EP1055489B1 - Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustands eines hydraulischen Schlagaggregats - Google Patents

Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustands eines hydraulischen Schlagaggregats Download PDF

Info

Publication number
EP1055489B1
EP1055489B1 EP00109684A EP00109684A EP1055489B1 EP 1055489 B1 EP1055489 B1 EP 1055489B1 EP 00109684 A EP00109684 A EP 00109684A EP 00109684 A EP00109684 A EP 00109684A EP 1055489 B1 EP1055489 B1 EP 1055489B1
Authority
EP
European Patent Office
Prior art keywords
percussion
signals
hydraulic
percussion piston
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00109684A
Other languages
English (en)
French (fr)
Other versions
EP1055489A3 (de
EP1055489A2 (de
Inventor
Heinz-Jürgen Dr.-Ing Prokop
Marcus Dr.-Ing Geimer
Thomas Deimel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Tools GmbH
Original Assignee
Atlas Copco Construction Tools GmbH
Atlas Copco Construction Tools AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Copco Construction Tools GmbH, Atlas Copco Construction Tools AB filed Critical Atlas Copco Construction Tools GmbH
Publication of EP1055489A2 publication Critical patent/EP1055489A2/de
Publication of EP1055489A3 publication Critical patent/EP1055489A3/de
Application granted granted Critical
Publication of EP1055489B1 publication Critical patent/EP1055489B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/966Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/08Wrecking of buildings

Definitions

  • the invention relates to a method for determining the operating time and the operating state of a hydraulic impact unit, in particular a hydraulic hammer according to the preamble of claim 1.
  • the invention further relates to a hydraulic impact unit, in particular a hydraulic hammer with a percussion piston according to the preamble of claim 18th
  • Such a method or such an aggregate is, for example EP 0 461 565 A known.
  • Hydraulic impact mills in particular hydraulic hammers, are used for material comminution (for example crushing rock or concrete).
  • This comminution is achieved by the kinetic energy of a percussion piston is introduced by impact on a tool on this and the tool tip in the material to be processed and converted there into destructive work.
  • the kinetic energy of a percussion piston is introduced by impact on a tool on this and the tool tip in the material to be processed and converted there into destructive work.
  • the kinetic energy is transformed into destructive work; the unconverted energy component is reflected by the tool into the percussion piston.
  • the impact energy is completely transformed into destructive work.
  • Hydraulic impact units of the type mentioned - known from the document DE 34 43 542 C2 - represent, also with regard to the otherwise harsh operating conditions, highly stressed devices that require from the point of view of economic efficiency and reliability of close observation and appropriate care or maintenance.
  • service life of the hydraulic percussion unit ie an indication of the total time span during which the hydraulic percussion unit has been actively used.
  • the invention is therefore based on the object to provide measures and means by which the operating time and the use state of a hydraulic percussion unit - especially recognizable to an operator - determine. In this way, the competent body has the opportunity to decide whether there is already a need for maintenance or whether the relevant impact unit can continue to be used.
  • the object is achieved by a method having the features of claim 1.
  • the invention is based on the recognition that the current total number of strokes executed by the stroke represents a relevant variable for the determination of the active operating time, from which - by comparison with appropriate specifications - a statement about the operational state of the respective impact unit can be derived ,
  • the statement about the use state in the simplest case is that it is made clear whether the end of a maintenance-free operating period is reached and thus there is a need for maintenance.
  • the inventive method for determining the operating time and the use state of a hydraulic percussion unit is characterized in that signals are generated during the individual, successive operating sections of the percussion unit, the number of which is proportional to the executed by the percussion piston in a direction strokes; that the number of signals is continuously accumulated and stored as a total; and that the respective current total number of signals is made recognizable, at least temporarily, in the form of an indication indicating the condition of use.
  • the last mentioned display can be optical and / or acoustic in the context of the invention.
  • the mode of production and the type of signals can be arbitrary in the context of the invention, as far as it is ensured that their number allows a statement about the number of strokes executed by the percussion piston in one direction of movement. In question comes in particular the generation of signals by means of a sensor that detects due to the percussion piston movements occurring physical processes (or related state changes).
  • the signals are generated as a function of at least one of the physical processes - pressure, displacement, sound level, temperature, flow and vibration - (claim 2).
  • the invention can also be further designed so that the determined in the manner mentioned current total number of signals in response to at least one other predictor - for example, the measured ambient temperature - is provided with a correction factor, so that the end of a maintenance interval recognizable making display - When falling below a predetermined outside temperature - triggered at an earlier time.
  • the method can also be carried out in such a way that the percussion strokes proportional signals due to a sound measurement (claim 6) or by detecting vibration processes (claim 7) are generated.
  • this can be done with the aid of a Schallmeßwertgebers in the form of a microphone, which is optionally followed by a suitable filter.
  • the vibrations caused by the movements of the percussion piston can be detected by means of a vibration transmitter; this has a vibrationally held in the manner of a seismic mass and cooperating with a plunger vibration sensor. The latter is excited by relative vibrations with respect to the plunger coil from the percussion outgoing, whereby signals corresponding to the vibrations are generated by inductive means.
  • the method can also be designed such that the displacement of a moving due to the percussion piston strokes in a direction of movement component of the percussion unit is detected by means of a Wegmeßwertgebers (claim 8).
  • the movements of the percussion piston itself can be converted into corresponding signals that it is enclosed without contact by an induction coil unit.
  • the latter is preferably assigned to the percussion piston on the side facing away from the percussion piston top side of the percussion unit.
  • the method can also be designed such that the stress of a component of the percussion unit - which changes periodically with the strokes executed by the percussion piston - by means of a force orchrochronsmeßwerts detected (claim 9).
  • transducers can be used which are designed as strain gauges or as piezoelectric elements and convert the stress states occurring in them to signals.
  • the respective transmitter are mounted on the housing of the percussion unit so that they are deformed with its caused by the Schlagkoben strokes stress.
  • suitable signals can also be generated by detecting the temperature or the pressure of the gas cushion by means of a temperature transmitter or a pressure monitor (see claims 10 and 11, respectively). Since the gas cushion is normally arranged on the side facing away from the percussion piston tip side of the percussion unit, the sensors mentioned here (temperature transmitter, pressure switch) are relatively far away from the immediate working area of the percussion unit.
  • the method is further developed from the point of view of reliability and economy such that upon reaching a predetermined total signal number at least one maintenance indicator is generated, which makes at least recognizable that the percussion unit requires maintenance (claim 12). This can be done, in particular, by the fact that, if necessary, a - for example red - warning lamp lights up, which indicates the end of a maintenance-free operating period.
  • These pre-warnings may consist of first lighting a green warning lamp and, at a later point in time, a yellow warning lamp, before reaching an upper limit of the predetermined signal total, which, so to speak, gradually indicates the current operational state of the striking unit.
  • the electrical energy required for the provision - that is, in particular for the extraction, summation and storage - of the signals can be generated by batteries or rechargeable batteries.
  • the energy units concerned should be equipped with a charge indicator in order to rule out any incidents.
  • the method can also be designed in such a way that the electrical energy for the provision of the signals is generated by means of the fluid, which also drives the percussion piston (claim 16).
  • an electric power unit may be provided which has an auxiliary hydraulic motor with a generator driven therefrom and an electric accumulator connected downstream of the latter.
  • the electrical energy for the provision of the signals can also be generated by means of a generator which becomes effective on the basis of the movement processes triggered by the percussion piston strokes and to which an electric accumulator is connected downstream (claim 17).
  • this automatically operating generator can correspond in particular to the previously mentioned vibration transmitter.
  • the hydraulic excavator 1 shown in Fig. 1 has a supply unit 2 with a diesel engine, not shown, and a hydraulic pump driven therefrom (cf., Fig. 3a); this is connected in a conventional manner to a hydraulic hammer 3, which in turn is held adjustably on the boom 4 of the hydraulic excavator with two boom arms 4a, 4b.
  • the cantilever arm 4b in turn carries a pivotable terminal bracket 5, to which a support member 6 formed as a support housing or as a support frame - is attached. At this the hydraulic hammer 3 is supported via its housing 3a.
  • the hydraulic hammer 3 acts on a tool designed as a chisel 7, wherein the kinetic energy emanating from the hydraulic hammer is converted into impact energy.
  • a display element A is arranged, which makes, among other information about the operating life and the use state of the hydraulic hammer 3 recognizable.
  • the hydraulic hammer has a sensor S for generating signals which are continuously accumulated in the display element A, stored as a total number and made recognizable.
  • Fig. 2 shows schematically in more detail the sequence and the interaction of the processes that eventually lead to a statement about the operating time and the use state of the hydraulic hammer 3.
  • the events occurring on the occasion of the operation of the hydraulic hammer 3 are converted into signals by the sensor S, continuously accumulated in a counting and storage element ZS in terms of their total number and stored as a total, the current total number of signals on the on the use state of Hydraulic hammer indicative display A is made recognizable.
  • the required for the provision of the signals and the information derived therefrom electrical energy is provided by an electric storage E available. If necessary, the information obtained by means of the counting and storage element ZS can be transmitted wirelessly to an evaluation AW.
  • the senor S is arranged and designed such that during the individual, successive operating sections of the hydraulic hammer 3 signals are generated, the number of which is proportional to the executed by the percussion piston of the hydraulic hammer in a direction strokes.
  • the sensor thus detects events or states or state changes which are triggered by the percussion piston movements and maps these processes, states or state changes into signal form.
  • a statement about the active operating time can be obtained, from which - with regard to predetermined maintenance intervals - information about the operating state of the hydraulic hammer 3 can be derived. This information can be made visible on the display A and optionally wirelessly the evaluation AW out.
  • the display A can be constructed such that after reaching a predetermined signal total number at least one maintenance indicator is generated, which makes recognizing the achievement of the end of a maintenance-free period of operation period.
  • the display may also be such that it generates, depending on the respective current signal total number of times consecutively several prewarning indications that indicate in stages the approach to the end of a maintenance interval.
  • the hydraulic hammer 3 in addition to the still to be described lines and drive and control elements on the aforementioned housing 3a, in which a percussion piston 8 is reciprocated in the longitudinal direction and held.
  • This has in the cylinder space of the housing 3a lying on two piston collars 8a and 8b, which are separated by a circumferential groove 8c.
  • the outwardly directed piston surface K1 and K2 of the piston collar 8b and 8a delimits with the housing 3a a rear and front cylinder space section 3b and 3c, respectively.
  • the piston surface K1 is dimensioned smaller than the piston surface K2.
  • the percussion piston 8 merges into a piston tip 8d, which lies opposite the chisel 7.
  • the movement of the percussion piston 8 in the direction of the working stroke is indicated by an arrow 8e.
  • the illustration in question shows the hydraulic hammer 3 in a state immediately after impact of the percussion piston 8 on the chisel 7.
  • the control for the switching of the movement of the percussion piston 8 consists of a movable in a control valve 9 spool 9a, the smaller slide surface F1 is constantly acted upon by a reset line 10 with the working pressure (system pressure); this is generated by an energy source in the form of a hydraulic pump 11 (which in turn - as already mentioned - part of the supply unit 2).
  • the smaller piston surface K1 is constantly acted upon by a pressure line 12, which is in communication with the return line 10, with the working pressure.
  • the opening 12a of the pressure line is arranged with respect to the housing 3a such that it lies in any case outside the piston collar 8b and thus within the front cylinder chamber portion 3c.
  • the larger slide surface F2 of the spool 9a is connected via a reversing line 13 with the cylinder space of the housing 3a in such Connection, that its junction 13a is connected in the illustrated state via the circumferential groove 8c to a depressurized return line 14.
  • the junction 13a and the junction 14a of the return line are thus - seen in the longitudinal direction of the percussion piston 8 - in a distance opposite, which is smaller than the axial length of the circumferential groove 8c.
  • the control valve 9 is connected on the one hand via a control line 15 to the pressure line 12 and on the other hand via a drain line 16 together with the tank 16 a to the return line 14. Furthermore, the control valve 9 is connected via a change pressure line 17 to the rear cylinder space section 3b in connection, via which the larger piston area K2 can optionally be acted upon by working pressure.
  • the control valve 9 can take two valve positions, namely the illustrated (right) scrubhub too in which the larger piston surface K2 via the alternating pressure line 17 and the discharge line 16 is relieved of pressure, and the (left) working stroke position in which the rear cylinder space section 3b via the pressure line 12th , which is acted upon with this related control line 15 and the alternating pressure line 17 with the working pressure.
  • This condition has the consequence that the percussion piston 8- performs a working stroke in the direction of the arrow 8e, contrary to the restoring force emanating from the smaller piston surface K1.
  • a chamber 18 is arranged, which receives a pressurized gas cushion.
  • the percussion piston 8 is supported on its side facing away from the piston tip 8d side.
  • the pressure line 12 is preferably equipped with a transmitter in the form of a pressure monitor 19, preferably in the vicinity before it enters the housing 3a (see, for example, FIG.
  • a transmitter in the form of a pressure monitor 19, preferably in the vicinity before it enters the housing 3a (see, for example, FIG.
  • This detects pressure fluctuations within the pressure line 12 - which are triggered by the percussion piston movements - and converts them into signals whose timing is indicated in Fig. 3b.
  • These signals - the number of which is proportional to the strokes carried out by the percussion piston in one direction of movement - can be used in the manner already mentioned to obtain information about the current operating time and the operational state of the hydraulic hammer 3 and to make it recognizable.
  • a pressure switch 20 is thereby integrated into the control for the hydraulic hammer 3, that it is associated with the reversing line 13.
  • the formation of the signals produced by the pressure monitor 20, as indicated in FIG. 4 b, results in dependence on the position of the piston collar 8 b with respect to the junction 13 a of the reversing line 13.
  • the lower pressure level shown in Fig. 4b is applied to the reversing line 13
  • This pressure level undergoes a change only after the piston collar 8b has covered the junction 13a and finally via the front cylinder space section 3c a connection between the pressure line 12 and the reversing line 13 has been established.
  • the pressure monitor 20 is thus able to generate depending on the percussion strokes to the number of proportional signals that can be summed up and evaluated accordingly.
  • the invention can also be configured in such a way that the state of the gas cushion by means of a pressure switch 21 (Fig. 5a) or by means of a Temperaturmeßwertgebers 22 (Fig. 6a) and converted into signals (FIGS. 5b and 6b, respectively).
  • the movement of the percussion piston 8 in the direction of the working stroke (arrow 8e) has the consequence that the pressure - and thus the temperature - of the gas cushion decreases.
  • the movement of the percussion piston during the return stroke leads to a rise in pressure and temperature.
  • the transducers 21 and 22 can therefore also generate signals whose number depends on the percussion piston movements.
  • Figures 7a and 7b relate to an embodiment of the invention in which the displacement of a component of the hydraulic hammer 3 moving in a direction of movement due to the percussion piston strokes is detected by means of a position transducer.
  • This Wegmeßwertgeber is designed as an inductively operating plunger coil 23 which forms a part of the chamber 18 and there the percussion piston 8-depending on its position within the housing 3a - more or less encloses.
  • the relative movements of the percussion piston with respect to the plunger coil 23 triggers time-varying induction processes whose time course is shown in Fig. 7b. According to the invention, these induction processes can be exploited to obtain information about the current service life of the hydraulic hammer 3 and about its operating state.
  • the vibration transmitter 24 comprises as essential components a resiliently held oscillating body 24a, which can execute pendulum movements in the manner of a seismic mass between two plunger coils 24b and 24c; These lead to induction processes, the time course of Fig. 8b can be seen.
  • the oscillations of the oscillating body 24a relative to the plunger coils 24b and 24c are caused by the vibrations that occur due to the percussion piston strokes.
  • the Schwingungsmeßwertgeber 24 is mounted above the hydraulic hammer 3 as a unit on the terminal bracket 5.
  • the Schwinungsmeßwertgeber 24 may be mounted within the support member 6 directly on the housing 3a of the hydraulic hammer or on the support member 6 itself.
  • 9a, b relate to an embodiment according to the invention, in which the stress on a component of the hydraulic hammer-which changes periodically with the blows carried out by the percussion piston-is detected by means of a voltage transmitter and converted into signals.
  • a strain gauge 25 is attached to the housing 3a of the hydraulic hammer 3. This learns in response to the stress of the housing 3a periodically elastic deformations from which can win signals of the type shown. Notwithstanding the illustrated embodiment, the voltage transducer mentioned here may also be constructed from a plurality of interconnected strain gauges. Instead of the at least one DehnmeßstAINs also a Kraftmeßwertgeber can be used, which has at least one piezoelectric element as a sensor. This Kraftmeßwertgeber can be arranged, for example, such that the associated piezo elements above the housing 3a between this and the flange 6a are fixed without play for the attachment of the support member 6.
  • Another possibility for generating suitable signals is to detect the different noise level as a function of the percussion piston strokes.
  • This noise level in each case has a short-term peak value if the percussion piston together with the bit 7 impinges on the material to be processed.
  • the sound level transmitter is designed as a microphone 26, which is arranged below the flange 6a between the support element 6 and the housing 3a of the hydraulic hammer.
  • an acceleration transmitter 27 is provided for generating the signals of interest here. This is supported above the flange 6a on the terminal console 5 from; However, in the context of the invention it can also be fastened to another suitable location, in particular to the flange 6a, to the support element 6 itself or to the housing 3a of the hydraulic hammer.
  • the Beministerungsmeßwertgebers 27 can be converted by the percussion piston strokes movements into signals with periodically recurring course.
  • the unit consisting of hydraulic hammer 3 and support member 6 is associated with a generator which generates the required for the provision of the signals and other information electrical energy.
  • This generator corresponds structurally to the Schwingungsmeßwertgeber 24 already described with reference to FIG. 8a.
  • the vibrations occurring during operation are converted by means of the generator 28 into electrical energy which is absorbed by an electric accumulator 29 as part of the counting and storage element ZS.
  • the signals generated by the Bestructungsmeßwertgeber 27 are summed in the unit ZS and stored as a total signal number.
  • the unit ZS is followed by a display A, which makes both the current total number of signals recognizable and may possibly provide further information regarding the operational state of the hydraulic hammer 3.
  • This further information consists in the fact that, depending on the respective current signal total, several advance warning displays A1 and A2 are generated one after the other and that after reaching a predetermined signal total a maintenance display A3 appears which indicates the end of a defined maintenance interval ,
  • the counting and storage element ZS is further followed by a transmitter / receiver unit 30, with which wirelessly corresponding information can be transmitted to a transmitter / receiver unit 31; this is in turn coupled with an evaluation AW (in particular a computer).
  • an evaluation AW in particular a computer.
  • the latter not only enables the evaluation of the stored information, but also serves to influence stored information by resetting to a desired reset value. This provision is made possible by the fact that the commands issued by the evaluation AW are also transmitted wirelessly to the unit ZS by interaction of the units 31 and 30.
  • the electrical energy for providing the signals and the information derived therefrom - as shown in FIG. 13 - can be generated by means of an auxiliary hydraulic motor 32 having the input side to the pressure line 12 and the output side to the return line 14 (FIG. see Fig. 3a) is connected.
  • the auxiliary hydraulic motor 32 drives a generator 33 to which an electric accumulator 34 is connected downstream.
  • the arrangement in question thus makes it possible to generate the electrical energy by means of the fluid, which also drives the percussion piston.
  • the electric accumulator 34 may be coupled as an independent element, for example with the unit ZS, or - as shown in FIG. 12 - be integrated as part 29 in this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Reciprocating Pumps (AREA)
  • Crushing And Grinding (AREA)
  • Actuator (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustandes eines hydraulischen Schlagaggregates, insbesondere Hydraulikhammer nach dem Oberbegriff des Anspruchs 1.
  • Die Erfindung bezieht sich ferner auf ein hydraulisches Schlagaggregat, insbesondere einen Hydraulikhammer mit einem Schlagkolben nach dem Oberbegriff des Anspruchs 18.
  • Ein solches Verfahren bzw. ein solches Aggregat ist z.B. aus EP 0 461 565 A bekannt.
  • Hydraulische Schlagwerke, wie insbesondere Hydraulikhämmer, werden zur Materialzerkleinerung (beispielsweise Gesteins- oder Betonzerkleinerung) eingesetzt.
  • Diese Zerkleinerung wird dadurch erreicht, dass die kinetische Energie eines Schlagkolbens durch Aufschlag auf ein Werkzeug über dieses und die Werkzeugspitze in das zu bearbeitende Material eingeleitet und dort in Zerstörungsarbeit umgewandelt wird. Je nach der Härte des zu bearbeitenden Materials wird nur ein Teil der kinetischen Energie in Zerstörungsarbeit umgewandelt; der nicht umgewandelte Energieanteil wird über das Werkzeug in den Schlagkolben reflektiert. Im Gegensatz dazu wird bei weicherem Material die Schlagenergie vollständig in Zerstörungsarbeit umgewandelt.
  • Hydraulische Schlagaggregate der eingangs erwähnten Gattung - bekannt aus der Druckschrift DE 34 43 542 C2 - stellen, auch mit Rücksicht auf die im übrigen rauhen Einsatzbedingungen, hoch beanspruchte Vorrichtungen dar, die unter dem Gesichtspunkt der Wirtschaftlichkeit und Betriebssicherheit einer eingehenden Beobachtung und entsprechenden Pflege bzw. Wartung bedürfen. Von wesentlicher Bedeutung in diesem Zusammenhang ist die Betriebsdauer des hydraulischen Schlagaggregats, d.h. eine Aussage über die gesamte Zeitspanne, während der das hydraulische Schlagaggregat aktiv im Einsatz gewesen ist.
  • Der Erfindung liegt daher die Aufgabe zugrunde, Maßnahmen und Mittel anzugeben, mit denen sich die Betriebsdauer und der Einsatz-Zustand eines hydraulischen Schlagaggregats - insbesondere auch für eine Bedienungsperson erkennbar - feststellen lassen.
    Auf diese Weise hat die zuständige Stelle die Möglichkeit zu entscheiden, ob bereits Wartungsbedarf besteht oder ob das betreffende Schlagaggregat weiterhin eingesetzt werden kann.
  • Die Aufgabe wird durch ein Verfahren gelöst, welches die Merkmale des Anspruchs 1 aufweist.
    Die Erfindung baut dabei auf der Erkenntnis auf, daß die aktuelle Gesamtzahl der vom Schlagaggregat ausgeführten Schläge eine relevante Größe für die Ermittlung der aktiven Betriebsdauer darstellt, woraus - durch Vergleich mit entsprechenden Vorgaben - eine Aussage über den Einsatz-Zustand des betreffenden Schlagaggregats abgeleitet werden kann.
    Die Aussage über den Einsatz-Zustand besteht im einfachsten Fall darin, daß erkennbar gemacht wird, ob das Ende eines wartungsfreien Betriebszeitraums erreicht ist und somit Wartungsbedarf besteht.
  • Im einzelnen ist das erfindungsgemäße Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustands eines hydraulischen Schlagaggregats dadurch gekennzeichnet, daß während der einzelnen, zeitlich aufeinanderfolgenden Betriebsabschnitte des Schlagaggregats Signale erzeugt werden, deren Anzahl zu den vom Schlagkolben in einer Bewegungsrichtung ausgeführten Hüben proportional ist; daß die Anzahl der Signale fortlaufend aufsummiert und als Gesamtzahl gespeichert wird; und daß die jeweils aktuelle Gesamtzahl der Signale zumindest zeitweilig in Form einer auf den Einsatz-Zustand hinweisenden Anzeige erkennbar gemacht wird.
    Die zuletzt angesprochene Anzeige kann im Rahmen der Erfindung optischer und/oder akustischer Natur sein.
    Insbesondere ist es auch möglich, durch Erzeugung eines fortdauernden akustischen Warnsignals darauf hinzuweisen, daß mit Erreichen einer vorgegebenen Signal-Gesamtzahl ein Einsatz-Zustand mit Wartungsbedarf erreicht ist.
    Da die Signal-Gesamtzahl - unabhängig von einer etwaigen Anzeige betreffend den Einsatz-Zustand - fortlaufend aufsummiert und gespeichert wird, läßt sich auch feststellen, in welchem Umfang ein vorgegebenes Wartungsintervall durch Weiterbetreiben des hydraulischen Schlagaggregats überschritten worden ist.
  • Die Erzeugungsweise und die Art der Signale können im Rahmen der Erfindung an sich beliebig sein, soweit sichergestellt ist, daß ihre Anzahl eine Aussage über die Anzahl der vom Schlagkolben in einer Bewegungsrichtung ausgeführten Hübe zuläßt.
    In Frage kommt insbesondere die Erzeugung von Signalen mittels eines Sensors, der aufgrund der Schlagkolben-Bewegungen auftretende physikalische Vorgänge (oder auch damit verbundene Zustandsänderungen) erfaßt.
  • Vorzugsweise werden die Signale in Abhängigkeit von zumindest einem der physikalischen Vorgänge - Druck, Weg, Schallpegel, Temperatur, Durchfluß und Schwingung - erzeugt (Anspruch 2).
    Die Erfindung kann jedoch auch dahingehend weiter ausgestaltet sein, daß die in der erwähnten Weise ermittelte aktuelle Gesamtzahl der Signale in Abhängigkeit von zumindest einer weiteren Einflußgröße - beispielsweise der gemessenen Außentemperatur - mit einem Korrekturfaktor versehen wird, so daß die das Ende eines Wartungsintervalls erkennbar machende Anzeige - bei Unterschreiten einer vorgegebenen Außentemperatur - zu einem früheren Zeitpunkt ausgelöst wird.
  • Bei einer besonders einfachen Ausführungsform des erfindungsgemäßen Verfahrens werden in einer der Versorgungsleitungen für das Schlagaggregat - nämlich der Druckleitung für das in das Schlagaggregat eintretende Fluid und Rücklaufleitung für die Rückführung des austretenden Fluids - auftretende Druckschwankungen oder Strömungsvorgänge erfaßt (Anspruch 3).
    Dabei können Druckschwankungen oder Änderungen der Durchflußmenge - die periodisch in Abhängigkeit von den Schlagkolben-Hüben auftreten - mittels eines Druckwächters bzw. mittels eines Durchflußmeßwertgebers in Signale umgewandelt werden (Anspruch 4 bzw. 5).
    Die zuvor angesprochenen Ausführungsformen (nach den Ansprüchen 3 bis 5) weisen auch den Vorteil auf, daß sie - unabhängig von der sonstigen konstruktiven Ausgestaltung des hydraulischen Schlagaggregats - ohne besonderen Aufwand nachträglich eingerichtet werden können.
  • Das Verfahren läßt sich jedoch auch in der Weise ausführen, daß die den Schlagkolben-Hüben proportionalen Signale aufgrund einer Schallmessung (Anspruch 6) oder durch Erfassung von Schwingungsvorgängen (Anspruch 7) erzeugt werden.
    Im erstgenannten Fall kann dies mit Hilfe eines Schallmeßwertgebers in Form eines Mikrophons geschehen, dem gegebenenfalls ein geeigneter Filter nachgeschaltet ist. Im zweitgenannten Fall können die durch die Bewegungen des Schlagkolbens ausgelösten Schwingungsvorgänge mittels eines Schwingungsmeßwertgebers erfaßt werden; dieser weist einen nach Art einer seismischen Masse schwingungsfähig gehaltenen und mit einer Tauchspule zusammenwirkenden Schwingungsfühler auf. Letzterer wird durch vom Schlagaggregat ausgehende Erschütterungen zu Relativbewegungen bezüglich der Tauchspule angeregt, wodurch auf induktivem Wege den Schwingungen entsprechende Signale erzeugt werden.
  • Alternativ kann das Verfahren auch derart ausgestaltet sein, daß die Verschiebung eines sich aufgrund der Schlagkolben-Hübe in einer Bewegungsrichtung bewegenden Bestandteils des Schlagaggregats mittels eines Wegmeßwertgebers erfaßt wird (Anspruch 8).
    Im einfachsten Fall können die Bewegungsvorgänge des Schlagkolbens selbst dadurch in entsprechende Signale umgewandelt werden, daß dieser berührungsfrei von einer Induktionsspuleneinheit umschlossen ist. Letztere ist vorzugsweise auf der von der Schlagkolbenspitze abgewandten Seite des Schlagaggregats dem Schlagkolben zugeordnet.
  • Im Rahmen der Erfindung kann das Verfahren auch derart ausgestaltet sein, daß die Beanspruchung eines Bestandteils des Schlagaggregats - die sich mit den vom Schlagkolben ausgeführten Schlägen periodisch ändert - mittels eines Kraft - oder Spannungsmeßwertgebers erfaßt wird (Anspruch 9). Zu diesem Zweck können Meßwertgeber Verwendung finden, die als Dehnmeßstreifen oder als Piezoelemente ausgebildet sind und die an ihnen auftretenden Beanspruchungszustände in Signale umwandeln.
    Im einfachsten Fall sind die betreffenden Meßwertgeber derart am Gehäuse des Schlagaggregats angebracht, daß sie mit dessen durch die Schlagkoben-Hübe hervorgerufene Beanspruchung verformt werden.
  • Falls das hydraulische Schlagaggregat mit einem den Schlagkolben abstützenden Gaspolster ausgestattet ist, lassen sich geeignete Signale auch dadurch erzeugen, daß die Temperatur oder der Druck des Gaspolsters mittels eines Temperaturmeßwertgebers bzw. eines Druckwächters erfaßt wird (vgl. dazu Anspruch 10 bzw. 11).
    Da das Gaspolster normalerweise auf der von der Schlagkolbenspitze abgewandten Seite des Schlagaggregats angeordnet ist, liegen die hier angesprochenen Meßwertgeber (Temperaturmeßwertgeber, Druckwächter) relativ weit vom unmittelbaren Arbeitsbereich des Schlagaggregats entfernt.
    Vorzugsweise ist das Verfahren unter dem Gesichtspunkt der Betriebssicherheit und Wirtschaftlichkeit derart weitergehend ausgestaltet, daß bei Erreichen einer vorgegebenen Signal-Gesamtzahl zumindest eine Wartungs-Anzeige generiert wird, die zumindest erkennbar macht, daß das Schlagaggregat der Wartung bedarf (Anspruch 12). Dies kann insbesondere dadurch geschehen, daß gegebenenfalls eine - beispielsweise rote - Warnlampe aufleuchtet, welche das Ende eines wartungsfreien Betriebszeitraums andeutet.
  • In Abhängigkeit von der jeweils aktuellen Signal-Gesamtzahl können zeitlich nacheinander jedoch auch mehrere Vorwarn-Anzeigen generiert werden, die erkennbar machen, daß Teilabschnitte des durch eine vorgegebene Obergrenze der Signal-Gesamtzahl definierten Wartungsintervalls erreicht worden sind (Anspruch 13).
  • Diese Vorwarn-Anzeigen können darin bestehen, vor Erreichen einer Obergrenze der vorgegebenen Signal-Gesamtzahl zunächst eine grüne Warnlampe und zu einem späteren Zeitpunkt eine gelbe Warnlampe aufleuchtet, die sozusagen stufenweise den aktuellen Einsatz-Zustand des Schlagaggregats erkennen lassen.
  • Weitere vorteilhafte Ausführungsformen des Verfahrens ergeben sich aus den Ansprüchen 14 und 15.
    Diese Ausführungsformen gestatten es unter anderem, die hier wesentlichen Informationen an einer Stelle verfügbar zu machen, die vom Schlagaggregat räumlich getrennt liegt.
  • Die für die Bereitstellung - d.h. insbesondere für die Gewinnung, Aufsummierung und Speicherung - der Signale benötigte elektrische Energie kann durch Batterien oder Akkus erzeugt werden. Die betreffenden Energieeinheiten sollten dabei mit einer Ladungsanzeige ausgestattet sein, um Störungsfälle auszuschließen.
    Das Verfahren kann jedoch auch in der Weise ausgestaltet sein, daß die elektrische Energie für die Bereitstellung der Signale mittels des Fluids erzeugt wird, welches auch den Schlagkolben antreibt (Anspruch 16). Zu diesem Zweck kann insbesondere eine Elektro-Energieeinheit vorgesehen sein, die einen Hilfs-Hydraulikmotor mit davon angetriebenem Generator und einen diesem nachgeschalteten Elektrospeicher aufweist.
  • Alternativ kann die elektrische Energie für die Bereitstellung der Signale auch mittels eines Generators erzeugt werden, der aufgrund der von den Schlagkolben-Hüben ausgelösten Bewegungsvorgänge wirksam wird und dem ein Elektrospeicher nachgeschaltet ist (Anspruch 17). Dieser selbsttätig arbeitende Generator kann hinsichtlich seines grundsätzlichen Aufbaus insbesondere dem bereits erwähnten Schwingungsmesswertgeber entsprechen.
  • Die gestellte Aufgabe wird ferner durch einen Hydraulikhammer mit den Merkmalen des Anspruches 18 gelöst.
  • Dieser kann - gemäß Anspruch 19 - mit einem Sensor ausgestattet sein, der aufgrund der Schlagkolben-Bewegungen auftretende physikalische Vorgänge in Signale umwandelt.
  • Weitere vorteilhafte Ausführungsformen des hydraulischen Schlagaggregates, insbesondere Hydraulikhammers, sind in den Ansprüchen 20 bis 29 angesprochen.
  • Die Erfindung wird nachfolgend anhand in der Zeichnung dargestellter Ausführungsbeispiele im Einzelnen erläutert.
  • Es zeigen:
  • Fig. 1
    schematisiert ein als Hydraulikbagger ausgebildetes Trägergerät, an dem ein hydraulisches Schlagaggregat in Gestalt eines Hydraulikhammers anstellbar angebracht ist,
    Fig. 2
    schematisiert den grundsätzlichen funktionalen Aufbau des Erfindungsgegenstandes,
    Fig. 3a,b
    ein Schaltschema des Schaltaggregats mit einem der Druckleitung zugeordneten Druckwächter bzw. als Zeitdiagramm die vom Druckwächter erzeugte Signalfolge,
    Fig. 4a,b
    ein Teilschema entsprechend Fig. 3a mit einem der Umsteuerleitung zugeordneten Druckwächter bzw. als Zeitdiagramm die vom Druckwächter erzeugte Signalfolge,
    Fig. 5a,b
    ein Teilschema entsprechend Fig. 3a mit einem einem Gaspolster zugeordneten Druckwächter bzw. als Zeitdiagramm die vom Druckwächter erzeugte Signalfolge,
    Fig. 6a,b
    ein Teilschema entsprechend Fig. 3a mit einem einem Gaspolster zugeordneten Temperaturmeßwertgeber bzw. als Zeitdiagramm die vom Temperaturmeßwertgeber erzeugte Signalfolge,
    Fig. 7a,b
    ein Teilschema entsprechend Fig. 3a mit einem mit dem Schlagkolben zusammenwirkenden Wegmeßwertgeber bzw. als Zeitdiagramm die vom Wegmeßwertgeber erzeugte Signalfolge,
    Fig. 8a,b
    schematisiert die Darstellung eines Hydraulikhammers mit einem Schwingungsmeßwertgeber bzw. als Zeitdiagramm die vom Schwingungsmeßwertgeber erzeugte Signalfolge,
    Fig. 9a,b
    eine schematische Darstellung eines Hydraulikhammers mit einem Dehnmeßstreifen bzw. als Zeitdiagramm die vom Dehnmeßstreifen erzeugte Signalfolge,
    Fig. 10a,b
    eine schematische Darstellung eines Hydraulikhammers mit einem Schallpegel-Meßwertgeber in Form eines Mikrophons bzw. als Zeitdiagramm die zugehörige Signalfolge,
    Fig. 11a,b
    eine schematische Darstellung eines Hydraulikhammers mit einem Beschleunigungsmeßwertgeber bzw. als Zeitdiagramm die zugehörige Signalfolge,
    Fig. 12
    eine schematische Darstellung eines Hydraulikhammers nebst Beschleunigungsmeßwertgeber und einem Generator zur Erzeugung der elektrischen Energie sowie weiteren Einrichtungen,
    Fig. 13
    schematisiert den Aufbau einer elektrischen Energieversorgung unter Verwendung eines Hilfs-Hydraulikmotors.
  • Der in Fig. 1 dargestellte Hydraulikbagger 1 weist eine Versorgungseinheit 2 mit einem nicht dargestellten Dieselmotor und einer davon angetriebenen Hydraulikpumpe (vgl. dazu Fig. 3a) auf; diese ist in an sich bekannter Weise an einen Hydraulikhammer 3 angeschlossen, der seinerseits anstellbar an dem Ausleger 4 des Hydraulikbaggers mit zwei Auslegerarmen 4a, 4b gehalten ist.
    Der Auslegerarm 4b trägt seinerseits eine schwenkbare Anschlußkonsole 5, an der ein Tragelement 6- ausgebildet als Traggehäuse oder als Tragrahmen - befestigt ist. An diesem stützt sich der Hydraulikhammer 3 über sein Gehäuse 3a ab.
  • Unter der Einwirkung des von der Versorgungseinheit 2 gelieferten Fluids wirkt der Hydraulikhammer 3 auf ein als Meißel 7 ausgebildetes Werkzeug ein, wobei die vom Hydraulikhammer ausgehende Bewegungsenergie in Schlagenergie umgesetzt wird.
  • Oberhalb des Tragelements 6 ist ein Anzeigeelement A angeordnet, welches unter anderem Informationen über die Betriebsdauer und den Einsatz-Zustand des Hydraulkhammers 3 erkennbar macht.
    Der Hydraulikhammer weist einen Sensor S zur Erzeugung von Signalen auf, die in dem Anzeigeelement A fortlaufend aufsummiert, als Gesamtzahl gespeichert und erkennbar gemacht werden.
  • Fig. 2 zeigt schematisiert in weiteren Einzelheiten den Ablauf und das Zusammenwirken der Vorgänge, die schließlich zu einer Aussage über die Betriebsdauer und den Einsatz-Zustand des Hydraulikhammers 3 führen.
    Danach werden die anläßlich des Betriebs des Hydraulikhammers 3 auftretenden Vorgänge vom Sensor S in Signale umgewandelt, in einem Zähl- und Speicherelement ZS hinsichtlich ihrer Gesamtzahl fortlaufend aufsummiert sowie als Gesamtzahl gespeichert, wobei die jeweils aktuelle Gesamtzahl der Signale über die auf den Einsatz-Zustand des Hydraulikhammers hinweisende Anzeige A erkennbar gemacht wird.
    Die für die Bereitstellung der Signale und der daraus abgeleiteten Informationen erforderliche elektrische Energie wird durch einen Elektrospeicher E zur Verfügung gestellt.
    Erforderlichenfalls können die mittels des Zähl- und Speicherelements ZS gewonnenen Informationen drahtlos an eine Auswertung AW übermittelt werden.
  • Grundsätzlich ist der Sensor S derart angeordnet und ausgebildet, daß während der einzelnen, zeitlich aufeinanderfolgenden Betriebsabschnitte des Hydraulikhammers 3 Signale erzeugt werden, deren Anzahl zu den vom Schlagkolben des Hydraulikhammers in einer Bewegungsrichtung ausgeführten Hüben proportional ist. Der Sensor erfaßt also Vorgänge oder Zustände bzw. Zustandsänderungen, welche durch die Schlagkolben-Bewegungen ausgelöst werden, und bildet diese Vorgänge, Zustände oder Zustandsänderungen in Signalform ab. Durch Aufsummieren der einzelnen, zeitlich aufeinanderfolgenden Signale läßt sich eine Aussage über die aktive Betriebsdauer gewinnen, aus welcher - im Hinblick auf vorgegebene Wartungsintervalle - Informationen über den Einsatzzustand des Hydraulikhammers 3 abgeleitet werden können. Diese Informationen lassen sich über die Anzeige A erkennbar machen und gegebenenfalls drahtlos der Auswertung AW zuführen.
    Die Anzeige A kann dabei derart aufgebaut sein, daß nach Erreichen einer vorgegebenen Signal-Gesamtzahl zumindest eine Wartungs-Anzeige generiert wird, welche das Erreichen des Endes eines wartungsfreien Betriebsdauerzeitraums erkennbar macht.
    Darüber hinaus kann die Anzeige auch derart beschaffen sein, daß sie in Abhängigkeit von der jeweils aktuellen Signal-Gesamtzahl zeitlich nacheinander mehrere Vorwarn-Anzeigen generiert, die stufenweise die Annäherung an das Ende eines Wartungsintervalls andeuten.
  • Ausweislich der Darstellung in Fig. 3a weist der Hydraulikhammer 3 neben den noch zu beschreibenden Leitungen sowie Antriebs- und Steuerungselementen das bereits erwähnte Gehäuse 3a auf, in dem ein Schlagkolben 8 in Längsrichtung hin- und herbeweglich gehalten ist. Dieser weist im Zylinderraum des Gehäuses 3a liegend zwei Kolbenbunde 8a und 8b auf, welche durch eine Umfangsnut 8c voneinander getrennt sind.
  • Die nach außen gerichtete Kolbenfläche K1 und K2 des Kolbenbundes 8b bzw. 8a begrenzt mit dem Gehäuse 3a einen hinteren und vorderen Zylinderraumabschnitt 3b bzw. 3c. Die Kolbenfläche K1 ist dabei kleiner bemessen als die Kolbenfläche K2.
  • Außerhalb des Gehäuses 3a geht der Schlagkolben 8 in eine Kolbenspitze 8d über, welcher der Meißel 7 gegenüberliegt. Die Bewegung des Schlagkolbens 8 in Richtung des Arbeitshubs ist durch einen Pfeil 8e angedeutet.
  • Die in Rede stehende Darstellung zeigt den Hydraulikhammer 3 in einem Zustand unmittelbar nach Auftreffen des Schlagkolbens 8 auf den Meißel 7.
  • Die Steuerung für die Umschaltung der Bewegung des Schlagkolbens 8 besteht aus einem in einem Steuerventil 9 beweglichen Steuerschieber 9a, dessen kleinere Schieberfläche F1 über eine Rückstelleitung 10 ständig mit dem Arbeitsdruck (Systemdruck) beaufschlagt ist; dieser wird von einer Energiequelle in Form einer Hydraulikpumpe 11 erzeugt (die ihrerseits - wie bereits erwähnt - Bestandteil der Versorgungseinheit 2 ist).
    Die kleinere Kolbenfläche K1 ist über eine Druckleitung 12, welche mit der Rückstelleitung 10 in Verbindung steht, ständig mit dem Arbeitsdruck beaufschlagt. Die Einmündung 12a der Druckleitung ist bezüglich des Gehäuses 3a derart angeordnet, daß sie in jedem Fall außerhalb des Kolbenbundes 8b und somit innerhalb des vorderen Zylinderraumabschnitts 3c liegt.
  • Die größere Schieberfläche F2 des Steuerschiebers 9a steht über eine Umsteuerleitung 13 mit dem Zylinderraum des Gehäuses 3a derart in Verbindung, daß ihre Einmündung 13a in dem dargestellten Zustand über die Umfangsnut 8c an eine drucklos gehaltene Rücklaufleitung 14 angeschlossen ist. Die Einmündung 13a und die Einmündung 14a der Rücklaufleitung liegen sich also - in Längsrichtung des Schlagkolbens 8 gesehen - in einem Abstand gegenüber, der kleiner ist als die axiale Länge der Umfangsnut 8c.
  • Das Steuerventil 9 ist einerseits über eine Steuerleitung 15 an die Druckleitung 12 und andererseits über eine Abflußleitung 16 nebst Tank 16a an die Rücklaufleitung 14 angeschlossen. Weiterhin steht das Steuerventil 9 über eine Wechseldruckleitung 17 mit dem hinteren Zylinderraumabschnitt 3b in Verbindung, über welchen die größere Kolbenfläche K2 gegebenenfalls mit Arbeitsdruck beaufschlagt werden kann.
  • Das Steuerventil 9 kann zwei Ventilstellungen einnehmen, nämlich die dargestellte (rechte) Rückhubstellung, in welcher die größere Kolbenfläche K2 über die Wechseldruckleitung 17 und die Abflußleitung 16 druckentlastet ist, und die (linke) Arbeitshubstellung, in welcher der hintere Zylinderraumabschnitt 3b über die Druckleitung 12, die mit dieser in Verbindung stehende Steuerleitung 15 und die Wechseldruckleitung 17 mit dem Arbeitsdruck beaufschlagt ist. Dieser Zustand hat zur Folge, daß der Schlagkolben 8- entgegen der von der kleineren Kolbenfläche K1 ausgehenden Rückstellkraft - einen Arbeitshub in Richtung des Pfeiles 8e ausführt.
  • Oberhalb des hinteren Zylinderraumabschnitts 3b ist eine Kammer 18 angeordnet, die ein unter Druck stehendes Gaspolster aufnimmt. An diesem stützt sich der Schlagkolben 8 auf seiner von der Kolbenspitze 8d abgewandten Seite ab.
  • Zur Erzeugung der bereits angesprochenen Signale ist die Druckleitung 12 - vorzugsweise in der Nähe vor ihrem Eintritt in das Gehäuse 3a (vgl. dazu beispielsweise Fig. 1) mit einem Meßwertgeber in Form eines Druckwächters 19 ausgestattet. Dieser erfaßt Druckschwankungen innerhalb der Druckleitung 12 - welche durch die Schlagkolben-Bewegungen ausgelöst werden - und wandelt sie in Signale um, deren zeitlicher Verlauf in Fig. 3b angedeutet ist.
    Diese Signale - deren Anzahl zu den vom Schlagkolben in einer Bewegungsrichtung ausgeführten Hüben proportional ist - können in der bereits erwähnten Weise dazu benutzt werden, Informationen über die aktuelle Betriebsdauer und den Einsatz-Zustand des Hydraulikhammers 3 zu erhalten sowie erkennbar zu machen.
  • Bei der Ausführungsform gemäß Fig. 4a ist ein Druckwächter 20 dadurch in die Steuerung für den Hydraulikhammer 3 integriert, daß er der Umsteuerleitung 13 zugeordnet ist.
    Die in Fig. 4b angedeutete Ausbildung der vom Druckwächter 20 erzeugten Signale ergibt sich in Abhängigkeit von der Stellung des Kolbenbundes 8b bezüglich der Einmündung 13a der Umsteuerleitung 13.
    Solange die Einmündung 13a - wie dargestellt - über die Umfangsnut 8c an die Rücklaufleitung 14 angeschlossen ist, liegt an der Umsteuerleitung 13 das in Fig. 4b dargestellte untere Druckniveau an. Dieses Druckniveau erfährt erst eine Änderung, nachdem der Kolbenbund 8b die Einmündung 13a überdeckt hat und schließlich über den vorderen Zylinderraumabschnitt 3c eine Verbindung zwischen der Druckleitung 12 und der Umsteuerleitung 13 hergestellt worden ist.
    Der Druckwächter 20 ist somit in der Lage, in Abhängigkeit von den Schlagkolben-Hüben zu deren Anzahl proportionale Signale zu erzeugen, die entsprechend aufsummiert und ausgewertet werden können.
  • Falls der Hydraulikhammer 3 die bereits erwähnte Kammer 18 mit einem den Schlagkolben 8 abstützenden Gaspolster aufweist, kann die Erfindung auch in der Weise ausgestaltet sein, daß der Zustand des Gaspolsters mittels eines Druckwächters 21 (Fig. 5a) oder mittels eines Temperaturmeßwertgebers 22 (Fig. 6a) erfaßt und in Signale (Fig. 5b bzw. 6b) umgewandelt wird.
    Die Bewegung des Schlagkolbens 8 in Richtung des Arbeitshubes (Pfeil 8e) hat zur Folge, daß der Druck - und damit auch die Temperatur - des Gaspolsters absinkt.
    Im Gegensatz dazu führt die Bewegung des Schlagkolbens während des Rückhubs zu einem Druck- und Temperaturanstieg.
    Mittels der Meßwertgeber 21 und 22 lassen sich dementsprechend ebenfalls Signale erzeugen, deren Anzahl von den Schlagkolbenbewegungen abhängig ist.
  • Die Fig. 7a und 7b beziehen sich auf eine Ausführungsform der Erfindung, bei welcher die Verschiebung eines sich aufgrund der Schlagkolben-Hübe in einer Bewegungsrichtung bewegenden Bestandteils des Hydraulikhammers 3 mittels eines Wegmeßwertgebers erfaßt wird. Dieser Wegmeßwertgeber ist als induktiv arbeitende Tauchspule 23 ausgebildet, welche einen Bestandteil der Kammer 18 bildet und dort den Schlagkolben 8-abhängig von dessen Stellung innerhalb des Gehäuses 3a - mehr oder weniger umschließt.
    Die Relativbewegungen des Schlagkolbens bezüglich der Tauchspule 23 lösen sich zeitlich ändernde Induktionsvorgänge aus, deren zeitlicher Verlauf in Fig. 7b dargestellt ist.
    Diese Induktionsvorgänge können erfindungsgemäß dazu ausgenutzt werden, Informationen über die aktuelle Betriebsdauer des Hydraulikhammers 3 und über dessen Einsatz-Zustand zu gewinnen.
  • Die Erfindung kann auch in der Weise ausgestaltet sein, daß durch die Schlagkolben-Hübe hervorgerufene Bewegungen mittels eines Schwingungsmeßwertgebers erfaßt und in entsprechende Signale umgewandelt werden.
    Bei der Ausführungsform gemäß Fig. 8a, b weist der Schwingungsmeßwertgeber 24 als wesentliche Bestandteile einen federnd gehaltenen Schwingkörper 24a auf, der nach Art einer seismischen Masse zwischen zwei Tauchspulen 24b und 24c Pendelbewegungen ausführen kann; diese führen zu Induktionsvorgängen, deren zeitlicher Verlauf aus Fig. 8b ersichtlich ist. Die Pendelbewegungen des Schwingkörpers 24a relativ zu den Tauchspulen 24b und 24c werden durch die Erschütterungen hervorgerufen, welche aufgrund der Schlagkolben-Hübe auftreten.
    In dem dargestellten Ausführungsbeispiel ist der Schwingungsmeßwertgeber 24 oberhalb des Hydraulikhammers 3 als Einheit an der Anschlußkonsole 5 befestigt.
    Selbstverständlich kann im Rahmen der Erfindung auch eine andersartige Anordnung Verwendung finden; insbesondere kann der Schwinungsmeßwertgeber 24 innerhalb des Tragelements 6 unmittelbar am Gehäuse 3a des Hydraulikhammers oder auch am Tragelement 6 selbst angebracht sein.
  • Die Darstellungen gemäß Fig. 9a, b beziehen sich auf eine erfindungsgemäße Ausgestaltung, bei welcher die Beanspruchung eines Bestandteils des Hydraulikhammers - die sich mit den vom Schlagkolben ausgeführten Schlägen periodisch ändert - mittels eines Spannungsmeßwertgebers erfaßt und in Signale umgewandelt wird.
  • Zu diesem Zweck ist an dem Gehäuse 3a des Hydraulikhammers 3 ein Dehnmeßstreifen 25 befestigt. Dieser erfährt in Abhängigkeit von der Beanspruchung des Gehäuses 3a periodisch elastische Verformungen, aus denen sich Signale der dargestellten Art gewinnen lassen. Abweichend von der dargestellten Ausführungsform kann der hier angesprochene Spannungsmeßwertgeber auch aus mehreren zusammengeschalteten Dehnmeßstreifen aufgebaut sein.
    Anstelle des zumindest einen Dehnmeßstreifens kann auch ein Kraftmeßwertgeber eingesetzt werden, der als Meßfühler zumindest ein Piezoelement aufweist.
    Dieser Kraftmeßwertgeber kann beispielsweise derart angeordnet sein, daß die zugehörigen Piezoelemente oberhalb des Gehäuses 3a zwischen diesem und dem Flansch 6a für die Befestigung des Tragelements 6 spielfrei befestigt sind.
  • Eine weitere Möglichkeit zur Erzeugung geeigneter Signale besteht darin, das in Abhängigkeit von den Schlagkolben-Hüben unterschiedliche Geräuschniveau zu erfassen.
    Dieses Geräuschniveau weist jeweils einen kurzzeitigen Spitzenwert auf, falls der Schlagkolben nebst Meißel 7 auf das zu bearbeitende Material auftrifft.
  • Bei der Ausführungsform gemäß Fig. 10a, b ist der Schallpegel-Meßwertgeber als Mikrophon 26 ausgebildet, welches unterhalb des Flansches 6a zwischen dem Tragelement 6 und dem Gehäuse 3a des Hydraulikhammers angeordnet ist.
    Durch geeignete Ausgestaltung des Mikrophons 26 oder Nachschalten eines Filters kann sichergestellt werden, daß jeweils nur beim Aufschlag auf das zu bearbeitende Material die in Fig. 10b angedeuteten impulsartigen Signale erzeugt werden, deren Anzahl mit derjenigen der Kolbenschläge übereinstimmt.
  • Bei der Ausführungsform gemäß Fig. 11a, b ist zur Erzeugung der hier interessierenden Signale ein Beschleunigungsmeßwertgeber 27 vorgesehen.
    Dieser stützt sich oberhalb des Flansches 6a an der Anschlußkonsole 5 ab; er kann im Rahmen der Erfindung jedoch auch an einer anderen geeigneten Stelle - insbesondere am Flansch 6a, am Tragelement 6 selbst oder am Gehäuse 3a des Hydraulikhammers - befestigt sein. Mittels des Beschleunigungsmeßwertgebers 27 lassen sich durch die Schlagkolben-Hübe hervorgerufene Bewegungsabläufe in Signale mit periodisch wiederkehrendem Verlauf umwandeln.
  • Bei der Ausführungsform gemäß Fig. 12 werden die Signale zur Ermittlung der Betriebsdauer und der daraus abgeleiteten weiteren Informationen - wie anhand der Fig. 11 a, b erläutert - mittels des Beschleunigungsmeßwertgebers 27 gewonnen.
    Zusätzlich ist der Einheit bestehend aus Hydraulikhammer 3 und Tragelement 6 ein Generator zugeordnet, welcher die für die Bereitstellung der Signale und weiteren Informationen benötigte elektrische Energie erzeugt. Dieser Generator entspricht vom Aufbau her dem bereits anhand der Fig. 8a beschriebenen Schwingungsmeßwertgeber 24.
    Die aufgrund der im Betrieb auftretenden Erschütterungen werden mittels des Generators 28 in elektrische Energie umgewandelt, welche von einem Elektrospeicher 29- als Bestandteil des Zähl- und Speicherelements ZS - aufgenommen wird.
    Die vom Beschleunigungsmeßwertgeber 27 generierten Signale werden in der Einheit ZS aufsummiert und als Signal-Gesamtzahl gespeichert.
  • Der Einheit ZS ist eine Anzeige A nachgeschaltet, die sowohl die aktuelle Signal-Gesamtzahl erkennbar macht als auch gegebenenfalls weitere Informationen betreffend den Einsatz-Zustand des Hydraulikhammers 3 vermitteln kann.
    Diese weitergehenden Informationen bestehen darin, daß in Abhängigkeit von der jeweils aktuellen Signal-Gesamtzahl zeitlich nacheinander mehrere Vorwarn-Anzeigen A1 und A2 generiert werden und daß nach Erreichen einer vorgegebenen Signal-Gesamtzahl eine Wartungs-Anzeige A3 erscheint, welche das Ende eines definierten Wartungsintervalls andeutet.
  • Dem Zähl- und Speicherelement ZS ist weiterhin eine Sender-/Empfängereinheit 30 nachgeschaltet, mit der sich drahtlos entsprechende Informationen an eine Sender-/Empfängereinheit 31 übermitteln lassen; diese ist ihrerseits mit einer Auswertung AW (insbesondere einem Computer) gekoppelt.
    Letztere ermöglicht nicht nur die Auswertung der gespeicherten Informationen, sondern dient auch dazu, gespeicherte Informationen durch Rückstellung auf einen gewünschten Rückstell-Wert zu beeinflussen. Diese Rückstellung wird dadurch ermöglicht, daß die von der Auswertung AW ausgehenden Befehle durch Zusammenwirken der Einheiten 31 und 30 ebenfalls drahtlos an die Einheit ZS übermittelt werden.
  • Abweichend von der zuvor beschriebenen Ausführungsform kann die elektrische Energie für die Bereitstellung der Signale und der daraus abgeleiteten Informationen - wie aus Fig. 13 ersichtlich - mittels eines Hilfs-Hydraulikmotors 32 erzeugt werden, der eingangsseitig mit der Druckleitung 12 und ausgangsseitig mit der Rücklaufleitung 14 (vgl. dazu Fig. 3a) in Verbindung steht.
    Der Hilfs-Hydraulikmotor 32 treibt einen Generator 33 an, dem ein Elektrospeicher 34 nachgeschaltet ist.
  • Die in Rede stehende Anordnung ermöglicht es also, die elektrische Energie mittels des Fluids zu erzeugen, welches auch den Schlagkolben antreibt.
  • Dabei kann der Elektrospeicher 34 als eigenständiges Element beispielsweise mit der Einheit ZS gekoppelt oder - wie in Fig. 12 dargestellt - als Teil 29 in diese integriert sein.

Claims (29)

  1. Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustands eines hydraulischen Schlagaggregats, insbesondere Hydraulikhammer (3), mit einem Schlagkolben (8), der - in einem Gehäuse (3a) geführt und auf ein Werkzeug schlägt - unter Einwirkung einer Steuerung (9) wechselweise einen Arbeitshub in Schlagrichtung (8e) und einen Rückhub ausführt, wobei während der einzelnen, zeitlich aufeinanderfolgenden Betriebsabschnitte des Schlagaggregats Signale erzeugt werden, deren Anzahl zu den vom Schlagkolben in einer Bewegungsrichtung ausgeführten Hüben proportional ist
    dadurch gekennzeichnet,
    dass die Anzahl der Signale fortlaufend aufsummiert und als Gesamtzahl gespeichert wird;
    und dass die jeweils aktuelle Gesamtzahl der Signale zumindest zeitweilig in Form einer auf den Einsatz-Zustand hinweisenden Anzeige erkennbar gemacht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Signale in Abhängigkeit von zumindest einem der physikalischen Vorgänge - Druck, Weg, Schallpegel, Temperatur, Durchfluss und Schwingung - erzeugt werden.
  3. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß in einer der Versorgungsleitungen für das Schlagaggregat (3) - Druckleitung (12) für das in das Schlagaggregat (3) eintretende Fluid und Rücklaufleitung (14) für die Rückführung des austretenden Fluids - auftretende Druckschwankungen oder Strömungsvorgänge erfaßt werden.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die periodisch auftretenden Druckschwankungen mittels eines Druckwächters (19) in Signale umgewandelt werden.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die periodisch auftretenden Änderungen der Durchflußmenge mittels eines Durchflußmeßwertgebers in Signale umgewandelt werden.
  6. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Signale mittels eines Schallmeßwertgebers (26) erzeugt werden, der in Abhängigkeit von den vom Schlagkolben (8) ausgeführten Schlägen auftretende Änderungen des Schallpegels erfaßt.
  7. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß durch die Bewegungen des Schlagkolbens ausgelöste Schwingungsvorgänge mittels eines Schwingungsmeßwertgebers (24) erfaßt werden.
  8. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Verschiebung eines sich aufgrund der Schlagkolben-Hübe in einer Bewegungsrichtung bewegenden Bestandteils (8) des Schlagaggregats (3) mittels eines Wegmeßwertgebers (23) erfaßt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Beanspruchung eines Bestandteils (3a) des Schlagaggregats (3) - die sich mit dem vom Schlagkolben (8) ausgeführten Schlägen periodisch ändert - mittels eines Kraft- oder Spannungsmeßwertgebers (25) erfaßt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die sich mit den Schlagkolben-Hüben periodisch ändernde Temperatur eines Gaspolsters (18) mittels eines Temperaturmeßwertgebers (22) erfaßt wird.
  11. Verfahren nach einem der Ansprüche 1 bis 2 und 4, dadurch gekennzeichnet, daß ein sich mit den Schlagkolben-Hüben periodisch ändernder Gaspolster-Druck mittels eines Druckwächters (21) in Signale umgewandelt wird.
  12. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nach Erreichen einer vorgegebenen Signal-Gesamtzahl zumindest eine Wartungs-Anzeige (A3) generiert wird, die zumindest erkennbar macht, daß das Schlagaggregat (3) der Wartung bedarf.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß in Abhängigkeit von der jeweils aktuellen Signal-Gesamtzahl zeitlich nacheinander mehrere Vorwarn-Anzeigen (A1, A2) generiert werden, die erkennbar machen, daß Teilabschnitte des durch eine vorgegebene Obergrenze der Signal-Gesamtzahl definierten Wartungsintervalls erreicht worden sind.
  14. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die jeweils aktuelle Gesamtzahl der gespeicherten Signale drahtlos an eine Auswertung (AW) übermittelt wird.
  15. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die jeweils aktuelle Gesamtzahl der gespeicherten Signale drahtlos durch Auslösen einer Rückstellung (AW) beeinflusst wird.
  16. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Energie für die Bereitstellung (Gewinnung, Aufsummierung und Speicherung) der Signale mittels des Fluids erzeugt wird, welches auch den Schlagkolben (8) antreibt.
  17. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Energie für die Bereitstellung der Signale mittels eines Generators (28) erzeugt wird, der aufgrund der von den Schlagkolben-Hüben ausgelösten Bewegungsvorgänge wirksam wird und dem ein Elektrospeicher (29) nachgeschaltet ist.
  18. Hydraulisches Schlagaggregat, insbesondere Hydraulikhammer (3), mit einem Schlagkolben (8), der - in einem Gehäuse (3a) geführt und auf ein Werkzeug schlägt - unter Einwirkung einer Steuerung (9) wechselweise einen Arbeitshub in Schlagrichtung (8e) und einen Rückhub ausführt, mit einem Sensor (S), der während der einzelnen, zeitlich aufeinander folgenden Betriebsabschnitte Signale erzeugt, deren Anzahl zu den vom Schlagkolben (8) in einer Bewegungsrichtung ausgeführten Hüben proportional ist,
    wobei des Hydraulisches Schlagaggregat durch folgende Merkmale gekennzeichnet ist: ein Zählelement zur fortlaufenden Aufsummierung der generierten Signale;
    ein Speicherelement zur Speicherung der aktuellen Gesamtzahl der insgesamt aufsummierten Signale (ZS) und
    ein Anzeigeelement (A), mit welche die aktuelle Gesamtzahl der Signale zumindest zeitweilig erkennbar gemacht wird, zur Ermittlung der Betriebsdauer und des Einsatz-Zustands des hydraulischen Schlagaggregats und zur Durchführung des Verfahrens nach zumindest einem der vorhergehenden Ansprüche.
  19. Hydraulisches Schlagaggregat nach Anspruch 18, dadurch gekennzeichnet, dass der Sensor (S) derart ausgebildet ist, dass er aufgrund der Schlagkolben-Bewegungen auftretende physikalische Vorgänge in Signale umwandelt.
  20. Hydraulisches Schlagaggregat nach einem der Ansprüche 18 oder 19, dadurch gekennzeichnet, dass die Druckleitung (12), über welche das Schlagaggregat (3) an eine Druckmittelquelle (11) angeschlossen ist, mit einem Druckwächter (19) zur Erfassung der in der Druckleitung herrschenden Druck-Verhältnisse aufweist.
  21. Hydraulisches Schlagaggregat nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass die Umsteuerleitung (13) für den Steuerschieber (9a) der Steuerung (9) einen Druckwächter (20) aufweist.
  22. Hydraulisches Schlagaggregat nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass ein Druckwächter (21) zur Erfassung des Druckes in einem Gaspolster (18) vorhanden ist, an dem sich der Schlagkolben (8) auf der von seiner Spitze (8d) abgewandten Seite abstützt.
  23. Hydraulisches Schlagaggregat nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass ein Temperaturmesswertgeber (22) zur Erfassung der Temperatur in einem Gaspolster (18) vorhanden ist, an dem sich der Schlagkolben (8) auf der von seiner Spitze (8d) abgewandten Seite abstützt.
  24. Hydraulisches Schlagaggregat nach Anspruch 18 oder 19, gekennzeichnet durch einen induktiv arbeitenden Wegmesswertgeber (23), der die Bewegungen des Schlagkolbens (8) relativ zum Wegmesswertgeber (23) erfasst.
  25. Hydraulisches Schlagaggregat nach Anspruch 18 oder 19, gekennzeichnet durch einen induktiv arbeitenden Schwingungsmesswertgeber (24), der aufgrund der Schlagkolben-Hübe ausgelöste Schwingungsvorgänge erfasst.
  26. Hydraulisches Schlagaggregat nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass das Schlagaggregat (3) zumindest einen Dehnmessstreifen (25) aufweist, welcher die aufgrund der Schlagkolben-Hübe auftretende mechanische Beanspruchung des Schlagaggregates erfasst.
  27. Hydraulisches Schlagaggregat nach Anspruch 18 oder 19, gekennzeichnet durch einen Schallpegel-Messwertgeber (26), welcher die aufgrund der Schlagkolben-Hübe auftretende Geräuschentwicklung erfasst.
  28. Hydraulisches Schlagaggregat nach Anspruch 18 oder 19, gekennzeichnet durch einen Beschleunigungssensor (27), welcher aufgrund der Schlagkolben-Hübe auftretende Bewegungsabläufe erfasst.
  29. Hydraulisches Schlagaggregat nach zumindest einem der Ansprüche 18 bis 28, dadurch gekennzeichnet, dass zur Erzeugung der elektrischen Energie für die Bereitstellung der Signale ein nach dem Tauchspulenprinzip arbeitender Elektrogenerator (28) vorhanden ist, dem ein Elektrospeicher (29) nachgeschaltet ist und der derart ausgebildet ist, dass er durch aufgrund der Schlagkolben-Hübe ausgelöste Bewegungsvorgänge selbsttätig wirksam wird.
EP00109684A 1999-05-22 2000-05-06 Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustands eines hydraulischen Schlagaggregats Expired - Lifetime EP1055489B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19923680A DE19923680B4 (de) 1999-05-22 1999-05-22 Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustands eines hydraulischen Schlagaggregats, insbesondere Hydraulikhammer, sowie Vorrichtung zur Durchführung des Verfahrens
DE19923680 1999-05-22

Publications (3)

Publication Number Publication Date
EP1055489A2 EP1055489A2 (de) 2000-11-29
EP1055489A3 EP1055489A3 (de) 2004-02-04
EP1055489B1 true EP1055489B1 (de) 2007-10-17

Family

ID=7908964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00109684A Expired - Lifetime EP1055489B1 (de) 1999-05-22 2000-05-06 Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustands eines hydraulischen Schlagaggregats

Country Status (6)

Country Link
US (1) US6510902B1 (de)
EP (1) EP1055489B1 (de)
JP (1) JP2001017873A (de)
AT (1) ATE375848T1 (de)
DE (2) DE19923680B4 (de)
ES (1) ES2293876T3 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019048A2 (de) * 2000-09-01 2002-03-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optimierungsverfahren zur regelung des betriebszustandes einer geführten werkzeugmaschine mit einem rotierenden und schlag-beaufschlagten werkzeug während eines bohrvorganges
DE10131284A1 (de) 2001-06-28 2003-01-09 Krupp Berco Bautechnik Gmbh Vorrichtung zur Umwandlung von Meßsignalen, die durch Schlagvorgänge eines hydraulischen Schlagaggregats in einem Piezo-Sensor ausgelöst werden, in Digital-Signale
FI121219B (fi) 2001-10-18 2010-08-31 Sandvik Tamrock Oy Menetelmä ja laitteisto iskulaitteen toiminnan monitoroimiseksi sekä sovitelma iskulaitteen toiminnan säätämiseksi
US7054696B2 (en) * 2002-07-18 2006-05-30 Black & Decker Inc. System and method for data retrieval in AC power tools via an AC line cord
AU2003256853A1 (en) * 2002-07-30 2004-02-16 Comprehensive Power, Inc. Actuator control system for hydraulic devices
DE10303006B4 (de) * 2003-01-27 2019-01-03 Hilti Aktiengesellschaft Handgeführtes Arbeitsgerät
US7404449B2 (en) * 2003-05-12 2008-07-29 Bermingham Construction Limited Pile driving control apparatus and pile driving system
SE524767C2 (sv) * 2003-10-06 2004-09-28 Atlas Copco Rock Drills Ab Detektering av losslagning av gängskarvar
JP4759921B2 (ja) * 2004-02-13 2011-08-31 日立工機株式会社 電池パック及び電動工具
NL1025801C2 (nl) 2004-03-24 2005-09-27 Demolition And Recycling Equip Werkwijze en inrichting voor het vaststellen van de bedrijfsomstandigheden waaronder een door een hydraulische zuiger/ cilindercombinatie aangedreven gereedschap wordt bedreven.
DE102004017939A1 (de) * 2004-04-14 2005-11-03 Robert Bosch Gmbh Geführte Werkzeugmaschine sowie Verfahren zum Betreiben einer geführten Werkzeugmaschine
GB2442629B (en) * 2005-06-03 2010-01-13 Komatsu Mfg Co Ltd Working machine
FR2887797B1 (fr) * 2005-07-01 2008-08-15 Societe De Prospection Et D'inventions Techniques Procede de determination de donnees d'exploitation d'un appareil portatif a actionnement manuel et l'appareil pour la misen en oeuvre du procede
SE530572C2 (sv) * 2006-11-16 2008-07-08 Atlas Copco Rock Drills Ab Pulsmaskin för en bergborrmaskin, metod för skapande av mekaniska pulser i pulsmaskinen, samt bergborrmaskin och borrigg innefattande sådan pulsmaskin
SE530781C2 (sv) * 2007-01-11 2008-09-09 Atlas Copco Rock Drills Ab Bergborrutrustning och metod i anslutning till denna
JP4938602B2 (ja) * 2007-09-12 2012-05-23 古河ロックドリル株式会社 油圧ブレーカ用照明装置およびこれを備える油圧ブレーカ
JP5422918B2 (ja) * 2008-05-20 2014-02-19 マックス株式会社 工具
TWI590929B (zh) * 2008-05-20 2017-07-11 Max Co Ltd tool
CA2717112C (en) * 2009-10-22 2015-08-11 356864 Alberta Ltd. Equipment with hydraulically driven electrical over hydraulic control
JP5374331B2 (ja) * 2009-11-25 2013-12-25 パナソニック株式会社 回転工具
FI121978B (fi) 2009-12-21 2011-06-30 Sandvik Mining & Constr Oy Menetelmä rikotusvasaran käyttömäärän määrittämiseksi, rikotusvasara sekä mittauslaite
JP2012125872A (ja) * 2010-12-15 2012-07-05 Ud Trucks Corp 自動ハンマーの制御装置
CN102735385B (zh) * 2011-04-02 2014-12-24 上海工程技术大学 一种液压破碎锤冲击能的检测方法
US9315970B2 (en) 2011-09-20 2016-04-19 Tech Mining Pty Ltd Stress and/or accumulated damage monitoring system
DE102012012299A1 (de) * 2012-04-05 2013-10-10 Atlas Copco Construction Tools Gmbh Hydraulisches Anbaugerät
KR101609834B1 (ko) 2014-06-20 2016-04-05 주식회사 씨앤오에치 브레이커의 동작상태 기록장치
DE102014108848A1 (de) * 2014-06-25 2015-12-31 Construction Tools Gmbh Vorrichtung zur Drucküberwachung
KR101638451B1 (ko) 2014-07-30 2016-07-25 대모 엔지니어링 주식회사 무단 가변 자동 스트로크 유압 브레이커 시스템
US10179424B2 (en) 2015-10-28 2019-01-15 Caterpillar Inc. Diagnostic system for measuring acceleration of a demolition hammer
CN105457700B (zh) * 2015-12-09 2017-12-26 绍兴柯桥多泰纺织有限公司 一种破碎锤的钎杆机构
US20170165823A1 (en) * 2015-12-15 2017-06-15 Caterpillar Inc. Damping system for a hydraulic hammer
KR101782535B1 (ko) 2016-01-28 2017-10-24 대모 엔지니어링 주식회사 유압브레이커
KR102555523B1 (ko) * 2016-03-11 2023-07-12 에이치디현대인프라코어 주식회사 건설기계 및 이의 제어방법
CN107338826A (zh) * 2016-04-28 2017-11-10 东空销售股份有限公司 附件监视系统
KR101780153B1 (ko) * 2016-07-27 2017-09-20 대모 엔지니어링 주식회사 유압식 타격 기기 및 이를 포함하는 건설 장비
CA2999317A1 (en) * 2017-03-29 2018-09-29 Coach Truck & Tractor Llc Hydraulic supply systems
KR20180110806A (ko) * 2017-03-30 2018-10-11 주식회사수산중공업 작동시간 기록장치 및 이를 구비한 유압 브레이커
DK3417951T3 (da) * 2017-06-19 2022-07-04 Eurodrill Gmbh Anordning og fremgangsmåde til generering af slagimpulser eller svingninger til en byggemaskine
US11144808B2 (en) * 2017-08-16 2021-10-12 Joy Global Underground Mining Llc Systems and methods for monitoring an attachment for a mining machine
US10875167B2 (en) * 2017-11-20 2020-12-29 Deere & Company Hydraulic hammer
JP7033938B2 (ja) * 2018-01-26 2022-03-11 株式会社小松製作所 作業機械および作業機械の制御方法
US11359351B2 (en) * 2018-07-02 2022-06-14 Stanley Black & Decker, Inc. Excavator boom mountable high pressure hydraulic tool including a hydraulic motor driven generator
WO2021012101A1 (zh) * 2019-07-19 2021-01-28 广西恒日科技股份有限公司 凿岩钻机恒压推进系统
US11466429B2 (en) 2020-01-23 2022-10-11 Stanley Black & Decker, Inc. Prime mover mountable hydraulic tool and related monitoring systems and methods
GB2592052B (en) * 2020-02-14 2022-09-07 Extraction Tech Limited Tool for breaking rocks
KR102368922B1 (ko) * 2020-05-15 2022-03-03 대모 엔지니어링 주식회사 질소가스 압력 펄스를 이용한 유압 브레이커의 타격수 측정방법
JPWO2022163388A1 (de) * 2021-02-01 2022-08-04
CN114411850B (zh) * 2022-03-28 2022-06-17 徐州徐工挖掘机械有限公司 重力式破碎锤及其自动控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE420057B (sv) * 1980-02-20 1981-09-14 Atlas Copco Ab Hydrauliskt slagverk med mojlighet att reglera slagenergin
US4425835A (en) * 1981-01-26 1984-01-17 Ingersoll-Rand Company Fluid actuator
DE3443542A1 (de) * 1984-11-29 1986-06-05 Fried. Krupp Gmbh, 4300 Essen Hydraulische schlagvorrichtung
DE4019019A1 (de) * 1990-06-14 1991-12-19 Krupp Maschinentechnik Verfahren zur ermittlung charakteristischer kenngroessen eines schlagwerks und einrichtung zur durchfuehrung des verfahrens
DE4028595A1 (de) * 1990-09-08 1992-03-12 Krupp Maschinentechnik Hydraulisch betriebenes schlagwerk
DE4036918A1 (de) * 1990-11-20 1992-05-21 Krupp Maschinentechnik Verfahren zur anpassung des arbeitsverhaltens eines schlagwerks an die haerte des zerkleinerungsmaterials und einrichtung zur durchfuehrung des verfahrens
FR2676953B1 (fr) * 1991-05-30 1993-08-20 Montabert Ets Appareil hydraulique a percussions.
DE4128137A1 (de) * 1991-08-24 1993-02-25 Krupp Maschinentechnik Sicherheitseinrichtung fuer fluidbetriebene schlagwerke
JPH06511437A (ja) * 1991-10-10 1994-12-22 フィン−パワー インターナショナル,インク. 被作業シートの適正な機械加工を確実に行なう装置および方法
DE4334933C2 (de) * 1993-10-13 1997-02-20 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum zwangsweisen Abschalten von handgeführten Arbeitsmitteln
DE4344817C2 (de) * 1993-12-28 1995-11-16 Hilti Ag Verfahren und Einrichtung für handgeführte Werkzeugmaschinen zur Vermeidung von Unfällen durch Werkzeugblockieren
DE19507348A1 (de) * 1995-03-02 1996-09-05 Krupp Maschinentechnik Verfahren zur Beeinflussung des Betriebsverhaltens eines fluidbetriebenen Schlagwerks und zur Durchführung des Verfahrens geeignetes Schlagwerk
FI104960B (fi) * 1995-07-06 2000-05-15 Sandvik Tamrock Oy Hydraulinen iskuvasara
DE19545708A1 (de) * 1995-12-07 1997-06-12 Krupp Bautechnik Gmbh Verfahren zur Beeinflussung des Betriebsverhaltens eines fluidbetriebenen Schlagwerks und zur Durchführung des Verfahrens geeignetes Schlagwerk

Also Published As

Publication number Publication date
ATE375848T1 (de) 2007-11-15
EP1055489A3 (de) 2004-02-04
DE50014717D1 (de) 2007-11-29
JP2001017873A (ja) 2001-01-23
ES2293876T3 (es) 2008-04-01
EP1055489A2 (de) 2000-11-29
DE19923680A1 (de) 2000-11-23
DE19923680B4 (de) 2004-02-26
US6510902B1 (en) 2003-01-28

Similar Documents

Publication Publication Date Title
EP1055489B1 (de) Verfahren zur Ermittlung der Betriebsdauer und des Einsatz-Zustands eines hydraulischen Schlagaggregats
EP0486898B1 (de) Verfahren und Einrichtung zur Anpassung des Arbeitsverhaltens eines Schlagwerks an die Härte des Zerkleinerungsmaterials
DE102016003387B4 (de) Verfahren zur Bodenverdichtung mit einem Anbauverdichter, Anbauverdichter sowie Bagger mit einem Anbauverdichter
EP1379363B1 (de) Handwerkzeugmaschine
EP2213420B1 (de) Steuerungsverfahren und Handwerkzeugmaschine
DE102008019578B4 (de) Vorrichtung und Verfahren zum Erkennen von Schäden an einer Arbeitsmaschine
DE69833970T2 (de) Schlagwerkmaschine
EP3380673B1 (de) Vibrationskolbenanordnung im beistellzylinder eines stopfpickels
EP2213423B1 (de) Pneumatisches Schlagwerk
DE2732934C2 (de) Verfahren und Vorrichtung zum Rammen und Ziehen
DE102008006030A1 (de) Handwerkzeugmaschine, insbesondere elektrisch betriebene Handwerkzeugmaschine
EP1148261A2 (de) Wälzlager mit fernabfragbaren Erfassungseinheiten
EP1739307A2 (de) Exzenterschneckenpumpe
EP1271105B1 (de) Vorrichtung zur Umwandlung der in einem Piezo-Sensor ausgelösten Messsignale in Digital-Signale
EP3239398A1 (de) Stopfaggregat für eine gleisstopfmaschine
EP1136189A3 (de) Fluidbetriebenes Schlagwerk
DE202013005537U1 (de) Stampfvorrichtung mit elektrodynamischem Stampfwerk
DE102019202332B4 (de) Stoppeinrichtung und Verfahren zum Betreiben einer Stoppeinrichtung
DE19905281B4 (de) Anordnung zum Erkennen des Wartungsbedarfs eines hydraulischen Brechgeräts
WO1999045282A2 (de) Verfahren und vorrichtung zum überwachen des bereichs technischer rollkörper
EP3369864B1 (de) Verfahren zum erkennen von hindernissen beim betrieb einer vibrationsramme
WO2007042499A1 (de) Druckmittelzylinder sowie verfahren zum erfassen der betriebszeit und/oder betriebszyklen eines druckmittelzylinders
EP2917706B1 (de) Verfahren zum überwachen einer vibrationsbelastung und portables gerät zur durchführung des verfahrens
EP2868437A1 (de) Handgeführtes oder halbstationäres Werkzeuggerät oder Arbeitsgerät
EP2213421A1 (de) Pneumatisches Schlagwerk und Steuerungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATLAS COPCO CONSTRUCTION TOOLS GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040127

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RTI1 Title (correction)

Free format text: PROCESS FOR DETERMINING THE OPERATIONAL LIFE AND STATE OF A HYDRAULIC IMPACT ASSEMBLY

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071017

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50014717

Country of ref document: DE

Date of ref document: 20071129

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH & PARTNER

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2293876

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080317

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ATLAS COPCO CONSTRUCTION TOOLS GMBH

Free format text: ATLAS COPCO CONSTRUCTION TOOLS GMBH#HELENENSTRASSE 149#45143 ESSEN (DE) -TRANSFER TO- ATLAS COPCO CONSTRUCTION TOOLS GMBH#HELENENSTRASSE 149#45143 ESSEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190527

Year of fee payment: 20

Ref country code: DE

Payment date: 20190521

Year of fee payment: 20

Ref country code: ES

Payment date: 20190620

Year of fee payment: 20

Ref country code: IE

Payment date: 20190522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190521

Year of fee payment: 20

Ref country code: FR

Payment date: 20190522

Year of fee payment: 20

Ref country code: SE

Payment date: 20190521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190521

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200505

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200505

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200506

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200505

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200507