EP2376245A1 - Précurseur pour la production de pièces métalliques frittées, procédé de production du précurseur, et production desdites pièces - Google Patents
Précurseur pour la production de pièces métalliques frittées, procédé de production du précurseur, et production desdites piècesInfo
- Publication number
- EP2376245A1 EP2376245A1 EP09763903A EP09763903A EP2376245A1 EP 2376245 A1 EP2376245 A1 EP 2376245A1 EP 09763903 A EP09763903 A EP 09763903A EP 09763903 A EP09763903 A EP 09763903A EP 2376245 A1 EP2376245 A1 EP 2376245A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- precursor
- metal
- cladding layer
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 68
- 239000002245 particle Substances 0.000 claims abstract description 40
- 239000011230 binding agent Substances 0.000 claims abstract description 14
- 239000002243 precursor Substances 0.000 claims description 28
- 239000010410 layer Substances 0.000 claims description 27
- 238000005245 sintering Methods 0.000 claims description 24
- 238000005253 cladding Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 229910045601 alloy Inorganic materials 0.000 claims description 16
- 239000000956 alloy Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 11
- 238000007493 shaping process Methods 0.000 claims description 11
- 239000000725 suspension Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 239000011247 coating layer Substances 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000005275 alloying Methods 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000000280 densification Methods 0.000 claims 1
- 239000013067 intermediate product Substances 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 230000008602 contraction Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 238000011049 filling Methods 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005056 compaction Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000007723 die pressing method Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010316 high energy milling Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 238000010002 mechanical finishing Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12181—Composite powder [e.g., coated, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
Definitions
- Precursor for the production of sintered metallic components a process for the production of the precursor and the manufacture of the components
- the invention relates to a precursor for the production of sintered metallic components, a method for producing the precursor and the production of the components.
- Powders are used for the production of sintered metallic components; these are usually formed from the respective metal and, as a rule, from the metal alloy with which a component is to be produced.
- a significant influence can be achieved by the choice or pretreatment of the starting powder, which determine the properties of the component.
- the particle size of the powder used has a strong influence on the achievable physical density of the component material and the shrinkage during sintering.
- the sintering activity could be improved, in particular, by a high-energy milling carried out in advance, and thus also the properties of the component.
- high-alloyed metallic powders can not be processed into sintered components by simple powder metallurgical technologies, such as pressing and sintering.
- simple powder metallurgical technologies such as pressing and sintering.
- Such powders are e.g. compressible.
- worse technological parameters such as low filling density, poor flow behavior and high shrinkage during sintering, must be accepted. Because of these disadvantageous properties, it is not possible to produce high-density components without significant mechanical finishing.
- Conventionally manufactured sintered components achieve physical densities that are at max. 95% of the theoretical density and have a shrinkage of at least 10%.
- this object is achieved with a precursor having the features of claim 1. It can be produced by a method according to claim 7.
- the claim 11 relates to the production of sintered metallic components.
- Advantageous embodiments and further developments of the invention can be achieved with features described in the subordinate claims.
- the invention is directed to advantageous ways of producing sintered metallic components. In this case, a powdery precursor is used, which is subjected to shaping and sintering instead of the metal powders previously used.
- the precursor consists of cores, which are enclosed by a coating layer.
- a first and a second powder are used, which differ at least in their particle size.
- the particles of the first powder, which form cores are larger and have a particle size dgo of at least 50 ⁇ m, preferably at least 80 ⁇ m. It is a metal or a metal alloy.
- the particles of the second powder are smaller and have a particle size dgo of less than 25 ⁇ m, preferably less than 20 ⁇ m, and very particularly preferably less than 10 ⁇ m.
- the binder layer additionally contains a binder. This may preferably be organic. It can e.g. Polyvinyl alcohol (PVA) can be used as a binder.
- the second powder may be a metal, a metal alloy or a metal oxide. But it can also be a mixture with at least two of these components. In addition, carbon may be contained in the form of graphite.
- the particles of the first and the second powder may be formed from the same metal or the same metal alloy.
- the coating layer fulfills a function which is to be evaluated analogously to that of pressing aids.
- the individual particles of the precursor should have been prepared so that the shell layer has a mass fraction that is at most as large as the mass fraction of a core.
- the proportion of binder in the shell layer can be disregarded or neglected.
- the mass fraction of the cores should preferably be larger than that of cladding layers.
- Coating layers should also have the same layer thicknesses, which should apply to the individual and also all particles of the precursor.
- the precursors of the invention can be prepared by spraying the particles of the first powder with a suspension.
- the suspension contains particles of the second powder and the binder.
- An aqueous suspension can be used.
- spraying the particles of the first powder are moves.
- a fluidized bed rotor can be used.
- the particles of the precursor After reaching a predetermined layer thickness of the cladding layers, on the cores forming particles of the first powder, the particles of the precursor can be dried.
- a high filling density of about 40% of the theoretical density and a good flowability can be achieved, which can be less than 30 s, which is determined with a Hall Flow funnel.
- a pre-sintering of the precursor can be made.
- the filling density can be increased and the flowability can be improved.
- the latter can be reduced, for example, from 40 s to 30 s, if a pre-sintering with a temperature of at least 800 0 C is performed. It can be determined using the Hall Flow funnel.
- the physical density of the finished sintered component can thus also be increased and the shrinkage can also be reduced below 5%.
- the precursor can then be subjected to shaping. This press forces, which lead to a compression.
- the green bodies thus obtained achieve an increased green density and green strength.
- substantially the components contained in the cladding layer are deformed.
- the cores usually remain undeformed. Due to the deformation of the cladding layer increased compaction can be achieved, which leads to a reduction of shrinkage during sintering. This can be smaller 8% are kept. It is also possible to reduce to 5% and below.
- the physical density of a finished sintered component can reach at least 92% and up to more than 95% of the theoretical density.
- an alloy formation or an altered alloy composition may occur during sintering.
- the longest diffusion path is 0.5 times the precursor particle diameter.
- the time required for diffusion can be significantly reduced compared to conventional production methods.
- only a very small proportion of alloying elements, which is in the range of 0.1 to 2%, can be achieved. With the invention can be obtained in comparison, but much higher alloyed component materials.
- the consistency of an alloy which can be produced by sintering using the invention can be adjusted very precisely and reproducibly compared with the known technical solutions.
- the component material is a 5.8W 5.0Mo 4.2Cr 4.1V 0.3Mn 0.3Si 1.3C iron alloy.
- an iron-base alloy with 8, IW 6.7 Mo 5.9 Cr 0.4 Mn 0.4Si was used for the first powder forming the cores of the precursor.
- the particle size d 9 o was 95 microns.
- a second powder which represents a mixture of 31.0% by mass of carbonyl iron powder and 1.3% by mass of teilamorphem graphite, each having a particle size dgo of less than 10 microns. This resulted in a mass fraction for the cores of 67.7% by mass and 32.3% of Masseis coating layer without binder.
- the carbonyl iron was reduced, but it can also be used unreduced.
- the first powder was given as a template in a fluidized bed rotor and thereby moved.
- a suspension which had been formed with water, PVA and the powder mixture for the cladding layer, sprayed.
- the structure of the cladding layer around the cores should be as slow as possible.
- the composition of the suspension was 38% by mass of water, 58% by mass of carbonylate powder, 2.4% by mass of graphite-based graphite and 1.8% by mass of binder (PVA).
- the powdery precursor had a particle size dgo at 125 microns.
- Green body performed.
- the usual shaping methods can be used, such as, for example, die pressing in tools, injection molding or extrusion. It could be a green density of 6.9 g / cm 3 and a green strength of 10.3 MPa can be achieved.
- the green body was sintered under forming gas (10 vol.% H 2 and 90 vol.% N 2 ).
- the heat treatment was carried out in stages at 250 ° C., 350 ° C. and 600 ° C., each with a holding time of 0.5 h.
- the maximum temperature of 1200 0 C was maintained for 2 h.
- the final sintered component had a physical density of 7.95 g / cm 3 and the shrinkage after sintering was 4.6%.
- the theoretical density of this material is 7.97 g / cm 3 .
- variant 1 unreduced carbonyl iron powder particle size dgo 9 microns
- variant 2 ice powder which has been obtained from reduced iron oxide (particle size dgo 5 ⁇ m).
- the mass fraction was 66.7% and for the second powder at 33.3% by mass.
- the first powder was given as a template in a fluidized bed rotor and thereby moved.
- a suspension which had been formed with water, PVA and the powder mixture for the cladding layer, sprayed.
- the structure of the cladding layer around the cores should be as slow as possible.
- the suspension had a composition of 49% by mass of water, 49% by mass of the second powder and 2% by mass of binder (PVA).
- the precursor according to variant 1 had a filling density of 2.2 g / cm 3 with a flow time of 36 s determined by means of a Hall Flow funnel.
- a filling density of 2.4 g / cm 3 was achieved and a flow time of 33 s was determined.
- a shaping to a compression for the compaction and the formation of a green body was followed by a shaping to a compression for the compaction and the formation of a green body.
- the usual shaping methods can be used, such as, for example, die pressing in tools, injection molding or extrusion.
- a green body according to variant 1 achieved a green density of 5.3 g / cm 3 and a green strength of 3.8 MPa and for variant a green density of 5.4 g / cm 3 and a green strength of 5.0 MPa could be achieved.
- the green body in all two variants was subjected to forming gas (10% by volume of H 2 and 90% by volume of N 2 ). tert. In this case, a stepped temperature regime of each 0.5 h holding time at the temperatures 250 0 C, 350 0 C and 600 0 C was maintained. Subsequently, sintering was completed at 1250 ° C. in a period of 2 h.
- the finished sintered component had a physical density of 7.1 g / cm 3 for variant 1, and the shrinkage after sintering was 7.6% and for variant 2 a physical density of 6.9 g / cm 3 and one occurred Shrinkage of 6.3%.
- the theoretical density of this material is 7.35 g / cm 3 .
- the first powder was given as a template in a fluidized bed rotor and thereby moved.
- a suspension which had been formed with water, PVA and the powder mixture for the cladding layer, was sprayed by a two-substance nozzle arranged tangentially to the direction of rotation of the rotor.
- the structure of the cladding layer around the cores should be as slow as possible.
- the powdery preliminary sample had has a particle size dgo of 130 ⁇ m.
- the filling density was 3.0 g / cm 3 and a flow time of 29 s with Hall Flow funnels could be determined.
- a shaping was carried out by pressing for the compaction and the formation of a green body.
- the usual shaping methods can be used, such as, for example, die pressing in tools, injection molding or extrusion.
- a green density of 6.4 g / cm 3 was achieved.
- the final sintered member had a physical density of 8.7 g / cm 3 and the shrinkage after sintering was 10.2%%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
L'invention concerne un précurseur pour la production de pièces métalliques frittées, un procédé de production du précurseur, ainsi que la production desdites pièces. L'objet de la présente invention est la production de pièces métalliques frittées permettant d'obtenir une densité physiquement élevée et un retrait réduit pour une pièce frittée finie. L'invention a en conséquence pour objet un précurseur pour la production de pièces métalliques frittées, caractérisé en ce qu'une couche enveloppante est formée sur un noyau qui est constitué par une particule d'une première poudre métallique. La couche enveloppante est constituée par une seconde poudre et un liant. La première poudre présente une granulométrie d90 d'au moins 50 µ, et la seconde poudre, une granulométrie d90 inférieure à 25 µ. Le précurseur est pulvérulent.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008062614A DE102008062614A1 (de) | 2008-12-11 | 2008-12-11 | Vorprodukt für die Herstellung gesinterter metallischer Bauteile, ein Verfahren zur Herstellung des Vorproduktes sowie die Herstellung der Bauteile |
PCT/EP2009/065129 WO2010066529A1 (fr) | 2008-12-11 | 2009-11-13 | Précurseur pour la production de pièces métalliques frittées, procédé de production du précurseur, et production desdites pièces |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2376245A1 true EP2376245A1 (fr) | 2011-10-19 |
Family
ID=41647135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09763903A Withdrawn EP2376245A1 (fr) | 2008-12-11 | 2009-11-13 | Précurseur pour la production de pièces métalliques frittées, procédé de production du précurseur, et production desdites pièces |
Country Status (11)
Country | Link |
---|---|
US (2) | US20110229918A1 (fr) |
EP (1) | EP2376245A1 (fr) |
JP (1) | JP2012511629A (fr) |
KR (1) | KR20110099708A (fr) |
CN (1) | CN102245332A (fr) |
BR (1) | BRPI0923363A2 (fr) |
CA (1) | CA2746010A1 (fr) |
DE (1) | DE102008062614A1 (fr) |
MX (1) | MX2011005902A (fr) |
TW (1) | TW201039945A (fr) |
WO (1) | WO2010066529A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10046392B2 (en) * | 2015-03-04 | 2018-08-14 | The Boeing Company | Crack-free fabrication of near net shape powder-based metallic parts |
US11136650B2 (en) * | 2016-07-26 | 2021-10-05 | The Boeing Company | Powdered titanium alloy composition and article formed therefrom |
US10618109B2 (en) * | 2017-08-07 | 2020-04-14 | General Electric Company | Hybrid pre-sintered preform, green preform, and process |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3620799A (en) * | 1968-12-26 | 1971-11-16 | Rca Corp | Method for metallizing a ceramic body |
US4834800A (en) * | 1986-10-15 | 1989-05-30 | Hoeganaes Corporation | Iron-based powder mixtures |
JP2836232B2 (ja) * | 1990-10-09 | 1998-12-14 | 三菱マテリアル株式会社 | 合金金粘土 |
US5729822A (en) * | 1996-05-24 | 1998-03-17 | Stackpole Limited | Gears |
EP0853994B1 (fr) * | 1996-08-05 | 2004-10-06 | JFE Steel Corporation | Melange de poudre metallurgique a base de fer possedant d'excellentes caracteristiques de fluidite et de moulage et son procede de preparation |
US6068813A (en) * | 1999-05-26 | 2000-05-30 | Hoeganaes Corporation | Method of making powder metallurgical compositions |
WO2003085683A1 (fr) * | 2002-04-09 | 2003-10-16 | Aichi Steel Corporation | Aimant agglomere anisotrope de terre rare composite, compose pour un aimant agglomere anisotrope de terre rare composite, et procede de preparation de ce dernier |
SE529952C2 (sv) * | 2006-05-31 | 2008-01-15 | Sandvik Intellectual Property | Sätt att tillverka agglomererade hårdmetall- eller cermetpulverblandningar |
-
2008
- 2008-11-07 US US12/742,198 patent/US20110229918A1/en not_active Abandoned
- 2008-12-11 DE DE102008062614A patent/DE102008062614A1/de not_active Withdrawn
-
2009
- 2009-11-13 JP JP2011539987A patent/JP2012511629A/ja not_active Withdrawn
- 2009-11-13 CN CN2009801499495A patent/CN102245332A/zh active Pending
- 2009-11-13 MX MX2011005902A patent/MX2011005902A/es unknown
- 2009-11-13 BR BRPI0923363-6A patent/BRPI0923363A2/pt not_active IP Right Cessation
- 2009-11-13 US US13/133,670 patent/US20110243785A1/en not_active Abandoned
- 2009-11-13 EP EP09763903A patent/EP2376245A1/fr not_active Withdrawn
- 2009-11-13 CA CA2746010A patent/CA2746010A1/fr not_active Abandoned
- 2009-11-13 KR KR1020117014937A patent/KR20110099708A/ko not_active Application Discontinuation
- 2009-11-13 WO PCT/EP2009/065129 patent/WO2010066529A1/fr active Application Filing
- 2009-12-10 TW TW098142171A patent/TW201039945A/zh unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2010066529A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20110229918A1 (en) | 2011-09-22 |
CN102245332A (zh) | 2011-11-16 |
WO2010066529A1 (fr) | 2010-06-17 |
CA2746010A1 (fr) | 2010-06-17 |
KR20110099708A (ko) | 2011-09-08 |
DE102008062614A1 (de) | 2010-06-17 |
TW201039945A (en) | 2010-11-16 |
US20110243785A1 (en) | 2011-10-06 |
MX2011005902A (es) | 2011-06-20 |
BRPI0923363A2 (pt) | 2015-07-21 |
JP2012511629A (ja) | 2012-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1469963B1 (fr) | Procede pour produire des composants frittes a partir d'un materiau frittable | |
EP1470261B1 (fr) | Melange de poudre metallique frittable servant a produire des composants frittes | |
DE69622798T2 (de) | Seltenerd Dauermagnet und dessen Herstellungsverfahren | |
DE112018000214T5 (de) | Magnetpulver, das SM-Fe-N-basierte Kristallpartikel enthält, aus diesem hergestellter Sintermagnet, Verfahren zur Herstellung dieses Magnetpulvers; und Verfahren zur Herstellung des Sintermagneten | |
DE3120169A1 (de) | Ferromagnetische metallegierungsgegenstaende, verfahren zu deren herstellung und deren verwendung | |
EP3069802A1 (fr) | Procédé de production d'un composant en matériau composite doté d'une matrice en métal et de phases intercalaires inter-métalliques | |
DE112016006051T5 (de) | Pulver für Massekerne, Verfahren zum Herstellen desselben, Massekern und Verfahren zum Herstellen des Massekerns | |
EP1268868B1 (fr) | Procede de metallurgie des poudres en vue de la production de pieces faconnees de haute densite | |
WO2003105161A1 (fr) | Matiere composite en poudre magnetique douce, ses procedes de production et d'utilisation | |
EP3797901B1 (fr) | Corps alvéolaire métallique et son procédé de fabrication | |
DE69318682T2 (de) | Magnetpulver vom Typ SE-Fe-B, Sintermagnete daraus und Herstellungsverfahren | |
DE10150830A1 (de) | Weichmagnetismus-Legierungspulver, ein Behandlungsverfahren davon, ein Weichmagnetismus-Legierungsformling und das Herstellungsverfahren davon | |
EP2376245A1 (fr) | Précurseur pour la production de pièces métalliques frittées, procédé de production du précurseur, et production desdites pièces | |
DE2049546B2 (de) | Verfahren zur pulvermetallurgischen Herstellung eines dispersionsverfestigten Legierungskörpers | |
EP0710516B1 (fr) | Procédé et composé de moulage par injection pour la manufacture d'objets moulés | |
DE3313736A1 (de) | Hochfester formkoerper aus einer mechanisch bearbeitbaren pulvermetall-legierung auf eisenbasis, und verfahren zu dessen herstellung | |
DE102006032520A1 (de) | Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern | |
EP2242602A1 (fr) | Procédé de production d'une poudre métallique et poudre métallique produite au moyen dudit procédé | |
DE102007052198B3 (de) | Metallpulvermischung und deren Verwendung | |
DE69407153T2 (de) | Verfahren zur herstellung eines permanentmagneten auf alnico-basis | |
DE3249505C2 (de) | Verfahren zur Herstellung abn}tzungsbest{ndiger Teile auf Eisenbasis | |
WO2016162188A1 (fr) | Composite magnétique doux et procédé correspondant pour fabriquer un composite magnétique doux | |
DE3043321A1 (de) | Sinterprodukt aus metall-legierung und dessen herstellung | |
WO1995033079A1 (fr) | Production d'alliages-mere de type intermetallique | |
AT511919B1 (de) | Verfahren zur herstellung eines sinterbauteils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110711 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120207 |