EP1068646A1 - Verfahren zur einseitigen dotierung eines halbleiterkörpers - Google Patents

Verfahren zur einseitigen dotierung eines halbleiterkörpers

Info

Publication number
EP1068646A1
EP1068646A1 EP99914540A EP99914540A EP1068646A1 EP 1068646 A1 EP1068646 A1 EP 1068646A1 EP 99914540 A EP99914540 A EP 99914540A EP 99914540 A EP99914540 A EP 99914540A EP 1068646 A1 EP1068646 A1 EP 1068646A1
Authority
EP
European Patent Office
Prior art keywords
doping
doped
substrate
layer
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99914540A
Other languages
English (en)
French (fr)
Inventor
Steffen Sterk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarWorld Industries Deutschland GmbH
Original Assignee
Siemens Solar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Solar GmbH filed Critical Siemens Solar GmbH
Publication of EP1068646A1 publication Critical patent/EP1068646A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • H01L21/2256Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides through the applied layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/914Doping
    • Y10S438/923Diffusion through a layer

Definitions

  • the present invention relates to a method for one-sided doping of a semiconductor body, in particular for one-sided doping of silicon wafers.
  • a targeted doping of the substrate or a semiconductor layer is necessary in order to set the desired conductivity properties.
  • a highly doped layer is applied to the back of the solar cell in order to create a field that counteracts the diffusion of minority charge carriers (back surface field).
  • a known method for one-sided doping is based on the fact that a protective layer (for example a protective lacquer) is first applied to the side of the semiconductor body which is not to be doped, or a thermal oxide is applied to both sides is woken up, which is then etched off on one side. The unprotected side of the semiconductor body can then be doped out of the gas phase, for example in a diffusion furnace.
  • a doping lacquer can also be applied to the side to be doped, which is not covered by a protection. The dopant contained in the dopant then diffuses in a temperature step. After the diffusion process, the protective layer is removed by etching.
  • One possibility to enable one-sided doping of a semiconductor body is to apply a protective layer on both sides, for example by thermally oxidizing the semiconductor body, and then detaching the protective film located on the side of the semiconductor body to be doped.
  • This side can then, as described above, be doped from the gas phase in a diffusion furnace or a doping layer (e.g. doping lacquer or doping paste) can be applied to the side of the semiconductor body to be doped and diffused in by a subsequent temperature treatment.
  • the protective layer is also removed by etching.
  • the present invention is therefore based on the object of providing a method for one-sided doping of a semiconductor body, in particular of silicon wafers, which enables reliable homogeneous doping of the desired side while at the same time reliably protecting the side which is not to be doped.
  • a central idea here is that the dopant contained in the doping layer passes through a conventional oxide layer during the diffusion process and diffuses into the side to be doped, the oxide layer on the non-doping side simultaneously serving as a protective layer and penetration of the dopant into this side prevented.
  • the doping lacquer By applying the doping lacquer to a previously applied oxide layer, a better lateral distribution of the dopant is achieved and "doping through" through the oxide layer supports homogeneous doping in a positive manner.
  • the method according to the invention has the advantage that in the case of an inhomogeneous dopant distribution Treatment or coating, in particular on rough surfaces (for example in the case of textured solar cells), also ensures homogeneous doping.
  • 1 to 3 show the individual method steps of the one-sided doping according to the invention, using cross-sectional layers of a semiconductor structure.
  • the semiconductor substrate (1) shown in FIG. 1 has a side (DS) to be doped and an opposite side (GS) not to be doped.
  • an oxide layer (2, 3) is applied to both sides of the substrate (1).
  • This oxide layer is preferably grown thermally.
  • the substrate (1) is heated in a furnace in an oxygen atmosphere to a temperature between 950 ° C and 1050 ° C, so that an oxide layer forms on the surfaces DS and GS of the substrate.
  • a doping layer (4) of high dopant concentration is then applied to the oxide layer (3), which is located on the side of the semiconductor substrate (1) to be doped, in a second method step. This is shown in Fig. 2.
  • the doping layer (4) is applied, for example, as a doping lacquer by spin-on or as a doping paste by printing. However, the doping layer can also be applied with a brush or by means of a one-sided CVD deposition of a doping oxide. Before the actual diffusion process, the liquid applied doping layer is dried. By applying the doping layer (4) to the oxide layer (3), the Diffusion achieves a very good homogeneous or uniform lateral distribution of the dopant, which is necessary for uniform doping.
  • the third process step, the actual diffusion process, is shown schematically in FIG. 3.
  • the doping layer (4) typically contains boron as a dopant.
  • the boron is driven in from the doping layer (4) in an oven at temperatures between 900 and 1200 ° C., preferably in a temperature range between 1000 and 1100 ° C.
  • the dopant first diffuses from the laterally homogeneously distributed doping layer (4) through the oxide layer (3) before it penetrates into the substrate (1).
  • the oxide layer (3) lying between the doping layer (4) and the substrate (1) does not act as a protective layer in the conventional sense, but as a layer that supports the diffusion process, quasi as a creeping oxide, which supports a uniform diffusion of the dopant.
  • volatile boron which may gas out into the atmosphere during heating and thus also reach the area of the substrate side (GS) that is not to be doped, is absorbed by the oxide layer (2) formed on this side.
  • the applied oxide layer (2) acts as a protective layer in the conventional sense and, with the low supply of dopants, provides adequate protection against unwanted doping.
  • the temperature of the diffusion process can be adapted in certain areas to the concentration of the dopant in the doping layer, for example if different dopants are to be diffused in.
  • An application example for this method is, for example, the generation of a so-called BSF (back surface field) on the back of solar cells by one-sided boron doping by means of a boron doping lacquer and subsequent diffusion, avoiding disadvantageous boron doping of the solar cells on the front.
  • the method according to the invention is not limited to the production of such solar cells, but can also be used for the coating of other semiconductor layers.
  • the method according to the invention is characterized here essentially by improved homogeneous doping with simultaneous reliable protection of the side not to be doped, which can be integrated in a simple manner into a conventional production method for solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zur einseitigen Dotierung von Halbleiterkörpern, insbesondere von Silizium-Wafern. Hierbei wird zunächst eine herkömmliche Oxidschicht (2, 3) sowohl auf der zu dotierenden Seite (DS) als auch auf der nicht zu dotierenden Seite (GS) eines Substrates (1) aufgebracht. Anschließend wird eine den Dotierstoff enthaltende Dotierschicht (4) auf der Oxidschicht (3) der zu dotierenden Seite (DS) aufgebracht. In einem Diffusionsschritt tritt der Dotierstoff zunächst gleichmäßig durch die zwischen Substrat (1) und Dotierschicht (4) liegende Oxidschicht (3) hindurch, und dringt dann in das Substrat (1) ein und bewirkt eine gleichmäßige Dotierung.

Description

BESCHREIBUNG
VERFAHREN ZUR EINSEITIGEN DOTIERUNG EINES HALBLEITERKÖRPERS
Die vorliegende Erfindung betrifft ein Verfahren zur einseitigen Dotierung eines Halbleiterkörpers, insbesondere zur einseitigen Dotierung von Silizium-Wafern.
Bei der Herstellung von Halbleiterbauelementen ist eine gezielte Dotierung des Substrates bzw. einer Halbleiterschicht notwendig, um gewünschte Leitfähigkeitseigenschaften einzustellen. Für manche Anwendungen ist es vorteilhaft eine einseitige Dotierung durchzuführen, d.h. den Dotierstoff nur von einer Seite des zu dotierenden Körpers einzudiffundieren und dabei die Gegenseite vor einer ungewollten Dotierung zu schützen.
Ein derartiges Vorgehen wird zum Beispiel bei der Herstellung von Solarzellen mit einem sogenannten Back-Surface-Field benötigt. Dazu wird eine hochdotierte Schicht auf der Rückseite der Solarzelle aufgetragen, um ein der Diffusion von Minoritätsladungsträgern entgegenwirkendes Feld (Back- Surface-Field) zu erzeugen. Ein bekanntes Verfahren zur einseitigen Dotierung, wie beispielsweise in der PCT-Anmeldung 096/28851 beschrieben, beruht darauf, daß auf die Seite des Halbleiterkörpers, die nicht dotiert werden soll, zunächst eine Schutzschicht (z.B. ein Schutzlack) aufgetragen wird oder beidseitig ein thermisches Oxid aufgewachen wird, das anschließend einseitig wieder abgeätzt wird. Danach kann die nicht geschützte Seite des Halbleiterkörpers z.B. in einem Diffusionsofen aus der Gasphase heraus dotiert werden. Auf die zu dotierende Seite, die nicht von einem Schutz bedeckt ist, kann auch ein Dotierlack aufgetragen werden. Der in dem Dotierlack enthaltene Dotierstoff diffundiert dann in einem Temperaturschritt ein. Nach dem Diffusionsprozeß wird die Schutzschicht durch Ätzen entfernt.
Eine Möglichkeit eine einseitige Dotierung eines Halbleiterkörpers zu ermöglichen, ist das beidseitige Auftragen einer Schutzschicht, beispielsweise durch thermisches Oxidieren des Halbleiterkörpers, und anschließendes einseitiges Ablösen des sich auf der zu dotierenden Seite des Halbleiterkörpers befindenden Schutzfilmes. Diese Seite kann dann ebenfalls, wie oben beschrieben, in einem Diffusionsofen aus der Gasphase dotiert werden bzw. eine Dotierschicht (z.B. Dotierlack oder Dotierpaste) kann auf die zu dotierende Seite des Halbleiterkörpers aufgetragen werden und durch eine anschließende Temperaturbehandlung eindiffundiert werden. Nach dem Diffusionsschritt wird auch hier die Schutzschicht durch Ätzen entfernt.
Um gleichmäßige Eigenschaften und eine zuverlässige Funktion derartig hergestellter Halbleiterbauelemente zu erzielen ist eine gleichmäßige homogene Dotierung notwendig. Eine Rißbildung oder ein Abplatzen des aufgetragenen und getrockneten Dotierlackes bzw. jegliche Beschädigung des Dotierstoffes wirkt sich nachteilig auf die Funktionstüchtigkeit und Zuverlässigkeit der Bauelemente aus.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur einseitigen Dotierung eines Halbleiterkörpers, insbesondere von Silizium-Wafern, bereitzustellen, das eine zuverlässige homogene Dotierung der gewünschten Seite ermöglicht bei gleichzeitigem zuverlässigem Schutz der nicht zu dotierenden Seite.
Diese Aufgabe wird erfindungsgemäß durch das in Patentanspruch 1 beschriebene Verfahren gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Ein zentraler Gedanke ist hierbei, daß der in der Dotierschicht enthaltene Dotierstoff während des Diffusionsprozesses durch eine herkömmliche Oxidschicht hindurchtritt und in die zu dotierende Seite eindiffundiert, wobei die Oxidschicht auf der nicht zu dotierenden Seite gleichzeitig als Schutzschicht dient und ein Eindringen des Dotierstoffes in diese Seite verhindert.
Durch ein Auftragen des Dotierlackes auf eine vorher aufgetragene Oxidschicht wird eine bessere laterale Verteilung des Dotierstoffes erzielt und ein "Hindurchdotieren" durch die Oxidschicht unterstützt eine homogene Dotierung in positiver Weise.
Zudem weist das erfindungsgemäße Verfahren den Vorteil auf, daß im Fall einer inhomogenen Dotierstoffverteilung nach Behandlung oder Beschichtung, insbesondere auf rauhen Oberflächen (z.B. bei texturierten Solarzellen), ebenfalls eine homogene Dotierung gewährleistet ist.
Im folgenden wird die Erfindung anhand einzelner Verfahrensschritte und unter Bezugnahme auf die beigefügten Abbildungen beschrieben.
Fig. 1 bis 3 zeigen die einzelnen Verfahrensschritte der erfindungsgemäßen einseitigen Dotierung, anhand von Querschnittsanschichten einer Halbleiterstruktur.
Das in Fig. 1 gezeigte Halbleitersubstrat (1) weist eine zu dotierende Seite (DS) und eine nicht zu dotierende gegenüberliegende Seite (GS) auf. Auf beide Seiten des Substrates (1) wird in einem ersten Verfahrensschritt eine Oxidschicht (2, 3) aufgetragen. Diese Oxidschicht wird vorzugsweise thermisch aufgewachsen. Hierzu wird das Substrat (1) in einem Ofen in einer Sauerstoffatmosphäre auf eine Temperatur zwischen 950°C und 1050°C erwärmt, so daß sich auf den Oberflächen DS und GS des Substrats eine Oxidschicht bildet. Anschließend wird in einem zweiten Verfahrensschritt auf die Oxidschicht (3) , die sich auf der zu dotierenden Seite des Halbleitersubstrats (1) befindet, eine Dotierschicht (4) hoher Dotierstoffkonzentration aufgetragen. Dies ist in Fig. 2 dargestellt. Die Dotierschicht (4) wird beispielsweise als Dotierlack durch Aufschleudern (Spin-On) oder als Dotierpaste durch Aufdrucken aufgetragen. Die Dotierschicht kann aber auch mit einem Pinsel oder mittels einer einseitigen CVD- Abscheidung eines Dotieroxids aufgetragen werden. Vor dem eigentlichen Diffusionsvorgang wird die flüssig aufgetragene Dotierschicht getrocknet. Durch das Auftragen der Dotierschicht (4) auf die Oxidschicht (3) wird bei der Diffusion eine sehr gute homogene bzw. gleichmäßige laterale Verteilung des Dotierstoffes erreicht was für eine gleichmäßige Dotierung notwendig ist.
Der dritte Prozeßschritt, der eigentliche Diffusionsvorgang, ist in Fig. 3 schematisch dargestellt. Die Dotierschicht (4) enthält typischerweise Bor als Dotierstoff. Das Eintreiben des Bors aus der Dotierschicht (4) erfolgt in einem Ofen bei Temperaturen zwischen 900 und 1200°C, vorzugsweise in einem Temperaturbereich zwischen 1000 und 1100°C. Der Dotierstoff diffundiert zunächst aus der lateral homogen verteilten Dotierschicht (4) durch die Oxidschicht (3) hindurch, bevor er in das Substrat (1) eindringt. Hierbei wirkt die zwischen Dotierschicht (4) und Substrat (1) liegende Oxidschicht (3) nicht etwa als Schutzschicht im herkömmlichen Sinne, sondern als eine den Diffusionsvorgang unterstützende Schicht aus, quasi als Kriechoxid was ein gleichmäßiges Eindiffundieren des Dotierstoffes unterstützt. Andererseits wird flüchtiges Bor, das beim Erwärmen eventuell in die Atmosphäre ausgast und somit auch in den Bereich der nicht zu dotierenden Substratseite (GS) gelangt, durch die auf dieser Seite ausgebildete Oxidschicht (2) absorbiert. Auf der nicht zu dotierenden Seite (GS) wirkt die aufgetragene Oxidschicht (2) als eine Schutzschicht im herkömmlichen Sinne und gewährt bei dem geringen Dotierstoffangebot einen ausreichenden Schutz vor ungewollter Dotierung.
Die Temperatur des Diffusionsvorganges kann hierbei in gewissen Bereichen an die Konzentration des sich in der Dotierschicht befindenden Dotierstoffes angepaßt werden, z.B. wenn unterschiedliche Dotierstoffe eindiffundiert werden sollen. Nach dem Diffusionsvorgang werden sowohl die
Diffusionsschicht (4) als auch die Oxidschichten (2, 3) durch kurzes Eintauchen in HF-Säure entfernt.
Ein Anwendungsbeispiel für dieses Verfahren ist beispielsweise die Erzeugung eines sogenannten BSF (Back- Surface-Field) auf der Rückseite von Solarzellen durch einseitige Bordotierung mittels eines Bor-Dotierlackes und anschließender Eindiffusion, wobei eine nachteilige Bordotierung der Solarzellen der Vorderseite vermieden wird. Das erfindungsgemäße Verfahren ist jedoch nicht auf die Herstellung von derartigen Solarzellen beschränkt, sondern kann auch für die Beschichtung anderer Halbleiterschichten verwendet werden. Das erfindungsgemäße Verfahren zeichnet sich hierbei im wesentlichen durch eine verbesserte homogene Dotierung aus bei gleichzeitigem zuverlässigem Schutz der nicht zu dotierenden Seite, das in einfacher Weise in ein herkömmliches Herstellungsverfahren für Solarzellen integriert werden kann.

Claims

PATENTANSPRÜCHE
1. Verfahren zur einseitigen Dotierung eines Halbleiterkörpers, insbesondere von Silizium-Wafern, umfassend die Schritte:
Aufbringen einer Oxidschicht (2, 3) sowohl auf der zu dotierenden Seite (DS) als auch auf der nicht zu dotierenden Seite (GS) eines Substrates (1),
Aufbringen einer Dotierschicht (4) auf der Oxidschicht (3), die auf der zu dotierenden Seite (DS) des Substrates (1) aufgebracht ist, und
Eindiffundieren des in der Dotierschicht (4) enthaltenen Dotierstoffes in das Substrat (1), wobei der Dotierstoff durch die zwischen Substrat (1) und Dotierschicht (3) liegende Oxidschicht (3) hindurchtritt.
2. Verfahren nach Anspruch 1, dadurch g e k e n n z e i c h n e t, daß die zu dotierende Seite (DS) des Substrates (1) eine rauhe Oberfläche aufweist.
3. Verfahren nach Anspruch 1, dadurch g e k e n n z e i c h n e t, daß die Oxidschicht (2, 3) in einer sauerstoffhaltigen Atmosphäre bei einer Temperatur im Bereich von 600 bis 1200°C aufgebracht wird.
Verfahren nach Anspruch 1, dadurch g e k e n n z e i c h n e t, daß die
Dotierschicht (4) aufgeschleudert, mit einem Pinsel aufgetragen bzw. mit einem CVD-Verfahren abgeschieden wird.
Verfahren nach Anspruch 1, dadurch g e k e n n z e i c h n e t, dasß der Diffusionsvorgang bei einer Temperatur zwischen 900 und 1200°C durchgeführt wird.
Verfahren nach Anspruch 1, dadurch g e k e n n z e i c h n e t, daß die Oxidschicht (2) auf der nicht zu dotierenden Seite (GS) des Substrates (1) ein Eindiffundieren des Dotierstoffes in die nicht zu dotierende Seite (GS) des Substrates verhindert.
Verfahren nach Anspruch 1, dadurch g e k e n n z e i c h n e t, daß die
Dotierschicht (4) Bor enthält.
Verfahren nach Anspruch 1, dadurch g e k e n n z e i c h n e t, daß es zur Herstellung von Solarzellen, insbesondere von
Solarzellen mit Back-Surface-Field verwendet wird.
EP99914540A 1998-03-25 1999-03-25 Verfahren zur einseitigen dotierung eines halbleiterkörpers Withdrawn EP1068646A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19813188 1998-03-25
DE19813188A DE19813188A1 (de) 1998-03-25 1998-03-25 Verfahren zur einseitigen Dotierung eines Halbleiterkörpers
PCT/EP1999/002038 WO1999049521A1 (de) 1998-03-25 1999-03-25 Verfahren zur einseitigen dotierung eines halbleiterkörpers

Publications (1)

Publication Number Publication Date
EP1068646A1 true EP1068646A1 (de) 2001-01-17

Family

ID=7862308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99914540A Withdrawn EP1068646A1 (de) 1998-03-25 1999-03-25 Verfahren zur einseitigen dotierung eines halbleiterkörpers

Country Status (5)

Country Link
US (1) US6448105B1 (de)
EP (1) EP1068646A1 (de)
JP (1) JP2002508597A (de)
DE (1) DE19813188A1 (de)
WO (1) WO1999049521A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10045249A1 (de) * 2000-09-13 2002-04-04 Siemens Ag Photovoltaisches Bauelement und Verfahren zum Herstellen des Bauelements
DE10058031B4 (de) * 2000-11-23 2007-11-22 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Bildung leicht dotierter Halogebiete und Erweiterungsgebiete in einem Halbleiterbauelement
JP4365568B2 (ja) * 2002-09-06 2009-11-18 独立行政法人産業技術総合研究所 ドーピング方法およびそれを用いた半導体素子
DE102004036220B4 (de) * 2004-07-26 2009-04-02 Jürgen H. Werner Verfahren zur Laserdotierung von Festkörpern mit einem linienfokussierten Laserstrahl
US7790574B2 (en) 2004-12-20 2010-09-07 Georgia Tech Research Corporation Boron diffusion in silicon devices
US7824579B2 (en) 2005-06-07 2010-11-02 E. I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
US7771623B2 (en) * 2005-06-07 2010-08-10 E.I. du Pont de Nemours and Company Dupont (UK) Limited Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
JP5324222B2 (ja) 2005-08-22 2013-10-23 キュー・ワン・ナノシステムズ・インコーポレイテッド ナノ構造およびそれを実施する光起電力セル
US7718092B2 (en) * 2005-10-11 2010-05-18 E.I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
JP2007266265A (ja) * 2006-03-28 2007-10-11 Toshiba Corp 不純物拡散方法及び半導体装置の製造方法
EP2311072B1 (de) 2008-07-06 2013-09-04 Imec Verfahren zum dotieren von halbleiterstrukturen
TW201013961A (en) * 2008-07-16 2010-04-01 Applied Materials Inc Hybrid heterojunction solar cell fabrication using a metal layer mask
US20100051932A1 (en) * 2008-08-28 2010-03-04 Seo-Yong Cho Nanostructure and uses thereof
CN102318078B (zh) 2008-12-10 2013-10-30 应用材料公司 用于网版印刷图案对准的增强型检视系统
US9202954B2 (en) * 2010-03-03 2015-12-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same
DE102012203445A1 (de) * 2012-03-05 2013-09-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Erzeugen eines Dotierbereiches in einer Halbleiterschicht
CN102769069B (zh) * 2012-07-16 2015-11-04 苏州阿特斯阳光电力科技有限公司 一种晶体硅太阳能电池的硼扩散方法
US9082911B2 (en) 2013-01-28 2015-07-14 Q1 Nanosystems Corporation Three-dimensional metamaterial device with photovoltaic bristles
US9954126B2 (en) 2013-03-14 2018-04-24 Q1 Nanosystems Corporation Three-dimensional photovoltaic devices including cavity-containing cores and methods of manufacture
US20140264998A1 (en) 2013-03-14 2014-09-18 Q1 Nanosystems Corporation Methods for manufacturing three-dimensional metamaterial devices with photovoltaic bristles
CN103594560A (zh) * 2013-11-27 2014-02-19 奥特斯维能源(太仓)有限公司 一种n型硅太阳能电池的双面扩散工艺
JP2016066771A (ja) * 2014-09-17 2016-04-28 日立化成株式会社 太陽電池素子の製造方法
CN109713084A (zh) * 2018-12-29 2019-05-03 江苏日托光伏科技股份有限公司 一种改善太阳能电池扩散工艺中方阻均匀性的方法
KR20210132221A (ko) * 2019-03-22 2021-11-03 램 리써치 코포레이션 도핑된 실리콘을 제공하는 방법
CN112635592A (zh) * 2020-12-23 2021-04-09 泰州隆基乐叶光伏科技有限公司 一种太阳能电池及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552727A (en) * 1978-06-21 1980-01-10 Hitachi Ltd Vacuum evaporation apparatus
JPS61121326A (ja) 1984-11-19 1986-06-09 Oki Electric Ind Co Ltd 半導体装置の製造方法
JP2809393B2 (ja) 1987-03-16 1998-10-08 日本電信電話株式会社 半導体装置の製造方法
DK170189B1 (da) 1990-05-30 1995-06-06 Yakov Safir Fremgangsmåde til fremstilling af halvlederkomponenter, samt solcelle fremstillet deraf
DE19508712C2 (de) 1995-03-10 1997-08-07 Siemens Solar Gmbh Solarzelle mit Back-Surface-Field und Verfahren zur Herstellung
DE19526184A1 (de) 1995-07-18 1997-04-03 Siemens Ag Verfahren zur Herstellung eines MOS-Transistors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9949521A1 *

Also Published As

Publication number Publication date
JP2002508597A (ja) 2002-03-19
WO1999049521A1 (de) 1999-09-30
US6448105B1 (en) 2002-09-10
DE19813188A1 (de) 1999-10-07

Similar Documents

Publication Publication Date Title
EP1068646A1 (de) Verfahren zur einseitigen dotierung eines halbleiterkörpers
EP0813753B1 (de) Solarzelle mit back-surface-field und verfahren zur herstellung
DE2449688C3 (de) Verfahren zur Herstellung einer dotierten Zone eines Leitfähigkeitstyps in einem Halbleiterkörper
DE19634617B4 (de) Verfahren zur Herstellung einer Siliziumsolarzelle mit verringerter Rekombination nahe der Solarzellenoberfläche
DE2655341C2 (de) Halbleiteranordnung mit einer Passivierungsschicht aus Halbleitermaterial und Verfahren zu ihrer Herstellung
DE3490007T1 (de) Verfahren zur Herstellung von Solarzellen
DE2019655C2 (de) Verfahren zur Eindiffundierung eines den Leitungstyp verändernden Aktivators in einen Oberflächenbereich eines Halbleiterkörpers
DE2453134C3 (de) Planardiffusionsverfahren
EP2338179A2 (de) Verfahren zur behandlung von substraten, substrat und behandlungseinrichtung zur durchführung des verfahrens
DE1950069B2 (de) Verfahren zum Herstellung einer Halbleiteranordnung
EP2823505B1 (de) Verfahren zum erzeugen eines dotierbereiches in einer halbleiterschicht
DE2211709B2 (de) Verfahren zum Dotieren von Halbleitermaterial
DE19920871B4 (de) Verfahren zum Aktivieren von Ladungsträgern durch strahlungsunterstützte Wärmebehandlung
DE3147535C2 (de)
DE2601652C3 (de) Verfahren zur epitaxialen Abscheidung einer Am. Bv Halbleiterschicht auf einem Germaniumsubstrat mit einer (100)-Orientierong
EP0464372B1 (de) Verfahren zur Herstellung und Passivierung von Halbleiterbauelementen
DE3640713A1 (de) Verfahren zur bildung von halbleiteruebergaengen
US4206026A (en) Phosphorus diffusion process for semiconductors
WO2000067299A2 (de) Verfahren zum erzeugen von defekten in einer gitterstruktur eines halbleitermaterials
DE2704471C2 (de) Verfahren zur Isolation von Halbleitergebieten
DE2230749A1 (de) Verfahren zum herstellen von halbleiterbauelementen
DE2506436B2 (de) Isolationsdiffusionsverfahren zum Herstellen aluminiumdotierter Isolationszonen für Halbleiterbauelemente
DE4406769C2 (de) Verfahren zur Herstellung ohmscher Kontakte auf einem SiC-Halbleiterkörper
DE2511487C2 (de) Verfahren zur Herstellung eines vertikalen Sperrschicht-Feldeffekttransistors
DE3027197A1 (de) Verfahren zum herstellen einer halbleitereinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS UND SHELL SOLAR GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SHELL SOLAR GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031001