EP1133777A1 - Materiau magnetique doux et son procede de production - Google Patents

Materiau magnetique doux et son procede de production

Info

Publication number
EP1133777A1
EP1133777A1 EP00974291A EP00974291A EP1133777A1 EP 1133777 A1 EP1133777 A1 EP 1133777A1 EP 00974291 A EP00974291 A EP 00974291A EP 00974291 A EP00974291 A EP 00974291A EP 1133777 A1 EP1133777 A1 EP 1133777A1
Authority
EP
European Patent Office
Prior art keywords
powder particles
starting component
soft magnetic
surface layer
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00974291A
Other languages
German (de)
English (en)
Inventor
Hans-Peter Koch
Andreas Harzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1133777A1 publication Critical patent/EP1133777A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Definitions

  • the invention relates to a soft magnetic material, in particular for use in solenoid valves, and to a method for producing such a soft magnetic material, according to the preamble of the independent claims.
  • soft magnetic materials with a high specific electrical resistance, for example sintered FeSi, FeCr or FeCo alloys or soft magnetic composites made of iron powder and organic binder.
  • the soft magnetic composites mentioned suffer from the fact that they are often not very stable mechanically and are not sufficiently resistant to temperature or fuel.
  • iron alloys which are obtained by sintering powder materials, it is still not possible to manufacture them with alloy-specific measures alone with a specific electrical resistance of more than 1 ⁇ m.
  • a first approach to increasing the specific electrical resistance of iron alloys was to coat a pure iron or iron alloy powder with an electrically insulating layer before pressing, and then to sinter the compact to a mechanically stable molded part.
  • the molded parts obtained in this way have an insufficient mechanical strength. Furthermore, it is often not possible to obtain the previously produced electrically insulating layer during sintering in order to set the desired high specific electrical resistance. Finally, by known simple pressing and sintering processes in the case of iron powders or iron alloy powders, only limited densities up to max. 7.3 g / cm 3 reached, which is associated with a space filling below 92 vol .-% of the theoretical limit of the molded parts produced.
  • DE 44 07 593 Cl discloses a method for producing powder compacts of high density. For this purpose, a conventional, static pressing of pure iron powder in a die is superimposed on a second process step in which the compact is subjected to brief current pulses during the compression. This process is referred to in DE 44 07 593 C1 as "shock compression".
  • the soft magnetic material according to the invention and the method according to the invention for its production have the advantage over the prior art that this opens up the possibility of realizing high-density and mechanically stable molded parts with exceptionally good soft magnetic properties.
  • the soft magnetic material produced has, in particular, a high saturation polarization and, in comparison with iron materials and iron alloys produced by melt metallurgy, very high specific electrical resistance values. Due to the resulting reduced eddy current losses, this high specific electrical resistance leads to significantly improved switching dynamics, for example in solenoid valves.
  • the soft magnetic materials obtained are also very dimensionally stable and can also be mechanically reworked in a simple manner if required.
  • they advantageously have a very high material density of more than 7.4 g / cm 3 , in particular more than 7.6 g / cm 3 .
  • the soft magnetic material obtained is mechanically very stable, temperature-resistant and fuel-resistant.
  • Those powders whose average grain size is more than 50 ⁇ m and which is preferably between 100 ⁇ m and 500 ⁇ m are advantageously used as the starting powder. It is also advantageous if the average grain size of the powder particles of the metallic starting component is significantly larger than the thickness of the high-resistance ones
  • the highest possible proportion of the powdery, for example ferritic or ferromagnetic, starting component is thus achieved in relation to the high-resistance surface layer in the soft magnetic material.
  • Pure iron powder or an iron alloy powder which is then superficially provided with a high-resistance layer, for example an oxide layer made of Fe 3 0 4 , is particularly suitable as the metallic, powdery starting component.
  • a high-resistance layer for example an oxide layer made of Fe 3 0 4
  • the high-resistance surface area present or generated on the surface of the starting powder particles Layer after the compression of the coated powder particles to the soft magnetic material is largely preserved, and the high-resistance surface layers between the individual powder particles are welded together by shock compression, very advantageously a specific electrical resistance of the material obtained of more than 1 ⁇ m, in particular of more than 2 ⁇ m.
  • the powder particles of the metallic, powdery starting component provided with the high-resistance surface layer are advantageously filled into a die in a manner known per se and compressed by uniaxial pressing at a pressure of 200 MPa to 800 MPa.
  • the actual shock compression of the powder particles provided with the high-resistance surface layer is very advantageously superimposed on this shaping step.
  • the pressing and the shock compression of the compacts in the die is carried out in one process step.
  • the figure shows an optical micrograph of the structure of a soft magnetic material.
  • a commercially available pure iron or iron alloy powder for example an FeCr, FeSi, FeNi or a FeCo alloy powder.
  • an FeCr, FeSi, FeNi or a FeCo alloy powder is specified.
  • powdery To obtain the starting component as large as possible in the shaped body obtained later, coarse powders with a particle size above 50 ⁇ m are used.
  • standard powders for example the types ASC, ABC, ABM or Somaloy 500 from Höganäs, Sweden, made of metallic powder particles 11 are initially introduced, the mean particle size of which is initially set to more than 100 ⁇ m by sieving out the fine particles.
  • This metallic starting powder is then first provided with a high-resistance surface layer 12 on the surface.
  • An oxide layer in particular an Fe 3 0 4 layer, is particularly suitable as the high-resistance surface layer 12.
  • a silicon or phosphate-containing layer can also be used.
  • a high-resistance surface layer 12 is understood to mean a layer whose specific electrical
  • Resistance is considerably greater than the specific electrical resistance of the metallic powdery starting component or the powder particles 11, or the specific electrical resistance of which is at least comparable in magnitude to the specific electrical resistance of Fe 3 0 4 .
  • the production of the Fe 3 0 4 layer as a high-resistance surface layer 12 on the powder particles 11 is preferably carried out by introducing water vapor in a chamber or continuous furnace at temperatures of approximately 550 ° C.
  • the thickness of the Fe 3 0 4 layers produced can also be greater than that amount of steam introduced into the furnace and its exposure time can be set.
  • a silicon-containing or phosphate-containing high-resistance surface layer 12 is to be produced on the powder particles 11, this can also be done in a manner known per se by chemical or electrochemical deposition.
  • this powder is filled into a die and compacted by uniaxial pressing.
  • shock compression takes place at the same time in the manner described in DE 44 07 593 Cl, in that the compact is subjected to brief current pulses.
  • the surface layers 12 of the powder particles 11 are welded to one another at least in regions.
  • One to three current pulses are preferably used in the shock compression, each lasting over a period of 5 * 10 ⁇ 5 sec to 5 * 10 '1 sec, and have a current of 10 kA to 200 kA based on 1 cm 2 of the pressing surface.
  • a soft magnetic material 10 is thus formed, which is then used, for example, in solenoid valves, can be further processed and mechanically reworked if necessary. Furthermore, in order to improve the corrosion resistance, a surface coating of the soft magnetic material obtained or of the shaped body produced therewith can also be carried out.
  • a pure iron powder of type ABC 100.30 from Höganäs, Sweden is used, from which the fine particles with a grain size of less than 125 ⁇ m pass through
  • This starting powder is then pressed to produce the high-resistance surface layer 12 by means of the steam blues already explained above in a die tool with 80 kN in relation to the circular end face of the round blanks (diameter 15 mm). During the pressing, the shock compression takes place simultaneously in the die tool with two current pulses of approximately 70 kA or 120 kA in the manner known from DE 44 07 593 Cl.
  • the blanks obtained or the soft magnetic material 10 obtained then have the following properties:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

L'invention concerne un matériau magnétique doux et son procédé de production, ce matériau étant en particulier destiné à être utilisé dans des électrovannes. Pour la fabrication dudit matériau, les différentes particules de poudre (11) d'un composant de départ métallique pulvérulent sont d'abord pourvus, au moins dans une large mesure, d'une couche superficielle (12) de valeur ohmique élevée, puis ces particules (11) sont compactées pour former le matériau (10). Lors du compactage du composant de départ métallique pulvérulent, compactage servant à former le matériau magnétique doux (10), les couches superficielles (12) des particules de poudre (11) sont soudées les unes aux autres, au moins dans une zone. Cette soudure est obtenue par compactage par chocs.
EP00974291A 1999-09-23 2000-09-05 Materiau magnetique doux et son procede de production Withdrawn EP1133777A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19945592 1999-09-23
DE19945592A DE19945592A1 (de) 1999-09-23 1999-09-23 Weichmagnetischer Werkstoff und Verfahren zu dessen Herstellung
PCT/DE2000/003041 WO2001022439A1 (fr) 1999-09-23 2000-09-05 Materiau magnetique doux et son procede de production

Publications (1)

Publication Number Publication Date
EP1133777A1 true EP1133777A1 (fr) 2001-09-19

Family

ID=7923026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00974291A Withdrawn EP1133777A1 (fr) 1999-09-23 2000-09-05 Materiau magnetique doux et son procede de production

Country Status (5)

Country Link
US (1) US6620376B1 (fr)
EP (1) EP1133777A1 (fr)
JP (1) JP2003510805A (fr)
DE (1) DE19945592A1 (fr)
WO (1) WO2001022439A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106172A1 (de) * 2001-02-10 2002-08-29 Bosch Gmbh Robert Verfahren zur Herstellung eines Formteils aus einem weichmagnetischen Verbundwerkstoff
JP4010296B2 (ja) * 2003-11-20 2007-11-21 株式会社デンソー 軟磁性粉末材料の製造方法
JP4548035B2 (ja) * 2004-08-05 2010-09-22 株式会社デンソー 軟磁性材の製造方法
JP4609698B2 (ja) * 2004-10-08 2011-01-12 株式会社デンソー コアの作製方法
DE102013215520A1 (de) 2013-08-07 2015-02-12 Robert Bosch Gmbh Weichmagnetischer Metallpulver-Verbundwerkstoff und Verfahren zur Herstellung eines solchen
CN104465004B (zh) * 2014-11-25 2017-02-01 浙江大学 碱性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1025536B (de) * 1955-05-31 1958-03-06 Siemens Ag Verfahren zur Herstellung eines weichmagnetischen Sinterkoerpers mit hoher Permeabilitaet und kleinen Wirbelstromverlusten
JPS5320562A (en) * 1976-08-09 1978-02-24 Nippon Kinzoku Co Ltd Reactor
JPS5416664A (en) * 1977-06-08 1979-02-07 Nippon Kinzoku Co Ltd Reactor
JPS5846044B2 (ja) * 1979-04-14 1983-10-14 日本金属株式会社 圧粉鉄心
SE8201678L (sv) * 1982-03-17 1983-09-18 Asea Ab Sett att framstella foremal av mjukmagnetiskt material
GB8425860D0 (en) * 1984-10-12 1984-11-21 Emi Ltd Magnetic powder compacts
DE3439397A1 (de) 1984-10-27 1986-04-30 Vacuumschmelze Gmbh, 6450 Hanau Verfahren zur pulvermetallurgischen herstellung eines weichmagnetischen koerpers
DE69028360T2 (de) * 1989-06-09 1997-01-23 Matsushita Electric Ind Co Ltd Verbundmaterial sowie Verfahren zu seiner Herstellung
US5112801A (en) * 1990-01-24 1992-05-12 The United States Of America As Represented By The United States Department Of Energy Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials
US5464576A (en) * 1991-04-30 1995-11-07 Matsushita Electric Industrial Co., Ltd. Method of making isotropic bonded magnet
JPH05109520A (ja) * 1991-08-19 1993-04-30 Tdk Corp 複合軟磁性材料
DE4407593C1 (de) * 1994-03-08 1995-10-26 Plansee Metallwerk Verfahren zur Herstellung von Pulverpreßlingen hoher Dichte
DE19610196A1 (de) * 1996-03-15 1997-09-18 Horst Dr Kleine Verfahren zur Herstellung von weichmagnetischen FeSi-Massekernen
DE69717718T2 (de) * 1996-05-28 2003-11-13 Hitachi Powdered Metals Co., Ltd. Weichmagnetischer Pulververbund-Kern aus Teilchen mit isolierenden Schichten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0122439A1 *

Also Published As

Publication number Publication date
US6620376B1 (en) 2003-09-16
WO2001022439A1 (fr) 2001-03-29
JP2003510805A (ja) 2003-03-18
DE19945592A1 (de) 2001-04-12

Similar Documents

Publication Publication Date Title
EP1514282B1 (fr) Matiere composite en poudre magnetique douce, ses procedes de production et d'utilisation
DE69028360T2 (de) Verbundmaterial sowie Verfahren zu seiner Herstellung
EP0671232B1 (fr) Procédé de préparation de comprimés à densité élevée
DE69022751T2 (de) Magnetkerne aus Eisen-Silizium-Legierungspulver und Herstellungsverfahren.
DE10031923A1 (de) Weichmagnetischer Werkstoff mit heterogenem Gefügebau und Verfahren zu dessen Herstellung
EP1166293B1 (fr) Piece composite et son procede de production
DE69318682T2 (de) Magnetpulver vom Typ SE-Fe-B, Sintermagnete daraus und Herstellungsverfahren
WO2001045116A1 (fr) Materiau composite fritte magnetique doux et son procede de production
CH694120A5 (de) Verfahren zum Herstellen einer Elektrode für Funkenoberflächenbehandlung.
EP1133777A1 (fr) Materiau magnetique doux et son procede de production
DE10150830A1 (de) Weichmagnetismus-Legierungspulver, ein Behandlungsverfahren davon, ein Weichmagnetismus-Legierungsformling und das Herstellungsverfahren davon
DE2258780A1 (de) Verfahren zum herstellen von permanentmagneten auf der basis von kobalt-seltene erden-legierungen
DE102017223268A1 (de) Verfahren zur Herstellung eines magnetischen Materials, magnetisches Material, Hartmagnet, Elektromotor, Starter und Generator
DE102020130671A1 (de) Verbundmagnete und verfahren zur herstellung von verbundmagneten
DE4021990C2 (de) Verfahren zur Herstellung eines Permanentmagneten
DE60220773T2 (de) Verfahren zur herstellung eines sinterprodukts
DE102006032520A1 (de) Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern
WO1997000524A1 (fr) Procede de fabrication de parties magnetiques dures
EP2376245A1 (fr) Précurseur pour la production de pièces métalliques frittées, procédé de production du précurseur, et production desdites pièces
DE2122977A1 (en) Sintered iron - silicon switching magnet - having superior mech strength - prepn
DE102008023059B4 (de) Verfahren zum Herstellen eines magnetisierbaren metallischen Formkörpers
EP1148520B1 (fr) Matériau magnétiquement doux et son procédé de fabrication
DE102013212866A1 (de) Gesinterter weichmagnetischer Verbundwerkstoff und Verfahren zu dessen Herstellung
AT526763B1 (de) Verfahren zum Herstellen eines Bauteils mit weichmagnetischen Eigenschaften
DE3135661C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20011001

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031001