EP1129074A2 - Anthranilsäureamide und deren verwendung als arzneimittel - Google Patents

Anthranilsäureamide und deren verwendung als arzneimittel

Info

Publication number
EP1129074A2
EP1129074A2 EP99953967A EP99953967A EP1129074A2 EP 1129074 A2 EP1129074 A2 EP 1129074A2 EP 99953967 A EP99953967 A EP 99953967A EP 99953967 A EP99953967 A EP 99953967A EP 1129074 A2 EP1129074 A2 EP 1129074A2
Authority
EP
European Patent Office
Prior art keywords
group
stands
hydrogen
halogen
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99953967A
Other languages
German (de)
English (en)
French (fr)
Inventor
Andreas Huth
Dieter Seidelmann
Karl-Heinz Thierauch
Guido Bold
Paul William Manley
Pascal Furet
Jeanette Marjorie Wood
Jürgen Mestan
Jose Brüggen
Stefano Ferrari
Martin Krüger
Eckhard Ottow
Andreas Menrad
Michael Schirner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Bayer Pharma AG
Original Assignee
Novartis AG
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9824579.8A external-priority patent/GB9824579D0/en
Priority claimed from DE1999110396 external-priority patent/DE19910396C2/de
Application filed by Novartis AG, Schering AG filed Critical Novartis AG
Publication of EP1129074A2 publication Critical patent/EP1129074A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to an acyclic carbon atom of a hydrocarbon radical substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • R a -R f from Z or to R, a bridge with up to
  • Y stands for the group - (CH 2 ) P ,
  • R 1 represents phenyl, pyridyl, 5-chloro-2,3-
  • R 2 represents hydrogen or C ⁇ alkyl or with
  • C ⁇ alkyl mean, and their isomers and salts.
  • R 2 represents hydrogen or methyl
  • R 3 represents pyridyl or phenyl, pyridyl or 1, 2,3,4-tetrahydronaphthyl or the group substituted by hydroxy, halogen, methyl or methoxy
  • R 4 and R 7 are independently hydrogen or
  • R 1 is phenyl, pyridyl, 5-chloro-2,3-dihydroindenyl, 2,3-dihydroindenyl, thienyl, 6-fluoro-1H-indol-3-yl, naphthyl, 1, 2,3,4-tetrahydronaphthyi, benzo -1, 2,5-oxadiazole or 6,7-dimethoxy-1, 2,3,4-tetrahydro-2-naphthyl or for one or more with CC 4 alkyl, CC 4 alkoxy, hydroxy, halogen, trifluoromethyl , substituted phenyl or pyridyl or for the group
  • R 5 and R 6 independently of one another represent hydrogen
  • R 10 represents hydrogen or methyl, and their isomers and salts.
  • R 2 represents hydrogen or methyl
  • R 3 represents pyridyl or phenyl, pyridyl or 1, 2,3,4-tetrahydronaphthyl substituted by one or more hydroxyl, halogen, methyl or methoxy groups, or the group
  • R 4 and R 7 are independently hydrogen and
  • R 9 represents hydrogen
  • W represents two hydrogen atoms
  • Y stands for the group -CH 2 -
  • R 2 represents hydrogen or methyl
  • R 3 represents pyridyl or phenyl, pyridyl or 1, 2,3,4-tetrahydronaphthyl substituted by one or more hydroxyl, halogen, methyl or methoxy groups, or the group
  • R 10 represents hydrogen or methyl, and their isomers and salts.
  • the compounds of the invention prevent phosphoryiation, i.e. H. certain tyrosine kinases can be selectively inhibited, whereby persistent angiogenesis can be stopped. This prevents the growth and spread of tumors, for example.
  • the compounds of general formula I according to the invention also include the possible tautomeric forms and include the E or Z isomers or, if a chiral center is present, also the racemates and enantiomers.
  • the compounds of the formula I and their physiologically tolerable salts can be used as medicaments on account of their inhibitory activity with regard to phosphorylation of the VEGF receptor. Because of their activity profile, the compounds according to the invention are suitable for the treatment of
  • the compounds of the formula I are identified as inhibitors of the tyrosine kinase KDR and FLT, they are particularly suitable for the treatment of diseases which are caused by the persistent angiogenesis triggered by the VEGF receptor or an increase in vascular permeability.
  • the present invention also relates to the use of the compounds according to the invention as inhibitors of the tyrosine kinase KDR and FLT.
  • the present invention thus also relates to medicaments for the treatment of tumors.
  • the compounds according to the invention can be used either alone or in formulations as medicaments for the treatment of psoriasis, arthritis, such as rheumatoid arthritis, hemangioma, angiofribroma, eye diseases, such as diabetic retinopathy, neovascular glaucoma, kidney diseases, such as glomerulonephritis, diabetic nephropathy, malignant nephrosic syndrome, malignant nephrosic syndrome, Transplant rejection and glomerulopathy, fibrotic diseases such as cirrhosis of the liver, mesangial cell proliferative diseases, atherosclerosis and injuries to the nerve tissue are used.
  • arthritis such as rheumatoid arthritis, hemangioma, angiofribroma
  • eye diseases such as diabetic retinopathy, neovascular glaucoma
  • kidney diseases such as glomerulonephritis, diabetic nephropathy, malignant nephrosic
  • the compounds of the invention can also be used to inhibit the reocclusion of vessels after balloon catheter treatment. lung, in vascular prosthetics or after the insertion of mechanical devices to keep vessels open, such as. B. Stents.
  • VEGF-related edema can also be suppressed.
  • Kidney diseases such as glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombic microangiopatic syndromes, transplant rejection and glomerulopathy, fibrotic diseases such as cirrhosis of the liver, mesangial cell proliferative diseases, atherosclerosis, injuries of the nerve tissue, inhibition of ballon, or inhibition of the therapy after reclamation after reocclusion after reocclusion mechanical devices to keep open vessels such.
  • B. Stents such as glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombic microangiopatic syndromes, transplant rejection and glomerulopathy
  • fibrotic diseases such as cirrhosis of the liver, mesangial cell proliferative diseases, atherosclerosis, injuries of the nerve tissue, inhibition of ballon, or inhibition of the therapy after reclamation after reocclusion after reocclusion mechanical devices to keep open vessels such.
  • Injection solutions or suspensions in particular aqueous solutions of the active compounds in polyhydroxyethoxylated castor oil, are particularly suitable for parenteral use.
  • Surfactant auxiliaries such as salts of bile acids or animal or vegetable phospholipids, but also mixtures thereof and liposomes or their components can also be used as carrier systems.
  • Lactose corn or potato starch, suitable. It can also be used in liquid form, for example as juice, to which a sweetener may be added.
  • the daily dose is 0.5-1000 mg, preferably 50-200 mg, and the dose can be given as a single dose to be administered once or divided into 2 or more daily doses.
  • R 4 to R? have the above meaning and TH or a protective group and A is halogen or OR 13 , where R 13 denotes a hydrogen atom, C 1-4 alkyl or C 1-4 acyl or closes a ring with T, first alkylates N and then converts COA to an amide and then optionally splitting off protective groups or first converting them into that amide and then N-alkylating or b) orthometallized a compound of the formula III in which R 4 to 7 have the meaning given above and TH or a protective group and then intercepting them with an electrophile Transferred amide, then cleaves the protecting group and alkylates the amino group, or
  • R 4 to R? have the above meaning and mean TH or a protective group and B halogen or O-triflate, O-tosylate or O-mesylate converted into an amide, then the protective group is split off and the amino group is alkylated
  • the amide formation takes place according to methods known from the literature.
  • An appropriate ester can be used to form the amide.
  • the ester is reacted with aluminum trimethyl and the corresponding amine in solvents such as toluene at temperatures from 0 ° C. to the boiling point of the solvent.
  • solvents such as toluene at temperatures from 0 ° C. to the boiling point of the solvent.
  • This method can also be used for unprotected anthranilic acid esters. If the molecule contains two ester groups, both are converted into the same amide.
  • amidines are obtained under analogous conditions.
  • amide formation all methods known from peptide chemistry are also available for amide formation.
  • aprotic polar solvents such as dimethylformamide
  • an activated acid derivative for example obtainable with hydroxybenzotriazole and a carbodiimide such as diisopropylcarbodiimide or with pre-formed reagents such as HATU (Chem. Comm. 1994, 201) or BTU , at temperatures between 0 ° C and the boiling point of the
  • Solvent preferably at 80 ° C with the amine at HATU preferably at room temperature. These methods are also with the to use unprotected anthranilic acids.
  • the process using the mixed acid anhydride, imidazolide or azide can also be used for the amide formation. Prior protection of the amino group, for example as an amide, is not necessary in all cases, but can have a favorable effect on the reaction.
  • a special starting material is isatoic anhydrides, in which the protection of the amino group and the activation of the acid function are present at the same time.
  • the BOC amides are cleaved by treatment with acids such as trifluoroacetic acid without solvent or in solvents such as methylene chloride at temperatures from 0 ° C. to the boiling point of the solvent or with aqueous hydrochloric acid, preferably 1 N hydrochloric acid in solvents such as ethanol or dioxane at temperatures from room temperature to the boiling point of the solvent.
  • acids such as trifluoroacetic acid without solvent or in solvents such as methylene chloride at temperatures from 0 ° C. to the boiling point of the solvent or with aqueous hydrochloric acid, preferably 1 N hydrochloric acid in solvents such as ethanol or dioxane at temperatures from room temperature to the boiling point of the solvent.
  • Transition metal catalysts such as palladium (II) chloride or palladium (II) acetate or palladium tetrakistriphenylphosphine in ⁇
  • Solvents such as dimethylformamide are implemented.
  • a ligand such as triphenylphosphine and the addition of a base such as tributylamine can be advantageous. (see for example J. Org. Chem. 1974, 3327; J. Org. Chem. 1996, 7482; Synth. Comm. 1997, 367; Tetr.Lett 1998, 2835)
  • the second ester group for example, must be introduced into the molecule after the first amide group has been generated and then amidated, or one molecule has one group as an ester, the other as an acid and amidates the two groups successively according to different methods.
  • Thioamides are derived from the anthranilamides by reaction with diphosphadithians according to Bull Soc.Chim.Belg. 87, 229, 1978 or by reaction with phosphorus pentasulfide in solvents such as pyridine or without solvents at temperatures from 0 ° C. to 200 ° C. .
  • the reduction of the nitro group is carried out in polar solvents at room temperature or elevated temperature.
  • Suitable catalysts for the reduction are metals such as Raney nickel or noble metal catalysts such as palladium or platinum or also palladium hydroxide, optionally on supports.
  • metals such as Raney nickel or noble metal catalysts such as palladium or platinum or also palladium hydroxide, optionally on supports.
  • hydrogen ammonium formate, cyclohexene or hydrazine, for example, can also be used in a known manner.
  • Reducing agents such as tin-II-chloride or titanium - ([li) -chloride can be used as well as complex metal hydrides possibly in the presence of heavy metal salts. Iron can also be used as a reducing agent.
  • the reaction is then carried out in the presence of an acid such as e.g. Acetic acid or ammonium chloride optionally carried out with the addition of a solvent such as water, methanol, etc. With an
  • alkylation can be carried out by customary methods - for example using alkyl halides - or using the Mitsunobu variant by reaction with an alcohol in the presence of, for example, triphenylphosphine and azodicarboxylic acid esters.
  • the amine can also be subjected to a reductive alkylation with aldehydes or ketones, the reaction being carried out in the presence of a reducing agent such as sodium cyanoborohydride in a suitable inert solvent such as ethanol at temperatures from 0 ° C. to the boiling point of the solvent.
  • the Schiff base may be advantageous to first form the Schiff base by reacting the aldehyde with the amine in solvents such as ethanol or methanol, optionally with the addition of auxiliaries such as glacial acetic acid, and only then reducing agents such as. B. add sodium cyanoborohydride.
  • the hydrogenation of alkene or alkyne groups in the molecule is carried out in the usual way, for example by catalytically excited hydrogen.
  • Heavy metals such as palladium or platinum, optionally on a support or Raney nickel, can be used as catalysts.
  • Alcohols such as e.g. Ethanol in question.
  • the process is carried out at temperatures from 0 ° C. to the boiling point of the solvent and at pressures up to 20 bar, but preferably at room temperature and normal pressure.
  • catalysts such as a Lindlar catalyst, triple bonds can be partially hydrogenated to double bonds, the Z form preferably being formed.
  • acylation of an amino group is carried out in a customary manner, for example using an acid halide or acid anhydride, optionally in the presence of a base such as dimethylaminopyridine in solvents such as methylene chloride, tetrahydrofuran or pyridine, according to the Schotten-Baumann variant in aqueous solution at a weakly alkaline pH or by reaction with an anhydride in glacial acetic acid.
  • a base such as dimethylaminopyridine
  • solvents such as methylene chloride, tetrahydrofuran or pyridine
  • the introduction of the halogens chlorine, bromine, iodine or the azido group via an amino group can also be carried out, for example, according to Sandmeyer, by reacting the diazonium salts formed intermediately with nitrites with copper (l) chloride or copper (l) bromide in the presence of the corresponding acid such as hydrochloric acid or Hydrobromic acid or reacted with potassium iodide. If an organic nitrous acid ester is used, the halogens can be introduced, for example, by adding methylene iodide or tetrabromomethane in a solvent such as dimethylformamide.
  • the removal of the amino group can be accomplished either by reaction with an organic nitric acid ester in tetrahydrofuran or by diazotization and reductive boiling of the diazonium salt, for example with phosphorous acid, optionally with the addition of copper (I) oxide.
  • Fluorine can be introduced, for example, by the Balz-Schiemann reaction of diazonium tetrafluoroborate or by J. Fluor. Chem. 76, 1996, 59-62 by diazotization in the presence of HFxPyridin and subsequent boiling, if necessary in the presence of a fluoride ion source such as e.g. Tetrabutylammonium fluoride.
  • a fluoride ion source such as e.g. Tetrabutylammonium fluoride.
  • the azido group can be introduced after diazotization by reaction with sodium azide at room temperature.
  • Ether cleavages are carried out according to methods customary in the literature. Selective cleavage can also be achieved with several groups present in the molecule.
  • the ether is treated, for example, with boron tribromide in solvents such as dichloromethane at temperatures between -100 ° C to the boiling point of the solvent, preferably at -78 ° C.
  • solvents such as dichloromethane
  • the temperature can preferably be between 150 ° C. and between room temperature and the boiling point of the solvent.
  • N- or O-alkylation of amides such as pyrid-2-one or 2-hydroxypyridine is achieved using methods known from the literature.
  • bases such as sodium hydride or potassium carbonate in solvents such as dimethylformamide and alkylation with alkyl halides such as methyl iodide
  • alkyl halides such as methyl iodide
  • an O-alkylation is also obtained in the reaction with inert trialkyloxonium tetrafluoroborate
  • the isomer mixtures can be separated into the enantiomers or E / Z isomers by customary methods such as, for example, crystallization, chromatography or salt formation.
  • the salts are prepared in the customary manner by adding a solution of the compound of the formula I with the equivalent amount or an excess of a base or acid, which is optionally in solution, and removing the precipitate or working up the solution in the customary manner.
  • Y stands for the group -CH 2 -
  • R 3 is pyridyl or phenyl substituted by hydroxyl, bromine, methyl or methoxy or 1, 2,3,4-
  • R 5 and R 6 are hydrogen, chlorine, methyl, methoxy or
  • R 4 and R 7 are hydrogen, RR a9 is hydrogen, and their isomers and salts.
  • the intermediates are partially active themselves and can thus also be used to produce a medicament for the treatment of tumors, psoriasis, arthritis, such as rheumatoid arthritis, hemangioma, angiofribroma, eye diseases, such as diabetic retinopathy, neovascuiar glaucoma, kidney diseases, such as glomerulonephritis, diabetic malignant nephropatia , thrombic microangiopatic syndromes, transplant rejection and glomerulopathy, fibrotic diseases such as cirrhosis of the liver, mesangial cell proliferative diseases, atherosclerosis, injuries to the nerve tissue, inhibition of reocciusion of vessels after balloon catheter treatment, in the case of vascular prosthesis or after the insertion of mechanical devices, such as after the insertion of mechanical devices, for the insertion of mechanical devices.
  • a mixture of 7.5 g of methyl anthranilate and 8.6 g of pyridine-4-carbaldehyde in 300 ml of methanol is mixed with 3 ml of acetic acid under a nitrogen atmosphere and stirred for 12 hours at room temperature.
  • the reaction mixture is then mixed with 5.7 g of sodium cyanoborohydride (85%) and stirred for a further 3 hours at room temperature. After this time, another 14.1 g of sodium cyanoborohydride (85%) are added and the mixture is stirred for a further 12 hours at room temperature.
  • the reaction mixture is concentrated. The residue is taken up in ethyl acetate and washed with saturated sodium bicarbonate solution and saturated sodium chloride solution. The dried organic phase is evaporated and the residue is purified by column chromatography on silica gel using hexane / ethyl acetate (1 +1).
  • N- (4-pyridylmethyl) anthranilic acid are placed in 10 ml of dimethylformamide under argon and with the exclusion of moisture.
  • 266 mg of 5-aminoindazole, 0.27 ml of methylmorpholine and 456 mg of 0- (7-azabenzotriazol-1-yl) -N, N, N ', N ' - tetramethyluronium hexafluorophosphate (HATU) are added.
  • the mixture is then stirred for 4 hours at room temperature.
  • dilute sodium hydrogen carbonate solution is added and the mixture is extracted three times with ethyl acetate.
  • the combined organic phases are washed with water, dried, filtered and concentrated in vacuo. The residue is chromatographed on silica gel with ethyl acetate as the eluent.
EP99953967A 1998-11-10 1999-11-09 Anthranilsäureamide und deren verwendung als arzneimittel Withdrawn EP1129074A2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB9824579.8A GB9824579D0 (en) 1998-11-10 1998-11-10 Organic compounds
GB9824579 1998-11-10
DE1999110396 DE19910396C2 (de) 1999-03-03 1999-03-03 Anthranilsäureamide und deren Verwendung als Arzneimittel
DE19910396 1999-03-03
PCT/EP1999/008478 WO2000027819A2 (de) 1998-11-10 1999-11-09 Anthranilsäureamide und deren verwendung als arzneimittel

Publications (1)

Publication Number Publication Date
EP1129074A2 true EP1129074A2 (de) 2001-09-05

Family

ID=26052266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953967A Withdrawn EP1129074A2 (de) 1998-11-10 1999-11-09 Anthranilsäureamide und deren verwendung als arzneimittel

Country Status (23)

Country Link
US (1) US7122547B1 (US07122547-20061017-C00105.png)
EP (1) EP1129074A2 (US07122547-20061017-C00105.png)
JP (1) JP2002529452A (US07122547-20061017-C00105.png)
KR (2) KR100777476B1 (US07122547-20061017-C00105.png)
CN (1) CN1151133C (US07122547-20061017-C00105.png)
AU (1) AU771180B2 (US07122547-20061017-C00105.png)
BG (1) BG65371B1 (US07122547-20061017-C00105.png)
BR (1) BR9915553A (US07122547-20061017-C00105.png)
CA (1) CA2350208A1 (US07122547-20061017-C00105.png)
CZ (1) CZ20011631A3 (US07122547-20061017-C00105.png)
EA (1) EA004701B1 (US07122547-20061017-C00105.png)
EE (1) EE200100258A (US07122547-20061017-C00105.png)
HK (1) HK1041882A1 (US07122547-20061017-C00105.png)
HR (1) HRP20010402A2 (US07122547-20061017-C00105.png)
HU (1) HUP0104425A3 (US07122547-20061017-C00105.png)
NO (1) NO320647B1 (US07122547-20061017-C00105.png)
NZ (1) NZ511413A (US07122547-20061017-C00105.png)
PL (1) PL348349A1 (US07122547-20061017-C00105.png)
SK (1) SK6072001A3 (US07122547-20061017-C00105.png)
TR (1) TR200101307T2 (US07122547-20061017-C00105.png)
UA (1) UA71587C2 (US07122547-20061017-C00105.png)
WO (1) WO2000027819A2 (US07122547-20061017-C00105.png)
YU (1) YU31801A (US07122547-20061017-C00105.png)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107543A1 (en) 2006-03-22 2007-09-27 Janssen Pharmaceutica N.V. Inhibitors of the interaction between mdm2 and p53
WO2010089327A2 (en) 2009-02-04 2010-08-12 Janssen Pharmaceutica Nv Indole derivatives as anticancer agents
US7834016B2 (en) 2004-09-22 2010-11-16 Janssen Pharmaceutica Nv Inhibitors of the interaction between MDM2 and p53
US8088795B2 (en) 2006-03-22 2012-01-03 Janssen Pharmaceutica N.V. Cyclic-alkylamine derivatives as inhibitors of the interaction between MDM2 and p53

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE272633T1 (de) * 1998-12-23 2004-08-15 Lilly Co Eli Aromatische amiden
DE10023485A1 (de) * 2000-05-09 2001-11-22 Schering Ag Anthranylalkyl- und -cycloalkylamide und deren Verwendung als Arzneimittel
DE10023486C1 (de) 2000-05-09 2002-03-14 Schering Ag Ortho substituierte Anthranilsäureamide und deren Verwendung als Arzneimittel
DE10023484A1 (de) * 2000-05-09 2001-11-22 Schering Ag Anthranylamide und deren Verwendung als Arzneimittel
JP3886897B2 (ja) 2000-06-21 2007-02-28 エフ.ホフマン−ラ ロシュ アーゲー ベンゾチアゾール誘導体
WO2002046172A2 (en) * 2000-12-07 2002-06-13 Cv Therapeutics, Inc. Substituted 1, 3, 5-triazines and pyrimidines as abca-1 elevating compounds against coronary artery disease or atherosclerosis
US20030134836A1 (en) 2001-01-12 2003-07-17 Amgen Inc. Substituted arylamine derivatives and methods of use
US6995162B2 (en) * 2001-01-12 2006-02-07 Amgen Inc. Substituted alkylamine derivatives and methods of use
US7105682B2 (en) 2001-01-12 2006-09-12 Amgen Inc. Substituted amine derivatives and methods of use
US20020147198A1 (en) * 2001-01-12 2002-10-10 Guoqing Chen Substituted arylamine derivatives and methods of use
US7102009B2 (en) * 2001-01-12 2006-09-05 Amgen Inc. Substituted amine derivatives and methods of use
US6878714B2 (en) 2001-01-12 2005-04-12 Amgen Inc. Substituted alkylamine derivatives and methods of use
CA2994779C (en) 2001-02-19 2020-08-25 Novartis Ag Use of 40-o-(2-hydroxyethyl)-rapamycin for inhibiting growth of a solid tumour of the brain other than lymphatic cancer
US6864255B2 (en) 2001-04-11 2005-03-08 Amgen Inc. Substituted triazinyl amide derivatives and methods of use
US7459470B2 (en) 2001-05-08 2008-12-02 Schering Ag N-oxide anthranylamide derivatives and their use as medicaments
DE10123587B4 (de) * 2001-05-08 2005-04-07 Schering Ag Cyanoanthranylamid-Derivate und deren Verwendung als Arzneimittel
EP1387838B1 (de) 2001-05-08 2006-04-19 Schering Aktiengesellschaft Cyanoanthranylamid-derivate und deren verwendung als arzneimittel
IL158783A0 (en) * 2001-05-08 2004-05-12 Schering Ag Selective anthranilamide pyridine amides as inhibitors of vegfr-2 and vegfr-3
DE10123573B4 (de) * 2001-05-08 2005-06-02 Schering Ag N-Oxidanthranylamid-Derivate und deren Verwendung als Arzneimittel
BR0209647A (pt) 2001-05-16 2004-07-27 Novartis Ag Combinação que compreende n-{5-[4-(4-metil-piperazino-metil)-benzoilamido]-2-metil fenil}-4-(3-piridil)-2-pirimidina-amina e um agente quimioterapêutico
WO2002100833A1 (fr) * 2001-06-12 2002-12-19 Sumitomo Pharmaceuticals Company, Limited Inhibiteurs de rho kinase
TWI315982B (en) 2001-07-19 2009-10-21 Novartis Ag Combinations comprising epothilones and pharmaceutical uses thereof
US7132438B2 (en) 2001-10-09 2006-11-07 Amgen Inc. Benzimidazole derivatives
GB0126902D0 (en) * 2001-11-08 2002-01-02 Novartis Ag Organic compounds
GB0206215D0 (en) 2002-03-15 2002-05-01 Novartis Ag Organic compounds
PL372103A1 (en) 2002-05-16 2005-07-11 Novartis Ag Use of edg receptor binding agents in cancer
US7307088B2 (en) 2002-07-09 2007-12-11 Amgen Inc. Substituted anthranilic amide derivatives and methods of use
US7094789B2 (en) 2002-07-22 2006-08-22 Asahi Kasei Pharma Corporation 5-substituted isoquinoline derivatives
DE10235690A1 (de) * 2002-07-31 2004-02-19 Schering Ag VEGFR-2 und VEGFR-3 inhibitorische Anthranylamidpyridinamide
US7615565B2 (en) 2002-07-31 2009-11-10 Bayer Schering Pharma Aktiengesellschaft VEGFR-2 and VEGFR-3 inhibitory anthranilamide pyridines
US7338956B2 (en) 2002-08-07 2008-03-04 Sanofi-Aventis Deutschland Gmbh Acylamino-substituted heteroaromatic compounds and their use as pharmaceuticals
EP1388341A1 (en) * 2002-08-07 2004-02-11 Aventis Pharma Deutschland GmbH Acylamino-substituted heteroaromatic compounds and their use as pharmaceuticals
DE60329030D1 (de) 2002-12-04 2009-10-08 Ore Pharmaceuticals Inc Melanocortin-rezeptormodulatoren
US7696225B2 (en) 2003-01-06 2010-04-13 Osi Pharmaceuticals, Inc. (2-carboxamido)(3-Amino) thiophene compounds
TWI299664B (en) 2003-01-06 2008-08-11 Osi Pharm Inc (2-carboxamido)(3-amino)thiophene compounds
US7087761B2 (en) 2003-01-07 2006-08-08 Hoffmann-La Roche Inc. Cyclization process for substituted benzothiazole derivatives
ATE551324T1 (de) * 2003-02-03 2012-04-15 Janssen Pharmaceutica Nv Chinolin-amid-derivate als modulatoren von vanilloid-vr1-rezeptoren
ES2337254T3 (es) 2003-02-14 2010-04-22 Glaxo Group Limited Derivados de carboxamida.
TWI422583B (zh) 2003-03-07 2014-01-11 參天製藥股份有限公司 具有以4-吡啶烷硫基為取代基之新穎化合物
CL2004001120A1 (es) 2003-05-19 2005-04-15 Irm Llc Compuestos derivados de amina sustituidas con heterociclos, inmunosupresores; composicion farmaceutica; y uso para tratar enfermedades mediadas por interacciones de linfocito, tales como enfermedades autoinmunes, inflamatorias, infecciosas, cancer.
MY150088A (en) 2003-05-19 2013-11-29 Irm Llc Immunosuppressant compounds and compositions
US20050004133A1 (en) * 2003-06-05 2005-01-06 Makings Lewis R. Modulators of VR1 receptor
US7202260B2 (en) 2003-06-13 2007-04-10 Schering Ag VEGFR-2 and VEGFR-3 inhibitory anthranilamide pyridones
DE10327719A1 (de) * 2003-06-13 2005-01-20 Schering Ag VEGFR-2 und VEGFR-3 Inhibitorische Anthranylamidpyridone
US8309562B2 (en) 2003-07-03 2012-11-13 Myrexis, Inc. Compounds and therapeutical use thereof
WO2006074147A2 (en) 2005-01-03 2006-07-13 Myriad Genetics, Inc. Nitrogen containing bicyclic compounds and therapeutical use thereof
ES2380201T3 (es) 2003-07-11 2012-05-09 Merck Patent Gmbh Derivados de benzimidazol
GB0326601D0 (en) * 2003-11-14 2003-12-17 Novartis Ag Organic compounds
UA89035C2 (ru) 2003-12-03 2009-12-25 Лео Фарма А/С Эфиры гидроксамовых кислот и их фармацевтическое применение
US7544703B2 (en) 2004-02-17 2009-06-09 Santen Pharmaceutical Co., Ltd. Cyclic compound having 4-pyridylalkylthio group having substituted or unsubstituted amino group introduced therein
EP1568368A1 (en) * 2004-02-26 2005-08-31 Schering Aktiengesellschaft Pharmaceutical combination comprising a CDK inhibitor and a VEGF receptor inhibitor
DE102004009238A1 (de) * 2004-02-26 2005-09-08 Merck Patent Gmbh Arylamid-Derivate
WO2005085188A2 (en) * 2004-03-02 2005-09-15 Compass Pharmaceuticals Llc Compounds and methods for anti-tumor therapy
DE102004011720B4 (de) * 2004-03-10 2008-04-03 Bayer Schering Pharma Aktiengesellschaft Radiohalogenierte Benzamidderivate und deren Verwendung in der Tumordiagnostik und Tumortherapie
US7427390B2 (en) * 2004-03-10 2008-09-23 Schering Ag Radiohalogenated benzamide derivatives and their use in tumor diagnosis and tumor therapy
EA011279B1 (ru) 2004-05-24 2009-02-27 Ф. Хоффманн-Ля Рош Аг (4-метокси-7-морфолин-4-илбензотиазол-2-ил)-амид 4-гидрокси-4-метилпиперидин-1-карбоновой кислоты
DE102004039876A1 (de) * 2004-06-23 2006-01-26 Lanxess Deutschland Gmbh Herstellung von fluorierten 1,3-Benzodioxanen
GB0512324D0 (en) 2005-06-16 2005-07-27 Novartis Ag Organic compounds
US7906533B2 (en) * 2004-11-03 2011-03-15 Bayer Schering Pharma Ag Nicotinamide pyridinureas as vascular endothelial growth factor (VEGF) receptor kinase inhibitors
EP1657241A1 (en) 2004-11-03 2006-05-17 Schering Aktiengesellschaft Novel anthranilamide pyridinureas as VEGF receptor kinase inhibitors
EP1655297A1 (en) * 2004-11-03 2006-05-10 Schering Aktiengesellschaft Nicotinamide pyridinureas as vascular endothelial growth factor (VEGF) receptor kinase inhibitors
EP1655295A1 (en) * 2004-11-03 2006-05-10 Schering Aktiengesellschaft Anthranilamide pyridinureas as VEGF receptor kinase inhibitors
CN101056857B (zh) 2004-11-05 2010-12-01 弗·哈夫曼-拉罗切有限公司 异烟酸衍生物的制备方法
US8258145B2 (en) 2005-01-03 2012-09-04 Myrexis, Inc. Method of treating brain cancer
DE602006016564D1 (de) 2005-03-03 2010-10-14 Santen Pharmaceutical Co Ltd Neue cyclische verbindung mit chinolylalkylthiogruppe
BRPI0609719B8 (pt) 2005-03-23 2021-05-25 Hoffmann La Roche derivados de acetilenil-pirazol-pirimidina como antagonistas de mgbur2
ES2548729T3 (es) 2005-03-31 2015-10-20 Santen Pharmaceutical Co., Ltd. Nuevo compuesto cíclico que tiene grupo pirimidinilalquiltio
GB0510390D0 (en) 2005-05-20 2005-06-29 Novartis Ag Organic compounds
ATE463495T1 (de) 2005-09-27 2010-04-15 Hoffmann La Roche Oxadiazolylpyrazolopyrimidine als mglur2- antagonisten
RU2008116314A (ru) 2005-09-27 2009-11-10 Новартис АГ (CH) Соединения карбоксамина и их применение для лечения hdac-зависимых заболеваний
US8247556B2 (en) * 2005-10-21 2012-08-21 Amgen Inc. Method for preparing 6-substituted-7-aza-indoles
PT2275103E (pt) 2005-11-21 2014-07-24 Novartis Ag Inibidores de mtor para o tratamento de tumores endócrinos
US8106190B2 (en) * 2005-11-30 2012-01-31 Astellas Pharma Inc. 2-aminobenzamide derivatives
US20090098137A1 (en) 2006-04-05 2009-04-16 Novartis Ag Combinations of therapeutic agents for treating cancer
CN101443002B (zh) 2006-05-09 2012-03-21 诺瓦提斯公司 包含铁螯合剂和抗肿瘤药的组合及其用途
GB0612721D0 (en) 2006-06-27 2006-08-09 Novartis Ag Organic compounds
CA2664378A1 (en) 2006-09-29 2008-04-03 Novartis Ag Pyrazolopyrimidines as pi3k lipid kinase inhibitors
WO2008077809A1 (en) * 2006-12-22 2008-07-03 F. Hoffmann-La Roche Ag Process for the manufacture of 7-oxa-bicyclo derivatives
JP2008266295A (ja) 2007-01-29 2008-11-06 Santen Pharmaceut Co Ltd キナーセ゛阻害活性を有する新規チアシ゛アソ゛ール誘導体
EP2120900A2 (en) 2007-02-15 2009-11-25 Novartis AG Combination of lbh589 with other therapeutic agents for treating cancer
EP1975166A1 (en) * 2007-03-30 2008-10-01 Bayer Schering Pharma AG Synthesis of anthranilamides
US8853406B2 (en) * 2007-08-06 2014-10-07 Janssen Pharmaceutica Nv Substituted phenylenediamines as inhibitors of the interaction between MDM2 and P53
EP2628726A1 (en) 2008-03-26 2013-08-21 Novartis AG Hydroxamate-based inhibitors of deacetylases b
NZ591820A (en) 2008-08-27 2012-12-21 Leo Pharma As Pyridine derivatives as vegfr-2 receptor and protein tyrosine kinase inhibitors
ES2704986T3 (es) 2008-10-16 2019-03-21 Celator Pharmaceuticals Inc Combinaciones de una camptotecina liposomal soluble en agua con cetuximab o bevacizumab
UY32330A (es) 2008-12-18 2010-07-30 Novartis Ag Novedosa forma de sal de ácido 1-(4-{1-[e-4-ciclohexil-3-trifluoro-metil-benciloxi-imino]-etil}-2-etil-bencil)-azetidin-3-carboxílico, formas polimórficas, composiciones farmacéuticas conteniéndolas, procesos de preparación y aplicaciones
CN103204794A (zh) 2008-12-18 2013-07-17 诺瓦提斯公司 新的盐
RU2011129230A (ru) 2008-12-18 2013-01-27 Новартис Аг Новая полиморфная форма 1-[4-[1-(4-циклогексил-3-трифторметилбензилоксиимино)этил]-2-этилбензил]азетидин-3-карбоновой кислоты
TW201031406A (en) 2009-01-29 2010-09-01 Novartis Ag Substituted benzimidazoles for the treatment of astrocytomas
UA105794C2 (uk) 2009-06-26 2014-06-25 Новартіс Аг 1,3-ДИЗАМІЩЕНІ ПОХІДНІ ІМІДАЗОЛІДИН-2-ОНУ ЯК ІНГІБІТОРИ Cyp17
US8389526B2 (en) 2009-08-07 2013-03-05 Novartis Ag 3-heteroarylmethyl-imidazo[1,2-b]pyridazin-6-yl derivatives
AU2010283806A1 (en) 2009-08-12 2012-03-01 Novartis Ag Heterocyclic hydrazone compounds and their uses to treat cancer and inflammation
MX2012002066A (es) 2009-08-17 2012-03-29 Intellikine Inc Compuestos heterociclicos y usos de los mismos.
JP5775871B2 (ja) 2009-08-20 2015-09-09 ノバルティス アーゲー ヘテロ環式オキシム化合物
EP2470502A1 (en) 2009-08-26 2012-07-04 Novartis AG Tetra-substituted heteroaryl compounds and their use as mdm2 and/or mdm4 modulators
IN2012DN02139A (US07122547-20061017-C00105.png) 2009-09-10 2015-08-07 Novartis Ag
AU2010317167B2 (en) 2009-11-04 2012-11-29 Novartis Ag Heterocyclic sulfonamide derivatives useful as MEK inhibitors
US20120289501A1 (en) 2009-11-25 2012-11-15 Novartis Ag Benzene-fused 6-membered oxygen-containing heterocyclic derivatives of bicyclic heteroaryls
EP2509964B1 (en) 2009-12-08 2014-04-30 Novartis AG Heterocyclic sulfonamide derivatives
US8440693B2 (en) 2009-12-22 2013-05-14 Novartis Ag Substituted isoquinolinones and quinazolinones
CU24130B1 (es) 2009-12-22 2015-09-29 Novartis Ag Isoquinolinonas y quinazolinonas sustituidas
EP2582680A1 (en) 2010-06-17 2013-04-24 Novartis AG Biphenyl substituted 1,3-dihydro-benzoimidazol-2-ylideneamine derivatives
JP2013532149A (ja) 2010-06-17 2013-08-15 ノバルティス アーゲー ピペリジニル置換1,3−ジヒドロ−ベンゾイミダゾール−2−イリデンアミン誘導体
US20130102477A1 (en) 2010-06-23 2013-04-25 Ryan D. Morin Biomarkers for non-hodgkin lymphomas and uses thereof
US9175331B2 (en) 2010-09-10 2015-11-03 Epizyme, Inc. Inhibitors of human EZH2, and methods of use thereof
RU2618475C2 (ru) 2010-09-10 2017-05-03 Эпизайм, Инк. Ингибиторы ezh2 человека и способы их применения
US8946260B2 (en) 2010-09-16 2015-02-03 Novartis Ag 17α-hydroxylase/C17,20-lyase inhibitors
US20130324526A1 (en) 2011-02-10 2013-12-05 Novartis Ag [1,2,4] triazolo [4,3-b] pyridazine compounds as inhibitors of the c-met tyrosine kinase
JP5808826B2 (ja) 2011-02-23 2015-11-10 インテリカイン, エルエルシー 複素環化合物およびその使用
EP3323820B1 (en) 2011-02-28 2023-05-10 Epizyme, Inc. Substituted 6,5-fused bicyclic heteroaryl compounds
WO2012120469A1 (en) 2011-03-08 2012-09-13 Novartis Ag Fluorophenyl bicyclic heteroaryl compounds
TW201733984A (zh) 2011-04-13 2017-10-01 雅酶股份有限公司 經取代之苯化合物
JO3438B1 (ar) 2011-04-13 2019-10-20 Epizyme Inc مركبات بنزين مستبدلة بأريل أو أريل غير متجانس
KR20140025492A (ko) 2011-04-28 2014-03-04 노파르티스 아게 17α-히드록실라제/C17,20-리아제 억제제
EA201391820A1 (ru) 2011-06-09 2014-12-30 Новартис Аг Гетероциклические сульфонамидные производные
US8859535B2 (en) 2011-06-20 2014-10-14 Novartis Ag Hydroxy substituted isoquinolinone derivatives
US8859586B2 (en) 2011-06-20 2014-10-14 Novartis Ag Cyclohexyl isoquinolinone compounds
WO2013038362A1 (en) 2011-09-15 2013-03-21 Novartis Ag 6 - substituted 3 - (quinolin- 6 - ylthio) - [1,2,4] triazolo [4, 3 -a] pyradines as tyrosine kinase
US8969341B2 (en) 2011-11-29 2015-03-03 Novartis Ag Pyrazolopyrrolidine compounds
BR112014015308A2 (pt) 2011-12-23 2017-06-13 Novartis Ag compostos para inibição da interação de bcl2 com contrapartes de ligação
CA2859869A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
WO2013096051A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
AU2012355624A1 (en) 2011-12-23 2014-07-17 Novartis Ag Compounds for inhibiting the interaction of BCL2 with binding partners
BR112014015274A8 (pt) 2011-12-23 2017-06-13 Novartis Ag compostos e composições para inibição da interação de bcl2 com parceiros de ligação
CN102603729A (zh) * 2012-01-12 2012-07-25 贵州大学 N-(2-(取代苯并噻唑-2-氨基甲酰基)-取代苯基)吡啶甲酰胺类衍生物
UY34591A (es) 2012-01-26 2013-09-02 Novartis Ag Compuestos de imidazopirrolidinona
WO2013138753A1 (en) 2012-03-16 2013-09-19 Fox Chase Chemical Diversity Center, Inc. Prodrugs of riluzole and their method of use
CN104245701A (zh) 2012-04-03 2014-12-24 诺华有限公司 有酪氨酸激酶抑制剂的组合产品和其应用
DK2836491T3 (en) 2012-04-13 2017-03-06 Epizyme Inc SALT FORM OF A HUMAN HISTONMETHYL TRANSFERASE EZH2 INHIBITOR
US9365576B2 (en) 2012-05-24 2016-06-14 Novartis Ag Pyrrolopyrrolidinone compounds
KR102057365B1 (ko) 2012-10-15 2019-12-18 에피자임, 인코포레이티드 치환된 벤젠 화합물
EP2948451B1 (en) 2013-01-22 2017-07-12 Novartis AG Substituted purinone compounds
WO2014115080A1 (en) 2013-01-22 2014-07-31 Novartis Ag Pyrazolo[3,4-d]pyrimidinone compounds as inhibitors of the p53/mdm2 interaction
CN105246482A (zh) 2013-03-15 2016-01-13 因特利凯有限责任公司 激酶抑制剂的组合及其用途
CN103130696B (zh) * 2013-03-21 2014-06-11 山东大学 邻氨基苯甲酰胺类化合物及其制备方法与应用
WO2014155268A2 (en) 2013-03-25 2014-10-02 Novartis Ag Fgf-r tyrosine kinase activity inhibitors - use in diseases associated with lack of or reduced snf5 activity
WO2015022663A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
US9227969B2 (en) 2013-08-14 2016-01-05 Novartis Ag Compounds and compositions as inhibitors of MEK
WO2015022664A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
CN103405434A (zh) * 2013-08-22 2013-11-27 中国药科大学 Vegfr-2抑制剂及其用途
FI3057962T3 (fi) 2013-10-16 2023-11-03 Epizyme Inc Hydrokloridisuolamuoto ezh2-estoon
CN104163794A (zh) * 2013-10-17 2014-11-26 中国药科大学 2-氨基芳环类血管内皮生长因子受体(vegfr)抑制剂及其制备方法和用途
WO2015084804A1 (en) 2013-12-03 2015-06-11 Novartis Ag Combination of mdm2 inhibitor and braf inhibitor and their use
JP6526789B2 (ja) 2014-07-31 2019-06-05 ノバルティス アーゲー 組み合わせ療法
WO2019077037A1 (en) 2017-10-18 2019-04-25 Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus METHODS AND COMPOUNDS FOR ENHANCED IMMUNE CELL THERAPY
EP3730483B1 (en) 2017-12-21 2023-08-30 Hefei Institutes of Physical Science, Chinese Academy of Sciences Class of pyrimidine derivative kinase inhibitors
US20220395553A1 (en) 2019-11-14 2022-12-15 Cohbar, Inc. Cxcr4 antagonist peptides
JP2023509452A (ja) 2020-01-03 2023-03-08 バーグ エルエルシー がんを処置するためのube2kモジュレータとしての多環式アミド
WO2022222890A1 (en) * 2021-04-19 2022-10-27 Shanghai Yao Yuan Biotechnology Co., Ltd. Benzothiazole and quinoline derivatives for use in treating kawasaki disease

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226394A (en) * 1964-06-16 1965-12-28 Shulton Inc Pyridylethylated anthranilamides and derivatives thereof
US3409668A (en) * 1964-11-07 1968-11-05 Palazzo Giuseppe Substituted anthranilamides and process for the preparation thereof
JPS5744672B2 (US07122547-20061017-C00105.png) * 1974-05-24 1982-09-22
DE2652144A1 (de) 1976-11-16 1978-05-18 Merck Patent Gmbh Neue chinazolindione
EP0117462A3 (en) * 1983-02-28 1986-08-20 American Cyanamid Company N-(2-4-(1h-imidazol-1-yl)alkyl)arylamides
US4568687A (en) 1983-02-28 1986-02-04 American Cyanamid Company N-[2-4-(1H-Imidazol-1-yl)alkyl]-arylamides and pharmaceutical compositions
FR2689508B1 (fr) * 1992-04-01 1994-06-17 Fournier Ind & Sante Derives de l'imidazole, leur procede de preparation et leur application en therapeutique.
CA2155662A1 (en) * 1993-12-27 1995-07-06 Fumihiro Ozaki Anthranilic acid derivative
US6051577A (en) * 1996-03-15 2000-04-18 Novartis Ag N-7-heterocyclyl pyrrolo[2,3-D]pyrimidines and the use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0027819A2 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834016B2 (en) 2004-09-22 2010-11-16 Janssen Pharmaceutica Nv Inhibitors of the interaction between MDM2 and p53
US8404683B2 (en) 2004-09-22 2013-03-26 Janssen Pharmaceutical N.V. Inhibitors of the interaction between MDM2 and P53
WO2007107543A1 (en) 2006-03-22 2007-09-27 Janssen Pharmaceutica N.V. Inhibitors of the interaction between mdm2 and p53
US8088795B2 (en) 2006-03-22 2012-01-03 Janssen Pharmaceutica N.V. Cyclic-alkylamine derivatives as inhibitors of the interaction between MDM2 and p53
US8377961B2 (en) 2006-03-22 2013-02-19 Janssen Pharmaceutica N.V. Cyclic-alkylamine derivatives as inhibitors of the interaction between MDM2 and P53
WO2010089327A2 (en) 2009-02-04 2010-08-12 Janssen Pharmaceutica Nv Indole derivatives as anticancer agents

Also Published As

Publication number Publication date
HUP0104425A3 (en) 2003-05-28
CN1151133C (zh) 2004-05-26
KR100777476B1 (ko) 2007-11-16
HRP20010402A2 (en) 2003-10-31
PL348349A1 (en) 2002-05-20
HUP0104425A2 (hu) 2002-03-28
BG105588A (en) 2002-04-30
KR100855396B1 (ko) 2008-08-29
EA200100524A1 (ru) 2002-02-28
TR200101307T2 (tr) 2002-05-21
EA004701B1 (ru) 2004-06-24
NO20012245L (no) 2001-07-10
CN1325384A (zh) 2001-12-05
KR20010075689A (ko) 2001-08-09
JP2002529452A (ja) 2002-09-10
EE200100258A (et) 2002-12-16
HK1041882A1 (en) 2002-07-26
CA2350208A1 (en) 2000-05-18
KR20070087027A (ko) 2007-08-27
CZ20011631A3 (cs) 2001-10-17
AU771180B2 (en) 2004-03-18
SK6072001A3 (en) 2002-01-07
NO320647B1 (no) 2006-01-09
UA71587C2 (uk) 2004-12-15
AU1045400A (en) 2000-05-29
YU31801A (sh) 2003-12-31
BR9915553A (pt) 2001-08-14
BG65371B1 (bg) 2008-04-30
WO2000027819A3 (de) 2000-08-17
NO20012245D0 (no) 2001-05-07
US7122547B1 (en) 2006-10-17
WO2000027819A2 (de) 2000-05-18
NZ511413A (en) 2004-01-30

Similar Documents

Publication Publication Date Title
EP1129074A2 (de) Anthranilsäureamide und deren verwendung als arzneimittel
EP1280776B1 (de) Substituierte benzoesäureamide und deren verwendung zur hemmung von angiogenese
DE10023486C1 (de) Ortho substituierte Anthranilsäureamide und deren Verwendung als Arzneimittel
WO2001085715A2 (de) Aza- und polyazanthranylamide und deren verwendung als arzneimittel
EP1280762A2 (de) Anthranylamide und deren verwendung als arzneimittel
WO2001085691A1 (de) Anthranylalkyl- und -cycloalkylamide und deren verwendung als vegf-rezeptorenhemmer
JP2002529452A5 (US07122547-20061017-C00105.png)
EP1387838B1 (de) Cyanoanthranylamid-derivate und deren verwendung als arzneimittel
EP1389201A1 (de) N-oxidanthranylamid-derivate und deren verwendung als arzneimittel
DE19910396C2 (de) Anthranilsäureamide und deren Verwendung als Arzneimittel
EP0068240B1 (de) 2-Acylaminomethyl-1,4-benzodiazepin-Verbindungen sowie Verfahren und Zwischenprodukte zu ihrer Herstellung und diese Verbindungen enthaltende Arzneimittel
DE10123573B4 (de) N-Oxidanthranylamid-Derivate und deren Verwendung als Arzneimittel
DE10123587B4 (de) Cyanoanthranylamid-Derivate und deren Verwendung als Arzneimittel
DE10125295A1 (de) Cyanoanthranylamid-Derivate und deren Verwendung als Arzneimittel (II)
DE10125293A1 (de) N-Oxidanthranylamid-Derivate und deren Verwendung als Arzneimittel (II)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010317

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20010317;LT PAYMENT 20010317;LV PAYMENT 20010317;MK PAYMENT 20010317;RO PAYMENT 20010317;SI PAYMENT 20010317

17Q First examination report despatched

Effective date: 20040518

17Q First examination report despatched

Effective date: 20040518

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOVARTIS AG

Owner name: BAYER SCHERING PHARMA AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOVARTIS AG

Owner name: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20040518

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081007