive roller 112 and the associated roller of the two idler rollers 154 (see FIG. 7c).
- the speed decreases to a stop so that the first drive roller 112 has a zero angular velocity around the engaged portion of the sheet in the gap between the curved peripheral segment 122a of the second Stop drive roller 122 and the associated roller of the two idler rollers 154.
- FIG. 7c the speed decreases to a stop so that the first drive roller 112 has a zero angular velocity around the engaged portion of the sheet in the gap between the curved peripheral segment 122a of the second Stop drive roller 122 and the associated roller of the two idler rollers 154.
- the sensor 162b detects the leading edge of the sheet based on the angle ⁇ of the sheet S before the sensor 162a detects the leading edge.
- the stepping motor M 2 is therefore deactivated before the stepping motor M 1 is deactivated.
- the portion of the sheet in the gap between the curved peripheral segment 122a of the second drive roller 122 and the associated roller of the two idler rollers 154 is substantially retained (ie is not moved in the direction of the sheet transport path P), while the portion of the sheet in the gap between the curved peripheral segment 112a of the first drive roller 112 and the associated roller of the two idler rollers 154 is moved further in the forward direction.
- the arc S essentially rotates around its center A until the stepping motor M 1 is deactivated. This rotation aligns the sheet at a right angle through an angle ⁇ (essentially complementary to the angle ⁇ ) and eliminates the skewing in relation to the sheet transport path P in order to align its leading edge with a precise fit.
- a sensor 164 such as a set of sensors (either optical or mechanical, as shown in With respect to other sensors of the sheet register system 100) described in Transverse direction is precisely aligned (see Fig. 5) detects a side edge of the Arc S and generates a signal indicating the position of this side edge.
- the signal from sensor 164 is transferred to the controller, where the operating program determines the distance (eg distance d in FIG. 5) from the center A of the sheet to the center line C L of the sheet transport path P.
- the first stepping motor M 1 and the second stepping motor M 2 are activated at a suitable point in time determined by the operating program.
- the first drive roller 112 and the second drive roller 122 then start to start transporting the sheet in the downstream direction (see FIG. 7d).
- the stepper motors ramp up to such a speed that the drive rollers of the drive assemblies 102, 104 and 106 are rotated at an angular speed that produces a predetermined peripheral speed for the respective portions of the curved peripheral segments.
- This predetermined peripheral speed is, for example, substantially equal to the speed of the web W. Although other predetermined peripheral speeds are suitable, it is important that this speed be substantially equal to the speed of the web W when the sheet S contacts the web.
- the rotation of the third drive rollers 132 also begins when the first stepping motor M 1 is activated.
- the curved peripheral segments 132a of the third drive rollers 132 are not in contact with the sheet S and do not act on it.
- the curved peripheral segments 132a engage the sheet (in the gap between the curved peripheral segments 132a and the associated rollers of the two idler rollers 156) and after a certain angular rotation, the curved peripheral segments 112a and 122a of the first and second drive rollers release the sheet ( see Fig. 7e).
- Control over the sheet is thus transferred from the gaps formed by the curved peripheral segments of the first and second drive rollers and the two idler rollers 154 to the bent peripheral segments of the third drive rollers and the two idler rollers 156 such that the sheet is only under the control of the third drive rollers 132 is transported on the sheet transport path P.
- the control activates the third stepping motor M 3 at a predetermined point in time.
- the first stepper motor M 3 drives the third drive assembly 106 through the previously described pulley / belt group 138 in a corresponding direction and over a corresponding distance in the transverse direction.
- the arc in the gaps between the curved peripheral segments of the third drive rollers 132 and the associated rollers of the two idler rollers 156 is thereby transported in a transverse direction to a place where the center A of the arc coincides with the center line C L of the arc transport path P by which provide the desired, precise transverse alignment of the sheet.
- the third drive rollers 132 transport the sheet further along the Sheet transport path P at a speed substantially equal to that Speed of the web W is until the leading edge comes to rest on the web, namely in a precise alignment with the image I. arranged on the track At this time, the angular rotation of the third drive rollers 132 releases the bent ones Circumferential segments 132a of these rolls from the sheet S (see Fig. 7f). Because the curved Circumferential segments 112a and 122a of the first and second drive rollers 112, 122, respectively also have no contact with the bow, the bow can with the web W without Exposure to any forces that otherwise run through the drive rollers on the Bow would have worked.
- the stepper motors M 1 , M 2 and M 3 are turned on for a time dependent on signals from the respective sensors 118, 128 and 150 sent to the controller, activated and then deactivated. As previously described, these sensors are home position sensors. When the stepper motors are deactivated, the first, second and third drive rollers are therefore in their respective starting positions.
- the drive assembly n 102, 104, 106 of the sheet register system 100 according to the invention are therefore in the position shown in FIG. 7a, and the sheet register system is ready for the next sheet transported on the sheet transport path P, a skew correction and a precise alignment in transverse and Longitudinal direction.
- known register systems are limited in that they only Can process sheets that are no longer than a predetermined, optimal Receiving element length are.
- the distance between the inseparable columns of the upstream transport group and the register drive assembly n of these systems could be optimized, for example, to process sheets 17 inches long or shorter become. This distance is such that the rear edge of a 17 inch long Arch is released from the upstream columns just before the arch to Skew correction is stopped in the sheet register system.
- the upstream column drive the sheet until the drive assembly n of the sheet register system in it intervention.
- the gaps must therefore be sufficiently close to the arch register system be so that they keep the bow engaged and drive until the bow through the Arch register system is taken.
- a longer sheet such as an 18 inch sheet Length, therefore, cannot be processed in the normal way because its trailing edge would still be engaged by the upstream column when its leading edge would already be stopped during the alignment. Therefore one could cannot achieve a precise alignment. The bow could even swell and cause a jam in the sheet register system.
- the present invention provides one Modification of the register control procedure before, which allows longer sheets without Modification of the mechanics of the upstream transport assembly to be processed.
- the Modification takes place on the speed profiles, which are the time sequence of the Control the alignment process.
- Fig. 8 shows a time curve of a normal speed profile.
- the time curve shows the peripheral speed of the first and second curved peripheral segments 112a, 122a of the first and second drive rollers 112, 122 as they engage and move the sheet S through the alignment process.
- the process begins at time A when the sheet register system receives a reference signal (F-PERF) indicating that the image I is at a predetermined reference location with respect to the sheet support point.
- F-PERF reference signal
- the front edge of the sheet S is detected by the gap sensors 160a, 160b.
- the first drive rollers 112, 122 are in their starting positions, as previously described (see FIG. 7a).
- drive rollers 112, 122 accelerate such that circumferential segments 112a, 122a engage sheet S at entry speed 210.
- the entry speed 210 is a relatively high speed at which the sheet S is moved to the track length sensors 162a, 162b.
- the entry speed can be approximately 32.5 inches / s (approximately 0.825 m / s).
- the arc is detected by the length sensors 162a, 162b.
- the delay in sheet speed is initiated.
- the rotational speed of the two drive rollers 112, 122 can be decelerated independently of one another, as previously described.
- the sheet S is aligned and the skew is corrected.
- the sheet S is then stopped at a predetermined, optimal stop position.
- the optimal stop position may be a position where the leading edge of the sheet S is approximately 2.539 inches (6.44906 cm) behind the gap sensors 160a, 160b.
- the image transport speed 220 is the speed at which the sheet S is fed to the moving web W.
- the image transport speed is approximately equal to the speed at which the web W moves.
- the entry speed can be approximately 17.68 inches / s (44.9072 cm / s).
- the third circumferential segments grasp the sheet S at time H 1 , and the first and second circumferential segments 112a, 122a release the sheet S at time J 1 (as shown in FIG. e shown).
- the drive of the sheet S is controlled for a period of time exclusively by the peripheral segments 132a of the third drive rollers 132.
- the transverse alignment takes place during the time period 310a between the time N 1 and the time U 1 , while the sheet S is controlled by the third circumferential segment 132a.
- the time period 310a can be, for example, 50 ms. At the appropriate point in time Z the sheet S meets the moving web W.
- the speed profile described above provides a precise alignment of Receiving sheet that is no longer than the predetermined, optimal Receiving element length are.
- the present invention sees modified Speed profiles for the precise alignment of longer sheets. As an an example becomes a first, modified speed profile for precise alignment of 18 inch (45.72 cm) long sheets in one for 17 inch (43.18 cm) long sheets optimized system with reference to the time curve of Fig. 9 discussed.
- the front edge of the 18-inch receiving sheet is detected by the gap sensors 160a, 160b at time B.
- This point in time B is equal to the point in time B at which the leading edge of a sheet S is detected in the normal speed profile (FIG. 8).
- the drive rollers 112, 122 are held in their initial positions for an incremental period of time before an acceleration is triggered at the time C 2 .
- the incremental time period can be, for example, approximately 16 ms. Accordingly, the 18 inch sheet driven by the upstream nips advances an incremental distance before being caught by the peripheral segments 112a, 122a of the first and second drive rollers 112, 122.
- the incremental distance must be large enough so that the upstream gaps can release the trailing edge of the 18-inch sheet before the sheet is decelerated for skew correction.
- the incremental distance can be approximately 0.520 inches (1.32 cm). Therefore, the delay is not triggered immediately after the leading edge of the 18 inch sheet has been detected by the length sensors 162a, 162b at time D 2a . Instead, the delay is triggered at time D 2b , which is an incremental time after detection by the length sensors.
- This incremental duration is preferably equal to the incremental duration of an additional time before the acceleration at time C 2 . This time period can also be approximately 16 ms, for example.
- the 18 inch sheet is brought to a stop. This corrects every skew of the sheet. However, the leading edge of the 18 inch long sheet is located at an incremental distance beyond the predetermined optimal stop position. This incremental distance is preferably equal to the previously discussed incremental distance and can be, for example, 0.520 inches (1.32 cm).
- the 18 inch sheet reaches the image transport speed 220 at time G 2 .
- the third circumferential segments 132a grasp the arc at time H 2 and the first and second circumference segments 112a, 122a release the arc at time J 2 .
- the 18 inch long sheet is then under the control of the third circumferential segments 132a, which enables a precise alignment in the transverse direction between the time N 2 and the time U 2 .
- the 18 inch long sheet hits the moving web W at the right time Z.
- the time period 310b which is available for precise alignment in the transverse direction, is reduced.
- This time period 310b can be approximately 20 ms, for example, compared to the time period 310a of 50 ms for the normal profile (FIG. 8).
- the time J 2 at which the first and second peripheral segments 112a, 122a release the receiver sheet is a function of the angular rotation of the drive rollers 112, 122.
- Table 1 shown below compares exemplary values for the time, paper position and roller rotation during various events in the normal profile (Fig. 8) with the same events in the first modified profile (Fig. 9).
- VK refers to the leading edge of the receiver sheet. The time for each event is given in milliseconds (ms), the position of the leading edge of the receiver sheet in inches (cm) and the angular rotation of the drive rollers 112, 122 in degrees. Normal speed profile 1.
- the time period 310b of 20 ms, which is necessary for the precise transverse alignment after the first, modified speed profile is available, may be sufficient not out to one correct large misalignment in the transverse direction. It is therefore desirable to have one longer time for cross alignment errors to be provided if long sheets fit perfectly be aligned.
- a second, modified speed profile for the Alignment 18 inch long receiver sheet to apply which is a longer time for cross alignment. This second, modified speed profile will discussed below with reference to FIG. 10.
- the front edge of the 18-inch receiving sheet is detected by the gap sensors 160a, 160b at time B.
- Time B corresponds to time B of the normal speed profile (FIG. 8) and the first, modified speed profile (FIG. 9).
- the drive rollers 112, 122 are held in their starting positions for an incremental period of time before an acceleration is triggered at the time C 3 .
- the incremental time period can be, for example, approximately 16 ms. Accordingly, the 18 inch long sheet driven by the upstream nip advances an incremental distance relative to the normal profile distance before being gripped by the peripheral segments 112a, 122a of the first and second drive rollers 112, 122.
- the incremental distance must be large enough for the upstream gaps to release the trailing edge of the 18 inch sheet before the sheet is retarded for skew correction.
- the incremental distance can be approximately 0.520 inches (1.3208 cm).
- the deceleration is not triggered immediately after the front edge of the 18 inch long sheet has been detected by the length sensors 162a, 162b at time D 3a . Instead, the delay is triggered at time D 3b , which is an incremental time after detection by the length sensors.
- This incremental time period preferably corresponds to the incremental time period before acceleration at time C 2 . This time period can also be approximately 16 ms, for example.
- the 18 inch long sheet is brought to a stop.
- the front edge of the 18-inch long sheet is also arranged at an incremental distance beyond the predetermined, optimal holding position.
- this incremental distance can also be approximately 0.520 inches (1.3208 cm).
- the 18 inch sheet is accelerated to a speed 230 before transverse alignment.
- the speed 230 before the transverse alignment is chosen such that it is higher than the image transport speed 220, but lower than the entry speed 210.
- the speed 230 before the transverse alignment can be, for example, 21.9 / inch / s (55.626 cm / s).
- the 18 inch long sheet is transported for a period of time at this relatively high speed 230 before transverse alignment, which is dimensioned sufficiently for the third circumferential segments 132a to grasp the sheet at time H 3 , and thus the first and second circumferential segments 112a, 122a Can release sheet at time J 3 . This accomplishes two things.
- the arch is under the sole control of the third circumferential segments 132a because the first and second circumferential segments 112a, 122a have released the arch, making the arch ready for cross-registration.
- the relatively high speed 230 before transverse alignment causes the sheet to move to the downstream position even earlier than planned. This saves time for the next phase of this profile, in which the sheet is fed forward at a relatively low speed for a period of time during which the transverse alignment is feasible.
- the reception sheet is decelerated to a low speed 240 at time K 3 .
- This low speed 240 is preferably chosen to be slightly lower than the image transport speed. For example, this low speed 240 can be approximately 8.75 inches / s (22.225 cm / s).
- the transverse alignment begins at time N 3 .
- the transverse alignment is ended before the time U 3 .
- the receiver sheet is accelerated to image transport speed 220. After the image transport speed 220 has been reached, the 18 inch long sheet hits the moving web W at the right time Z.
- This cross alignment period 310c may be longer than the period 310b Lateral alignment according to the first, modified speed profile is available stands (Fig. 9). For example, the transverse alignment after this second, modified speed profile available time period 310c be approximately 40 ms. This enables a stronger cross-alignment than in the first modified Velocity profile.
- Table 2 shows example values for time, paper position and roller rotation during various events according to the second, modified speed profile.
- VK refers to the leading edge of the receiver sheet.
- the time for each event is given in milliseconds (ms), the position of the leading edge of the receiver sheet in inches (cm) and the angular rotation of the drive rollers 112, 122 in degrees. 2.
- Modified speed profile event Time (ms) Sales position (inch / cm) Roll rotation (degrees) Gap sensor detection 0.0 0,000 0.0 acceleration start 31.0 1.008 (2.56) 0.0 M 1 and M 2 at entry speed 53.3 1,647 (4.18) 26.1 Longitudinal sensor detection 66.7 2,090 (5.31) 57.8 delay start 85.2 2,697 (6.85) 101.1 Skew correction completed 96.3 3,063 (7.78) 127.3 acceleration start 121.3 3,063 (7.78) 127.3 M 1 and M 2 at the speed before transverse alignment 133.7 3,198 (8,12) 136.9 3.
- a time buffer is provided at the beginning and at the end of the transverse alignment period.
- the time period between the time J 1 and N 1 can be approximately 16 ms, for example.
- the buffer time between the times U 1 and Z can also be approximately 16 ms.
- Similar time buffers are preferably provided between times J 2 and N 2 , times U 2 and Z of the first, modified speed profile and between times J 3 and N 3 and times U 3 and Z of the second, modified speed profile. These buffers subject the time period 310 ac, which is available for transverse alignment in the respective speed profiles, to further restrictions.
Landscapes
- Registering Or Overturning Sheets (AREA)
- Delivering By Means Of Belts And Rollers (AREA)
- Paper Feeding For Electrophotography (AREA)
- Controlling Sheets Or Webs (AREA)
- Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
Abstract
Description
- Fig. 1
- eine Seitenansicht eines Bogenregistersystems, teilweise in Schnittdarstellung, wobei Teile zur besseren Übersicht entfernt sind;
- Fig. 2
- eine perspektivische Ansicht des Bogenregistersystems aus Fig. 1, wobei Teile zur besseren Übersicht entfernt oder nicht vollständig dargestellt sind;
- Fig. 3
- eine Draufsicht des Bogenregistersystems aus Fig. 1, wobei Teile zur besseren Übersicht entfernt oder nicht vollständig dargestellt sind;
- Fig. 4
- eine Frontalansicht in Schnittdarstellung der dritten Walzenanordnung des Bogenregistersystems aus Fig. 1;
- Fig. 5
- eine schematische Darstellung des Bogentransportwegs zur Darstellung der Maßnahmen, mit denen ein einzelner Bogen bei seinem Transport entlang eines Transportwegs von dem Bogenregistersystem aus Fig. 1 beaufschlagt wird;
- Fig. 6
- eine grafische Darstellung des Profils der Umfangsgeschwindigkeit im zeitlichen Verlauf für die Antriebswalzen des Bogenregistersystems aus Fig. 1;
- Fig. 7a-7f
- entsprechende Seitenansichten der Antriebswalzen des Bogenregistersystem aus Fig. 1 zu verschiedenen Zeitintervallen im Betrieb des Bogenregistersystems;
- Fig. 8
- ein Zeitablaufdiagramm eines normalen Registergeschwindigkeitsprofils entsprechend bekannter Registersysteme;
- Fig. 9
- ein Zeitablaufdiagramm eines Registergeschwindigkeitsprofils zur Verarbeitung langer Empfangsbogen entsprechend einem bevorzugten Ausführungsbeispiel der Erfindung; und
- Fig. 10
- ein Zeitablaufdiagramm eines Registergeschwindigkeitsprofils zur Verarbeitung langer Empfangsbogen entsprechend einem weiteren bevorzugten Ausführungsbeispiel der Erfindung.
Normales Geschwindigkeitsprofil | 1. modifiziertes Geschwindigkeitsprofil | |||||
Ereignis | Zeit (ms) | VK-Position (Zoll/cm) | Walzendrehung (Grad) | Zeit (ms) | VK-Position (Zoll/cm) | Walzendrehung (Grad) |
Spaltsensorerfassung | 0,0 | 0,000 | 0,0 | 0,0 | 0,000 | 0,0 |
Beschleunigungsbeginn | 15,0 | 0,488 (1,24) | 0,0 | 31,0 | 1,008 (2,56) | 0,0 |
M1 und M2 bei Eintrittsgeschwindigkeit | 37,3 | 1,127 (2,86) | 26,1 | 53,3 | 1,647 (4,18) | 26,1 |
Sensorerfassung in Längsrichtung | 66,6 | 2,090 (5,31) | 94,9 | 66,7 | 2,090 (5,31) | 57,8 |
Verzögerungsbeginn | 69,1 | 2,173 (5,52) | 100,9 | 85,2 | 2,697 (6,85) | 101,1 |
Schräglaufkorrektur abgeschlossen | 80,2 | 2,539 (6,45) | 127,0 | 96,3 | 3,063 (7,78) | 127,3 |
Beschleunigungsbeginn | 105,2 | 2,539 (6,45) | 127,0 | 134, 9 | 3,063 (7,78) | 127,3 |
M1 und M2 bei Bildtransportgeschwindi gkeit | 117,6 | 2,647 (6,72) | 134,7 | 147, 3 | 3,167 (8,04) | 134,7 |
3. Walzen ergreifen Bogen | 127,9 | 2,827 (7,18) | 147,6 | 157, 6 | 3,348 (8,50) | 147,6 |
1. und 2. Walzen geben Bogen frei | 144,4 | 3,117 (7,92) | 168,3 | 174, 1 | 3,637 (9,24) | 168,3 |
Beginn Querausrichtung | 160,9 | 3,405 (8,65) | 188,9 | 190, 6 | 3,925 (9,97) | 188,9 |
Querausrichtung abgeschlossen | 210,9 | 4,280 (10,87) | 251,4 | 211, 5 | 4,283 (10,88) | 214,4 |
Auftreffen auf Bahn | 227,5 | 4,571 (11,61) | 272,2 | 227, 5 | 4,571 (11,61) | 235,0 |
3. Walzen geben Papier frei | 281,8 | 5,520 (14,02) | 340,0 | 312, 0 | 6,040 (15,34) | 340,0 |
M1 und M2 in Ausgangsposition | 303,0 | 5,892 (14,97) | 360,0 | 333, 2 | 6,412 (16,29) | 360,0 |
2. modifiziertes Geschwindigkeitsprofil | |||
Ereignis | Zeit (ms) | VK-Position (Zoll/cm) | Walzendrehung (Grad) |
Spaltsensorerfassung | 0,0 | 0,000 | 0,0 |
Beschleunigungsbeginn | 31,0 | 1,008 (2,56) | 0,0 |
M1 und M2 bei Eintrittsgeschwindigkeit | 53,3 | 1,647 (4,18) | 26,1 |
Sensorerfassung in Längsrichtung | 66,7 | 2,090 (5,31) | 57,8 |
Verzögerungsbeginn | 85,2 | 2,697 (6,85) | 101,1 |
Schräglaufkorrektur abgeschlossen | 96,3 | 3,063 (7,78) | 127,3 |
Beschleunigungsbeginn | 121,3 | 3,063 (7,78) | 127,3 |
M1 und M2 bei der Geschwindigkeit vor der Querausrichtung | 133,7 | 3,198 (8,12) | 136,9 |
3. Walzen ergreifen Bogen | 140,5 | 3,347 (8,50) | 147,6 |
1. und 2. Walzen geben Bogen frei | 153,8 | 3,637 (9,24) | 168,3 |
Beginn der Verzögerung auf langsame Geschwindigkeit | 163,7 | 3,855 (9,79) | 183,8 |
M1 und M2 bei langsamer Geschwindigkeit | 169,0 | 3,936 (10,00) | 187,7 |
Beginn Querausrichtung | 170,9 | 3,925 (9,97) | 188,9 |
Beginn der Beschleunigung auf Bildtransportgeschwindigkeit | 205,1 | 4,252 (10,80) | 210,3 |
M1 und M2 bei Bildtransportgeschwindigkeit | 211,3 | 4,306 (10,94) | 214,1 |
Querausrichtung abgeschlossen | 211,5 | 4,283(10,88) | 214,4 |
Auftreffen auf Bahn | 228,0 | 4,571(11,61) | 235,0 |
3. Walzen geben Papier frei | 312,0 | 6,040 (15,34) | 340,0 |
M1 und M2 in Ausgangsposition | 333,2 | 6,412 (16,29) | 360,0 |
- 22
- Steuerung
- 100
- Bogenregistersystem
- 102
- erste Antriebsbaugruppe
- 104
- zweite Antriebsbaugruppe
- 106
- dritte Antriebsbaugruppe
- 108
- erste Welle
- 110
- Rahmen
- 110a
- Lager
- 110b
- Lager
- 110c
- Lager
- 110d
- Lager
- 112
- erste Antriebswalze
- 112a
- Umfangssegment
- 112b
- Abstandswalzenlager
- 114
- Getriebezug
- 114a
- Rad
- 116
- Markierung
- 118
- Sensormechanismus
- 120
- zweite Welle
- 122
- zweite Antriebswalze
- 122a
- Umfangssegment
- 122b
- Abstandswalzenlager
- 124
- Getriebezug
- 124a
- Rad
- 126
- Markierung
- 128
- Sensormechanismus
- 130
- Rohr
- 132
- dritte Antriebswalze
- 132a
- gebogenes Umfangssegment
- 134
- Stift
- 136
- Nut
- 138
- Riemenscheiben-/Riemengruppe
- 138a
- Riemenscheibe
- 138b
- Riemenscheibe
- 138c
- Antriebsriemen
- 140
- Halterung
- 142
- Antriebswelle
- 144
- Rad
- 146
- Platte
- 148
- Markierung
- 150
- Sensormechanismus
- 152
- Welle
- 154
- Mitläuferwalzen
- 156
- Mitläuferwalzen
- 160a
- Spaltsensor
- 160b
- Spaltsensor
- 162a
- Spurlängssensor
- 162b
- Spurlängssensor
- 164
- Sensor
- 210
- Eintrittsgeschwindigkeit
- 220
- Bildtransportgeschwindigkeit
- 230
- Geschwindigkeit vor Querausrichtung
- 240
- niedrige Geschwindigkeit
- 310a,b,c
- Zeitdauer
- A
- Bogenmittelpunkt
- CL
- Mittellinie
- I
- Bild
- M1
- erster Schrittmotor
- M2
- zweiter Schrittmotor
- M3
- dritter Schrittmotor
- P
- Bogentransportweg
- R
- Übertragungswalze
- S
- Bogen
- T
- Übertragungsstation
- W
- Bahn
- Z
- Zeitpunkt
Claims (20)
- Vorrichtung zum Bewegen eines eine Vorderkante und eine Hinterkante umfassenden Empfangselements von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei die Vorrichtung folgendes umfasst:einen Motor (M1);ein Antriebselement (102), das in Eingriff mit dem Empfangselement bringbar ist;eine Antriebskupplung (108, 114), die den Motor (M1) mit dem Antriebselement (102) verbindet; undeine Steuerung (22), um den Motor (M1) entsprechend einem ersten Geschwindigkeitsprofil anzusteuern, wenn das Empfangselement eine vorbestimmte, optimale Empfangselementlänge aufweist, und um den Motor (M1) entsprechend einem zweiten Geschwindigkeitsprofil anzusteuern, wenn das Empfangselement länger als die vorbestimmte, optimale Empfangselementlänge ist.
- Vorrichtung zum Bewegen eines eine Vorderkante und eine Hinterkante umfassenden Empfangselements von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei die Vorrichtung folgendes umfasst:einen Motor (M1);ein Antriebselement (102), das in Eingriff mit dem Empfangselement bringbar ist;eine Antriebskupplung (108, 114), die den Motor (M1) mit dem Antriebselement (102) verbindet; undeine Steuerung (22), um den Motor (M1) in einer ersten Betriebsart anzusteuern, wenn das Empfangselement eine vorbestimmte, optimale Empfangselementlänge aufweist, und um den Motor (M1) in einer zweiten Betriebsart anzusteuern, wenn das Empfangselement länger als die vorbestimmte, optimale Empfangselementlänge ist, wobei die Steuerung (22) den Motor (M1) in der ersten Betriebsart ansteuert, um dasEmpfangselement an einer vorbestimmten, optimalen Halteposition zu stoppen; und wobei die Steuerung (22) den Motor (M1) in der zweiten Betriebsart ansteuert, um das Empfangselement an einer inkrementellen Entfernung nach der vorbestimmten, optimalen Halteposition zu stoppen.
- Vorrichtung nach Anspruch 2,
dadurch gekennzeichnet, dass die inkrementelle Entfernung ca. 0,520 Zoll (1,32 cm) beträgt. - Vorrichtung zum Bewegen eines eine Vorderkante und eine Hinterkante umfassenden Empfangselements von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei die Vorrichtung folgendes umfasst:einen Motor (M1);ein Antriebselement (102), das in Eingriff mit dem Empfangselement bringbar ist;eine Antriebskupplung (108, 114), die den Motor (M1) mit dem Antriebselement (102) verbindet; undeine Steuerung (22), um den Motor (M1) in einer ersten Betriebsart anzusteuern, wenn das Empfangselement eine vorbestimmte, optimale Empfangselementlänge aufweist, und um den Motor (M1) in einer zweiten Betriebsart anzusteuern, wenn das Empfangselement länger als die vorbestimmte, optimale Empfangselementlänge ist,wobei die Steuerung (22) den Motor (M1) gemäß einem ersten Geschwindigkeitsprofil in der ersten Betriebsart ansteuert, um das Empfangselement an einer vorbestimmten, optimalen Halteposition zu stoppen;und wobei die Steuerung (22) den Motor (M1) gemäß einem zweiten Geschwindigkeitsprofil in der zweiten Betriebsart ansteuert, um das Empfangselement an einer inkrementellen Entfernung nach der vorbestimmten, optimalen Halteposition zu stoppen.
- Vorrichtung zum Bewegen eines Empfangselements, das eine Vorderkante, eine Hinterkante und eine Länge umfasst, die größer als eine vorbestimmte, optimale Empfangselementlänge ist, von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei die Vorrichtung folgendes umfasst:einen Motor (M1);ein Antriebselement (102), das in Eingriff mit dem Empfangselement bringbar ist;eine Antriebskupplung (108, 114), die den Motor mit dem Antriebselement (102) verbindet;einen Sensor (160a,b), um die Vorderkante des Empfangselements zu erfassen; undeiner Steuerung (22), die zur Ansteuerung des Motors (M1) betreibbar ist, um(1) das Antriebselement (102) in Eingriff mit dem Empfangselement zu transportieren, wenn sich die Vorderkante des Empfangselements um eine inkrementelle Entfernung über den Sensor (160a,b) hinaus bewegt hat, wobei die inkrementelle Entfernung ausreichend bemessen ist, damit der Spalt die Hinterkante des Empfangselements freigibt; um(2) das Empfangselement für eine Zeitdauer zu stoppen; und um(3) das Empfangselement zum richtigen Zeitpunkt (Z) und mit einer Geschwindigkeit, die im Wesentlichen gleich der Bildtransportgeschwindigkeit (220) ist, dem bildtragenden Element zuzuführen.
- Vorrichtung zum Bewegen eines Empfangselements, das eine Vorderkante, eine Hinterkante und eine Länge umfasst, die größer als eine vorbestimmte, optimale Empfangselementlänge ist, von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem sich bewegenden, bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei die Vorrichtung folgendes umfasst:einen Motor (M1);ein Antriebselement (102), das in Eingriff mit dem Empfangselement bringbar ist;eine Antriebskupplung (108, 114), die den Motor mit dem Antriebselement (102) verbindet;einen Sensor (160a,b), um die Vorderkante des Empfangselements zu erfassen; und einer Steuerung (22), die zur Ansteuerung des Motors betreibbar ist, um(1) das Antriebselement (102) in Eingriff mit dem Empfangselement zu bewegen, wenn sich die Vorderkante des Empfangselements um eine inkrementelle Entfernung über den Sensor (160a,b) hinaus bewegt hat, wobei die inkrementelle Entfernung ausreichend groß bemessen ist, damit der Spalt die Hinterkante des Empfangselements freigibt; um(2) das Empfangselement zu stoppen; um(3) das Empfangselement auf eine höhere Geschwindigkeit (230) als die Bildtransportgeschwindigkeit (220) beschleunigen; um(4) das Empfangselement auf eine Geschwindigkeit (240) zu verzögern, die niedriger als die Bildtransportgeschwindigkeit (220) ist, und zwar für eine Zeitdauer (310), die ausreichend bemessen ist, um die passgenaue Ausrichtung in Querrichtung abzuschließen; und um(5) das Empfangselement zum richtigen Zeitpunkt (Z) und mit einer Geschwindigkeit, die im Wesentlichen gleich der Bildtransportgeschwindigkeit (220) ist, dem bildtragenden Element zuzuführen.
- Vorrichtung zum Bewegen eines Empfangselements, das eine Vorderkante, eine Hinterkante und eine Länge umfasst, die größer als eine vorbestimmte, optimale Empfangselementlänge ist, von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem Bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei die Vorrichtung folgendes umfasst:einen Motor (M1);eine Antriebsbaugruppe (102, 104, 106), die zum Eingriff mit dem Empfangselement betreibbar ist, wobei die Antriebsbaugruppe (102, 104, 106) eine Ausgangsposition aufweist, in der die Antriebsbaugruppe (102, 104, 106) nicht in das Empfangselement eingreift;eine Antriebskupplung (108, 114), die den Motor (M1) mit der Antriebsbaugruppe (102) verbindet;einen Sensor (160a,b), um die Vorderkante des Empfangselements zu erfassen; und eine Steuerung (22), die zur Ansteuerung des Motors (M1) betreibbar ist, um(1) die Antriebsbaugruppe (102, 104, 106) für eine inkrementelle Zeitdauer in der Ausgangsposition zu halten, wobei die inkrementelle Zeitdauer ausreichend groß bemessen ist, damit der Spalt die Hinterkante des Empfangselements freigibt, um(2) das Empfangselement für eine Zeitdauer zu stoppen, und um(3) das Empfangselement zum richtigen Zeitpunkt (Z) und mit einer Geschwindigkeit, die im Wesentlichen gleich der Bildtransportgeschwindigkeit (220) ist, dem bildtragenden Element zuzuführen.
- Vorrichtung nach Anspruch 7,
dadurch gekennzeichnet, dass die inkrementelle Zeitdauer ca. 16 ms beträgt. - Vorrichtung zum Bewegen eines Empfangselements, das eine Vorderkante, eine Hinterkante und eine Länge umfasst, die größer als eine vorbestimmte, optimale Empfangselementlänge ist, von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei die Vorrichtung folgendes umfasst:einen Motor (M1);eine Antriebsbaugruppe (102, 104, 106), die zum Eingriff mit dem Empfangselement betreibbar ist, wobei die Antriebsbaugruppe (102, 104, 106) eine Ausgangsposition aufweist, in der die Antriebsbaugruppe (102, 104, 106) nicht in das Empfangselement eingreift;eine Antriebskupplung (108, 114), die den Motor (M1) und die Antriebsbaugruppe (102, 104, 106) verbindet;einen Sensor (160a,b), um die Vorderkante des Empfangselements zu erfassen; undeine Steuerung (22), die zur Ansteuerung des Motors (M1) betreibbar ist, um(1) die Antriebsbaugruppe für eine erste Zeitdauer in der Ausgangsposition zu halten, wobei die Zeitdauer ausreichend groß bemessen ist, damit der Spalt die Hinterkante des Empfangselements freigibt, um(2) das Empfangselement zu stoppen, um(3) das Empfangselement auf eine höhere Geschwindigkeit als die Bildtransportgeschwindigkeit (220) zu beschleunigen; um(4) das Empfangselement auf eine Geschwindigkeit (240) zu verzögern, die niedriger als die Bildtransportgeschwindigkeit (220) ist, und zwar für eine zweite Zeitdauer (310), die ausreichend bemessen ist, um die passgenaue Ausrichtung in Querrichtung abzuschließen; und um(5) das Empfangselement zum richtigen Zeitpunkt (Z) und mit einer Geschwindigkeit, die im Wesentlichen gleich der Bildtransportgeschwindigkeit (220) ist, dem bildtragenden Element zuzuführen.
- Vorrichtung nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass die vorbestimmte, optimale Empfangselementlänge ca. 17 Zoll (41,65 cm) beträgt; und dass das Empfangselement eine Länge von ca. 18 Zoll (45,72 cm) hat. - Verfahren zum Bewegen eines eine Vorderkante und eine Hinterkante umfassenden Empfangselements von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem sich bewegenden, bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei das Verfahren folgende Schritte umfasst:Bereitstellen eines Motors (M1), eines mit dem Empfangselement in Eingriff bringbaren Antriebselements (102) und einer Antriebskupplung (108, 114), die den Motor (M1) mit dem Antriebselement (102) verbindet;Bereitstellen einer Steuerung (22), die zur Ansteuerung des Motors (M1) betreibbar ist;Betreiben der Steuerung (22) nach einem ersten Geschwindigkeitsprofil, wenn das Empfangselement eine vorbestimmte, optimale Empfangselementlänge aufweist; undBetreiben der Steuerung (22) nach einem zweiten Geschwindigkeitsprofil, wenn das Empfangselement länger als die vorbestimmte, optimale Empfangselementlänge ist.
- Verfahren zum Bewegen eines eine Vorderkante und eine Hinterkante umfassenden Empfangselements von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem sich bewegenden, bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei das Verfahren folgende Schritte umfasst:Bereitstellen eines Motors (M1), eines mit dem Empfangselement in Eingriff bringbaren Antriebselements (102) und einer Antriebskupplung (108, 114), die den Motor (M1) mit dem Antriebselement (102) verbindet;Bereitstellen einer Steuerung (22), die zur Ansteuerung des Motors (M1) betreibbar ist;Betreiben der Steuerung (22) in einer ersten Betriebsart, wenn das Empfangselement eine vorbestimmte, optimale Empfangselementlänge aufweist; undBetreiben der Steuerung (22) in einer zweiten Betriebsart, wenn das Empfangselement länger als die vorbestimmte, optimale Empfangselementlänge ist;dass die Steuerung (22) in der ersten Betriebsart betreibbar ist, um das Empfangselement an einer vorbestimmten Position zu stoppen; unddass die Steuerung (22) in der zweiten Betriebsart betreibbar ist, um das Empfangselement in einer inkrementellen Entfernung nach der vorbestimmten Position zu stoppen.
- Verfahren zum Bewegen eines Empfangselements nach Anspruch 12,
dadurch gekennzeichnet, dass die inkrementelle Entfernung ca. 0,520 Zoll (1,32 cm) beträgt. - Verfahren zum Bewegen eines eine Vorderkante und eine Hinterkante umfassenden Empfangselements von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem sich bewegenden, bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei das Verfahren folgende Schritte umfasst:Bereitstellen eines Motors (M1), eines mit dem Empfangselement in Eingriff bringbaren Antriebselements (102) und einer Antriebskupplung (108, 114), die den Motor (M1) mit dem Antriebselement (102) verbindet;Bereitstellen einer Steuerung (22), die zur Ansteuerung des Motors (M1) betreibbar ist;Betreiben der Steuerung (22) in einer ersten Betriebsart, wenn das Empfangselement eine vorbestimmte, optimale Empfangselementlänge aufweist; undBetreiben der Steuerung (22) in einer zweiten Betriebsart, wenn das Empfangselement länger als die vorbestimmte, optimale Empfangselementlänge ist;dass die Steuerung (22) gemäß einem ersten Geschwindigkeitsprofil in der ersten Betriebsart betreibbar ist, um das Empfangselement an einer vorbestimmten Position zu stoppen; unddass die Steuerung (22) gemäß einem zweiten Geschwindigkeitsprofil in der zweiten Betriebsart betreibbar ist, um das Empfangselement in einer inkrementellen Entfernung nach der vorbestimmten Position zu stoppen.
- Verfahren zum Bewegen eines Empfangselements, das eine Vorderkante, eine Hinterkante und eine Länge umfasst, die größer als eine vorbestimmte, optimale Empfangselementlänge ist, von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem sich bewegenden, bildtragenden Element, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei das Verfahren folgende Schritte umfasst:Erfassen der Vorderkante des Empfangselements mit einem Sensor (160a,b);Bewegen eines Antriebselements (102) in Eingriff mit dem Empfangselement, wenn sich die Vorderkante des Empfangselements um eine inkrementelle Entfernung über den Sensor (160a,b) hinaus bewegt hat, wobei die inkrementelle Entfernung ausreichend groß bemessen ist, damit der Spalt die Hinterkante des Empfangselements freigibt, bevor das Empfangselement zum Halten gebracht wird; Stoppen des Empfangselements; undZuführen des Empfangselements zum richtigen Zeitpunkt (Z) und mit einer Geschwindigkeit, die im Wesentlichen gleich der Bildtransportgeschwindigkeit (220) ist, zum bildtragenden Element.
- Verfahren zum Bewegen eines Empfangselements nach Anspruch 15, weiterhin gekennzeichnet durch folgende Schritte:Beschleunigen des Empfangselements auf eine höhere Geschwindigkeit (230) als die Bildtransportgeschwindigkeit (220) nach Stoppen des Empfangselements; undVerzögern des Empfangselements auf eine niedrigere Geschwindigkeit (240) als die Bildtransportgeschwindigkeit (220), und zwar für eine Zeitdauer (310), die ausreichend bemessen ist, um die passgenaue Ausrichtung in Querrichtung vor dem Zuführen des Empfangselements zum bildtragenden Element abzuschließen.
- Verfahren zum Bewegen eines Empfangselements nach Anspruch 16,
dadurch gekennzeichnet, dass die inkrementelle Entfernung ca. 0,520 Zoll (1,32 cm) beträgt. - Verfahren zur Verwendung einer Antriebsbaugruppe, die zum Eingriff mit einem Empfangselement betreibbar ist, um das Empfangselement von einem vorgelagerten Spalt in einer passgenau ausgerichteten Beziehung mit einem sich bewegenden, bildtragenden Element zu bewegen, das sich mit einer Bildtransportgeschwindigkeit (220) bewegt, wobei die Antriebsbaugruppe (102, 104, 106) eine Ausgangsposition aufweist, in der die Antriebsbaugruppe (102, 104, 106) nicht in das Empfangselement eingreift, und wobei das Empfangselement eine Vorderkante, eine Hinterkante und eine Länge aufweist, die größer als eine vorbestimmte, optimale Empfangselementlänge ist, mit folgenden Schritten:Erfassen der Vorderkante des Empfangselements mit einem Sensor (160a,b);Halten der Antriebsbaugruppe (102, 104, 106) für eine inkrementelle Zeitdauer in der Ausgangsposition, wobei die Zeitdauer ausreichend groß bemessen ist, damit der Spalt die Hinterkante des Empfangselements freigibt, bevor das Empfangselement zum Halten gebracht wird;Bewegen der Antriebsbaugruppe (102, 104, 106) in Eingriff mit dem Empfangselement;Stoppen des Empfangselements; undZuführen des Empfangselements zum richtigen Zeitpunkt (Z) und mit einer Geschwindigkeit, die im Wesentlichen gleich der Bildtransportgeschwindigkeit (220) ist, zum bildtragenden Element.
- Verfahren zur Verwendung einer Antriebsbaugruppe zum Bewegen eines Empfangselements nach Anspruch 18,
dadurch gekennzeichnet, dass die inkrementelle Zeitdauer ca. 16 ms beträgt. - Verfahren nach einem der Ansprüche 11 bis 19,
dadurch gekennzeichnet, dass die vorbestimmte, optimale Empfangselementlänge ca. 17 Zoll (41,65 cm) beträgt; und dass das Empfangselement eine Länge von ca. 18 Zoll (45,72 cm) hat.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US699195 | 2000-10-27 | ||
US09/699,195 US6453149B1 (en) | 2000-10-27 | 2000-10-27 | System and method for registering long receivers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1201583A2 true EP1201583A2 (de) | 2002-05-02 |
EP1201583A3 EP1201583A3 (de) | 2003-11-19 |
Family
ID=24808326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01124261A Withdrawn EP1201583A3 (de) | 2000-10-27 | 2001-10-17 | Vorrichtung und Verfahren zum Ausrichten langer Empfangselemente |
Country Status (5)
Country | Link |
---|---|
US (1) | US6453149B1 (de) |
EP (1) | EP1201583A3 (de) |
JP (1) | JP4132778B2 (de) |
CA (1) | CA2358686C (de) |
DE (1) | DE10151258A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4265106B2 (ja) * | 2001-02-09 | 2009-05-20 | コニカミノルタホールディングス株式会社 | 画像形成装置 |
JP4580602B2 (ja) * | 2001-09-21 | 2010-11-17 | 株式会社東芝 | 紙葉類処理装置 |
FR2857655A1 (fr) * | 2003-07-18 | 2005-01-21 | Asitrade Ag | Procede pour aligner une matiere en feuille defilant dans une machine la travaillant et dispositif pour la mise en oeuvre du procede |
JP4850940B2 (ja) * | 2009-08-26 | 2012-01-11 | キヤノン株式会社 | 画像形成装置 |
EP3425456B1 (de) * | 2017-07-04 | 2021-09-01 | Konica Minolta, Inc. | Bilderzeugungsvorrichtung und transportsteuerungsverfahren |
JP7271322B2 (ja) * | 2019-06-07 | 2023-05-11 | キヤノン株式会社 | シート給送装置 |
NL2023988B1 (en) | 2019-10-10 | 2021-04-15 | Xeikon Prepress Nv | Punching Station and Method for a Relief plate precursor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5322273A (en) * | 1993-05-18 | 1994-06-21 | Eastman Kodak Company | Sheet registration mechanism |
US5678127A (en) * | 1994-05-23 | 1997-10-14 | Canon Kabushiki Kaisha | Sheet supply apparatus with control based on detected sheet length |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5094442A (en) | 1990-07-30 | 1992-03-10 | Xerox Corporation | Translating electronic registration system |
US5731680A (en) | 1995-06-29 | 1998-03-24 | Eastman Kodak Company | Method and apparatus for registering a sheet with an image-bearing member |
-
2000
- 2000-10-27 US US09/699,195 patent/US6453149B1/en not_active Expired - Fee Related
-
2001
- 2001-10-12 CA CA002358686A patent/CA2358686C/en not_active Expired - Fee Related
- 2001-10-17 EP EP01124261A patent/EP1201583A3/de not_active Withdrawn
- 2001-10-17 DE DE10151258A patent/DE10151258A1/de not_active Withdrawn
- 2001-10-25 JP JP2001328206A patent/JP4132778B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5322273A (en) * | 1993-05-18 | 1994-06-21 | Eastman Kodak Company | Sheet registration mechanism |
US5678127A (en) * | 1994-05-23 | 1997-10-14 | Canon Kabushiki Kaisha | Sheet supply apparatus with control based on detected sheet length |
Also Published As
Publication number | Publication date |
---|---|
US6453149B1 (en) | 2002-09-17 |
EP1201583A3 (de) | 2003-11-19 |
DE10151258A1 (de) | 2002-05-29 |
JP4132778B2 (ja) | 2008-08-13 |
CA2358686A1 (en) | 2002-04-27 |
JP2002196553A (ja) | 2002-07-12 |
CA2358686C (en) | 2006-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1211568B1 (de) | Vorrichtung und Verfahren zur passgenauen Ausrichtung von bildaufnehmenden Bögen, wobei die Ansteuerungsimpulse eines Schrittmotors zeitlich höher aufgelöst sind als die Codiererimpulse, die die Bewegung des Elements mit dem zu übertragenden Bildes detektieren | |
DE4416564C2 (de) | Blattausrichtvorrichtung | |
EP1008016B1 (de) | Ausrichtvorrichtung | |
DE69216051T2 (de) | Gerät zur Geradrichtung und Seitenausrichtung eines Blattes | |
DE69110005T2 (de) | Gerät und Verfahren für kombiniertes Ausrichten und Positionieren von Kopierblättern. | |
DE4241502C2 (de) | Vorrichtung zum fortwährenden Zuführen einzelner Blätter zu einem Blattverarbeitungsabschnitt einer Blattverarbeitungseinrichtung | |
DE60007915T2 (de) | System zur geraden Ausrichtung von Druckerblättern verschiedener Länge | |
DE69124755T2 (de) | Apparat zum Ausrichten von Bogen | |
DE60006182T2 (de) | System zur geraden Ausrichtung von Druckerblättern verschiedener Breite | |
EP1345829B1 (de) | Vorrichtung und ein verfahren zur ausrichtung von bogen | |
DE3611965C2 (de) | Vorrichtung zur Lagekorrektur eines Papierblattes in einem Bilderzeugungsgerät | |
DE2404118C2 (de) | Korrektureinrichtung zur Ausrichtung einer blattförmigen Vorlage in einem Wiederholungs-Kopiergerät | |
DE19717183B4 (de) | Verfahren und Vorrichtung zum Zuführen von Papier zu einem Drucker | |
DE69918206T2 (de) | Dispositif d'alimentation et de traitement de feuilles | |
EP1460009B1 (de) | Vorrichtung zur Ausrichtung von Bogen | |
EP1551640B1 (de) | Vorrichtung und verfahren zur führung einer endlosen bahn mit hilfe einer schwenkbaren vorrichtung | |
EP1202124A2 (de) | Vorrichtung und Verfahren für ein vergrössertes betriebliches Zeitfenster zur passgenauen Ausrichtung von Empfangsbogen | |
DE10023940B4 (de) | Vorrichtung zum Ausrichten bogenförmigen Materials während des Transports | |
DE602004012202T2 (de) | Verfahren und Vorrichtung für das Überlappung von Bogen | |
EP1201583A2 (de) | Vorrichtung und Verfahren zum Ausrichten langer Empfangselemente | |
DE2951252A1 (de) | Vorlagenzufuehreinrichtung | |
DE10023290A1 (de) | Ausrichteeinheit für bogenförmiges Material | |
DE69813770T3 (de) | Vorrichtung und Verfahren zur Befestigung von Karten auf einer sich bewegenden Bahn | |
EP1281648B1 (de) | Vorrichtung zum Transport von blattförmigen Bedruckstoffen | |
DE10023918A1 (de) | Verfahren zur Kompensation von Abmessungsänderungen an bogenförmigem Material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040519 |
|
AKX | Designation fees paid |
Designated state(s): CH DE FR GB IT LI NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EASTMAN KODAK COMPANY |
|
17Q | First examination report despatched |
Effective date: 20041012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20060119 |