EP1055489B1 - Procédé de determination de temps d'utilisation et état d'un ensemble de percussion - Google Patents

Procédé de determination de temps d'utilisation et état d'un ensemble de percussion Download PDF

Info

Publication number
EP1055489B1
EP1055489B1 EP00109684A EP00109684A EP1055489B1 EP 1055489 B1 EP1055489 B1 EP 1055489B1 EP 00109684 A EP00109684 A EP 00109684A EP 00109684 A EP00109684 A EP 00109684A EP 1055489 B1 EP1055489 B1 EP 1055489B1
Authority
EP
European Patent Office
Prior art keywords
percussion
signals
hydraulic
percussion piston
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00109684A
Other languages
German (de)
English (en)
Other versions
EP1055489A3 (fr
EP1055489A2 (fr
Inventor
Heinz-Jürgen Dr.-Ing Prokop
Marcus Dr.-Ing Geimer
Thomas Deimel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Tools GmbH
Original Assignee
Atlas Copco Construction Tools GmbH
Atlas Copco Construction Tools AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Copco Construction Tools GmbH, Atlas Copco Construction Tools AB filed Critical Atlas Copco Construction Tools GmbH
Publication of EP1055489A2 publication Critical patent/EP1055489A2/fr
Publication of EP1055489A3 publication Critical patent/EP1055489A3/fr
Application granted granted Critical
Publication of EP1055489B1 publication Critical patent/EP1055489B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/966Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/08Wrecking of buildings

Definitions

  • the invention relates to a method for determining the operating time and the operating state of a hydraulic impact unit, in particular a hydraulic hammer according to the preamble of claim 1.
  • the invention further relates to a hydraulic impact unit, in particular a hydraulic hammer with a percussion piston according to the preamble of claim 18th
  • Such a method or such an aggregate is, for example EP 0 461 565 A known.
  • Hydraulic impact mills in particular hydraulic hammers, are used for material comminution (for example crushing rock or concrete).
  • This comminution is achieved by the kinetic energy of a percussion piston is introduced by impact on a tool on this and the tool tip in the material to be processed and converted there into destructive work.
  • the kinetic energy of a percussion piston is introduced by impact on a tool on this and the tool tip in the material to be processed and converted there into destructive work.
  • the kinetic energy is transformed into destructive work; the unconverted energy component is reflected by the tool into the percussion piston.
  • the impact energy is completely transformed into destructive work.
  • Hydraulic impact units of the type mentioned - known from the document DE 34 43 542 C2 - represent, also with regard to the otherwise harsh operating conditions, highly stressed devices that require from the point of view of economic efficiency and reliability of close observation and appropriate care or maintenance.
  • service life of the hydraulic percussion unit ie an indication of the total time span during which the hydraulic percussion unit has been actively used.
  • the invention is therefore based on the object to provide measures and means by which the operating time and the use state of a hydraulic percussion unit - especially recognizable to an operator - determine. In this way, the competent body has the opportunity to decide whether there is already a need for maintenance or whether the relevant impact unit can continue to be used.
  • the object is achieved by a method having the features of claim 1.
  • the invention is based on the recognition that the current total number of strokes executed by the stroke represents a relevant variable for the determination of the active operating time, from which - by comparison with appropriate specifications - a statement about the operational state of the respective impact unit can be derived ,
  • the statement about the use state in the simplest case is that it is made clear whether the end of a maintenance-free operating period is reached and thus there is a need for maintenance.
  • the inventive method for determining the operating time and the use state of a hydraulic percussion unit is characterized in that signals are generated during the individual, successive operating sections of the percussion unit, the number of which is proportional to the executed by the percussion piston in a direction strokes; that the number of signals is continuously accumulated and stored as a total; and that the respective current total number of signals is made recognizable, at least temporarily, in the form of an indication indicating the condition of use.
  • the last mentioned display can be optical and / or acoustic in the context of the invention.
  • the mode of production and the type of signals can be arbitrary in the context of the invention, as far as it is ensured that their number allows a statement about the number of strokes executed by the percussion piston in one direction of movement. In question comes in particular the generation of signals by means of a sensor that detects due to the percussion piston movements occurring physical processes (or related state changes).
  • the signals are generated as a function of at least one of the physical processes - pressure, displacement, sound level, temperature, flow and vibration - (claim 2).
  • the invention can also be further designed so that the determined in the manner mentioned current total number of signals in response to at least one other predictor - for example, the measured ambient temperature - is provided with a correction factor, so that the end of a maintenance interval recognizable making display - When falling below a predetermined outside temperature - triggered at an earlier time.
  • the method can also be carried out in such a way that the percussion strokes proportional signals due to a sound measurement (claim 6) or by detecting vibration processes (claim 7) are generated.
  • this can be done with the aid of a Schallmeßwertgebers in the form of a microphone, which is optionally followed by a suitable filter.
  • the vibrations caused by the movements of the percussion piston can be detected by means of a vibration transmitter; this has a vibrationally held in the manner of a seismic mass and cooperating with a plunger vibration sensor. The latter is excited by relative vibrations with respect to the plunger coil from the percussion outgoing, whereby signals corresponding to the vibrations are generated by inductive means.
  • the method can also be designed such that the displacement of a moving due to the percussion piston strokes in a direction of movement component of the percussion unit is detected by means of a Wegmeßwertgebers (claim 8).
  • the movements of the percussion piston itself can be converted into corresponding signals that it is enclosed without contact by an induction coil unit.
  • the latter is preferably assigned to the percussion piston on the side facing away from the percussion piston top side of the percussion unit.
  • the method can also be designed such that the stress of a component of the percussion unit - which changes periodically with the strokes executed by the percussion piston - by means of a force orchrochronsmeßwerts detected (claim 9).
  • transducers can be used which are designed as strain gauges or as piezoelectric elements and convert the stress states occurring in them to signals.
  • the respective transmitter are mounted on the housing of the percussion unit so that they are deformed with its caused by the Schlagkoben strokes stress.
  • suitable signals can also be generated by detecting the temperature or the pressure of the gas cushion by means of a temperature transmitter or a pressure monitor (see claims 10 and 11, respectively). Since the gas cushion is normally arranged on the side facing away from the percussion piston tip side of the percussion unit, the sensors mentioned here (temperature transmitter, pressure switch) are relatively far away from the immediate working area of the percussion unit.
  • the method is further developed from the point of view of reliability and economy such that upon reaching a predetermined total signal number at least one maintenance indicator is generated, which makes at least recognizable that the percussion unit requires maintenance (claim 12). This can be done, in particular, by the fact that, if necessary, a - for example red - warning lamp lights up, which indicates the end of a maintenance-free operating period.
  • These pre-warnings may consist of first lighting a green warning lamp and, at a later point in time, a yellow warning lamp, before reaching an upper limit of the predetermined signal total, which, so to speak, gradually indicates the current operational state of the striking unit.
  • the electrical energy required for the provision - that is, in particular for the extraction, summation and storage - of the signals can be generated by batteries or rechargeable batteries.
  • the energy units concerned should be equipped with a charge indicator in order to rule out any incidents.
  • the method can also be designed in such a way that the electrical energy for the provision of the signals is generated by means of the fluid, which also drives the percussion piston (claim 16).
  • an electric power unit may be provided which has an auxiliary hydraulic motor with a generator driven therefrom and an electric accumulator connected downstream of the latter.
  • the electrical energy for the provision of the signals can also be generated by means of a generator which becomes effective on the basis of the movement processes triggered by the percussion piston strokes and to which an electric accumulator is connected downstream (claim 17).
  • this automatically operating generator can correspond in particular to the previously mentioned vibration transmitter.
  • the hydraulic excavator 1 shown in Fig. 1 has a supply unit 2 with a diesel engine, not shown, and a hydraulic pump driven therefrom (cf., Fig. 3a); this is connected in a conventional manner to a hydraulic hammer 3, which in turn is held adjustably on the boom 4 of the hydraulic excavator with two boom arms 4a, 4b.
  • the cantilever arm 4b in turn carries a pivotable terminal bracket 5, to which a support member 6 formed as a support housing or as a support frame - is attached. At this the hydraulic hammer 3 is supported via its housing 3a.
  • the hydraulic hammer 3 acts on a tool designed as a chisel 7, wherein the kinetic energy emanating from the hydraulic hammer is converted into impact energy.
  • a display element A is arranged, which makes, among other information about the operating life and the use state of the hydraulic hammer 3 recognizable.
  • the hydraulic hammer has a sensor S for generating signals which are continuously accumulated in the display element A, stored as a total number and made recognizable.
  • Fig. 2 shows schematically in more detail the sequence and the interaction of the processes that eventually lead to a statement about the operating time and the use state of the hydraulic hammer 3.
  • the events occurring on the occasion of the operation of the hydraulic hammer 3 are converted into signals by the sensor S, continuously accumulated in a counting and storage element ZS in terms of their total number and stored as a total, the current total number of signals on the on the use state of Hydraulic hammer indicative display A is made recognizable.
  • the required for the provision of the signals and the information derived therefrom electrical energy is provided by an electric storage E available. If necessary, the information obtained by means of the counting and storage element ZS can be transmitted wirelessly to an evaluation AW.
  • the senor S is arranged and designed such that during the individual, successive operating sections of the hydraulic hammer 3 signals are generated, the number of which is proportional to the executed by the percussion piston of the hydraulic hammer in a direction strokes.
  • the sensor thus detects events or states or state changes which are triggered by the percussion piston movements and maps these processes, states or state changes into signal form.
  • a statement about the active operating time can be obtained, from which - with regard to predetermined maintenance intervals - information about the operating state of the hydraulic hammer 3 can be derived. This information can be made visible on the display A and optionally wirelessly the evaluation AW out.
  • the display A can be constructed such that after reaching a predetermined signal total number at least one maintenance indicator is generated, which makes recognizing the achievement of the end of a maintenance-free period of operation period.
  • the display may also be such that it generates, depending on the respective current signal total number of times consecutively several prewarning indications that indicate in stages the approach to the end of a maintenance interval.
  • the hydraulic hammer 3 in addition to the still to be described lines and drive and control elements on the aforementioned housing 3a, in which a percussion piston 8 is reciprocated in the longitudinal direction and held.
  • This has in the cylinder space of the housing 3a lying on two piston collars 8a and 8b, which are separated by a circumferential groove 8c.
  • the outwardly directed piston surface K1 and K2 of the piston collar 8b and 8a delimits with the housing 3a a rear and front cylinder space section 3b and 3c, respectively.
  • the piston surface K1 is dimensioned smaller than the piston surface K2.
  • the percussion piston 8 merges into a piston tip 8d, which lies opposite the chisel 7.
  • the movement of the percussion piston 8 in the direction of the working stroke is indicated by an arrow 8e.
  • the illustration in question shows the hydraulic hammer 3 in a state immediately after impact of the percussion piston 8 on the chisel 7.
  • the control for the switching of the movement of the percussion piston 8 consists of a movable in a control valve 9 spool 9a, the smaller slide surface F1 is constantly acted upon by a reset line 10 with the working pressure (system pressure); this is generated by an energy source in the form of a hydraulic pump 11 (which in turn - as already mentioned - part of the supply unit 2).
  • the smaller piston surface K1 is constantly acted upon by a pressure line 12, which is in communication with the return line 10, with the working pressure.
  • the opening 12a of the pressure line is arranged with respect to the housing 3a such that it lies in any case outside the piston collar 8b and thus within the front cylinder chamber portion 3c.
  • the larger slide surface F2 of the spool 9a is connected via a reversing line 13 with the cylinder space of the housing 3a in such Connection, that its junction 13a is connected in the illustrated state via the circumferential groove 8c to a depressurized return line 14.
  • the junction 13a and the junction 14a of the return line are thus - seen in the longitudinal direction of the percussion piston 8 - in a distance opposite, which is smaller than the axial length of the circumferential groove 8c.
  • the control valve 9 is connected on the one hand via a control line 15 to the pressure line 12 and on the other hand via a drain line 16 together with the tank 16 a to the return line 14. Furthermore, the control valve 9 is connected via a change pressure line 17 to the rear cylinder space section 3b in connection, via which the larger piston area K2 can optionally be acted upon by working pressure.
  • the control valve 9 can take two valve positions, namely the illustrated (right) scrubhub too in which the larger piston surface K2 via the alternating pressure line 17 and the discharge line 16 is relieved of pressure, and the (left) working stroke position in which the rear cylinder space section 3b via the pressure line 12th , which is acted upon with this related control line 15 and the alternating pressure line 17 with the working pressure.
  • This condition has the consequence that the percussion piston 8- performs a working stroke in the direction of the arrow 8e, contrary to the restoring force emanating from the smaller piston surface K1.
  • a chamber 18 is arranged, which receives a pressurized gas cushion.
  • the percussion piston 8 is supported on its side facing away from the piston tip 8d side.
  • the pressure line 12 is preferably equipped with a transmitter in the form of a pressure monitor 19, preferably in the vicinity before it enters the housing 3a (see, for example, FIG.
  • a transmitter in the form of a pressure monitor 19, preferably in the vicinity before it enters the housing 3a (see, for example, FIG.
  • This detects pressure fluctuations within the pressure line 12 - which are triggered by the percussion piston movements - and converts them into signals whose timing is indicated in Fig. 3b.
  • These signals - the number of which is proportional to the strokes carried out by the percussion piston in one direction of movement - can be used in the manner already mentioned to obtain information about the current operating time and the operational state of the hydraulic hammer 3 and to make it recognizable.
  • a pressure switch 20 is thereby integrated into the control for the hydraulic hammer 3, that it is associated with the reversing line 13.
  • the formation of the signals produced by the pressure monitor 20, as indicated in FIG. 4 b, results in dependence on the position of the piston collar 8 b with respect to the junction 13 a of the reversing line 13.
  • the lower pressure level shown in Fig. 4b is applied to the reversing line 13
  • This pressure level undergoes a change only after the piston collar 8b has covered the junction 13a and finally via the front cylinder space section 3c a connection between the pressure line 12 and the reversing line 13 has been established.
  • the pressure monitor 20 is thus able to generate depending on the percussion strokes to the number of proportional signals that can be summed up and evaluated accordingly.
  • the invention can also be configured in such a way that the state of the gas cushion by means of a pressure switch 21 (Fig. 5a) or by means of a Temperaturmeßwertgebers 22 (Fig. 6a) and converted into signals (FIGS. 5b and 6b, respectively).
  • the movement of the percussion piston 8 in the direction of the working stroke (arrow 8e) has the consequence that the pressure - and thus the temperature - of the gas cushion decreases.
  • the movement of the percussion piston during the return stroke leads to a rise in pressure and temperature.
  • the transducers 21 and 22 can therefore also generate signals whose number depends on the percussion piston movements.
  • Figures 7a and 7b relate to an embodiment of the invention in which the displacement of a component of the hydraulic hammer 3 moving in a direction of movement due to the percussion piston strokes is detected by means of a position transducer.
  • This Wegmeßwertgeber is designed as an inductively operating plunger coil 23 which forms a part of the chamber 18 and there the percussion piston 8-depending on its position within the housing 3a - more or less encloses.
  • the relative movements of the percussion piston with respect to the plunger coil 23 triggers time-varying induction processes whose time course is shown in Fig. 7b. According to the invention, these induction processes can be exploited to obtain information about the current service life of the hydraulic hammer 3 and about its operating state.
  • the vibration transmitter 24 comprises as essential components a resiliently held oscillating body 24a, which can execute pendulum movements in the manner of a seismic mass between two plunger coils 24b and 24c; These lead to induction processes, the time course of Fig. 8b can be seen.
  • the oscillations of the oscillating body 24a relative to the plunger coils 24b and 24c are caused by the vibrations that occur due to the percussion piston strokes.
  • the Schwingungsmeßwertgeber 24 is mounted above the hydraulic hammer 3 as a unit on the terminal bracket 5.
  • the Schwinungsmeßwertgeber 24 may be mounted within the support member 6 directly on the housing 3a of the hydraulic hammer or on the support member 6 itself.
  • 9a, b relate to an embodiment according to the invention, in which the stress on a component of the hydraulic hammer-which changes periodically with the blows carried out by the percussion piston-is detected by means of a voltage transmitter and converted into signals.
  • a strain gauge 25 is attached to the housing 3a of the hydraulic hammer 3. This learns in response to the stress of the housing 3a periodically elastic deformations from which can win signals of the type shown. Notwithstanding the illustrated embodiment, the voltage transducer mentioned here may also be constructed from a plurality of interconnected strain gauges. Instead of the at least one DehnmeßstAINs also a Kraftmeßwertgeber can be used, which has at least one piezoelectric element as a sensor. This Kraftmeßwertgeber can be arranged, for example, such that the associated piezo elements above the housing 3a between this and the flange 6a are fixed without play for the attachment of the support member 6.
  • Another possibility for generating suitable signals is to detect the different noise level as a function of the percussion piston strokes.
  • This noise level in each case has a short-term peak value if the percussion piston together with the bit 7 impinges on the material to be processed.
  • the sound level transmitter is designed as a microphone 26, which is arranged below the flange 6a between the support element 6 and the housing 3a of the hydraulic hammer.
  • an acceleration transmitter 27 is provided for generating the signals of interest here. This is supported above the flange 6a on the terminal console 5 from; However, in the context of the invention it can also be fastened to another suitable location, in particular to the flange 6a, to the support element 6 itself or to the housing 3a of the hydraulic hammer.
  • the Beministerungsmeßwertgebers 27 can be converted by the percussion piston strokes movements into signals with periodically recurring course.
  • the unit consisting of hydraulic hammer 3 and support member 6 is associated with a generator which generates the required for the provision of the signals and other information electrical energy.
  • This generator corresponds structurally to the Schwingungsmeßwertgeber 24 already described with reference to FIG. 8a.
  • the vibrations occurring during operation are converted by means of the generator 28 into electrical energy which is absorbed by an electric accumulator 29 as part of the counting and storage element ZS.
  • the signals generated by the Bestructungsmeßwertgeber 27 are summed in the unit ZS and stored as a total signal number.
  • the unit ZS is followed by a display A, which makes both the current total number of signals recognizable and may possibly provide further information regarding the operational state of the hydraulic hammer 3.
  • This further information consists in the fact that, depending on the respective current signal total, several advance warning displays A1 and A2 are generated one after the other and that after reaching a predetermined signal total a maintenance display A3 appears which indicates the end of a defined maintenance interval ,
  • the counting and storage element ZS is further followed by a transmitter / receiver unit 30, with which wirelessly corresponding information can be transmitted to a transmitter / receiver unit 31; this is in turn coupled with an evaluation AW (in particular a computer).
  • an evaluation AW in particular a computer.
  • the latter not only enables the evaluation of the stored information, but also serves to influence stored information by resetting to a desired reset value. This provision is made possible by the fact that the commands issued by the evaluation AW are also transmitted wirelessly to the unit ZS by interaction of the units 31 and 30.
  • the electrical energy for providing the signals and the information derived therefrom - as shown in FIG. 13 - can be generated by means of an auxiliary hydraulic motor 32 having the input side to the pressure line 12 and the output side to the return line 14 (FIG. see Fig. 3a) is connected.
  • the auxiliary hydraulic motor 32 drives a generator 33 to which an electric accumulator 34 is connected downstream.
  • the arrangement in question thus makes it possible to generate the electrical energy by means of the fluid, which also drives the percussion piston.
  • the electric accumulator 34 may be coupled as an independent element, for example with the unit ZS, or - as shown in FIG. 12 - be integrated as part 29 in this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Reciprocating Pumps (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Actuator (AREA)
  • Crushing And Grinding (AREA)

Claims (29)

  1. Procédé pour déterminer la durée de service et l'état d'utilisation d'une unité hydraulique à percussion, en particulier d'un marteau hydraulique (3), avec un piston percutant (8) qui - mené dans un carter (3a) et frappant contre un outil - exerce, sous l'effet d'une commande (9), alternativement une course de travail dans la direction de frappe (8e) et une course de retour, durant les périodes opérationnelles individuelles successives de l'unité à percussion étant générés des signaux dont le nombre est proportionnel aux courses exercées par le piston percutant dans une direction de mouvement, caractérisé par le fait que le nombre des signaux est totalisé en continu et est mémorisé en tant que nombre total ; et que le nombre total respectivement actuel des signaux est rendu reconnaissable, au moins temporairement, sous forme d'un affichage indiquant l'état d'utilisation.
  2. Procédé selon la revendication 1, caractérisé par le fait que les signaux sont générés en fonction d'au moins un des processus physiques, tels que pression, trajet, niveau acoustique, température, débit et oscillation.
  3. Procédé selon l'une au moins des revendications précédentes, caractérisé par le fait que l'on détecte des variations de pression ou des processus d'écoulement se produisant dans l'une des conduites d'alimentation - la conduite à pression (12) pour le fluide entrant dans l'unité à percussion (3) et la conduite de retour (14) pour recycler le fluide sortant - pour l'unité à percussion (3).
  4. Procédé selon la revendication 3, caractérisé par le fait que les variations de pression se produisant périodiquement sont converties en signaux par l'intermédiaire d'un dispositif de mesure de la pression (19).
  5. Procédé selon la revendication 3, caractérisé par le fait que les variations du débit qui se produisent périodiquement sont converties en signaux par l'intermédiaire d'un capteur de mesure de débit.
  6. Procédé selon l'une des revendications 1 à 2, caractérisé par le fait que les signaux sont générés au moyen d'un capteur de mesure acoustique (26) qui détecte des changements du niveau acoustique se produisant en fonction des coups exercés par le piston percutant (8).
  7. Procédé selon l'une des revendications 1 à 2, caractérisé par le fait que Des processus de vibration déclenchés par les mouvements du piston percutant sont détectés au moyen d'un capteur de mesure de vibrations (24).
  8. Procédé selon l'une des revendications 1 à 2, caractérisé par le fait que le déplacement d'un élément (8) de l'unité à percussion (3), qui se déplace en raison des courses du piston percutant exercées dans une direction de mouvement, est détecté au moyen d'un capteur de mesure de déplacement (23).
  9. Procédé selon l'une des revendications 1 à 2, caractérisé par le fait que la sollicitation d'un élément (3a) de l'unité à percussion (3) - qui change périodiquement avec les coups exercés par ledit piston percutant (8) - est détectée par l'intermédiaire d'un capteur de mesure de force ou de tension (25).
  10. Procédé selon l'une des revendications 1 à 2, caractérisé par le fait que la température d'un coussin de gaz (18) qui change périodiquement avec les courses du piston percutant est détectée à l'aide d'un capteur de mesure de température (22).
  11. Procédé selon l'une des revendications 1 à 2 et 4, caractérisé par le fait qu'une pression du coussin de gaz qui change périodiquement avec les courses du piston percutant est convertie en signaux au moyen d'un dispositif de mesure de la pression (21).
  12. Procédé selon l'une au moins des revendications précédentes, caractérisé par le fait que, après avoir atteint un nombre total prédéterminé de signaux, au moins un affichage d'entretien (A3) est généré qui donne au moins à entendre que ladite unité à percussion (3) nécessite d'être soumise à un entretien.
  13. Procédé selon la revendication 12, caractérisé par le fait que plusieurs affichages d'avertissement (A1, A2) sont générés successivement en fonction du nombre total de signaux respectivement actuel, qui donnent à entendre que des sections de l'intervalle d'entretien défini par une limite supérieure prédéterminée du nombre total de signaux ont été atteintes.
  14. Procédé selon l'une au moins des revendications précédentes, caractérisé par le fait que le nombre total respectivement actuel des signaux mémorisés est transmis sans fil à une évaluation (AW).
  15. Procédé selon l'une au moins des revendications précédentes, caractérisé par le fait que le nombre total respectivement actuel des signaux mémorisés est influencé sans fil en déclenchant une remise à l'état initial (AW).
  16. Procédé selon l'une au moins des revendications précédentes, caractérisé par le fait que l'énergie électrique pour la mise à disposition (génération, totalisation et mémorisation) des signaux est générée au moyen du fluide qui entraîne également ledit piston percutant (8).
  17. Procédé selon l'une au moins des revendications précédentes, caractérisé par le fait que l'énergie électrique pour la mise à disposition des signaux est générée au moyen d'un générateur (28) qui dévient actif en raison des processus de mouvement déclenchés par les courses du piston percutant et en aval duquel est placé un dispositif de stockage électrique (29).
  18. Unité hydraulique à percussion, en particulier marteau hydraulique (3), avec un piston percutant (8) qui - mené dans un carter (3a) et frappant contre un outil - exerce, sous l'effet d'une commande (9), alternativement une course de travail dans la direction de frappe (8e) et une course de retour, avec un capteur (S) qui génère des signaux durant les périodes opérationnelles individuelles successives, dont le nombre est proportionnel aux courses exercées par le piston percutant (8) dans une direction de mouvement, ladite unité hydraulique à percussion étant caractérisée par les caractéristiques suivantes :
    - un élément de comptage pour totaliser en continu les signaux générés;
    - un élément de mémorisation pour le stockage du nombre total actuel des signaux totalisés (ZS), et
    - un élément d'affichage (A) au moyen duquel le nombre total actuel des signaux est rendu reconnaissable au moins temporairement, pour la détermination de la durée de service et de l'état d'utilisation de l'unité hydraulique à percussion et pour la mise en oeuvre du procédé selon l'une au moins des revendications précédentes.
  19. Unité hydraulique à percussion selon la revendication 18, caractérisée par le fait que ledit capteur (S) est réalisé de manière à convertir en signaux des processus physiques se produisant en raison des mouvements exercés par le piston percutant.
  20. Unité hydraulique à percussion selon l'une des revendications 18 ou 19, caractérisée par le fait que la conduite à pression (12) par le biais de laquelle l'unité à percussion (3) est connectée à une source de fluide de pression (11), est équipée d'un dispositif de mesure de la pression (19) pour détecter les conditions de pression régnant dans ladite conduite à pression.
  21. Unité hydraulique à percussion selon la revendication 18 ou 19, caractérisée par le fait que la conduite de renversement (13) pour le tiroir de commande (9a) de la commande (9) présente un dispositif de mesure de la pression (20).
  22. Unité hydraulique à percussion selon la revendication 18 ou 19, caractérisée par le fait qu'il existe un dispositif de mesure de la pression (21) pour détecter la pression dans un coussin de gaz (18) sur lequel prend appui le piston percutant (8) du côté montrant dans la direction opposée à sa pointe (8d).
  23. Unité hydraulique à percussion selon la revendication 18 ou 19, caractérisée par le fait qu'il existe un capteur de mesure de température (22) pour détecter la température dans un coussin de gaz (18) sur lequel prend appui le piston percutant (8) du côté montrant dans la direction opposée à sa pointe (8d).
  24. Unité hydraulique à percussion selon la revendication 18 ou 19, caractérisée par un capteur de mesure de déplacement (23) travaillant de façon inductive qui détecte les mouvements du piston percutant (8) par rapport au capteur de mesure de déplacement (23).
  25. Unité hydraulique à percussion selon la revendication 18 ou 19, caractérisée par un capteur de mesure de vibrations (24) travaillant de façon inductive qui détecte des processus de vibration déclenchés en raison des courses du piston percutant.
  26. Unité hydraulique à percussion selon la revendication 18 ou 19, caractérisée par le fait que ladite unité à percussion (3) présente au moins une jauge extensométrique (25) qui détecte la sollicitation mécanique de l'unité à percussion se présentant en raison des courses du piston percutant.
  27. Unité hydraulique à percussion selon la revendication 18 ou 19, caractérisée par un capteur de mesure de niveau acoustique (26) qui détecte les bruits se produisant en raison des courses du piston percutant.
  28. Unité hydraulique à percussion selon la revendication 18 ou 19, caractérisée par un capteur d'accélération (27) qui détecte les mouvements se déroulant en raison des courses exercées par le piston percutant.
  29. Unité hydraulique à percussion selon l'une au moins des revendications 18 à 28, caractérisée par le fait que, pour générer l'énergie électrique pour la mise à disposition des signaux, il existe un générateur électrique (28) travaillant selon le principe à bobine mobile, en aval duquel est placé un dispositif de stockage électrique (29) et qui est réalisé de manière à devenir automatiquement actif dû à des processus de mouvement déclenchés en raison des courses exercées par le piston percutant.
EP00109684A 1999-05-22 2000-05-06 Procédé de determination de temps d'utilisation et état d'un ensemble de percussion Expired - Lifetime EP1055489B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19923680 1999-05-22
DE19923680A DE19923680B4 (de) 1999-05-22 1999-05-22 Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustands eines hydraulischen Schlagaggregats, insbesondere Hydraulikhammer, sowie Vorrichtung zur Durchführung des Verfahrens

Publications (3)

Publication Number Publication Date
EP1055489A2 EP1055489A2 (fr) 2000-11-29
EP1055489A3 EP1055489A3 (fr) 2004-02-04
EP1055489B1 true EP1055489B1 (fr) 2007-10-17

Family

ID=7908964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00109684A Expired - Lifetime EP1055489B1 (fr) 1999-05-22 2000-05-06 Procédé de determination de temps d'utilisation et état d'un ensemble de percussion

Country Status (6)

Country Link
US (1) US6510902B1 (fr)
EP (1) EP1055489B1 (fr)
JP (1) JP2001017873A (fr)
AT (1) ATE375848T1 (fr)
DE (2) DE19923680B4 (fr)
ES (1) ES2293876T3 (fr)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854529B2 (en) * 2000-09-01 2005-02-15 Fraunhofer-Gesellschaft Zur Forderung Der Angenwandten Forschung E.V. Optimizing method for regulating the operating state of a guided machine tool comprising a rotating percussion tool during a boring process
DE10131284A1 (de) 2001-06-28 2003-01-09 Krupp Berco Bautechnik Gmbh Vorrichtung zur Umwandlung von Meßsignalen, die durch Schlagvorgänge eines hydraulischen Schlagaggregats in einem Piezo-Sensor ausgelöst werden, in Digital-Signale
FI121219B (fi) 2001-10-18 2010-08-31 Sandvik Tamrock Oy Menetelmä ja laitteisto iskulaitteen toiminnan monitoroimiseksi sekä sovitelma iskulaitteen toiminnan säätämiseksi
US7054696B2 (en) * 2002-07-18 2006-05-30 Black & Decker Inc. System and method for data retrieval in AC power tools via an AC line cord
US6925807B2 (en) * 2002-07-30 2005-08-09 Comprehensive Power, Inc. Actuator control system for hydraulic devices
DE10303006B4 (de) * 2003-01-27 2019-01-03 Hilti Aktiengesellschaft Handgeführtes Arbeitsgerät
US7404449B2 (en) * 2003-05-12 2008-07-29 Bermingham Construction Limited Pile driving control apparatus and pile driving system
SE0302625L (sv) * 2003-10-06 2004-09-28 Atlas Copco Rock Drills Ab Detektering av losslagning av gängskarvar
JP4759921B2 (ja) * 2004-02-13 2011-08-31 日立工機株式会社 電池パック及び電動工具
NL1025801C2 (nl) 2004-03-24 2005-09-27 Demolition And Recycling Equip Werkwijze en inrichting voor het vaststellen van de bedrijfsomstandigheden waaronder een door een hydraulische zuiger/ cilindercombinatie aangedreven gereedschap wordt bedreven.
DE102004017939A1 (de) * 2004-04-14 2005-11-03 Robert Bosch Gmbh Geführte Werkzeugmaschine sowie Verfahren zum Betreiben einer geführten Werkzeugmaschine
JP4705099B2 (ja) * 2005-06-03 2011-06-22 株式会社小松製作所 作業機械
FR2887797B1 (fr) * 2005-07-01 2008-08-15 Societe De Prospection Et D'inventions Techniques Procede de determination de donnees d'exploitation d'un appareil portatif a actionnement manuel et l'appareil pour la misen en oeuvre du procede
SE530572C2 (sv) * 2006-11-16 2008-07-08 Atlas Copco Rock Drills Ab Pulsmaskin för en bergborrmaskin, metod för skapande av mekaniska pulser i pulsmaskinen, samt bergborrmaskin och borrigg innefattande sådan pulsmaskin
SE530781C2 (sv) * 2007-01-11 2008-09-09 Atlas Copco Rock Drills Ab Bergborrutrustning och metod i anslutning till denna
JP4938602B2 (ja) * 2007-09-12 2012-05-23 古河ロックドリル株式会社 油圧ブレーカ用照明装置およびこれを備える油圧ブレーカ
JP5422918B2 (ja) * 2008-05-20 2014-02-19 マックス株式会社 工具
TWI590929B (zh) * 2008-05-20 2017-07-11 Max Co Ltd tool
CA2717112C (fr) * 2009-10-22 2015-08-11 356864 Alberta Ltd. Equipement a commandes electro-hydrauliques et actionnees par systeme hydraulique
JP5374331B2 (ja) * 2009-11-25 2013-12-25 パナソニック株式会社 回転工具
FI121978B (fi) * 2009-12-21 2011-06-30 Sandvik Mining & Constr Oy Menetelmä rikotusvasaran käyttömäärän määrittämiseksi, rikotusvasara sekä mittauslaite
JP2012125872A (ja) * 2010-12-15 2012-07-05 Ud Trucks Corp 自動ハンマーの制御装置
CN102735385B (zh) * 2011-04-02 2014-12-24 上海工程技术大学 一种液压破碎锤冲击能的检测方法
WO2013040633A1 (fr) 2011-09-20 2013-03-28 Tech Mining Pty Ltd Acn 153 118 024 Système de contrôle de détériorations de contraintes et/ou accumulées
DE102012012299A1 (de) 2012-04-05 2013-10-10 Atlas Copco Construction Tools Gmbh Hydraulisches Anbaugerät
KR101609834B1 (ko) 2014-06-20 2016-04-05 주식회사 씨앤오에치 브레이커의 동작상태 기록장치
DE102014108848A1 (de) * 2014-06-25 2015-12-31 Construction Tools Gmbh Vorrichtung zur Drucküberwachung
KR101638451B1 (ko) * 2014-07-30 2016-07-25 대모 엔지니어링 주식회사 무단 가변 자동 스트로크 유압 브레이커 시스템
US10179424B2 (en) 2015-10-28 2019-01-15 Caterpillar Inc. Diagnostic system for measuring acceleration of a demolition hammer
CN105457700B (zh) * 2015-12-09 2017-12-26 绍兴柯桥多泰纺织有限公司 一种破碎锤的钎杆机构
US20170165823A1 (en) * 2015-12-15 2017-06-15 Caterpillar Inc. Damping system for a hydraulic hammer
KR101782535B1 (ko) 2016-01-28 2017-10-24 대모 엔지니어링 주식회사 유압브레이커
KR102555523B1 (ko) * 2016-03-11 2023-07-12 에이치디현대인프라코어 주식회사 건설기계 및 이의 제어방법
CN107338826A (zh) * 2016-04-28 2017-11-10 东空销售股份有限公司 附件监视系统
KR101780153B1 (ko) * 2016-07-27 2017-09-20 대모 엔지니어링 주식회사 유압식 타격 기기 및 이를 포함하는 건설 장비
CA2999317A1 (fr) * 2017-03-29 2018-09-29 Coach Truck & Tractor Llc Systeme d'approvisionnement hydraulique
KR20180110806A (ko) * 2017-03-30 2018-10-11 주식회사수산중공업 작동시간 기록장치 및 이를 구비한 유압 브레이커
EP3417951B1 (fr) * 2017-06-19 2022-06-01 Eurodrill GmbH Dispositif et procédé de production d'impulsions de chocs ou de vibrations pour un engin de chantier
US11144808B2 (en) * 2017-08-16 2021-10-12 Joy Global Underground Mining Llc Systems and methods for monitoring an attachment for a mining machine
US10875167B2 (en) * 2017-11-20 2020-12-29 Deere & Company Hydraulic hammer
JP7033938B2 (ja) * 2018-01-26 2022-03-11 株式会社小松製作所 作業機械および作業機械の制御方法
US11359351B2 (en) * 2018-07-02 2022-06-14 Stanley Black & Decker, Inc. Excavator boom mountable high pressure hydraulic tool including a hydraulic motor driven generator
WO2021012101A1 (fr) * 2019-07-19 2021-01-28 广西恒日科技股份有限公司 Système de propulsion à pression constante pour appareil de forage de roche
US11466429B2 (en) 2020-01-23 2022-10-11 Stanley Black & Decker, Inc. Prime mover mountable hydraulic tool and related monitoring systems and methods
KR102368922B1 (ko) * 2020-05-15 2022-03-03 대모 엔지니어링 주식회사 질소가스 압력 펄스를 이용한 유압 브레이커의 타격수 측정방법
JPWO2022163388A1 (fr) * 2021-02-01 2022-08-04
CN114411850B (zh) * 2022-03-28 2022-06-17 徐州徐工挖掘机械有限公司 重力式破碎锤及其自动控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE420057B (sv) * 1980-02-20 1981-09-14 Atlas Copco Ab Hydrauliskt slagverk med mojlighet att reglera slagenergin
US4425835A (en) * 1981-01-26 1984-01-17 Ingersoll-Rand Company Fluid actuator
DE3443542A1 (de) * 1984-11-29 1986-06-05 Fried. Krupp Gmbh, 4300 Essen Hydraulische schlagvorrichtung
DE4019019A1 (de) * 1990-06-14 1991-12-19 Krupp Maschinentechnik Verfahren zur ermittlung charakteristischer kenngroessen eines schlagwerks und einrichtung zur durchfuehrung des verfahrens
DE4028595A1 (de) * 1990-09-08 1992-03-12 Krupp Maschinentechnik Hydraulisch betriebenes schlagwerk
DE4036918A1 (de) * 1990-11-20 1992-05-21 Krupp Maschinentechnik Verfahren zur anpassung des arbeitsverhaltens eines schlagwerks an die haerte des zerkleinerungsmaterials und einrichtung zur durchfuehrung des verfahrens
FR2676953B1 (fr) * 1991-05-30 1993-08-20 Montabert Ets Appareil hydraulique a percussions.
DE4128137A1 (de) * 1991-08-24 1993-02-25 Krupp Maschinentechnik Sicherheitseinrichtung fuer fluidbetriebene schlagwerke
ATE187264T1 (de) * 1991-10-10 1999-12-15 Finn Power Int Inc Verfahren und gerät zum sichern der korrekten bearbeitung einer folie
DE4334933C2 (de) * 1993-10-13 1997-02-20 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum zwangsweisen Abschalten von handgeführten Arbeitsmitteln
DE4344817C2 (de) * 1993-12-28 1995-11-16 Hilti Ag Verfahren und Einrichtung für handgeführte Werkzeugmaschinen zur Vermeidung von Unfällen durch Werkzeugblockieren
DE19507348A1 (de) * 1995-03-02 1996-09-05 Krupp Maschinentechnik Verfahren zur Beeinflussung des Betriebsverhaltens eines fluidbetriebenen Schlagwerks und zur Durchführung des Verfahrens geeignetes Schlagwerk
FI104960B (fi) * 1995-07-06 2000-05-15 Sandvik Tamrock Oy Hydraulinen iskuvasara
DE19545708A1 (de) * 1995-12-07 1997-06-12 Krupp Bautechnik Gmbh Verfahren zur Beeinflussung des Betriebsverhaltens eines fluidbetriebenen Schlagwerks und zur Durchführung des Verfahrens geeignetes Schlagwerk

Also Published As

Publication number Publication date
US6510902B1 (en) 2003-01-28
ES2293876T3 (es) 2008-04-01
EP1055489A3 (fr) 2004-02-04
DE19923680B4 (de) 2004-02-26
EP1055489A2 (fr) 2000-11-29
DE50014717D1 (de) 2007-11-29
ATE375848T1 (de) 2007-11-15
DE19923680A1 (de) 2000-11-23
JP2001017873A (ja) 2001-01-23

Similar Documents

Publication Publication Date Title
EP1055489B1 (fr) Procédé de determination de temps d'utilisation et état d'un ensemble de percussion
EP0486898B1 (fr) Procédé et dispositif pour ajustage des caractéristiques de travail d'un mécanisme à coup à la dureté des materiaux à broyer
DE102016003387B4 (de) Verfahren zur Bodenverdichtung mit einem Anbauverdichter, Anbauverdichter sowie Bagger mit einem Anbauverdichter
EP1379363B1 (fr) Machine-outil manuelle
EP2213420B1 (fr) Procédé de commande et machine-outil manuelle
DE69833970T2 (de) Schlagwerkmaschine
EP3380673B1 (fr) Agencement d'un cylindre vibrant dans un cylindre d'opération pour un outil de bourrage
EP2213423B1 (fr) Mécanisme de percussion pneumatique
DE2732934C2 (de) Verfahren und Vorrichtung zum Rammen und Ziehen
EP1148261A2 (fr) Palier à roulement avec capteur d'interrogation à distance
DE102008006030A1 (de) Handwerkzeugmaschine, insbesondere elektrisch betriebene Handwerkzeugmaschine
EP1271105B1 (fr) Dispositif pour convertir des signaux de mesure produits par un capteur piezo-électrique en signaux numériques
EP1739307A2 (fr) Pompe à cavité progressive
EP2005009B1 (fr) Dispositif de surveillance et/ou de réglage du mouvement d'un composant fluide dans un système fluide
EP1136189A3 (fr) Marteau à coup actionné hydrauliquement
EP3239398A1 (fr) Unité de bourrage pour une bourreuse
DE202013005537U1 (de) Stampfvorrichtung mit elektrodynamischem Stampfwerk
DE19905281B4 (de) Anordnung zum Erkennen des Wartungsbedarfs eines hydraulischen Brechgeräts
WO2007042499A1 (fr) Cylindre a agent sous pression et procede pour determiner la duree de fonctionnement et/ou les cycles de fonctionnement d'un cylindre a agent sous pression
EP2213421B1 (fr) Mécanisme de percussion pneumatique et procédé de commande
DE102019202332B4 (de) Stoppeinrichtung und Verfahren zum Betreiben einer Stoppeinrichtung
EP3062970A1 (fr) Instrument ou outil semi-fixe ou tenu à la main
EP2917706A2 (fr) Procédé de surveillance de sollicitations vibratoires, appareil portatif et machine d'usinage pour mettre ledit procédé en oeuvre
EP3369864B1 (fr) Procédé de détection d'obstacles lors du fonctionnement d'un vibrateur de battage
EP2250392B1 (fr) Système actif d'isolation contre les vibrations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATLAS COPCO CONSTRUCTION TOOLS GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040127

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RTI1 Title (correction)

Free format text: PROCESS FOR DETERMINING THE OPERATIONAL LIFE AND STATE OF A HYDRAULIC IMPACT ASSEMBLY

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071017

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50014717

Country of ref document: DE

Date of ref document: 20071129

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH & PARTNER

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2293876

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080317

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ATLAS COPCO CONSTRUCTION TOOLS GMBH

Free format text: ATLAS COPCO CONSTRUCTION TOOLS GMBH#HELENENSTRASSE 149#45143 ESSEN (DE) -TRANSFER TO- ATLAS COPCO CONSTRUCTION TOOLS GMBH#HELENENSTRASSE 149#45143 ESSEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190527

Year of fee payment: 20

Ref country code: DE

Payment date: 20190521

Year of fee payment: 20

Ref country code: ES

Payment date: 20190620

Year of fee payment: 20

Ref country code: IE

Payment date: 20190522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190521

Year of fee payment: 20

Ref country code: FR

Payment date: 20190522

Year of fee payment: 20

Ref country code: SE

Payment date: 20190521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190521

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200505

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200505

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200506

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200505

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200507