EP1144755B1 - Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren - Google Patents

Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren Download PDF

Info

Publication number
EP1144755B1
EP1144755B1 EP99934562A EP99934562A EP1144755B1 EP 1144755 B1 EP1144755 B1 EP 1144755B1 EP 99934562 A EP99934562 A EP 99934562A EP 99934562 A EP99934562 A EP 99934562A EP 1144755 B1 EP1144755 B1 EP 1144755B1
Authority
EP
European Patent Office
Prior art keywords
halogen
alkyl
weight
hydrogen
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99934562A
Other languages
English (en)
French (fr)
Other versions
EP1144755A2 (de
EP1144755A3 (de
Inventor
Mickael Mheidle
Bénédicte GALEA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Schweiz AG
Original Assignee
Ciba Spezialitaetenchemie Holding AG
Ciba SC Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Spezialitaetenchemie Holding AG, Ciba SC Holding AG filed Critical Ciba Spezialitaetenchemie Holding AG
Publication of EP1144755A2 publication Critical patent/EP1144755A2/de
Publication of EP1144755A3 publication Critical patent/EP1144755A3/de
Application granted granted Critical
Publication of EP1144755B1 publication Critical patent/EP1144755B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5264Macromolecular compounds obtained otherwise than by reactions involving only unsaturated carbon-to-carbon bonds
    • D06P1/5285Polyurethanes; Polyurea; Polyguanides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5207Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • D06P1/525Polymers of unsaturated carboxylic acids or functional derivatives thereof
    • D06P1/5257(Meth)acrylic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/651Compounds without nitrogen
    • D06P1/65106Oxygen-containing compounds
    • D06P1/65118Compounds containing hydroxyl groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/30Ink jet printing

Definitions

  • the present invention relates to a method for printing on textiles Fiber materials according to the inkjet printing process.
  • Inkjet printing processes have been in the textile industry for several years applied. These processes make it possible to produce a product that is otherwise customary Eliminate the printing stencil, so that considerable cost and time savings are achieved can be. Especially in the production of sample templates can be within reacted to changing needs much less time.
  • Corresponding inkjet printing processes should in particular be optimal have application properties. To be mentioned in this Relationship properties such as viscosity, stability, surface tension and Conductivity of the inks used. There are also increased quality requirements of the prints obtained, e.g. regarding color strength and wet fastness properties. These requirements are not met by all of the known methods Properties fulfilled, so that there is still a need for new processes for the textile Inkjet printing exists.
  • the dyes of the formulas are of particular interest as pigment dyes and
  • pigment Yellow 7 C.I. Pigment Black 7, C.I. Pigment Red 101, C.I. Pigment Yellow 17, C.I. Pigment Yellow 34, C.I. Pigment Yellow 83 and C.I. pigment Yellow 128.
  • the pigment dyes mentioned are known or can be analogous to known Manufacturing processes such as diazotization, coupling, addition and condensation reactions, be preserved.
  • the pigment dye binders are dispersible in water or preferably in water soluble. Examples include Carboset® 531 and Sancure® AU-4010 from BFGoodrich called.
  • the polymers considered as binders have no sulfo or sulfato groups.
  • the inks preferably contain a total dye content of 1 to 35% by weight, in particular 1 to 30 wt .-% and preferably 1 to 20 wt .-%, based on the Total ink weight.
  • the lower limit here is a limit of 2.5% by weight, in particular 5% by weight and preferably 10% by weight, preferred.
  • the pigment dye binder is preferably in an amount of 2 to 30 in the ink % By weight, in particular in an amount of 5 to 20% by weight.
  • Preferred inks for the process according to the invention are those which have a viscosity from 1 to 40 mPa ⁇ s (millipascal second), in particular 1 to 20 mPa ⁇ s and preferably 1 up to 10 mPa ⁇ s.
  • Inks with a viscosity of. are of particular importance 2 to 5 mPa ⁇ s. Also important are inks with a viscosity of 10 up to 30 mPa ⁇ s.
  • the inks can include in order to adjust the viscosity, natural or thickener contain synthetic origin.
  • thickeners are commercial alginate thickeners, starch ethers or called locust bean gum ether. Cellulose ethers may also be mentioned.
  • cellulose ether come e.g. Methyl, ethyl, carboxymethyl, hydroxyethyl, Methythydroxyäthyl-, hydroxypropyl or hydroxypropylmethyl cellulose into consideration. Carboxymethyl cellulose and hydroxypropyl methyl cellulose are preferred.
  • the Cellulose ethers are preferably water-soluble.
  • synthetic thickeners further e.g. those based on poly (meth) acrylic acids or poly (meth) acrylamides called.
  • alkali alginates and preferably sodium alginate come as alginates into consideration.
  • the thickeners are usually present in the ink in an amount of 0.01 to 2% by weight, in particular 0.01 to 1% by weight and preferably 0.01 to 0.5% by weight, based on the total weight of the ink used. These thickeners allow Setting a specific viscosity of the ink.
  • the inks can also contain surfactants, redispersants or humectants contain.
  • the commercially available anionic or nonionic surfactants are suitable as surfactants.
  • a redispersant e.g. Mention betaine.
  • the pigment dyes are expediently used in dispersed form.
  • the customary dispersants preferably nonionic dispersants can be used.
  • Suitable components (ca) are polyadducts of 4 to 40 moles of ethylene oxide with 1 mole of a phenol which has at least one C 4 -C 12 alkyl group, a phenyl group; has a tolyl group, an a-tolylethyl group, a benzyl group, an a-methylbenzyl group or an a, a-dimethylbenzyl group, such as butylphenol, tributylphenol, octylphenol, ncnylphenol, dinonylphenol, o-phenylphenol, benzylphenol, dibenzylphenol, d-tolylylphenol, (nonyl) phenol, a-methylbenrylphenol, bis (a-methylbenzyl) phenol or tris (amethylbenzyl) phenol, which adducts can be used individually or in a mixture.
  • Adducts of 6 to 30 moles of ethylene oxide are of particular interest as component (ca) 1 mol of 4-nonylphenol, 1 mol of dinonylphenol or especially 1 mol of compounds, which are prepared by adding 1 to 3 moles of styrenes to 1 mole of phenols.
  • the styrene addition products are preferably produced in a known manner in Presence of catalysts such as sulfuric acid, p-totoluenesulfonic acid or especially zinc chloride.
  • catalysts such as sulfuric acid, p-totoluenesulfonic acid or especially zinc chloride.
  • styrenes are styrene, a-methylstyrene or vinyl toluene (4-methylstyrene).
  • the phenols are phenol, cresols or xylenols.
  • Ethylene oxide adducts of the formula (21) are very particularly preferred wherein m 3 is 1 to 3 and n 3 is 8 to 30.
  • Ethylene oxide adducts of the formula are also preferred wherein Y 2 is C 4 -C 12 alkyl, phenyl, tolyl, tolyl-C 1 -C 3 alkyl or phenyl-C 1 -C 3 alkyl, such as a-methyl or a, a-dimethylbenzyl, and m 2 are 1 to 3 and n 2 4 to 40.
  • Preferred components (cc) are ethylene oxide adducts with polypropylene oxide (so-called EO-PO block polymers) and propylene oxide adducts with polyethylene oxide (so-called reverse EO-PO block polymers).
  • Ethylene oxide-propylene oxide block polymers with molecular weights are particularly preferred the polypropylene oxide base from 1700 to 4000 and an ethylene oxide content in the whole molecule from 30-80%, especially 60-80%.
  • dispersants based on naphthalene sulfonates are also of interest.
  • the inks particularly preferably contain humectants, usually in an amount from 2 to 30% by weight, in particular 5 to 30% by weight and preferably 5 to 25% by weight, based on the total weight of the ink.
  • humectants polyhydric alcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, With tetraethylene glycol, propylene glycol, dipropylene glycol, glycerin and polyethylene glycols a molecular weight of preferably 200 to 800.
  • Glycerin propylene glycol or diethylene glycol are of interest. Is particularly interesting Propylene glycol or a mixture of diethylene glycol and glycerin e.g. in one Weight ratio of 10: 1 to 1:10, preferably 5: 1 to 1: 5 and in particular 3: 1 to 1: 3.
  • the inks can also be acid donors such as butyrolactone or Sodium hydrogen phosphate, preservative, fungal and / or bacterial growth inhibiting substances, foam suppressants, wetting agents, sequestering agents, emulsifiers, contain water-insoluble solvents, oxidizing agents or deaerating agents.
  • Suitable preservatives are, above all, formaldehyde-releasing agents, such as, for example, paraformaldehyde and trioxane, especially aqueous, approximately 30 to 40 percent by weight formaldehyde solutions, and sequestering agents, for example sodium nitrilotriacetic acid, sodium ethylenediaminetetraacetic acid, especially sodium polymethaphosphate, in particular sodium hexamethaphosphate, as emulsifiers especially adducts of an alkylene oxide and a fatty alcohol, especially an adduct of oleyl alcohol and ethylene oxide, as a water-insoluble solvent, high-boiling, saturated hydrocarbons, especially paraffins with a boiling range of about 160 to 210 ° C (so-called mineral spirits), as an oxidizing agent, for example an aromatic nitro compound , especially an aromatic mono- or dinitrocarboxylic acid or sulfonic acid, which is optionally present as an alkylene oxide ad
  • constituents of the ink are chemicals such as alkali in amounts of e.g. 0.1 to 5 wt .-%, in particular 0.5 to 2 wt .-%, called.
  • alkali aqueous ammoniacal solutions and dimethylethanolamine should be mentioned.
  • the inks can be mixed in the usual way for pigment dyes
  • Ingredients can be prepared in the desired amount of water.
  • the pigment particles preferably have a defined grain spectrum in the finished ink and should in particular a certain grain size, e.g. 10 ⁇ m, in particular 5 ⁇ m, is not exceed.
  • the pigment particles preferably have an average grain size of 1 ⁇ m or less.
  • a defined com spectrum can be obtained, for example, if the pigments are ground wet and the com spectrum continuously Laser size analysis is monitored.
  • the method according to the invention for printing on textile fiber materials can also be used performed on inkjet printers known per se and suitable for textile printing become.
  • fiber materials containing hydroxyl groups come as textile fiber materials into consideration.
  • As further fiber materials be wool, silk, polyvinyl, polyacrylonitrile, polyamide, aramid, polypropylene and Called polyurethane.
  • the fiber materials mentioned are preferably flat textile fabrics, knitted fabrics or webs.
  • the fiber material is advantageously dried, preferably at temperatures up to 150 ° C, especially 80 to 120 ° C, and then the pressure fixed.
  • Fixing the pressure can e.g. by heat treatment, which is preferably carried out at a temperature of 120 to 190 ° C.
  • the fixation takes place preferably 1 to 8 minutes.
  • fixation can also be carried out with ionizing radiation or by irradiation with UV light respectively.
  • the printed or dyed fiber material is advantageously at elevated temperature, e.g. between 40 and 120 ° C, in particular between 60 and 100 ° C, irradiated and fixed.
  • elevated temperature e.g. between 40 and 120 ° C, in particular between 60 and 100 ° C
  • the irradiation can take place either immediately after the drying process, or you can also print the cold printed fiber material to the desired one before irradiation Warm temperature, e.g. in an infrared heater.
  • Ionizing radiation is to be understood to mean radiation which has an ionization chamber can be demonstrated. It consists of either electrically charged, Directly ionizing particles, which generate ions in gases along their path by impact or from uncharged, indirectly ionizing particles or photons that are in matter directly generate ionizing charged secondary particles like the secondary electrons of X-ray or ⁇ -rays or the recoil nuclei (especially protons) of fast neutrons; Also indirectly ionizing particles are slow neutrons that pass through Nuclear reactions partly direct, partly via photons from ( ⁇ , ⁇ ) processes with high energy can generate charged particles. Protons come as heavy charged particles, Atomic nuclei or ionized atoms. Of particular importance for the inventive Process are lightly charged particles, e.g. Electrons. As x-rays both the bremsstrahlung and the characteristic radiation come in Consideration. The ⁇ radiation is an important particle radiation of heavily charged particles called.
  • the ionizing radiation can be generated by one of the customary methods. For example, spontaneous core transformations as well as nuclear reactions (forced Core transformations) can be used for generation. Coming as sources of radiation corresponding to natural or artificial radioactive substances and especially nuclear reactors in Consideration. The radioactive fission products resulting from nuclear fission in such reactors represent another important source of radiation.
  • Another possible method of generating radiation is by means of an x-ray tube.
  • Electron beams are of particular importance for the method of the present invention. These are generated by accelerating and concentrating electrons, which are emitted from a cathode by glow, field or photoemission as well as by electron or ion bombardment. Radiation sources are conventional electron guns and accelerators. Examples of radiation sources are known from the literature, for example the International Journal of Electron Beam & Gamma Radiation Processing, in particular 1/89 pages 11-15; Optik, 77 (1987), pages 99-104.
  • ⁇ -emitters e.g. the strontium-90 into consideration.
  • the ⁇ -rays are also technically advantageously applicable ionizing rays called, which can be easily produced in particular with cesium-137 or cobalt-60 isotope sources are.
  • the fixation with ionizing radiation is usually carried out in such a way that a printed and dried textile fiber material by the beam of an electron accelerator is carried out at temperatures between 60 and 100 ° C. This happens with such a speed that a certain radiation dose is reached.
  • the radiation doses normally to be used are between 0.1 and 15 Mrad an accelerator voltage between 160 and 300 kV, the radiation dose being advantageous is between 0.1 and 4 Mrad. At a dose less than 0.1 Mrad is generally the degree of fixation too low, damage often occurs at a dose of more than 15 Mrad of the fiber material and the dye.
  • Embodiment especially according to the type of ionizing radiation to be used and their mode of production. For example, if the printed fiber material with ⁇ rays are irradiated, this is enclosed in a cell exposed to the radiation. If higher radiation doses are desired with low radiation intensity, this can be done material to be irradiated are exposed to the radiation in several passes.
  • photoinitiator When using ultraviolet radiation, it is usually necessary to have a photoinitiator.
  • the photoinitiator absorbs the radiation to generate free radicals that initiate the polymerization.
  • photoinitiators or photoinitiators used according to the invention are carbonyl compounds such as 2,3-hexanedione.
  • Diacetylacetophenone, benzoin and benzoin ethers such as dimethyl, ethyl and butyl derivatives, for example 2,2-diethoxyacetophenone and 2,2-dimethoxyacetophenone, benzophenone or a benzophenone salt and phenyl (1-hydroxycyclohexyl) ketone or a ketone of the formula
  • Benzophenone in combination with a catalyst such as triethylamine, N, N'-dibenrylamine and dimethylaminoethanol and benzophenone plus Michler's ketone; acylphosphine oxides; nitrogen-containing compounds such as diazomethane, azo-bis-isobutyronitrile, hydrazine, phenylhydrazine as well as trimethylbenzylammonium chloride; and sulfur-containing compounds such as Benzenesulfonate, diphenyl disulfide and tetramethylthiuram disulfide, as well as those containing phosphorus Connections such as Phosphine oxides.
  • a catalyst such as triethylamine, N, N'-dibenrylamine and dimethylaminoethanol and benzophenone plus Michler's ketone
  • acylphosphine oxides such as diazomethane, azo-bis-isobutyronitrile, hydra
  • the proportion of photoinitiators in the applied coloring components directly before the irradiation is 0.01-20%, preferably 0.1-5%, based on the total amount of colorless polymerizable compounds used.
  • Cationic photoinitiators such as triarylsulfonium salts, diaryliodonium salts, Diaryle complexes or general structures as described in “Chemistry & Technology of UV & EB Formulation for coatings, inks & paints "Volume 3, published by SITA Technology Ltd., Gardiner House, Broomhill Road, London, 1991.
  • Acylphosphine oxides such as. B. (2,4,6 trimethylbenzoyl) (diphenyl) phosphine oxide, or photoinitiators of the formula used or a photoinitiator of the formula together with a photoinitiator of the two aforementioned formulas or a photoinitiator of the formula or benzophenone together with a photoinitiator of the above three formulas.
  • photoinitiators are very particularly preferably used: as well as the mixture of the compounds of the formulas in a weight ratio of 50:50 to 10:90 and the mixture of the compound of the formula and 2,4,6-trimethylbenzoyldiphenylphosphine in a weight ratio of 20:80 to 60:40.
  • the UV light to be used is radiation whose emission is between 200 and 450 nm, in particular between 210 and 400 nm.
  • the radiation is preferred Artificially with high, medium or low pressure mercury vapor lamps, halogen lamps, Metal halide, xenon or tungsten lamps, carbon arc or fluorescent lamps, H and D lamps, superactin fluorescent tubes and lasers.
  • Capillary high-pressure mercury lamps or high-pressure mercury lamps are advantageous or low pressure mercury lamps are used.
  • high-pressure mercury lamps and medium-pressure mercury lamps which also e.g. can be doped with iron or gallium halide.
  • This Lamps can also be operated with microwaves or pulsed to operate Concentrate radiation in peaks. Pulsed operation is also possible with xenon lamps, if you need a higher proportion of boring UV light.
  • UV radiation sources are as described in "Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints”, Volume 1, published by SITA Technology, Gardiner House, Broomhill Road, London, 1991.
  • the exact exposure time of the prints will depend on the luminosity of the UV source, the distance from the light source, the type and amount of photoinitiator and the permeability the formulation and the textile substrate for UV light.
  • Usual irradiation times with the UV light are 1 second to 20 minutes, preferably 5 seconds to 2 minutes.
  • the fixation can be done by interrupting the light be ended so that it can also be carried out discontinuously.
  • the radiation can be in the atmosphere of an inert protective gas, e.g. under nitrogen be performed to prevent inhibition by oxygen.
  • the oxygen inhibition can also be effective by adding so-called "anti-blocking agents" that are amines and especially amino acrylates.
  • the printed fiber material can be washed out in the usual way and be dried
  • Ink-jet printing as well as the subsequent drying and fixing can can also be carried out in a single step. This means in particular that these steps are carried out continuously. That that successive apparatuses for the ink-jet printing, drying and fixation by which this is done printing fiber material is continuously moved through.
  • the equipment for the Ink-jet printing, drying and fixing can also be done in a single machine be united. The fiber material is continuously transported through this machine and is then finished after leaving this machine.
  • the drying can e.g. by means of thermal energy (such as specified above) or in particular by means of infrared radiation (IR).
  • the fixation can e.g. such as. given above.
  • ink-jet printing can also be done separately and drying and Fixations are continuous as indicated above, e.g. in a single machine, executed.
  • a flat fiber material on both sides.
  • one side of the fiber material is printed in one shade, e.g. all over, and the other side of the fiber material is made with a pattern in one or more of each other different shades printed.
  • this page can of course also can also be printed on the entire surface in one shade.
  • Such a method can e.g. so be carried out on each side of the flat fibrous material to be printed or more printheads are available. It then becomes both sides of the fiber material printed at the same time.
  • the print heads on the respective side of the fiber material can be stand directly opposite or installed laterally offset from each other. The fiber material is usually moved between these print heads.
  • Another interesting embodiment relates to the so-called imaging.
  • a template i.e. digitized an image to be reproduced with the print, e.g. using a video camera or a scanner.
  • the digitized image is on one Transfer computer, which then uses an inkjet printer to transfer the image onto the Fiber material prints.
  • the digitized image can already be found in the Computers are stored so that digitization is not necessary.
  • one can be printed Picture e.g. have been created on the computer with graphics software.
  • At the one to be printed Picture it can e.g. also letters, numbers, words, any pattern or deal with complex, different-colored images. Different colored images can e.g. by Using multiple inks with different shades can be created.
  • the prints obtainable by the process according to the invention have good general fastness properties on; e.g. they have good light fastness, good wet fastness properties, such as Water, wash, sea water, over-dyeing and perspiration fastness, good chlorine fastness, Rubbing fastness, ironing fastness and pleating fastness as well as sharp contours and a high Color strength.
  • the printing inks used are characterized by good stability and good viscosity properties out.
  • parts are parts by weight and percentages percentages by weight, unless otherwise noted. Parts by weight relate to parts by volume in the ratio of kilograms to liters.
  • a cotton fabric is containing A with an aqueous ink 5% by weight of the pigment dye of the formula 10% by weight of a commercial polyacrylate binder (Carboset® 531) present in water in dispersed form, 2% by weight of a commercially available polyurethane acrylate binder (Sancure® AU-4010) present in water in dispersed form, 15% by weight diethylene glycol, 5% by weight glycerol, 2% by weight of a commercially available defoaming agent, and 61% by weight of water, printed with a drop-on-demand piezo inkjet head.
  • the print is dried completely and then fixed at 190 ° C for 90 seconds. You get a print with good general fastness properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coloring (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Bedrucken von textilen Fasermaterialien nach dem Tintenstrahldruck-Verfahren.
Tintenstrahldruck-Verfahren werden bereits seit einigen Jahren in der Textilindustrie angewendet. Diese Verfahren ermöglichen es, auf die sonst übliche Herstellung einer Druckschablone zu verzichten, so dass erhebliche Kosten- und Zeiteinsparungen erzielt werden können. Insbesondere bei der Herstellung von Mustervorlagen kann innerhalb deutlich geringerer Zeit auf veränderte Bedürfnisse reagiert werden.
Entsprechende Tintenstrahldruck-Verfahren sollten insbesondere optimale anwendungstechnische Eigenschaften aufweisen. Zu erwähnen seien in diesem Zusammenhang Eigenschaften wie die Viskosität, Stabilität, Oberflächenspannung und Leitfähigkeit der verwendeten Tinten. Ferner werden erhöhte Anforderungen an die Qualität der erhaltenen Drucke gestellt, wie z.B. bezüglich Farbstärke sowie Nassechtheitseigenschaften. Von den bekannten Verfahren werden diese Anforderungen nicht in allen Eigenschaften erfüllt, so dass weiterhin ein Bedarf nach neuen Verfahren für den textilen Tintenstrahldruck besteht.
Die US-A-5 631 071, WO A-98/20084 und die DE-A-43 28 215 offenbaren Tintenstrahldruckverfahren mit pigmenthaltigen Tinten.
Gegenstand der Erfindung ist ein Verfahren zum Bedrucken von textilen Fasermaterialien nach dem Tintenstrahldruck-Verfahren, wobei diese Fasermaterialien mit einer wässrigen Tinte bedruckt werden, welche
  • a) einen Pigmentfarbstoff der Formel
    Figure 00010001
    worin
    R52 Wasserstoff, Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano,
    R53 Wasserstoff, Halogen, Nitro oder Cyano,
    R54 Wasserstoff, Halogen oder Phenylaminocarbonyl,
    R55 Wasserstoff oder Hydroxy, und
    R56 Wasserstoff oder ein Rest der Formel
    Figure 00020001
    ist, wobei
    R57 Wasserstoff, C1-C4-Alkyl oder C1-C4-Alkoxy,
    R58 Wasserstoff, C1-C4-Alkoxy oder Halogen, und
    R59 Wasserstoff, C1-C4-Alkyl, C1-C4-Alkoxy oder Halogen ist,
    Figure 00020002
    worin
    R60 und R61 voneinander unabhängig C1-C4-Alkyl und R62 und R63 Halogen sind,
    Figure 00020003
    wobei die Ringe A, B, D und E unsubstituiert oder ein- oder mehrfach mit Halogen substituiert sind,
    Figure 00030001
    worin
    R64 C1-C4-Alkyl,
    R65 Wasserstoff, Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano,
    R66 Wasserstoff, Halogen, Nitro oder Cyano,
    R67 Wasserstoff, Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano sind,
    Figure 00030002
    wobei die Ringe A' und B' unsubstituiert oder ein- oder mehrfach mit Halogen substituiert sind,
    Figure 00030003
    worin
    (R68)0-2 und (R68')0-2 unabhängig voneinander für 0 bis 2 Substituenten ausgewählt aus der Gruppe Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano stehen, und
    K1 und K2 unabhängig voneinander einen Rest der Formel
    Figure 00030004
    bedeuten, wobei
    (R69)0-3 und (R69')0-3 unabhängig voneinander für 0 bis 3 Substituenten ausgewählt aus der Gruppe Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano, insbesondere Halogen,
    C1-C4-Alkyl und C1-C4-Alkoxy, stehen, oder
    C.I. Pigment Yellow 34 oder C.I. Pigment Yellow 128,
    oder anorganische Pigmentfarbstoffe auf der Basis von Russ oder Eisenoxiden,
  • b) eine in Wasser dispergierbare oder in Wasser lösliche Mischung von Pigmentfarbstoffbindem, wobei eine Mischungskomponente auf dem Polymerisationsprodukt von Acrylsäure und eine weitere Mischungskomponente auf dem Polymerisationsprodukt von Acrylsäure und Urethan basiert, und
  • c) Glycerin, Propylenglykol oder Diethylenglykol enthält.
  • Von besonderem Interesse als Pigmentfarbstoffe sind die Farbstoffe der Formeln
    Figure 00040001
    Figure 00040002
    Figure 00040003
    Figure 00050001
    Figure 00050002
    Figure 00050003
    Figure 00050004
    und
    Figure 00060001
    Weitere interessante Pigmentfarbstoffe sind C.I. Pigment Black 7, C.I. Pigment Red 101, C.I. Pigment Yellow 17, C.I. Pigment Yellow 34, C.I. Pigment Yellow 83 sowie C.I. Pigment Yellow 128.
    Besonders bevorzugt verwendet man in dem erfindungsgemässen Verfahren als Pigmentfarbstoffe solche der Formel (7e), (7g) sowie C.I. Pigment Yellow 83 und C.I. Pigment Black 7.
    Die genannten Pigmentfarbstoffe sind bekannt oder können in Analogie zu bekannten Herstellungsverfahren, wie Diazotierungs-, Kupptungs-, Additions- und Kondensationsreaktionen, erhalten werden.
    Die Pigmentfarbstoffbinder sind in Wasser dispergierbar oder vorzugsweise in Wasser löslich. Als Beispiele seien Carboset® 531 und Sancure® AU-4010 der Firma BFGoodrich genannt.
    In einer ganz besonderen Ausführungsform des erfindungsgemässen Verfahrens enthalten die als Binder in Betracht kommenden Polymerisate keine Sulfo- oder Sulfatogruppen.
    Die Tinten enthalten bevorzugt einen Gesamtgehalt an Farbstoffen von 1 bis 35 Gew.-%, insbesondere 1 bis 30 Gew.-% und vorzugsweise 1 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Tinte. Als untere Grenze ist hierbei eine Grenze von 2,5 Gew.-%, insbesondere 5 Gew.-% und vorzugsweise 10 Gew.-%, bevorzugt.
    Der Pigmentfarbstoffbinder liegt in der Tinte vorzugsweise in einer Menge von 2 bis 30 Gew.-%, insbesondere in einer Menge von 5 bis 20 Gew.-%, vor.
    Bevorzugt sind für das erfindungsgemässe Verfahren solche Tinten, welche eine Viskosität von 1 bis 40 mPa·s (Millipascalsekunde), insbesondere 1 bis 20 mPa·s und vorzugsweise 1 bis 10 mPa·s aufweisen. Von besonderer Bedeutung sind Tinten, welche eine Viskosität von 2 bis 5 mPa·s aufweisen. Ferner sind Tinten von Bedeutung welche eine Viskosität von 10 bis 30 mPa·s aufweisen.
    Die Tinten können, u.a. zwecks Einstellung der Viskosität, Verdickungsmittel natürlicher oder synthetischer Herkunft enthalten.
    Als Beispiele für Verdickungsmittel seien handelsübliche Alginatverdickungen, Stärkeether oder Johannisbrotkernmehlether genannt. Ferner seien Celluloseäther genannt.
    Als Celluloseäther kommen z.B. Methyl-, Aethyl-, Carboxymethyl-, Hydroxyäthyl-, Methythydroxyäthyl-, Hydroxypropyl- oder Hydroxypropylmethylcellulose in Betracht. Bevorzugt sind Carboxymethylcellulose und Hydroxypropylmethylcellulose. Die Celluloseäther sind vorzugsweise wasserlöslich. Als synthetische Verdickungsmittel seien ferner z.B. solche auf Basis von Poly(meth)acrylsäuren oder Poly(meth)acrylamiden genannt. Als Alginate kommen insbesondere Alkalialginate und vorzugsweise Natriumalginat in Betracht. Die Verdickungsmittel werden in der Tinte üblicherweise in einer Menge von 0,01 bis 2 Gew.-%, insbesondere 0,01 bis 1 Gew.-% und vorzugsweise 0,01 bis 0,5 Gew.-%, bezogen auf das Gesamtgewicht der Tinte, verwendet. Diese Verdickungsmittel erlauben die Einstellung einer bestimmten Viskosität der Tinte.
    Als weitere Zusätze können die Tinten Tenside, Redispergiermittel oder Feuchthaltemittel enthalten.
    Als Tenside kommen die handelsüblichen anionischen oder nichtionogenen Tenside in Betracht. Als Redispergiermittel ist z.B. Betain zu erwähnen.
    Die Pigmentfarbstoffe werden zweckmässigerweise in dispergierter Form eingesetzt.
    Zur Herstellung der Farbstoffdispersionen können die üblichen Dispergiermittel, vorzugsweise nichtionogene Dispergiermittel, verwendet werden.
    Als nichtionogene Dispergiermittel eignen sich insbesondere Verbindungen, welche aus der Gruppe der
  • (ca) Alkylenoxidaddukte der Formel
    Figure 00080001
    worin Y1 C1-C12-Alkyl, Aryl oder Aralkyl bedeutet,
    "Alkylen" für den Ethylenrest oder Propylenrest steht und
    m1 1 bis 4 und n1 4 bis 50 sind,
  • (cb) Alkylenoxiaddukte an
  • (cba) gesättigte oder ungesättigte 1-6-wertige aliphatische Alkohole,
  • (cbb) Fettsäuren,
  • (cbc) Fettamine,
  • (cbd) Fettamide,
  • (cbe) Diamine,
  • (cbf) Sorbitanester,
  • (cc) Alkylenoxid-Kondensationsprodukte (Blockpolymerisate)
  • (cd) Polymerisate von Vinylpyrrolidon, Vinylacetat oder Vinylalkohol und
  • (ce) Co- oder Ter-polymere von Vinylpyrrolidon mit Vinylacetat und/oder Vinylalkohol, ausgewählt sind.
  • Geeignete Komponenten (ca) sind Polyaddukte von 4 bis 40 Mol Ethylenoxid an 1 Mol eines Phenols, das mindestens eine C4-C12-Alkylgruppe, eine Phenylgruppe; eine Tolylgruppe, eine a-Tolylethylgruppe, eine Benzylgruppe, eine a-Methylbenzylgruppe oder eine a,a-Dimethylbenzylgruppe aufweist, wie z.B. Butylphenol, Tributylphenol, Octylphenol, Ncnylphenol, Dinonylphenol, o-Phenylphenol, Benzylphenol, Dibenzylphenol, a-Tolylethylphenol, Dibenzyl-(nonyl)-phenol, a-Methylbenrylphenol, Bis-(a-Methylbenzyl)-phenol oder Tris-(amethylbenzyl)-phenol, wobei diese Addukte einzeln oder in Mischung verwendet werden können.
    Von besonderem Interesse als Komponente (ca) sind Addukte von 6 bis 30 Mol Ethylenoxid an 1 Mol 4-Nonylphenol, an 1 Mol Dinonylphenol oder besonders an 1 Mol von Verbindungen, die durch Anlagerung von 1 bis 3 Mol von Styrolen an 1 Mol Phenole hergestellt werden.
    Die Herstellung der Styrolanlagerungsprodukte erfolgt in bekannter Weise vorzugsweise in Gegenwart von Katalysatoren, wie Schwefelsäure, p-Totuolsulfonsäure oder vor allem Zinkchlorid. Als Styrole kommen zweckmässigerweise Styrol, a-Methylstyrol oder Vinyltoluol (4-Methylstyrol) in Betracht. Beispiele für die Phenole sind Phenol, Kresole oder Xylenole.
    Ganz besonders bevorzugt sind Ethylenoxidaddukte der Formel (21)
    Figure 00090001
    worin m3 1 bis 3 und n3 8 bis 30 bedeuten.
    Ebenfalls bevorzugt sind Ethylenoxidaddukte der Formel
    Figure 00090002
    worin Y2 C4-C12-Alkyl, Phenyl, Tolyl, Tolyl-C1-C3-alkyl oder Phenyl-C1-C3-alkyl, wie z.B. a-Methyl- oder a,a-Dimethylbenzyl bedeutet, und m2 1 bis 3 und n2 4 bis 40 sind.
    Die nichtionogene Komponente (cb) ist vorteilhafterweise
    • ein Alkylenoxidanlagerungsprodukt von 1 bis 100 Mol Alkylenoxid, z.B. Ethylenoxid und/oder Propylenoxid, an 1 Mol eines aliphatischen Monoalkohols mit mindestens 4 Kohlenstoffatomen, eines 3- bis 6-wertigen aliphatischen Alkohols oder eines gegebenenfalls durch Alkyl, Phenyl, a-Tolylethyl, Benzyl, a-Methylbenzyl oder a,a-Dimethylbenzyl substituierten Phenols (cba);
    • ein Alkylenoxidanlagerungsprodukt von 1 bis 100, vorzugsweise 2 bis 80 Mol Ethylenoxid wobei einzelne Ethylenoxideinheiten durch substituierte Epoxide, wie Styroloxid und/oder Propylenoxid, ersetzt sein können, an höhere ungesättigte oder gesättigte Monoalkohole (cba), Fettsäuren (cbb), Fettamine (cbc) oder Fettamide (cbd) mit 8 bis 22 Kohlenstoffatomen;
    • ein Alkylenoxidanlagerungsprodukt, vorzugsweise ein Ethylenoxid-Propylenoxid-Addukt an Ethylendiamin (cbe);
    • ein ethoxyliertes Sorbitanester mit langkettigen Estergruppen, wie z.B. Polyoxiethylen-Sorbitanmonolaurat mit 4 bis 20 Ethylenoxideinheiten oder Polyoxiethylen-Sorbitantrioleat mit 4 bis 20 Ethylenoxideinheiten (cbf).
    Bevorzugte Komponenten (cc) sind Ethylenoxidaddukte an Polypropylenoxid (sogenannte EO-PO-Blockpolymere) und Propylenoxidaddukte an Polyethylenoxid (sogenannte umgekehrte EO-PO-Blockpolymere).
    Besonders bevorzugt sind Ethylenoxid-Propylenoxid-Blockpolymere mit Molekulargewichten der Polypropylenoxidbasis von 1700 bis 4000 und einem Ethylenoxidgehalt im Gesamtmolekül von 30-80%, insbesondere 60-80%.
    Von Interesse sind ferner Dispergiermittel auf der Basis von Naphthalinsulfonaten.
    Besonders bevorzugt enthalten die Tinten Feuchthaltemittel, üblicherweise in einer Menge von 2 bis 30 Gew.-%, insbesondere 5 bis 30 Gew.-% und vorzugsweise 5 bis 25 Gew.-%, bezogen auf das Gesamtgewicht der Tinte. Als Feuchthaltemittel kommen insbesondere mehrwertige Alkohole, wie Ethylenglykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Propylenglykol, Dipropylenglykol, Glycerin und Polyethylenglykole mit einem Molekulargewicht von vorzugsweise 200 bis 800, in Betracht. Von besonderem Interesse sind Glycerin, Propylenglykol oder Diethylenglykol. Ganz besonders interessant ist Propylenglykol oder eine Mischung aus Diethylenglykol und Glycerin, z.B. in einem Gewichtsverhältnis von 10:1 bis 1:10, vorzugsweise 5:1 bis 1:5 und insbesondere 3:1 bis 1:3.
    Gewünschtenfalls können die Tinten noch Säurespender wie Butyrolacton oder Natriumhydrogenphosphat, Konservierungsmittel, Pilz- und/oder Bakteriewachstum hemmende Stoffe, schaumdämpfende Mittel, Netzmittel, Sequestriermittel, Emulgatoren, wasserunlösliche Lösungsmittel, Oxidationsmittel oder Entlüftungsmittel enthalten.
    In Betracht kommen als Konservierungsmittel vor allem formaldehydabgebende Mittel, wie z.B. Paraformaldehyd und Trioxan, vor allem wässrige, etwa 30 bis 40-gewichtsprozentige Formaldehydlösungen, als Sequestriermittel z.B. nitrilotriessigsaures Natrium, ethylendiamintetraessigsaures Natrium, vor allem Natrium-Polymethaphosphat, insbesondere Natrium-Hexamethaphosphat, als Emulgatoren vor allem Addukte aus einem Alkylenoxid und einem Fettalkohol, insbesondere einem Addukt aus Oleylalkohol und Ethylenoxid, als wasserunlösliche Lösungsmittel hochsiedende, gesättigte Kohlenwasserstoffe, vor allem Paraffine mit einem Siedebereich von etwa 160 bis 210°C (sogenannte Lackbenzine), als Oxidationsmittel z.B. eine aromatische Nitroverbindung, vor allem eine aromatische Mono- oder Dinitrocarbonsäure oder -sulfonsäure, die gegebenenfalls als Alkylenoxidaddukt vorliegt, insbesondere eine Nitrobenzolsulfonsäure und als Entlüftungsmittel z.B. hochsiedende Lösungsmittel, vor allem Terpentinöle, höhere Alkohle, vorzugsweise C8- bis C10-Alkohole, Terpenalkohole oder Entlüftungsmittel auf Basis von Mineral- und/oder Silikonölen, insbesondere Handelsformulierungen aus etwa 15 bis 25 Gewichtsprozent eines Mineral- und Silikonölgemisches und etwa 75 bis 85 Gewichtsprozent eines C8-Alkohols wie z.B. 2-Ethyl-nhexanol. Diese werden üblicherweise in Mengen von 0,01 bis 5 Gew.-%, insbesondere 0,01 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Tinte, verwendet.
    Als weitere Bestandteile der Tinte seien Chemikalien, wie Alkali, in Mengen von z.B. 0,1 bis 5 Gew.-%, insbesondere 0,5 bis 2 Gew.-%, genannt. Als Beispiele für solche Chemikalien sind wässrige ammoniakalische Lösungen sowie Dimethylethanolamin zu nennen.
    Die Tinten können in der für Pigmentfarbstoffe üblichen Weise durch Mischen der einzelnen Bestandteile in der gewünschten Menge Wasser hergestellt werden. Die Pigmentpartikel weisen in der fertigen Tinte vorzugsweise ein definiertes Kornspektrum auf und sollten insbesondere eine bestimmte Komgrösse, die z.B. 10 µm, insbesondere 5 µm, beträgt, nicht überschreiten. Vorzugsweise weisen die Pigmentpartikel eine mittlere Komgrösse von 1 µm oder weniger auf. Ein definiertes Komspektrum kann beispielsweise erhalten werden, wenn die Pigmente nass gemahlen werden und das Komspektrum laufend durch Laserkomgrössenanalyse überwacht wird.
    Das erfindungsgemässe Verfahren zum Bedrucken von textilen Fasermaterialien kann mit an und für sich bekannten für den textilen Druck geeigneten Tintenstrahldruckem ausgeführt werden.
    Im Falle des Tintenstrahldruck-Verfahrens werden einzelne Tropfen der Tinte kontrolliert aus einer Düse auf ein Substrat gespritzt. Ueberwiegend werden hierzu die kontinuierliche Ink-Jet-Methode sowie die Drop on demand-Methode verwendet. Im Falle der kontinuierlichen Ink-Jet-Methode werden die Tropfen kontinuierlich erzeugt, wobei nicht für den Druck benötigte Tropfen in einen Auffangbehälter abgeleitet und rezykliert werden. Im Falle der Drop on demand-Methode hingegen werden Tropfen nach Wunsch erzeugt und gedruckt; d.h. es werden nur dann Tropfen erzeugt, wenn dies für den Druck erforderlich ist. Die Erzeugung der Tropfen kann z.B. mittels eines Piezo-Inkjet-Kopfes erfolgen. Bevorzugt ist für das erfindungsgemässe Verfahren der Druck nach der kontinuierlichen Ink-Jet-Methode.
    Als textile Fasermaterialien kommen insbesondere hydroxylgruppenhaltige Fasermaterialien in Betracht. Bevorzugt sind cellulosehaltige Fasermaterialien, die ganz oder teilweise aus Cellulose bestehen. Beispiele sind natürliche Fasermaterialien wie Baumwolle, Leinen oder Hanf und regenerierte Fasermaterialien wie z.B. Viskose sowie Lyocell. Besonders bevorzugt sind hierbei Viskose oder vorzugsweise Baumwolle. Als weitere Fasermaterialien seien Wolle, Seide, Polyvinyl, Polyacrylnitril, Polyamid, Aramid, Polypropylen und Polyurethan genannt. Die genannten Fasermaterialien liegen vorzugsweise als flächige textile Gewebe, Gewirke oder Bahnen vor.
    Nach dem Bedrucken wird das Fasermaterial vorteilhafterweise getrocknet, vorzugsweise bei Temperaturen bis 150°C, insbesondere 80 bis 120°C, und anschliessend wird der Druck fixiert.
    Die Fixierung des Drucks kann z.B. durch eine Hitzebehandlung erfolgen, welche vorzugsweise bei einer Temperatur von 120 bis 190°C ausgeführt wird. Die Fixierung erfolgt hierbei bevorzugt 1 bis 8 Minuten.
    Die Fixierung kann jedoch auch mit ionisierender Strahlung oder durch Bestrahlung mit UV-Licht erfolgen.
    Vorteilhafterweise wird das bedruckte oder gefärbte Fasermaterial bei erhöhter Temperatur, z.B. zwischen 40 und 120° C, insbesondere zwischen 60 und 100° C, bestrahlt und fixiert. Die Bestrahlung kann dabei entweder unmittelbar nach dem Trocknungsvorgang stattfinden, oder man kann auch das kalte bedruckte Fasermaterial vor der Bestrahlung auf die gewünschte Temperatur erwärmen, z.B. in einem Infrarotheizgerät.
    Unter ionisierender Strahlung soll eine Strahlung verstanden werden, die mit einer lonisationskammer nachgewiesen werden kann. Sie besteht entweder aus elektrisch geladenen, direkt ionisierenden Teilchen, die in Gasen längs ihrer Bahn durch Stoss Ionen erzeugen oder aus ungeladenen, indirekt ionisierenden Teilchen oder Photonen, die in Materie direkt ionisierende geladene Sekundärteilchen erzeugen, wie die Sekundärelektronen von Röntgen- oder γ-Strahlen oder die Rückstosskerne (insbesondere Protonen) von schnellen Neutronen; ebenfalls indirekt ionisierende Teilchen sind langsame Neutronen, die durch Kernreaktionen teils unmittelbar, teils über Photonen aus (β,γ)-Prozessen energiereiche geladene Teilchen erzeugen können. Als schwere geladene Teilchen kommen Protonen, Atomkerne oder ionisierte Atome in Betracht. Von besonderer Wichtigkeit für den erfindungsgemässen Prozess sind leichte geladene Teilchen, z.B. Elektronen. Als Röntgenstrahlung kommt sowohl die Bremsstrahlung als auch die charakteristische Strahlung in Betracht. Als wichtige Teilchenstrahlung schwerer geladener Teilchen sei die α-Strahlung genannt.
    Die Erzeugung der ionisierenden Strahlung kann nach einer der üblichen Methoden erfolgen. So können z.B. spontane Kemumwandlungen als auch Kernreaktionen (erzwungene Kemumwandlungen) zur Erzeugung herangezogen werden. Als Strahlenquellen kommen entsprechend natürliche oder künstliche radioaktive Stoffe und vor allem Atomreaktoren in Betracht. Die in solchen Reaktoren durch Kernspaltung anfallenden radioaktiven Spaltprodukte stellen eine weitere wichtige Strahlenquelle dar.
    Eine weitere in Betracht kommende Methode der Erzeugung von Strahlung ist die mittels einer Röntgenröhre.
    Von besonderer Bedeutung sind Strahlen, die aus in elektrischen Feldem beschleunigten Teilchen bestehen. Als Strahlenquellen kommen hier Thermo-, Elektronenstoss-, Niederspannungsbogen-, Kaltkathoden- und Hochfrequenzionenquellen in Betracht.
    Von besonderer Bedeutung für das Verfahren der vorliegenden Erfindung sind Elektronenstrahlen. Diese werden durch Beschleunigung und Bündelung von Elektronen erzeugt, die durch Glüh-, Feld- oder Photoemission sowie durch Elektronen- oder Ionenbombardement aus einer Kathode emittiert werden. Strahlenquellen sind Elektronenkanonen und Beschleuniger üblicher Bauart. Beispiele für Strahlenquellen sind aus der Literatur bekannt, z.B. Intemational Journal of Electron Beam & Gamma Radiation Processing, insbesondere 1/89 Seiten 11-15; Optik, 77 (1987), Seiten 99-104.
    Als Strahlenquellen für Elektronenstrahlen kommen ferner β-Strahler, wie z.B. das Strontium-90 in Betracht.
    Als technisch vorteilhaft anwendbare ionisierende Strahlen seien ausserdem die γ-Strahlen genannt, die insbesondere mit Cäsium-137- oder Kobalt-60-Isotopenquellen leicht herstellbar sind.
    Die Fixierung mit ionisierender Strahlung erfolgt in der Regel so, dass ein erfindungsgemäss bedrucktes und getrocknetes Textilfasermaterial durch den Strahl eines Elektronenbeschleunigers bei Temperaturen zwischen 60 und 100° C hindurchgeführt wird. Dies geschieht mit einer solchen Geschwindigkeit, dass eine bestimmte Bestrahlungsdosis erreicht wird. Die normalerweise anzuwendenden Bestrahlungsdosen liegen zwischen 0,1 und 15 Mrad bei einer Beschleunigerspannung zwischen 160 und 300 kV, wobei die Bestrahlungsdosis vorteilhaft zwischen 0,1 und 4 Mrad liegt. Bei einer Dosis von weniger als 0,1 Mrad ist im allgemeinen der Fixiergrad zu gering, bei einer Dosis von mehr als 15 Mrad tritt häufig Schädigung des Fasermaterials und des Farbstoffes ein. Bei der Ausführung der Fixierung mittels ionisierender Strahlung muss selbstverständlich auf die jeweiligen technischen Voraussetzungen Rücksicht genommen werden. So richtet sich die spezielle Ausführungsform vor allem nach der Art der zu verwendenden ionisierenden Strahlen und ihrer Erzeugungsweise. Soll zum Beispiel das bedruckte Fasermaterial mit γ-Strahlen bestrahlt werden, so wird diese in eine Zelle eingeschlossen der Strahlung ausgesetzt. Werden bei geringer Strahlenintensität höhere Bestrahlungsdosen gewünscht, so kann das zu bestrahlende Material in mehreren Durchgängen der Strahlung ausgesetzt werden.
    Bei Verwendung ultravioletter Strahlung ist in der Regel das Vorliegen eines Photoinitiators erforderlich. Der Photoinitiator absorbiert die Strahlung, um freie Radikale, die die Polymerisation einleiten, zu erzeugen. Beispiele für erfindungsgemäss verwendete Photoinitiatoren beziehungsweise Photoinitiatoren sind Carbonylverbindungen wie 2,3-Hexandion. Diacetylacetophenon, Benzoin und Benzoinether wie Dimethyl-, Ethyl- und Butylderivate, z.B. 2,2-Diethoxyacetophenon und 2,2-Dimethoxyacetophenon, Benzophenon bzw. ein Benzophenon-Salz und Phenyl-(1-hydroxycyclohexyl)-keton oder ein Keton der Formel
    Figure 00150001
    Benzophenon in Kombination mit einem Katalysator wie Triäthylamin, N,N'-Dibenrylamin und Dimethylaminoethanol und Benzophenon plus Michlers Keton; Acylphosphinoxide; stickstoffhaltige Verbindungen wie Diazomethan, Azo-bis-isobutyronitril, Hydrazin, Phenylhydrazin sowie Trimethylbenzylammoniumchlorid; und schwefelhaltige Verbindungen wie Benzolsulfonat, Diphenyl-disulfid sowie Tetramethylthiuramdisulfid, sowie phophorhaltige Verbindungen, wie z.B. Phosphinoxide. Derartige Photoinitiatoren werden für sich allein oder in Kombination miteinander verwendet.
    Der Anteil an Photoinitiatoren in den aufgetragenen Färbekomponenten direkt vor der Bestrahlung beträgt 0,01-20%, vorzugsweise 0,1-5% , bezogen auf die gesamte Menge der eingesetzten farblosen polymerisierbaren Verbindungen.
    Sowohl wasserlösliche wie auch wasserunlösliche Photoinitiatoren sind geeignet. Ausserdem sind copolymerisierbare Photoinitiatoren, wie sie z.B. in "Polymers Paint Colour Joumal, 180, S42f (1990)" erwähnt werden, von besonderem Vorteil.
    Geeignet sind auch kationische Photoinitiatoren wie Triarylsulfoniumsalze, Diaryliodoniumsalze, Diaryleisenkomplexe oder allgemein Strukturen, wie beschrieben in "Chemistry & Technology of UV & EB Formulation for coatings, inks & paints" Band 3, herausgegeben von SITA Technology Ltd., Gardiner House, Broomhill Road, London, 1991.
    Bevorzugt werden Acylphosphinoxide wie z. B. (2,4,6 Trimethylbenzoyl)(diphenyl)phosphinoxid,
    oder Photoinitiatoren der Formel
    Figure 00160001
    eingesetzt
    oder ein Photoinitiator der Formel
    Figure 00160002
    zusammen mit einem Photoinitiator der beiden zuvor genannten Formeln oder einem Photoinitiator der Formel
    Figure 00160003
    oder Benzophenon zusammen mit einem Photoinitiator der obigen drei Formeln eingesetzt.
    Ganz besonders bevorzugt werden die folgenden Photoinitiatoren eingesetzt:
    Figure 00160004
    Figure 00170001
    sowie die Mischung der Verbindungen der Formeln
    Figure 00170002
    im Gewichtsverhältnis von 50:50 bis 10:90
    sowie die Mischung der Verbindung der Formel
    Figure 00170003
    und 2,4,6-Trimethylbenzoyldiphenylphosphin im Gewichtsverhältnis 20:80 bis 60:40.
    Bei dem zu verwendenden UV-Licht handelt es sich um Strahlung, deren Emission zwischen 200 und 450 nm, insbesondere zwischen 210 und 400 nm, liegt. Die Strahlung wird vorzugsweise künstlich mit Hoch -, Mittel - oder Nieder - Druck Quecksilber-Dampflampen, Halogenlampen, Metallhalogenid -, Xenon - oder Wolframlampen, Kohlelichtbogen - oder Fluoreszenzlampen, H - und D - Lampen, superaktinischen Leuchtstoffröhren und Laser erzeugt.
    Vorteilhafterweise werden Kapillar-Quecksilber-Hochdrucklampen oder Quecksilber-Hochdrucklampen oder Quecksilber-Niederdrucklampen verwendet.
    Von ganz besonderem Vorteil sind Quecksilber-Hochdrucklampen und Quecksilber-Mitteldrucklampen, die auch z.B. mit Eisen- oder Galliumhalogenid dotiert sein können. Diese Lampen können auch mit Mikrowellen angeregt oder gepulst betrieben werden, um die Strahlung in Peaks zu konzentrieren. Auch bei Xenonlampen ist gepulster Betrieb möglich, wenn man einen höheren Anteil an längerweiligem UV-Licht benötigt.
    Generell sind die üblichen UV-Strahlungsquellen wie beschrieben in "Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints", Band 1, herausgegeben von SITA Technology, Gardiner House, Broomhill Road, London, 1991, geeignet.
    Die genaue Bestrahlungszeit der Drucke wird sich nach der Leuchtstärke der UV-Quelle, dem Abstand von der Lichtquelle, Art und Menge an Photoinitiator sowie der Durchlässigkeit der Formulierung und des textilen Substrats für UV-Licht richten.
    Übliche Bestrahlungszeiten mit dem UV-Licht betragen 1 Sekunde bis 20 Minuten, vorzugsweise 5 Sekunden bis 2 Minuten. Die Fixierung kann durch Unterbrechung der Lichteinstrahlung beendet werden, so dass sie auch diskontinuierlich durchgeführt werden kann.
    Die Bestrahlung kann in der Atmosphäre eines inerten Schutzgases, z.B. unter Stickstoff durchgeführt werden, um eine Inhibierung durch Sauerstoff zu verhindern. Die Sauerstoffinhibierung kann auch wirksam durch Zusatz von sogenannten "Anti Blocking Agents", das sind Amine und speziell vor allem auch Aminoacrylate, unterdrückt werden.
    Im Anschluss an die Fixierung kann das bedruckte Fasermaterial in üblicher Weise ausgewaschen und getrocknet werden
    Sowohl der Ink-Jet Druck, als auch die nachfolgende Trocknung und die Fixierung können auch in einem einzigen Schritt ausgeführt werden. Gemeint ist hiermit insbesondere, dass diese Schritte kontinuierlich ausgeführt werden. D.h. dass hintereinander Apparaturen für den Ink-Jet Druck, die Trocknung und die Fixierung angebracht sind, durch welche das zu bedruckende Fasermaterial kontinuierlich hindurch bewegt wird. Die Apparaturen für den Ink-Jet Druck, die Trocknung und die Fixierung können auch in einer einzigen Maschine vereint sein. Das Fasermaterial wird kontinuierlich durch diese Maschine transportiert und ist dann nach Verlassen dieser Maschine fertiggestellt. Die Trocknung kann hierbei z.B. mittels thermischer Energie (wie z.B. oben angegeben) oder insbesondere mittels Infrarotstrahlung (IR) erfolgen. Die Fixierung kann hier z.B. wie z.B. oben angegeben erfolgen. Selbstverständlich kann auch der Ink-Jet Druck separat erfolgen und Trocknung und Fixierung werden wie oben angegeben kontinuierlich, z.B. in einer einzigen Maschine, ausgeführt.
    Mit den oben genannten Druckverfahren ist es möglich, die Fasermaterialien sowohl in einer einzigen Nuance als auch in voneinander verschiedenen Nuancen zu bedrucken. Erfolgt das Bedrucken in einer Nuance, so kann das Bedrucken des Fasermaterials ganzflächig oder auch mit einem Muster erfolgen. Hierzu reicht naturgemäss die Verwendung einer einzigen Tinte; die gewünschte Nuance kann jedoch auch durch den Druck mit mehreren Tinten mit voneinander verschiedenen Nuancen erstellt werden. Soll ein Druck auf dem Fasermaterial erstellt werden, welcher mehrere voneinander verschiedene Nuancen aufweist, so erfolgt das Bedrucken des Fasermaterials mit mehreren Tinten, welche jeweils die gewünschte Nuance aufweisen oder so gedruckt werden, dass die jeweilige Nuance erstellt wird (z.B. dadurch, dass Tinten mit verschiedenen Nuancen übereinander auf das Fasermaterial gedruckt werden und so die zu erzielende Nuance ergeben).
    Ferner ist es möglich, ein flächiges Fasermaterial beidseitig zu bedrucken. Hierbei kann z.B. eine Seite des Fasermaterials in einer Nuance bedruckt werden, z.B. ganzflächig, und die andere Seite des Fasermaterials wird mit einem Muster in einer oder mehreren voneinander verschiedenen Nuancen bedruckt. Selbstverständlich kann prinzipiell diese Seite auch ebenfalls ganzflächig in einer Nuance bedruckt werden. Ein solches Verfahren kann z.B. so ausgeführt werden, dass an jeder Seite des zu bedruckenden flächigen Fasermaterials einer oder mehrere Druckköpfe vorhanden sind. Es werden dann beide Seiten des Fasermaterials gleichzeitig bedruckt. Die Druckköpfe der jeweiligen Seite des Fasermaterials können sich direkt gegenüberstehen oder auch seitlich versetzt voneinander installiert sein. Ueblicherweise wird das Fasermaterial zwischen diesen Druckköpfen hindurch bewegt. Mit dieser Ausführungsform lassen sich interessante Effekte erzielen, welche sich insbesondere beim Umschlagen des flächigen Fasermaterials erkennen lassen.
    Eine weitere interessante Ausführungsform betrifft das sogenannte imaging. Hierbei wird eine Vorlage, d.h. ein Bild welches mit dem Druck nachgestellt werden soll, digitalisiert, z.B. mittels einer Videokamera oder einem Scanner. Das digitalisierte Bild wird auf einen Computer übertragen, welcher dann mittels eines Ink-Jet Druckers das Bild auf das Fasermaterial druckt. Selbstverständlich kann das digitalisierte Bild auch bereits in dem Computer gespeichert sein, so dass die Digitalisierung entfällt. So kann ein zu druckendes Bild z.B. am Computer mit Graphik-Software erstellt worden sein. Bei dem zu druckenden Bild kann es sich z.B. auch um Buchstaben, Zahlen, Wörter, jegliche Muster oder auch komplexe verschiedenfarbige Bilder handeln. Verschiedenfarbige Bilder können z.B. durch Verwendung von mehreren Tinten mit voneinander verschiedenen Nuancen erstellt werden.
    Die nach dem erfindungsgemässen Verfahren erhältlichen Drucke weisen gute Allgemeinechtheiten auf; sie besitzen z.B. eine gute Lichtechtheit, gute Nassechtheiten, wie Wasser-, Wasch-, Seewasser-, Überfärbe- und Schweissechtheit, eine gute Chlorechtheit, Reibechtheit, Bügelechtheit und Plissierechtheit sowie scharfe Konturen und eine hohe Farbstärke. Die verwendeten Drucktinten zeichnen sich durch gute Stabilität und gute Viskositätseigenschaften aus.
    Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung. Darin sind die Temperaturen in Celsiusgraden angegeben, Teile sind Gewichtsteile und die Prozentangaben beziehen sich auf Gewichtsprozente, sofern nicht anders vermerkt. Gewichtsteile stehen zu Volumenteilen im Verhältnis von Kilogramm zu Liter.
    Beispiel 1:
    Ein Baumwollgewebe wird mit einer wässrigen Tinte A, enhaltend
    5 Gew.% des Pigmentfarbstoffs der Formel
    Figure 00200001
    10 Gew.-% eines handelsüblichen, in Wasser in dispergierter Form vorliegenden Polyacrylat-Binders (Carboset® 531),
    2 Gew.-% eines handelsüblichen, in Wasser in dispergierter Form vorliegenden Polyurethanacrylat-Binders (Sancure® AU-4010),
    15 Gew.-% Diethylenglykol,
    5 Gew.-% Glycerin,
    2 Gew.-% eines handelsüblichen Entschäumungsmittels, und
    61 Gew.-% Wasser,
    mit einem Drop-on-Demand Piezo Inkjet-Kopf aufgedruckt. Der Druck wird vollständig getrocknet und anschliessend 90 Sekunden bei 190°C fixiert. Man erhält einen Druck mit guten Allgemeinechtheiten.

    Claims (10)

    1. Verfahren zum Bedrucken von textilen Fasermaterialien nach dem Tintenstrahldruck-Verfahren, wobei diese Fasermaterialien mit einer wässrigen Tinte bedruckt werden, welche
      a) einen Pigmentfarbstoff der Formel
      Figure 00220001
      worin
      R52 Wasserstoff, Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano,
      R53 Wasserstoff, Halogen, Nitro oder Cyano,
      R54 Wasserstoff, Halogen oder Phenylaminocarbonyl,
      R55 Wasserstoff oder Hydroxy, und
      R56 Wasserstoff oder ein Rest der Formel
      Figure 00220002
      ist, wobei
      R57 Wasserstoff, C1-C4-Alkyl oder C1-C4-Alkoxy,
      R58 Wasserstoff, C 1-C4-Alkoxy oder Halogen, und
      R59 Wasserstoff, C1-C4-Alkyl, C1-C4-Alkoxy oder Halogen ist,
      Figure 00220003
      worin
      R60 und R61 voneinander unabhängig C1-C4-Alkyl und R62 und R63 Halogen sind,
      Figure 00230001
      wobei die Ringe A, B, D und E unsubstituiert oder ein- oder mehrfach mit Halogen substituiert sind,
      Figure 00230002
      worin
      R64 C1-C4-Alkyl,
      R65 Wasserstoff, Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano,
      R66 Wasserstoff, Halogen, Nitro oder Cyano,
      R67 Wasserstoff, Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano sind,
      Figure 00230003
      wobei die Ringe A' und B' unsubstituiert oder ein- oder mehrfach mit Halogen substituiert sind,
      Figure 00240001
      worin
      (R68)0-2 und (R68')0-2 unabhängig voneinander für 0 bis 2 Substituenten ausgewählt aus der Gruppe Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano stehen, und
      K1 und K2 unabhängig voneinander einen Rest der Formel
      Figure 00240002
      bedeuten, wobei
      (R69)0-3 und (R69')0-3 unabhängig voneinander für 0 bis 3 Substituenten ausgewählt aus der Gruppe Halogen, C1-C4-Alkyl, C1-C4-Alkoxy, Nitro oder Cyano, insbesondere Halogen, C1-C4-Alkyl und C1-C4-Alkoxy, stehen, oder
      C.I. Pigment Yellow 34 oder C.I. Pigment Yellow 128,
      oder anorganische Pigmentfarbstoffe auf der Basis von Russ oder Eisenoxiden,
      b) eine in Wasser dispergierbare oder in Wasser lösliche Mischung von Pigmentfarbstoffbindern, wobei eine Mischungskomponente auf dem Polymerisationsprodukt von Acrylsäure und eine weitere Mischungskomponente auf dem Polymerisationsprodukt von Acrylsäure und Urethan basiert, und
      c) Glycerin, Propylenglykol oder Diethylenglykol enthält.
    2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man eine Tinte verwendet, welche einen Gesamtgehalt an Farbstoffen von 1 bis 35 Gew.-%, insbesondere 2,5 bis 30 Gew.-% und vorzugsweise 5 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Tinte, enthält.
    3. Verfahren gemäss einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass man eine Tinte verwendet, welche, bezogen auf das Gesamtgewicht der Tinte, 2 bis 30 Gew.-%, insbesondere 5 bis 30 Gew.-% und vorzugsweise 5 bis 25 Gew.-% Glycerin, Propylenglykol oder Diethylenglykol enthält.
    4. Verfahren gemäss einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man eine Tinte verwendet, welche, bezogen auf das Gesamtgewicht der Tinte, 2 bis 30 Gew.-%, insbesondere 5 bis 20 Gew.-%, Pigmentfarbstoffbinder enthält.
    5. Verfahren gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man das Fasermaterial mittels eines Piezo-Inkjet-Kopfes bedruckt.
    6. Verfahren gemäss einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man als Fasermaterial cellulosisches Fasermaterial verwendet.
    7. Verfahren gemäss einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man das Fasermaterial nach dem Bedrucken bei einer Temperatur von 120 bis 190°C fixiert.
    8. Verfahren gemäss einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man das Fasermaterial nach dem Bedrucken mit ionisierender Strahlung oder durch Bestrahlung mit UV-Licht fixiert.
    9. Verfahren gemäss einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man nach dem Drucken eine Trocknung und eine Fixierung des Druckes ausführt, wobei die Trocknung und Fixierung kontinuierlich ausgeführt werden.
    10. Verfahren gemäss Anspruch 9, dadurch gekennzeichnet, dass das Bedrucken, die Trocknung und die Fixierung des Druckes kontinuierlich ausgeführt werden.
    EP99934562A 1998-07-08 1999-07-02 Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren Expired - Lifetime EP1144755B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    CH146098 1998-07-08
    CH146098 1998-07-08
    PCT/EP1999/004602 WO2000003079A2 (de) 1998-07-08 1999-07-02 Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren

    Publications (3)

    Publication Number Publication Date
    EP1144755A2 EP1144755A2 (de) 2001-10-17
    EP1144755A3 EP1144755A3 (de) 2002-11-13
    EP1144755B1 true EP1144755B1 (de) 2004-05-12

    Family

    ID=4210999

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99934562A Expired - Lifetime EP1144755B1 (de) 1998-07-08 1999-07-02 Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren

    Country Status (9)

    Country Link
    US (1) US6443569B1 (de)
    EP (1) EP1144755B1 (de)
    JP (1) JP2003518560A (de)
    AT (1) ATE266763T1 (de)
    AU (1) AU5030599A (de)
    DE (1) DE59909492D1 (de)
    ES (1) ES2220081T3 (de)
    PT (1) PT1144755E (de)
    WO (1) WO2000003079A2 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US11413896B2 (en) 2020-11-18 2022-08-16 International Imaging Materials, Inc. Digital textile printing inks having zero volatile organic compound solvents therein

    Families Citing this family (28)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7654660B2 (en) * 1994-11-07 2010-02-02 Sawgrass Technologies, Inc. Energy activated printing process
    US8337006B2 (en) * 1998-05-06 2012-12-25 Sawgrass Technologies, Inc. Energy activated printing process
    BR0113521B1 (pt) * 2000-08-31 2010-07-27 unidade para produção contìnua de tiras têxteis impressas, em particular tiras de etiqueta impressas.
    US6550905B1 (en) * 2001-11-19 2003-04-22 Dotrix N.V. Radiation curable inkjet ink relatively free of photoinitiator and method and apparatus of curing the ink
    US8011299B2 (en) * 2002-07-01 2011-09-06 Inca Digital Printers Limited Printing with ink
    GB2396331A (en) * 2002-12-20 2004-06-23 Inca Digital Printers Ltd Curing ink
    US20040177454A1 (en) * 2003-03-10 2004-09-16 Sara Lee Corporation Spray dyeing of garments
    US7931700B2 (en) * 2002-12-27 2011-04-26 Hbi Branded Apparel Enterprises, Llc Composition for dyeing of cellulosic fabric
    US7931701B2 (en) * 2002-12-27 2011-04-26 Hbi Branded Apparel Enterprises, Llc Composition for dyeing of cellulosic fabric
    US7033403B2 (en) 2002-12-27 2006-04-25 Sara Lee Corporation Spray dyeing of garments
    US7931699B2 (en) * 2002-12-27 2011-04-26 Hbi Branded Apparel Enterprises, Llc Compositions for spray dyeing cellulosic fabrics
    US7799097B2 (en) * 2003-06-23 2010-09-21 Hbi Branded Apparel Enterprises, Llc Processes for spray dyeing fabrics
    US8814953B1 (en) 2003-06-23 2014-08-26 Hbi Branded Apparel Enterprises, Llc System and method for spray dyeing fabrics
    US20060265816A1 (en) * 2003-06-23 2006-11-30 Michael Abbott Formers for spray dyeing garments
    US20060160016A1 (en) * 2004-10-12 2006-07-20 Presstek, Inc. Inkjet-imageable lithographic printing members and methods of preparing and imaging them
    JP4834979B2 (ja) * 2004-11-22 2011-12-14 コニカミノルタホールディングス株式会社 捺染用インクジェットインク、それを用いた記録方法および記録物
    DE102005003596B4 (de) * 2005-01-25 2011-12-15 ITCF Institut für Textilchemie und Chemiefasern Gemisch und Verfahren zur Bedruckung von Textilien
    JP3971770B2 (ja) * 2005-04-18 2007-09-05 三菱鉛筆株式会社 着色剤組成物及び着色方法
    JP2008174866A (ja) * 2007-01-18 2008-07-31 Seiren Co Ltd インクジェット捺染方法
    ES2316295B1 (es) * 2007-08-14 2010-02-05 Consejo Superior De Investigaciones Cientificas (33,33%) Tinta curable y sus aplicaciones, en procedimientos de estampacion.
    JP2009249446A (ja) * 2008-04-03 2009-10-29 Konica Minolta Ij Technologies Inc 水性インクジェットインク及びインクジェット記録方法
    US20100140545A1 (en) * 2008-12-08 2010-06-10 May Ruth E Compositions for spray bleaching cellulosic fabrics
    US8404628B1 (en) 2008-12-08 2013-03-26 Hbi Branded Apparel Enterprises, Llc Method for spray bleaching cellulosic fabrics
    JP6833680B2 (ja) * 2014-06-12 2021-02-24 フジフイルム、スペシャリティー、インク、システムズ、リミテッドFujifilm Speciality Ink Systems Limited 印刷インク
    CN104761951B (zh) * 2015-01-09 2017-08-15 上海色如丹数码科技股份有限公司 一种喷墨打印墨水配方
    JP7143644B2 (ja) * 2018-06-25 2022-09-29 コニカミノルタ株式会社 乾燥装置、画像形成装置、乾燥方法及びインクジェット捺染方法
    EP3814569A1 (de) 2018-06-27 2021-05-05 International Imaging Materials Inc. Textil-tintenstrahldrucktinte
    TWI718692B (zh) * 2019-10-03 2021-02-11 財團法人紡織產業綜合研究所 用於織物的數位印花製程的可噴塗撥水型墨水與撥水織物

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS56157470A (en) * 1980-05-07 1981-12-04 Canon Inc Ink jet recording method
    JPS6183267A (ja) * 1984-10-01 1986-04-26 Toray Ind Inc インクジェット染色法
    JPS62169875A (ja) * 1986-01-23 1987-07-27 Toray Ind Inc インクジエツト用インク組成物
    JPS62225577A (ja) * 1986-03-28 1987-10-03 Toray Ind Inc インクジエツト用インク組成物
    US5310778A (en) * 1992-08-25 1994-05-10 E. I. Du Pont De Nemours And Company Process for preparing ink jet inks having improved properties
    EP0655527B1 (de) 1993-11-30 2001-04-11 Seiren Co., Ltd. Tinte für Tintenstrahlfärbung und Verfahren zur Herstellung von Mischfarben
    JP3384874B2 (ja) 1994-06-02 2003-03-10 三洋化成工業株式会社 インテリア基材およびプリント方法
    AUPO338596A0 (en) * 1996-11-01 1996-11-28 Blazer Technologies Pty Ltd Alkaline pigmented ink and coated substrate suitable for use with ink jet printer
    DE19727767A1 (de) * 1997-06-30 1999-01-07 Basf Ag Als Ink-Jet-Tinten geeignete Pigmentzubereitungen mit strahlungshärtbarem Bindemittel
    US6092890A (en) * 1997-09-19 2000-07-25 Eastman Kodak Company Producing durable ink images

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US11413896B2 (en) 2020-11-18 2022-08-16 International Imaging Materials, Inc. Digital textile printing inks having zero volatile organic compound solvents therein

    Also Published As

    Publication number Publication date
    WO2000003079A3 (de) 2002-09-26
    JP2003518560A (ja) 2003-06-10
    PT1144755E (pt) 2004-10-29
    DE59909492D1 (de) 2004-06-17
    ATE266763T1 (de) 2004-05-15
    AU5030599A (en) 2000-02-01
    US6443569B1 (en) 2002-09-03
    EP1144755A2 (de) 2001-10-17
    EP1144755A3 (de) 2002-11-13
    ES2220081T3 (es) 2004-12-01
    WO2000003079A2 (de) 2000-01-20

    Similar Documents

    Publication Publication Date Title
    EP1144755B1 (de) Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren
    DE3751112T2 (de) Tinte und Tintenstrahldruckverfahren unter Verwendung derselben.
    DE102005003596B4 (de) Gemisch und Verfahren zur Bedruckung von Textilien
    DE19848843B4 (de) Tintenstrahltinte auf der Basis von Makromolekülchromophoren, Verfahren zur Herstellung der Tinte und Verfahren zum Tintenstrahldrucken
    EP2960305B1 (de) Tinte für tintenstrahldruck und anfärbungsverfahren
    DE2543092C2 (de) Verfahren zur Aufzeichnung von Informationen nach dem Ink-Jet-Verfahren
    DE60105239T2 (de) Wässrige Tinte
    EP0083553B1 (de) Farbstoffmischung und deren Verwendung im Transferdruck
    EP0373573A1 (de) Aufzeichnungsmaterial für Tintenstrahldruck
    DE69422571T2 (de) Pigmentdispersion, Anzeigevorrichtung und Verfahren zur Herstellung dieser Vorrichtung
    DE2649551C3 (de) Stabile Farbstofflösung
    AU8105498A (en) Process for fixing pigment prints and pigment dyeings with ionising radiation or UV radiation
    DE69409478T3 (de) Wässrige Tinte für Tintenstrahl-Aufzeichnung
    DE10260361A1 (de) Tintenstrahl-Tintenzusammensetzung mit hoher Chromatizität
    WO2000003081A1 (de) Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren
    DE1209990B (de) Verfahren zum Faerben von Fasermaterialien aus Polyolefinen
    WO2000003082A1 (de) Verfahren zum bedrucken von textilen fasermaterialien nach dem tintenstrahldruck-verfahren
    DE60018164T2 (de) Tintenzusammensetzung und tintenset mit hervorragender farbwiedergabe und lichtbeständigkeit sowie verfahren zur aufzeichnung mit derselben
    DE102010018364A1 (de) Wässrige schwarzpigmentierte, UV-fluoreszierende InkJet-Tinte
    DE19930882A1 (de) Pigmentfärbe- und Pigmentdruckverfahren
    EP0150405B1 (de) Verfahren zum Bedrucken von Synthesefasern
    EP0430871B1 (de) Wässrige Farbstoff-Präparate
    DE60005126T2 (de) Tintenstrahldruckverfahren
    WO2016188631A1 (de) Tintenzusammensetzung, verwendung derselben und druckerzeugnis
    DE69839146T2 (de) Tintenzusatzmittel

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20001214

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    XX Miscellaneous (additional remarks)

    Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

    PUAK Availability of information related to the publication of the international search report

    Free format text: ORIGINAL CODE: 0009015

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20021113

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040512

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040512

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040512

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    XX Miscellaneous (additional remarks)

    Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59909492

    Country of ref document: DE

    Date of ref document: 20040617

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040702

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040702

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040614

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040812

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040812

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: EP

    Ref document number: 20040402396

    Country of ref document: GR

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040512

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20040804

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2220081

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050215

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: HUNTSMAN ADVANCED MATERIALS (SWITZERLAND) GMBH

    Free format text: CIBA SPECIALTY CHEMICALS HOLDING INC.#KLYBECKSTRASSE 141#4057 BASEL (CH) -TRANSFER TO- HUNTSMAN ADVANCED MATERIALS (SWITZERLAND) GMBH#KLYBECKSTRASSE 200#4057 BASEL (CH)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20080627

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20080708

    Year of fee payment: 10

    Ref country code: DE

    Payment date: 20080731

    Year of fee payment: 10

    Ref country code: CH

    Payment date: 20080708

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20080619

    Year of fee payment: 10

    Ref country code: IT

    Payment date: 20080723

    Year of fee payment: 10

    Ref country code: FR

    Payment date: 20080707

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080616

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20080730

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20080704

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20100104

    BERE Be: lapsed

    Owner name: *CIBA SPECIALTY CHEMICALS HOLDING INC.

    Effective date: 20090731

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090702

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20100201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100104

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090702

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100202

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20090703

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100204

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090703

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090702

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100201