EP1032762B1 - Brennstoffeinspritzventil mit integrierter zündkerze - Google Patents
Brennstoffeinspritzventil mit integrierter zündkerze Download PDFInfo
- Publication number
- EP1032762B1 EP1032762B1 EP99924738A EP99924738A EP1032762B1 EP 1032762 B1 EP1032762 B1 EP 1032762B1 EP 99924738 A EP99924738 A EP 99924738A EP 99924738 A EP99924738 A EP 99924738A EP 1032762 B1 EP1032762 B1 EP 1032762B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve body
- face
- ignition
- valve
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M57/00—Fuel-injectors combined or associated with other devices
- F02M57/06—Fuel-injectors combined or associated with other devices the devices being sparking plugs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0625—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
- F02M51/0664—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
- F02M51/0671—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/162—Means to impart a whirling motion to fuel upstream or near discharging orifices
- F02M61/163—Means being injection-valves with helically or spirally shaped grooves
Definitions
- the invention relates to a fuel injector with an integrated spark plug according to the preamble of the main claim.
- a fuel injector with an integrated spark plug according to the type of the main claim is already known.
- the fuel injection valve with integrated spark plug is used to inject fuel directly into the combustion chamber of an internal combustion engine and to ignite the fuel injected into the combustion chamber.
- the compact integration of a fuel injector with a spark plug saves installation space on the cylinder head of the internal combustion engine.
- the known fuel injection valve with an integrated spark plug has a valve body which, together with a valve closing body which can be actuated by means of a valve needle, forms a sealing seat, to which an injection opening opening on an end face of the valve body facing the combustion chamber is connected.
- the valve body is insulated against high voltage by a ceramic insulation body from a housing body that can be screwed into the cylinder head of the internal combustion engine.
- a ground electrode is located on the housing body in order to form a counter potential to the valve body to which high voltage is applied. When a sufficient high voltage is applied to the valve body, a sparkover occurs between the valve body and the ground electrode connected to the housing body.
- EP 0 632 198 A1 discloses a further fuel injection valve with an integrated spark plug for injecting fuel directly into a combustion chamber of an internal combustion engine and for igniting the fuel injected into the combustion chamber.
- the spark plug-injection valve combination has a valve body which, together with a valve closing body, forms a sealing seat, which is adjoined by at least one outlet opening opening on an end face of the valve body facing the combustion chamber.
- the spark plug-injection valve combination has a housing body which is insulated from the valve body, an ignition electrode being provided on the housing body in order to generate a sparkover between the valve body and the ignition electrode.
- the ignition electrode and the valve body are shaped such that the sparkover occurs between the end face of the valve body facing the combustion chamber and the ignition electrode.
- the one ignition electrode is equipped in such a way that it comes from the housing body first parallel to the axis and then bent at a right angle to the longitudinal valve axis and thus also to the corresponding end face of the valve body, so that the end of the ignition electrode is parallel to the end face of the valve body.
- the fuel injector according to the invention with an integrated spark plug with the characterizing features of the main claim has the advantage that the position of the sparkover with respect to the position of the spray opening is reproducible and clearly defined. This ensures reliable ignition of the sprayed fuel jet.
- the position of the flashover and thus the ignition point can be placed in the area of the sprayed fuel jet with the least cyclical jet fluctuations. The point in time at which the fuel jet ignites therefore exhibits extremely small fluctuations from one injection cycle to the next.
- By positioning the flashover or the ignition point in the vicinity of the spray opening sooting and coking of the spray opening are counteracted and thus a change in the jet geometry caused thereby is counteracted.
- the edge for determining the position of the sparkover can be provided either on the end face of the valve body or on the ignition electrodes.
- the edge can be formed on the end face of the valve body by an elevation or depression. It is advantageous if the valve body has a rounded flank area on the elevation in order to direct the air flow specifically to the ignition point.
- One or more pin-like ignition electrodes can be attached to the housing body in such a way that they are inclined at a predetermined angle of inclination in the direction of the end face of the valve body.
- An edge of the ignition electrodes forms the point with the smallest distance from the end face of the valve body and thus defines the ignition point. If the edge defining the ignition point is formed on the end face of the valve body, a simple one can also be used as the ignition electrode wire spanning the end face of the valve body are used, which represents a particularly inexpensive embodiment.
- the ignition electrode can be configured in a ring shape and have an opening for the fuel jet sprayed off from the spray opening.
- the edge defining the ignition point is formed at the opening of the ring-shaped ignition electrode.
- the opening of the ring-shaped ignition electrode widens conically in the spray direction of the fuel jet, the opening angle of the ignition electrode being advantageously adapted to the opening angle of the fuel jet.
- a design of the holder for the ignition electrode with radially distributed rod-shaped projections and radially arranged pins guided radially to the projections ensures a sufficient radial flow of the combustion air and supports the reliable ignition of the fuel jet.
- FIG. 1 shows a fuel injection valve with an integrated spark plug for injecting fuel directly into a combustion chamber of a mixed-compression, spark-ignition internal combustion engine and for igniting the fuel injected into the combustion chamber in accordance with an embodiment of the invention.
- the fuel injector with an integrated spark plug which is generally provided with the reference number 1, has a first housing body 2, which can be screwed into a receiving bore of a cylinder head (not shown in FIG. 1) by means of a thread 3, and a second housing body 4 and a third housing body 5.
- the metallic housing formed by the housing bodies 3, 4, 5 surrounds an insulation body 6, which in turn has a valve body 7, a swirl insert 14 and a valve needle 9, which extends inside the swirl insert 14 beyond the inlet end 8 of the valve body 7, at least partially radially on the outside surrounds.
- valve-closure member 10 Connected to the valve needle 9 is a valve-closure member 10 which is conical on the injection side and, together with an inner conical valve seat surface, forms a sealing seat on the injection-side end 11 of the valve body 7.
- the valve needle 9 and the valve closing body 10 are formed in one piece.
- the valve closing body 10 When the valve closing body 10 is lifted off the valve seat surface of the valve body 7, the valve closing body 10 opens an outlet opening 12 formed in the valve body 7, so that a conical fuel jet 13 is sprayed off.
- a swirl groove 14a is provided in the swirl insert 14 in the exemplary embodiment shown, wherein a plurality of swirl grooves 14a can also be provided.
- First ignition electrodes 70a for generating an ignition spark are provided on the first housing body 2.
- the ignition electrodes 70a carry ground potential, while the valve body 7 can be acted upon by a high voltage potential.
- the lengths of the ignition electrodes 70a are the beam angle and the beam shape of the Adjust fuel jet 13.
- the ignition electrodes 70a can either be immersed in the fuel jet 13 or the fuel jet 13 can be guided past the ignition electrodes 70a at a short distance without the ignition electrodes 70a being wetted by the fuel. It is also conceivable for the ignition electrodes 70a to be immersed in gaps in individual jets generated by the outlet opening 12 or a plurality of spray openings.
- the valve body 7 is preferably formed in two parts from a first part body 7a and a second part body 7b, which are welded together at a welding point 17.
- the valve needle 9 is divided into a first metallic, spray-side guide section 9a, a second metallic, inlet-side guide section 9b and, in the exemplary embodiment, sleeve-shaped, ceramic insulation section 9c.
- the first guide section 9a is guided in the swirl insert 14.
- the guidance takes place through the cylindrical jacket surface 18 of the valve closing body 10, which is formed in one piece with the first guide section 9a.
- a second guide of the valve needle 9 takes place in the insulation body 6 by means of the second guide section 9b.
- the jacket surface 19 of the second guide section 9b acts with a bore 20 together in the insulation body 6.
- the guide sections 9a and 9b serving as guides are designed as metallic components and can be manufactured with the manufacturing accuracy required for the guide.
- the insulation section 9c Due to the low surface roughness of the metallic components, there is only a low coefficient of friction on the guides.
- the insulation section 9c can be manufactured as a ceramic part. Since the insulation section 9c does not serve to guide the valve needle 9, only small demands are made on the dimensional accuracy and the surface roughness. A revision of the ceramic part is therefore not necessary.
- the guide sections 9a and 9b are connected to the insulation section 9c not only in a force-locking manner but also in a form-fitting manner.
- the guide sections 9a and 9b each have a pin 21 or 22, which is respectively inserted into a recess in the insulation section 9c designed as a bore 23.
- the connection between the pins 21 and 22 of the guide sections 9a and 9b is preferably established by a frictional connection, by gluing or shrinking on.
- the insulation section 9c is preferably sleeve-shaped.
- the material saved compared to a solid body results in a weight saving, which leads to shorter switching times of the fuel injector 1.
- the second guide section 9b is connected to an armature 24, which cooperates with a magnet coil 25 for the electromagnetic actuation of the valve closing body 10.
- a connecting cable 26 is used to energize the solenoid 25.
- the solenoid 25 is received by a coil carrier 27.
- a sleeve-shaped core 28 penetrates the solenoid 25 at least partially and is removed from the armature 24 by a gap, which cannot be seen in the figure, in the closed position of the fuel injector 1 apart.
- the magnetic flux circuit is closed by the ferromagnetic components 29 and 30.
- the fuel flows into the fuel injector with an integrated spark plug 1 via a fuel inlet connection 31, which can be connected via a thread 32 to a fuel distributor (not shown).
- the fuel first flows through a fuel filter 33 and then flows into a longitudinal bore 34 of the core 28.
- an adjusting sleeve 36 is provided which is provided with a hollow bore 35 and which can be screwed into the longitudinal bore 34 of the core 28.
- the adjusting sleeve 36 is used to adjust the bias of a return spring 37 which acts on the armature 24 in the closing direction.
- a counter sleeve 38 serves to secure the setting of the adjusting sleeve 36.
- the fuel continues to flow through a longitudinal bore 39 in the second guide section 9b of the valve needle 9 and enters an cavity 40 of the insulation body 6 at an axial recess 40. From there, the fuel flows into a longitudinal bore 42 of the valve body 7, in which the valve needle 9 also extends, and finally reaches the previously described swirl groove 14a on the outer circumference of the swirl insert 14.
- the ignition electrodes 70a connected to the housing body 2 have a ground potential, while the valve body 7 can be acted upon by a high-voltage potential for generating ignition sparks.
- a high-voltage cable 50 which is inserted into the insulation body 6 via a lateral, pocket-like recess 51, is used to supply the high voltage.
- the stripped end 52 of the high-voltage cable 50 is soldered or welded to a contact clip 54 at a soldering or welding point 53.
- the contact clip 54 clasps the valve body 7 and establishes a reliable electrically conductive contact between the stripped end 52 of the high-voltage cable 50 and the valve body 7.
- the insulation body 6 has a radial bore 55 through which a soldering or Welding tool can be guided to the soldering or welding point 53.
- the pocket-like recess 51 is poured out with an electrically insulating casting compound 56.
- an erosion resistor 57 integrated in the high-voltage cable 50 can also be cast into the casting compound 56.
- a high-voltage-resistant film 58 can be inserted into the pocket-like recess 51 of the insulating body 6 and can also be cast with the sealing compound 56.
- potting compound 56 is such. B. silicone.
- the insulation body 6 and the valve body 7 can be screwed together on a thread 60. Furthermore, the insulation body 6 can be screwed together with the housing body 2 on a further thread 61. The threads 60 and 61 are preferably secured with a suitable adhesive.
- the insulation body 6 can be manufactured inexpensively as a molded ceramic part.
- the valve body 7 and the insulation body 6 can be screwed and glued with a mounting mandrel in order to compensate for misalignments in the guidance of the valve needle 9.
- the spatially close arrangement of the erosion resistor 57 to the ignition electrodes 70a reduces the erosion at the ignition electrodes 7a and, in spite of an increased electrical capacity, allows the fuel injector with an integrated spark plug 1 to be completely metal-coated by the metallic housing bodies 2, 4 and 5.
- FIG. 2 shows an enlarged illustration of the end region on the injection side of the first exemplary embodiment of the fuel injector with integrated spark plug 1 shown in FIG. 1.
- the ignition electrodes 70a can be seen particularly well in this illustration. 2
- the fuel injector with integrated spark plug 1 is screwed into a cylinder head 71 of an internal combustion engine, so that the ignition electrodes 70a protrude into a combustion chamber 72 of the internal combustion engine.
- cylindrical ignition electrodes 70a serve a plurality of projections 78 of the housing body 2.
- the projections 78 of the housing body 2 are circumferentially offset from one another on the housing body 2, relatively large spaces being formed between the individual projections 78 in order to allow an unimpeded inflow of the combustion air to allow the opening of the outlet opening 12 on the end face 73 of the valve body 7 facing the combustion chamber 72.
- the ignition electrodes 70a are each inclined relative to the plane of the end face 73 of the valve body 7 by a predetermined inclination angle ⁇ in the direction of the end face 73 of the valve body 7.
- the end face 73 of the valve body 7 is opposite an edge 74 of the pin-shaped ignition electrodes 70a.
- the position of the edges 74 defines the location of the smallest distance between the ignition electrodes 70a and the end face 73 of the valve body 7 and thus defines the ignition point. Due to the edge-shaped design, there is an increased electrical field strength at this point, which causes the plasma discharge of the ignition spark. The ignition point defined by the edges 74 is therefore reproducible from injection cycle to injection cycle.
- the most favorable position of the ignition point can be optimized by tests and lies in the area of the so-called jet root of the fuel jet 13 sprayed from the outlet opening 12.
- the position of the edges 74 can be adjusted to the opening angle ⁇ of that Outlet opening 12 already sprayed fuel jet 13 are adapted.
- the distance of the edges 74 of the ignition electrodes 70a from the end face 73 of the valve body 7 can be set exactly in terms of production technology by bending a kink 75 of the projections 78.
- FIG 3 shows a section through the end region of the fuel injection valve with integrated spark plug 1 on the injection side, in accordance with a second exemplary embodiment of the invention. Elements already described are provided with the same reference numerals.
- the difference from the exemplary embodiment described with reference to FIGS. 1 and 2 consists essentially in the fact that the edge for fixing the position of the sparkover and thus the ignition point is not formed on the ignition electrode 70 but on the end face 73 of the valve body 7.
- the end face 73 of the valve body 7 has an elevation 80 with a peripheral edge 81.
- At the edge 81 when the valve body 7 is acted upon by a high voltage, an increased electric field strength arises which triggers the plasma discharge of the ignition spark.
- the position of the ignition point with respect to the position of the outlet opening 12 can be precisely determined by appropriately dimensioning the diameter of the elevation 80.
- the ignition electrode 70b carrying the ground potential can be formed by a simple wire which is clamped between a first projection 78a of the housing body 2 and a second projection 78b of the housing body 2 and can be fixed by welds 82.
- the wire-shaped ignition electrode 70b results in a particularly low configuration Production expense.
- a recess can also be provided on the end face 73 of the valve body 7, at the boundary of which an edge is likewise formed for the selective increase of the electric field strength.
- FIG. 4 shows a section through the spray-side end region of a third exemplary embodiment of a fuel injector with an integrated one. Spark plug 1. Elements that have already been described are also provided with the same reference numbers.
- the ignition electrode 70c is ring-shaped and has an opening 90 for the fuel jet 13 sprayed off from the outlet opening 12.
- the opening 90 of the annular ignition electrode 70c is preferably formed with a conical inner surface and widens in the spray direction 91 of the fuel jet 13.
- the opening angle ⁇ 'of the opening 90 of the annular ignition electrode 70c is preferably adapted to the opening angle ⁇ of the fuel jet 13.
- the opening angle ⁇ ′ of the opening 90 preferably coincides with the opening angle ⁇ of the fuel jet 13.
- the opening 90 has an acute-angled edge 92 which, in this exemplary embodiment, defines the ignition point.
- the annular ignition electrode 70c is fastened to the projections 78 of the housing body 2 via connecting pins 93.
- the projections 78 are distributed circumferentially on the housing body 2. For example, 3 or 4 such projections 78 are provided.
- a connecting pin 93 is assigned to each projection 78.
- the projections 78 and the connecting pins 93 are relatively narrow, so that relatively large gaps remain between the projections 78 and the connecting pins 93, through which the combustion air can flow unhindered to the mouth of the outlet opening 12 and to the ignition point defined by the peripheral edge 92 , An unimpeded inflow of the combustion air is essential for a safe ignition of the fuel jet 13 and a low soot and coking at the mouth of the outlet opening 12.
- FIG. 5 shows a section through the spray-side end of a fuel injection valve with integrated spark plug 1 in accordance with a fourth exemplary embodiment.
- Elements that have already been described are also provided with the same reference numerals here.
- the difference from the exemplary embodiment already described with reference to FIG. 4 essentially consists in the fact that the ring-shaped ignition electrode 70c has a chamfered section 96, to which the connecting pins 93 connect in an alignment line. This will make edges at the transition between pins 93 and the ring-shaped ignition electrode 70c are avoided, so that there is no increased field strength at these points, which could lead to a parasitic ignition point.
- FIG. 6 shows a section through the spray-side end of a fuel injector with integrated spark plug 1 in accordance with a fifth exemplary embodiment.
- the embodiment shown in FIG. 6 represents a combination of the embodiments shown in FIGS. 3 and 4.
- a ring electrode 70c is provided, the opening 90 of which has an edge 92 at the end opposite the end face 73 of the valve body 7.
- the end face 73 of the valve body 7 has an elevation 80 with a peripheral edge 81.
- the circumferential edge 81 of the elevation 80 is located in the vicinity of the circumferential edge 92 of the annular ignition electrode 70c.
- the ignition point is located between the two circumferential edges 92 and 81, since there the valve body 7 and the ignition electrode 70c are on the one hand the smallest distance from one another and on the other hand a particularly high electrical field strength occurs at this point due to the edges 81 and 92.
- FIG. 7 shows a section through the spray-side end region of a fuel injection valve with integrated spark plug 1 in accordance with a sixth exemplary embodiment of the invention.
- elements already described are provided with the same reference numerals.
- the embodiment shown in FIG. 7 largely corresponds to the embodiment already described with reference to FIG. 6 with the difference that the flank area 97 of the elevation 80 of the end face 73 of the valve body 7 is rounded off concavely:
- the combustion air flowing in from the side is led to the fuel jet 13 and to the ignition point defined by the peripheral edges 81 and 92.
- the shape and design of the ignition electrodes 70a-70c of the exemplary embodiments described above prevent accidental glow ignition. Furthermore, the ignition electrodes 70a to 70c designed according to the invention have increased mechanical stability and a longer service life. Due to the geometry of the ignition electrodes 70a to 70c and the valve body 7, a constant fuel-air mixture with lambda between 0.6 and 1.0 is achieved at the ignition point. The ignition point is in the range of the smallest cyclical fluctuations of the Fuel jet. The ignition sparks burn off any deposits on the end face 73 of the valve body 7 in accordance with a self-cleaning effect.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- Fuel-Injection Apparatus (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Spark Plugs (AREA)
Description
- Die Erfindung geht aus von einem Brennstoffeinspritzventil mit integrierter Zündkerze nach der Gattung des Hauptanspruchs.
- Es ist bereits aus der EP 0661 446 A1 ein Brennstoffeinspritzventil mit integrierter Zündkerze nach der Gattung des Hauptanspruchs bekannt. Das Brennstoffeinspritzventil mit integrierter Zündkerze dient zum direkten Einspritzen von Brennstoff in den Brennraum einer Brennkraftmaschine und zum Zünden des in den Brennraum eingespritzten Brennstoffs. Durch die kompakte Integration eines Brennstoffeinspritzventils mit einer Zündkerze kann Einbauraum am Zylinderkopf der Brennkraftmaschine eingespart werden. Das bekannte Brennstoffeinspritzventil mit integrierter Zündkerze weist einen Ventilkörper auf, der zusammen mit einem mittels einer Ventilnadel betätigbaren Ventilschließkörper einen Dichtsitz bildet, an welchen sich eine an einer dem Brennraum zugewandten Stirnfläche des Ventilkörpers ausmündende Abspritzöffnung anschließt. Der Ventilkörper ist durch einen keramischen Isolationskörper von einem in den Zylinderkopf der Brennkraftmaschine einschraubbaren Gehäusekörper hochspannungsfest isoliert. An dem Gehäusekörper befindet sich eine Masseelektrode, um ein Gegenpotential zu dem mit Hochspannung beaufschlagten Ventilkörper zu bilden. Bei Beaufschlagung des Ventilkörpers mit einer ausreichenden Hochspannung erfolgt ein Funkenüberschlag zwischen dem Ventilkörper und der mit dem Gehäusekörper verbundenen Masseelektrode.
- Bei dem bekannten Brennstoffeinspritzventil mit integrierter Zündkerze ist jedoch nachteilig, daß die Position des Funkenüberschlags bezüglich des von der Abspritzöffnung abgespritzten Brennstoffstrahls nicht definiert ist, da der Funkenüberschlag an einer nahezu beliebigen Stelle im seitlichen Bereich eines Vorsprungs des Ventilkörpers erfolgen kann. Eine sichere Zündung der sogenannten Strahlwurzel des von der Abspritzöffnung abgespritzten Brennstoffstrahls ist bei dieser bekannten Bauweise nicht mit der notwendigen Sicherheit möglich. Eine sichere und zeitlich exakt definierte Entflammung des Brennstoffstrahls ist jedoch für eine Schadstoffreduzierung unbedingt erforderlich. Ferner kann an der Austrittsöffnung des Brennstoffstrahls eine stetig fortschreitende Verrußung oder Verkokung auftreten, die die abgespritzte Strahlform beeinflußt.
- Aus der EP 0 632 198 A1 ist ein weiteres Brennstoffeinspritzventil mit integrierter Zündkerze zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine und zum Zünden des in den Brennraum eingespritzten Brennstoffs bekannt. Die Zündkerze-Einspritzventil-Kombination weist einen Ventilkörper auf, der zusammen mit einem Ventilschließkörper einen Dichtsitz bildet, an welchen sich zumindest eine an einer dem Brennraum zugewandten Stirnfläche des Ventilkörpers ausmündende Austrittsöffnung anschließt. Außerdem besitzt die Zündkerze-Einspritzventil-Kombination einen von dem Ventilkörper isolierten Gehäusekörper, wobei an dem Gehäusekörper eine Zündelektrode vorgesehen ist, um einen Funkenüberschlag zwischen dem Ventilkörper und der Zündelektrode zu erzeugen. Die Zündelektrode und der Ventilkörper sind so geformt, dass der Funkenüberschlag zwischen der dem Brennraum zugewandten Stirnfläche des Ventilkörpers und der Zündelektrode erfolgt. Die eine einzige Zündelektrode ist derart ausgestattet, dass sie vom Gehäusekörper kommend erst achsparallel und dann im rechten Winkel zur Ventillängsachse und somit auch zu der entsprechenden Stirnfläche des Ventilkörpers abgebogen verläuft und endet, so dass das Ende der Zündelektrode parallel zur Stirnfläche des Ventilkörpers dieser gegenübersteht.
- Das erfindungsgemäße Brennstoffeinspritzventil mit integrierter Zündkerze mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß die Position des Funkenüberschlags bezüglich der Position der Abspritzöffnung reproduzierbar und eindeutig festgelegt ist. Somit ist eine sichere Entflammung des abgespritzten Brennstoffstrahls gewährleistet. Die Position des Funkenüberschlags und somit die Zündstelle kann in den Bereich des abgespritzten Brennstoffstrahls mit den geringsten zyklischen Strahlschwankungen gelegt werden. Der Zeitpunkt der Entflammung des Brennstoffstrahls weist daher äußerst geringe Schwankungen von Einspritzzyklus zu Einspritzzyklus auf. Durch die Positionierung des Funkenüberschlags bzw. der Zündstelle in der Nähe der Abspritzöffnung wird einer Verrußung und Verkokung der Abspritzöffnung entgegengewirkt und somit einer dadurch bedingten Veränderung der Strahlgeometrie entgegengewirkt.
- Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils mit integrierter Zündkerze möglich.
- Die Kante zur Festlegung der Position des Funkenüberschlags kann entweder an der Stirnfläche des Ventilkörpers oder an den Zündelektroden vorgesehen sein. Die Kante kann an der Stirnfläche des Ventilkörpers durch eine Erhöhung oder Vertiefung gebildet sein. Dabei ist es vorteilhaft, wenn der Ventilkörper an der Erhöhung einen abgerundeten Flankenbereich aufweist, um die Luftströmung gezielt auf die Zündstelle zu richten. An dem Gehäusekörper können eine oder mehrere stiftartige Zündelektroden derart befestigt sein, daß sie unter einem vorgegebenen Neigungswinkel in Richtung auf die Stirnfläche des Ventilkörpers geneigt sind. Eine Kante der Zündelektroden bildet dabei die Stelle mit dem geringsten Abstand zu der Stirnfläche des Ventilkörpers und legt somit die Zündstelle fest. Wenn die die Zündstelle festlegende Kante an der Stirnfläche des Ventilkörpers ausgebildet ist, kann als Zündelektrode auch ein einfacher die Stirnfläche des Ventilkörpers überspannender Draht Verwendung finden, was eine besonders kostengünstige Ausgestaltung darstellt.
- Besonders vorteilhaft kann die Zündelektrode ringförmig ausgestaltet sein und eine Öffnung für den von der Abspritzöffnung abgespritzten Brennstoffstrahl aufweisen. Die die Zündstelle festlegende Kante ist dabei an der Öffnung der ringförmigen Zündelektrode ausgebildet. Um den Brennstoffstrahl nicht zu behindern, ist es vorteilhaft, wenn die Öffnung der ringförmigen Zündelektrode sich in der Abspritzrichtung des Brennstoffstrahls konisch erweitert, wobei der Öffnungswinkel der Zündelektrode in vorteilhafter Weise an den Öffnungswinkel des Brennstoffstrahls angepaßt ist. Eine Ausbildung der Halterung für die Zündelektrode mit radial verteilt angeordneten stabförmigen Vorsprüngen und radial zu den Vorsprüngen geführten radial angeordneten Stiften gewährleistet eine ausreichende radiale Anströmung der Verbrennungsluft und unterstützt die sichere Entflammung des Brennstoffstrahls.
- Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
- Fig. 1
- einen Schnitt durch ein erfindungsgemäßes Brennstoffeinspritzventil mit integrierter Zündkerze entsprechend einem ersten Ausführungsbeispiel,
- Fig. 2
- eine vergrößerte Darstellung des abspritzseitigen Endbereichs des in Fig. 1 dargestellten Brennstoffeinspritzventils mit integrierter Zündkerze,
- Fig. 3
- einen Schnitt durch den abspritzseitigen Endbereich eines erfindungsgemäßen Brennstoffeinspritzventils mit integrierter Zündkerze entsprechend einem zweiten Ausführungsbeispiel,
- Fig. 4
- einen Schnitt durch den abspritzseitigen Endbereich eines erfindungsgemäßen Brennstoffeinspritzventils mit integrierter Zündkerze entsprechend einem dritten Ausführungsbeispiel,
- Fig. 5
- einen Schnitt durch den abspritzseitigen Endbereich eines erfindungsgemäßen Brennstoffeinspritzventils mit integrierter Zündkerze entsprechend einem vierten Ausführungsbeispiel,
- Fig. 6
- einen Schnitt durch den abspritzseitigen Endbereich eines erfindungsgemäßen Brennstoffeinspritzventils mit integrierter Zündkerze entsprechend einem fünften Ausführungsbeispiel, und
- Fig. 7
- einen Schnitt durch den abspritzseitigen Endbereich eines erfindungsgemäßen Brennstoffeinspritzventils mit integrierter Zündkerze entsprechend einem sechsten Ausführungsbeispiel.
- In Fig. 1 ist ein Brennstoffeinspritzventil mit integrierter Zündkerze zum direkten Einspritzen von Brennstoff in einen Brennraum einer gemischverdichteten, fremdgezündeten Brennkraftmaschine und zum Zünden des in den Brennraum eingespritzten Brennstoffs entsprechend einem Ausführungsbeispiel der Erfindung dargestellt.
- Das allgemein mit dem Bezugszeichen 1 versehene Brennstoffeinspritzventil mit integrierter Zündkerze weist einen ersten Gehäusekörper 2, der mittels eines Gewindes 3 in eine Aufnahmebohrung eines in Fig. 1 nicht dargestellten Zylinderkopfes einschraubbar ist, sowie einen zweiten Gehäusekörper 4 und einen dritten Gehäusekörper 5 auf. Das durch die Gehäusekörper 3, 4, 5 gebildete metallische Gehäuse umgibt einen Isolationskörper 6, der seinerseits einen Ventilkörper 7, einen Dralleinsatz 14 und eine sich im Inneren des Dralleinsatzes 14 über das zulaufseitige Ende 8 des Ventilkörpers 7 hinaus erstreckende Ventilnadel 9 zumindest teilweise radial außenseitig umgibt. Mit der Ventilnadel 9 ist ein abspritzseitig konisch ausgebildeter Ventilschließkörper 10 verbunden, der zusammen mit einer innenseitigen konischen Ventilsitzfläche an dem abspritzseitigen Ende 11 des Ventilkörpers 7 einen Dichtsitz bildet. Im dargestellten Ausführungsbeispiel sind die Ventilnadel 9 und der Ventilschließkörper 10 einteilig ausgebildet. Beim Abheben des Ventilschließkörpers 10 von der Ventilsitzfläche des Ventilkörpers 7 gibt der Ventilschließkörper 10 eine in dem Ventilkörper 7 ausgebildete Austrittsöffnung 12 frei, so daß ein kegelförmiger Brennstoffstrahl 13 abgespritzt wird. Zur besseren umfänglichen Verteilung des Brennstoffs ist im dargestellten Ausführungsbeispiel im Dralleinsatz 14 eine Drallnut 14a vorgesehen, wobei auch mehrere Drallnuten 14a vorgesehen sein können.
- An dem ersten Gehäusekörper 2 sind erste Zündelektroden 70a zur Erzeugung eines Zündfunkens vorgesehen. Die Zündelektroden 70a führen dabei Massepotential, während der Ventilkörper 7 mit einem Hochspannungspotential beaufschlagbar ist. Die Längen der Zündelektroden 70a sind dabei dem Strahlwinkel und der Strahlform des Brennstoffstrahls 13 anzupassen. Dabei können die Zündelektroden 70a entweder in den Brennstoffstrahl 13 eintauchen, oder der Brennstoffstrahl 13 kann in geringem Abstand an den Zündelektroden 70a vorbeigeführt werden, ohne daß die Zündelektroden 70a von dem Brennstoff benetzt werden. Denkbar ist auch ein Eintauchen der Zündelektroden 70a in Lücken von durch die Austrittsöffnung 12 oder mehrere Abspritzöffnungen erzeugte Einzelstrahlen.
- Der Ventilkörper 7 ist vorzugsweise zweiteilig aus einem ersten Teilkörper 7a und einem zweiten Teilkörper 7b ausgebildet, die an einer Schweißstelle 17 zusammengeschweißt sind.
- Die Ventilnadel 9 gliedert sich im Ausführungsbeispiel in einen ersten metallischen, abspritzseitigen Führungsabschnitt 9a, einen zweiten metallischen, zulaufseitigen Führungsabschnitt 9b und einen im Ausführungsbeispiel hülsenförmigen, keramischen Isolationsabschnitt 9c. Der erste Führungsabschnitt 9a ist in dem Dralleinsatz 14 geführt. Im Ausführungsbeispiel erfolgt die Führung durch die zylinderförmige Mantelfläche 18 des einteilig mit dem ersten Führungsabschnitt 9a ausgebildeten Ventilschließkörpers 10. Eine zweite Führung der Ventilnadel 9 erfolgt mittels des zweiten Führungsabschnitts 9b in dem Isolationskörper 6. Dazu wirkt die Mantelfläche 19 des zweiten Führungsabschnitts 9b mit einer Bohrung 20 in dem Isolationskörper 6 zusammen. Die der Führung dienenden Führungsabschnitte 9a und 9b sind als metallische Bauteile ausgebildet und können mit der für die Führung erforderlichen Fertigungsgenauigkeit hergestellt werden. Aufgrund der geringen Oberflächenrauhigkeit der metallischen Bauteile ergibt sich ein nur geringer Reibungskoeffizient an den Führungen. Der Isolationsabschnitt 9c hingegen kann als Keramikteil hergestellt werden. Da der Isolationsabschnitt 9c nicht der Führung der Ventilnadel 9 dient, sind an die Maßgenauigkeit und die Oberflächenrauhigkeit nur geringe Anforderungen zu stellen. Eine Überarbeitung des Keramikteils ist daher nicht erforderlich.
- Die Führungsabschnitte 9a und 9b sind mit dem Isolationsabschnitt 9c nicht nur kraftschlüssig sondern auch formschlüssig verbunden. Bei dem dargestellten Ausführungsbeispiel weisen die Führungsabschnitte 9a und 9b jeweils einen Stift 21 bzw. 22 auf, der jeweils in eine als Bohrung 23 ausgebildete Ausnehmung des Isolationsabschnitts 9c eingeführt ist. Vorzugsweise ist die Verbindung zwischen den Stiften 21 und 22 der Führungsabschnitte 9a und 9b durch einen Reibschluß, durch Verkleben oder Aufschrumpfen hergestellt.
- Der Isolationsabschnitt 9c ist vorzugsweise hülsenförmig ausgebildet. Durch das gegenüber einem Vollkörper eingesparte Material ergibt sich eine Gewichtseinsparung, die zu kürzeren Schaltzeiten des Brennstoffeinspritzventils 1 führt.
- Der zweite Führungsabschnitt 9b ist mit einem Anker 24 verbunden, der mit einer Magnetspule 25 zur elektromagnetischen Betätigung des Ventilschließkörpers 10 zusammenwirkt. Zur Bestromung der Magnetspule 25 dient ein Anschlußkabel 26. Die Aufnahme der Magnetspule 25 übernimmt ein Spulenträger 27. Ein hülsenförmiger Kern 28 durchdringt die Magnetspule 25 zumindest teilweise und ist von dem Anker 24 durch einen aus der Figur nicht erkennbaren Spalt in der geschlossenen Stellung des Brennstoffeinspritzventils 1 beabstandet. Der magnetische Flußkreis wird durch die ferromagnetischen Bauteile 29 und 30 geschlossen. Der Brennstoff strömt über einen Brennstoffeinlaßstutzen 31, der über ein Gewinde 32 mit einem nicht dargestellten Brennstoffverteiler verbindbar ist, in das Brennstoffeinspritzventil mit integrierter Zündkerze 1. Der Brennstoff durchströmt zunächst ein Brennstoffilter 33 und strömt dann in eine Längsbohrung 34 des Kerns 28. In der Längsbohrung 34 ist eine mit einer Hohlbohrung 35 versehene Einstellhülse 36 vorgesehen, die in die Längsbohrung 34 des Kerns 28 einschraubbar ist. Die Einstellhülse 36 dient zur Einstellung der Vorspannung einer Rückstellfeder 37, die den Anker 24 in Schließrichtung beaufschlagt. Zur Sicherung der Einstellung der Einstellhülse 36 dient eine Konterhülse 38.
- Der Brennstoff strömt weiter durch eine Längsbohrung 39 in dem zweiten Führungsabschnitt 9b der Ventilnadel 9 und tritt an einer axialen Aussparung 40 in einen Hohlraum 41 des Isolationskörpers 6 ein. Der Brennstoff strömt von dort in eine Längsbohrung 42 des Ventilkörpers 7, in der sich auch die Ventilnadel 9 erstreckt, und erreicht schließlich die bereits beschriebene Drallnut 14a am äußeren Umfang des Dralleinsatzes 14.
- Wie bereits beschrieben, führen die mit dem Gehäusekörper 2 verbundenen Zündelektroden 70a Massepotential, während der Ventilkörper 7 mit einem Hochspannungspotential zur Erzeugung von Zündfunken beaufschlagbar sind. Zur Zuführung der Hochspannung dient ein Hochspannungskabel 50, das über eine seitliche, taschenartige Ausnehmung 51 in den Isolationskörper 6 eingeführt ist. Das abisolierte Ende 52 des Hochspannungskabels 50 ist an einer Löt- oder Schweißstelle 53 mit einer Kontaktklammer 54 verlötet oder verschweißt. Die Kontaktklammer 54 umklammert den Ventilkörper 7 und stellt einen sicheren elektrisch leitenden Kontakt zwischen dem abisolierten Ende 52 des Hochspannungskabels 50 und dem Ventilkörper 7 her. Zur besseren Zugänglichkeit der Löt- oder Schweißstelle 53 weist der Isolationskörper 6 eine radiale Bohrung 55 auf, über welche ein Löt- oder Schweißwerkzeug zu der Löt- oder Schweißstelle 53 geführt werden kann. Nach dem Herstellen der Löt- oder Schweißverbindung wird die taschenartige Ausnehmung 51 mit einer elektrisch isolierenden Vergußmasse 56 ausgegossen. Dabei kann ein in dem Hochspannungskabel 50 integrierter Abbrandwiderstand 57 in die Vergußmasse 56 mit eingegossen werden. Zur verbesserten Isolation der Löt- oder Schweißstelle 53 kann eine hochspannungsfeste Folie 58 in die taschenartige Ausnehmung 51 des Isolationskörpers 6 eingelegt und mit der Vergußmasse 56 ebenfalls vergossen werden. Als Vergußmasse 56 eignet sich z. B. Silikon.
- Der Isolationskörper 6 und der Ventilkörper 7 können an einem Gewinde 60 miteinander verschraubt sein. Ferner kann der Isolationskörper 6 mit dem Gehäusekörper 2 an einem weiteren Gewinde 61 miteinander verschraubt sein. Vorzugsweise werden die Gewinde 60 und 61 mit einem geeigneten Klebstoff gesichert. Der Isolationskörper 6 kann als Spritzkeramikteil kostengünstig hergestellt werden. Der Ventilkörper 7 und der Isolationskörper 6 können mit einem Montagedorn verschraubt und verklebt werden, um Fluchtfehler in der Führung der Ventilnadel 9 auszugleichen.
- Die räumlich nahe Anordnung des Abbrandwiderstands 57 zu den Zündelektroden 70a reduziert den Abbrand an den Zündelektroden 7a und erlaubt trotz einer erhöhten elektrischen Kapazität eine metallische Vollummantelung des Brennstoffeinspritzventils mit integrierter Zündkerze 1 durch die metallischen Gehäusekörper 2, 4 und 5.
- Fig. 2 zeigt eine vergrößerte Darstellung des abspritzseitigen Endbereichs des in Fig. 1 dargestellten ersten Ausführungsbeispiels des Brennstoffeinspritzventils mit integrierter Zündkerze 1. Neben dem Ventilschließkörper 10 und der als Zylinderbohrung ausgebildeten Austrittsöffnung 12 sind die Zündelektroden 70a in dieser Darstellung besonders gut zu erkennen. Das Brennstoffeinspritzventil mit integrierter Zündkerze 1 ist in der Darstellung der Fig. 2 in einen Zylinderkopf 71 einer Brennkraftmaschine eingeschraubt, so daß die Zündelektroden 70a in einen Brennraum 72 der Brennkraftmaschine ragen.
- Zur Befestigung der in dem Ausführungsbeispiel der Fig. 1 und 2 stiftartig, z. B. zylinderförmig ausgebildeten Zündelektroden 70a dienen mehrere Vorsprünge 78 des Gehäusekörpers 2. Die Vorsprünge 78 des Gehäusekörpers 2 sind dabei an dem Gehäusekörper 2 umfänglich versetzt zueinander angeordnet, wobei zwischen den einzelnen Vorsprüngen 78 relativ große Zwischenräume gebildet sind, um einen ungehinderten Zustrom der Verbrennungsluft zu der Ausmündung der Austrittsöffnung 12 an der dem Brennraum 72 zugewandten Stirnfläche 73 des Ventilkörpers 7 zu ermöglichen. An jedem der Halterung dienenden Vorsprung 78 des Gehäusekörpers 2 ist jeweils eine Zündelektrode 70a angeordnet und an dem zugeordneten Vorsprung 78 z. B. durch Verschweißen oder Verschrauben befestigt. Die Zündelektroden 70a sind jeweils gegenüber der Ebene der Stirnfläche 73 des Ventilkörpers 7 um einen vorgegebenen Neigungswinkel α in Richtung auf die Stirnfläche 73 des Ventilkörpers 7 geneigt. Dabei liegt der Stirnfläche 73 des Ventilkörpers 7 jeweils eine Kante 74 der stiftförmigen Zündelektroden 70a gegenüber. Die Position der Kanten 74 definiert dabei die Stelle des geringsten Abstandes zwischen den Zündelektroden 70a und der Stirnfläche 73 des Ventilkörpers 7 und legt somit die Zündstelle fest. Aufgrund der kantenförmigen Ausbildung ergibt sich an dieser Stelle eine erhöhte elektrische Feldstärke, die die Plasmaentladung des Zündfunkens hervorruft. Die durch die Kanten 74 festgelegte Zündstelle ist daher von Einspritzzyklus zu Einspritzzyklus reproduzierbar. Die günstigste Position der Zündstelle kann durch Versuche optimiert werden und liegt im Bereich der sogenannten Strahlwurzel des von der Austrittsöffnung 12 abgespritzten Brennstoffstrahls 13. Durch Veränderung der Länge und des Neigungswinkels α der Zündelektroden 70a kann die Position der Kanten 74 an den Öffnungswinkel β des von der Austrittsöffnung 12 bereits abgespritzten Brennstoffstrahls 13 angepaßt werden. Der Abstand der Kanten 74 der Zündelektroden 70a von der Stirnfläche 73 des Ventilkörpers 7 kann durch Verbiegen einer Knickstelle 75 der Vorsprünge 78 fertigungstechnisch exakt eingestellt werden.
- Fig. 3 zeigt einen Schnitt durch den abspritzseitigen Endbereich eines Brennstoffeinspritzventils mit integrierter Zündkerze 1 entsprechend einem zweiten Ausführungsbeispiel der Erfindung. Bereits beschriebene Elemente sind mit übereinstimmenden Bezugszeichen versehen.
- Der Unterschied zu dem anhand der Fig. 1 und 2 beschriebenen Ausführungsbeispiel besteht im wesentlichen darin, daß die Kante zur Festlegung der Position des Funkenüberschlags und somit der Zündstelle nicht an der Zündelektrode 70, sondern an der Stirnfläche 73 des Ventilkörpers 7 ausgebildet ist. Dabei weist die Stirnfläche 73 des Ventilkörpers 7 eine Erhöhung 80 mit einer umlaufenden Kante 81 auf. An der Kante 81 entsteht bei Beaufschlagung des Ventilkörpers 7 mit einer Hochspannung eine erhöhte elektrische Feldstärke, die die Plasmaentladung des Zündfunkens auslöst. Die Position der Zündstelle kann in bezug auf die Position der Austrittsöffnung 12 durch geeignete Dimensionierung des Durchmessers der Erhöhung 80 exakt festgelegt werden. Die das Massepotential führende Zündelektrode 70b kann bei diesem Ausführungsbeispiel durch einen einfachen Draht gebildet werden, der zwischen einem ersten Vorsprung 78a des Gehäusekörpers 2 und einem zweiten Vorsprung 78b des Gehäusekörpers 2 verspannt ist und durch Schweißnähte 82 fixiert sein kann. Durch die drahtförmige Zündelektrode 70b ergibt sich eine Ausgestaltung mit besonders geringem Fertigungsaufwand. Anstatt einer Erhöhung 80 kann an der Stirnfläche 73 des Ventilkörpers 7 auch eine Vertiefung vorgesehen sein, an deren Begrenzung ebenfalls eine Kante zur punktuellen Erhöhung der elektrischen Feldstärke ausgebildet ist.
- Fig. 4 zeigt einen Schnitt durch den abspritzseitigen Endbereich eines dritten Ausführungsbeispiels eines Brennstoffeinspritzventils mit integrierter. Zündkerze 1. Auch hier sind bereits beschriebene Elemente mit übereinstimmenden Bezugszeichen versehen.
- Im Unterschied zu den bereits beschriebenen Ausführungsbeispielen ist bei dem in Fig. 4 dargestellten Ausführungsbeispiel die Zündelektrode 70c ringförmig ausgebildet und weist eine Öffnung 90 für den von der Austrittsöffnung 12 abgespritzten Brennstoffstrahl 13 auf. Die Öffnung 90 der ringförmigen Zündelektrode 70c ist vorzugsweise mit einer konischen Innenfläche ausgebildet und erweitert sich in der Abspritzrichtung 91 des Brennstoffstrahls 13. Der Öffnungswinkel β' der Öffnung 90 der ringförmigen Zündelektrode 70c ist vorzugsweise an den Öffnungswinkel β des Brennstoffstrahls 13 angepaßt. Vorzugsweise stimmt der Öffnungswinkel β' der Öffnung 90 mit dem Öffnungswinkel β des Brennstoffstrahls 13 überein. An dem inneren, der Stirnfläche 73 des Ventilkörpers 7 gegenüberliegenden Ende weist die Öffnung 90 eine spitzwinklige Kante 92 auf, die bei diesem Ausführungsbeispiel die Zündstelle festlegt. Die ringförmige Zündelektrode 70c ist über Verbindungsstifte 93 an den Vorsprüngen 78 des Gehäusekörpers 2 befestigt. Die Vorsprünge 78 sind radial umfänglich an dem Gehäusekörper 2 verteilt. Beispielsweise sind 3 oder 4 derartige Vorsprünge 78 vorgesehen. Jedem Vorsprung 78 ist ein Verbindungsstift 93 zugeordnet. Die Vorsprünge 78 und die Verbindungsstifte 93 sind relativ schmal ausgeführt, so daß zwischen den Vorsprüngen 78 und den Verbindungsstiften 93 relativ große Lücken verbleiben, durch welche die Verbrennungsluft ungehindert zu der Ausmündung der Austrittsöffnung 12 und zu der durch die umlaufende Kante 92 festgelegten Zündstelle strömen kann. Ein ungehinderter Zustrom der Verbrennungsluft ist für eine sichere Entflammung des Brennstoffstrahls 13 und eine geringe Verrußung und Verkokung an der Ausmündung der Austrittsöffnung 12 wesentlich.
- Fig. 5 zeigt einen Schnitt durch das abspritzseitige Ende eines Brennstoffeinspritzventils mit integrierter Zündkerze 1 entsprechend einem vierten Ausführungsbeispiel. Bereits beschriebene Elemente sind auch hier mit übereinstimmenden Bezugszeichen versehen. Der Unterschied zu dem bereits anhand von Fig. 4 beschriebenen Ausführungsbeispiel besteht im wesentlichen darin, daß die ringförmige Zündelektrode 70c einen abschrägten Abschnitt 96 aufweist, an welchen sich die Verbindungsstifte 93 in einer Fluchtlinie anschließen. Dadurch werden Kanten am Übergang zwischen den Stiften 93 und der ringförmigen Zündelektrode 70c vermieden, so daß an diesen Stellen keine erhöhte Feldstärke auftritt, die zu einer parasitären Zündstelle führen könnten.
- Fig. 6 zeigt einen Schnitt durch das abspritzseitige Ende eines Brennstoffeinspritzventils mit integrierter Zündkerze 1 entsprechend einem fünften Ausführungsbeispiel. Auch hier sind bereits beschriebene Elemente mit übereinstimmenden Bezugszeichen versehen. Das in Fig. 6 dargestellte Ausführungsbeispiel stellt eine Kombination der in den Fig. 3 und 4 dargestellten Ausführungsbeispiele dar. Dabei ist eine Ringelektrode 70c vorgesehen, deren Öffnung 90 an dem der Stirnfläche 73 des Ventilkörpers 7 gegenüberliegenden Ende eine Kante 92 aufweist. Die Stirnfläche 73 des Ventilkörpers 7 weist eine Erhöhung 80 mit einer umlaufenden Kante 81 auf. Die umlaufende Kante 81 der Erhöhung 80 befindet sich in der Nähe der umlaufenden Kante 92 der ringförmigen Zündelektrode 70c. Die Zündstelle befindet sich zwischen den beiden umlaufenden Kanten 92 und 81, da dort der Ventilkörper 7 und die Zündelektrode 70c einerseits den geringsten Abstand voneinander haben und andererseits an dieser Stelle aufgrund der Kanten 81 und 92 eine besonders hohe elektrische Feldstärke auftritt.
- Fig. 7 zeigt einen Schnitt durch den abspritzseitigen Endbereich eines Brennstoffeinspritzventils mit integrierter Zündkerze 1 entsprechend einem sechsten Ausführungsbeispiel der Erfindung. Auch hier sind bereits beschriebene Elemente mit übereinstimmenden Bezugszeichen versehen. Das in Fig. 7 dargestellte Ausführungsbeispiel entspricht weitgehend dem bereits anhand von Fig. 6 beschriebenen Ausführungsbeispiel mit dem Unterschied, daß der Flankenbereich 97 der Erhöhung 80 der Stirnfläche 73 des Ventilkörpers 7 konkav abgerundet is:. Dadurch wird die seitlich anströmende Verbrennungsluft zu dem Brennstoffstrahl 13 und der durch die umlaufenden Kanten 81 und 92 festgelegten Zündstelle hingeführt. Es ergibt sich daher eine besonders gute Einlaufgeometrie für die Verbrennungsluft, so daß eine sichere Entflammung des Brennstoffstrahls 13 und eine schadstoffarme Verbrennung gewährleistet sind. Einer Verrußung und Verkokung der Ausmündung der Austrittsöffnung 12 wird entgegengewirkt.
- Verglichen mit bekannten langen und dünnen Fingerelektroden wird durch die Form und Gestaltung der Zündelektroden 70a - 70c der vorstehend beschriebenen Ausführungsbeispiele eine unbeabsichtigte Glühentzündung vermieden. Ferner weisen die erfindungsgemäß gestalteten Zündelektroden 70a bis 70c eine erhöhte mechanische Stabilität und eine verlängerte Lebensdauer auf. Durch die Geometrie der Zündelektroden 70a bis 70c und des Ventilkörpers 7 wird an der Zündstelle ein gleichbleibendes Brennstoff-Luftgemisch mit Lambda zwischen 0,6 und 1,0 erreicht. Die Zündstelle liegt im Bereich der geringsten zyklischen Schwankungen des Brennstoffstrahls. Durch die Zündfunken werden sich eventuell an der Stirnfläche 73 des Ventilkörpers 7 ablagernde Verunreinigungen entsprechend einem Selbstreinigungseffekt abgebrannt.
Claims (3)
- Brennstoffeinspritzventil mit integrierter Zündkerze (1) zum direkten Einspritzen von Brennstoff in einen Brennraum (72) einer Brennkraftmaschine und zum Zünden des in den Brennraum (72) eingespritzten Brennstoffs mit
einem Ventilkörper (7), der zusammen mit einem Ventilschließkörper (10) einen Dichtsitz bildet, an welchen sich zumindest eine an einer dem Brennraum (72) zugewandten Stirnfläche (73) des Ventilkörpers (7) ausmündende Austrittsöffnung (12) anschließt, und
einen von dem Ventilkörper (7) isolierten Gehäusekörper (2), wobei an dem Gehäusekörper (2) zumindest eine Zündelektrode (70a) vorgesehen ist, um einen Funkenüberschlag zwischen dem Ventilkörper (7) und der Zündelektrode (70a) zu erzeugen,
wobei die Zündelektrode (70a) und der Ventilkörper (7) so geformt sind, daß der Funkenüberschlag zwischen der dem Brennraum (72) zugewandten Stirnfläche (73) des Ventilkörpers (7) und der Zündelektrode (70a) erfolgt, und
die dem Brennraum (72) zugewandte Stirnfläche (73) des Ventilkörpers (7) und/oder die Zündelektrode (70a) in der Nähe der Austrittsöffnung (12) eine Kante (74, 81, 92) aufweist, um die Position des Funkenüberschlags an der Stirnfläche (73) des Ventilkörpers (7) bezüglich der Position der Austrittsöffnung (12) reproduzierbar festzulegen,
dadurch gekennzeichnet,
daß an dem Gehäusekörper (2) eine die Stirnfläche (73) des Ventilkörpers (7) überragende Halterung (78) vorgesehen ist, an welcher eine oder mehrere stiftförmige Zündelektroden (70a) derart befestigt sind, daß sie unter einem vorgegebenen Neigungswinkel (α) in Richtung auf die Stirnfläche (73) des Ventilkörpers (7) geneigt sind, wobei der Stirnfläche (73) des Ventilkörpers (7) jeweils eine Kante (74) der Zündelektroden (70a) gegenüberliegt. - Brennstoffeinspritzventil mit integrierter Zündkerze nach Anspruch 1,
dadurch gekennzeichnet,
daß die Stirnfläche (73) des Ventilkörpers (7) in einem vorgegebenen Abstand zu der Austrinsöffnung (12) eine Erhöhung (80) oder Vertiefung mit einer die Erhöhung (80) bzw. Vertiefung begrenzenden Kante (81) aufweist. - Brennstoffeinspritzventil mit integrierter Zündkerze nach Anspruch 2,
dadurch gekennzeichnet,
daß die Stirnfläche (73) des Ventilkörpers (7) eine Erhöhung (80) mit einem abgerundeten Flankenbereich (97) aufweist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04000412A EP1431571B1 (de) | 1998-06-27 | 1999-04-01 | Brennstoffeinspritzventil mit integrierter Zündkerze |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19828849 | 1998-06-27 | ||
DE19828849A DE19828849A1 (de) | 1998-06-27 | 1998-06-27 | Brennstoffeinspritzventil mit integrierter Zündkerze |
PCT/DE1999/000984 WO2000000738A1 (de) | 1998-06-27 | 1999-04-01 | Brennstoffeinspritzventil mit integrierter zündkerze |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04000412A Division-Into EP1431571B1 (de) | 1998-06-27 | 1999-04-01 | Brennstoffeinspritzventil mit integrierter Zündkerze |
EP04000412A Division EP1431571B1 (de) | 1998-06-27 | 1999-04-01 | Brennstoffeinspritzventil mit integrierter Zündkerze |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1032762A1 EP1032762A1 (de) | 2000-09-06 |
EP1032762B1 true EP1032762B1 (de) | 2004-03-31 |
Family
ID=7872311
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99924738A Expired - Lifetime EP1032762B1 (de) | 1998-06-27 | 1999-04-01 | Brennstoffeinspritzventil mit integrierter zündkerze |
EP04000412A Expired - Lifetime EP1431571B1 (de) | 1998-06-27 | 1999-04-01 | Brennstoffeinspritzventil mit integrierter Zündkerze |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04000412A Expired - Lifetime EP1431571B1 (de) | 1998-06-27 | 1999-04-01 | Brennstoffeinspritzventil mit integrierter Zündkerze |
Country Status (6)
Country | Link |
---|---|
US (2) | US6536405B1 (de) |
EP (2) | EP1032762B1 (de) |
JP (1) | JP2002519571A (de) |
KR (1) | KR20010022302A (de) |
DE (3) | DE19828849A1 (de) |
WO (1) | WO2000000738A1 (de) |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE325949T1 (de) * | 1999-10-18 | 2006-06-15 | Orbital Eng Pty | Brennstoffdirekteinspritzung in einer brennkraftmaschine |
AUPQ588500A0 (en) | 2000-02-28 | 2000-03-23 | Orbital Engine Company (Australia) Proprietary Limited | Combined fuel injection and ignition means |
AU2001268256A1 (en) * | 2000-06-08 | 2002-01-02 | Knite, Inc. | Combustion enhancement system and method |
DE10038293A1 (de) | 2000-08-05 | 2002-02-14 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE10150167B4 (de) * | 2001-10-11 | 2016-01-07 | Volkswagen Ag | Verbrennungskraftmaschine mit verbesserter Hochfrequenzzündung |
DE10214167A1 (de) | 2002-03-28 | 2003-10-09 | Bosch Gmbh Robert | Brennstoffeinspritzventil-Zündkerze-Kombination |
JP4082347B2 (ja) * | 2003-12-18 | 2008-04-30 | トヨタ自動車株式会社 | プラズマインジェクター及び排ガス浄化システム |
DE102004024535A1 (de) * | 2004-05-18 | 2005-12-15 | Robert Bosch Gmbh | Brennstoffeinspritzventil mit integrierter Zündvorrichtung |
FR2870569B1 (fr) * | 2004-05-19 | 2006-07-21 | Renault Sas | Dispositif injecteur de carburant pour moteur a combustion interne a allumage commande |
US6955154B1 (en) * | 2004-08-26 | 2005-10-18 | Denis Douglas | Fuel injector spark plug |
US8082735B2 (en) * | 2005-04-06 | 2011-12-27 | Massachusetts Institute Of Technology | Optimized fuel management system for direct injection ethanol enhancement of gasoline engines |
US8353269B2 (en) * | 2004-11-18 | 2013-01-15 | Massachusetts Institute Of Technology | Spark ignition engine that uses intake port injection of alcohol to extend knock limits |
US7314033B2 (en) * | 2004-11-18 | 2008-01-01 | Massachusetts Institute Of Technology | Fuel management system for variable ethanol octane enhancement of gasoline engines |
US20080060627A1 (en) | 2004-11-18 | 2008-03-13 | Massachusetts Institute Of Technology | Optimized fuel management system for direct injection ethanol enhancement of gasoline engines |
WO2008050192A2 (en) * | 2006-03-08 | 2008-05-02 | Ethanol Boosting Systems, Llc | Single nozzle injection of gasoline and anti-knock fuel |
WO2007106416A2 (en) * | 2006-03-10 | 2007-09-20 | Ethanol Boosting Systems, Llc. | Fuel tank system for direct ethanol injection octane boosted gasoline engine |
US7739985B2 (en) * | 2006-03-23 | 2010-06-22 | Lonox Engine Company, Inc. | Internal combustion water injection engine |
DE102006029210A1 (de) * | 2006-06-26 | 2007-12-27 | Ford Global Technologies, LLC, Dearborn | Einspritzdüse zur Einspritzung von Kraftstoff in einen Zylinder einer direkteinspritzenden fremdgezündeten Brennkraftmaschine |
US7650873B2 (en) | 2006-07-05 | 2010-01-26 | Advanced Propulsion Technologies, Inc. | Spark ignition and fuel injector system for an internal combustion engine |
WO2008014265A2 (en) * | 2006-07-24 | 2008-01-31 | Ethanol Boosting Systems, Llc | Single nozzle direct injection system for rapidly variable gasoline/anti-knock agent mixtures |
JP4818873B2 (ja) * | 2006-10-25 | 2011-11-16 | 東洋電装株式会社 | 点火プラグ一体型多機能点火装置 |
JP4414457B2 (ja) * | 2007-12-19 | 2010-02-10 | 日本特殊陶業株式会社 | スパークプラグ |
US8561598B2 (en) * | 2008-01-07 | 2013-10-22 | Mcalister Technologies, Llc | Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors |
US8413634B2 (en) | 2008-01-07 | 2013-04-09 | Mcalister Technologies, Llc | Integrated fuel injector igniters with conductive cable assemblies |
US8365700B2 (en) * | 2008-01-07 | 2013-02-05 | Mcalister Technologies, Llc | Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control |
US7628137B1 (en) | 2008-01-07 | 2009-12-08 | Mcalister Roy E | Multifuel storage, metering and ignition system |
US8074625B2 (en) | 2008-01-07 | 2011-12-13 | Mcalister Technologies, Llc | Fuel injector actuator assemblies and associated methods of use and manufacture |
US8387599B2 (en) * | 2008-01-07 | 2013-03-05 | Mcalister Technologies, Llc | Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines |
US8635985B2 (en) | 2008-01-07 | 2014-01-28 | Mcalister Technologies, Llc | Integrated fuel injectors and igniters and associated methods of use and manufacture |
US8522758B2 (en) | 2008-09-12 | 2013-09-03 | Ethanol Boosting Systems, Llc | Minimizing alcohol use in high efficiency alcohol boosted gasoline engines |
US8069836B2 (en) * | 2009-03-11 | 2011-12-06 | Point-Man Aeronautics, Llc | Fuel injection stream parallel opposed multiple electrode spark gap for fuel injector |
CA2772044C (en) | 2009-08-27 | 2013-04-16 | Mcalister Technologies, Llc | Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control |
CN102713242B (zh) * | 2009-08-27 | 2016-01-20 | 麦卡利斯特技术有限责任公司 | 带有导电电缆组件的一体的燃料喷射器点火装置 |
SG181518A1 (en) * | 2009-12-07 | 2012-07-30 | Mcalister Technologies Llc | Adaptive control system for fuel injectors and igniters |
KR101153801B1 (ko) * | 2009-12-31 | 2012-06-13 | 에이치케이엠엔에스(주) | 방사형 연료관이 구비된 플라즈마 버너장치 |
US20110297753A1 (en) | 2010-12-06 | 2011-12-08 | Mcalister Roy E | Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture |
EP2534347B1 (de) | 2010-02-13 | 2016-05-04 | McAlister, Roy Edward | Verfahren und systeme zur adaptiven kühlung von verbrennungskammern in motoren |
KR101245398B1 (ko) | 2010-02-13 | 2013-03-19 | 맥알리스터 테크놀로지즈 엘엘씨 | 음파 변경기를 갖는 연료 분사기 조립체 및 관련 사용 및 제조 방법 |
DE102010024567B4 (de) * | 2010-06-22 | 2012-05-31 | Continental Automotive Gmbh | Zündvorrichtung für einen Verbrennungsmotor und Zylinderkopfdichtung mit einer darin eingebetteten Elektrode einer Zündvorrichtung |
US8528519B2 (en) | 2010-10-27 | 2013-09-10 | Mcalister Technologies, Llc | Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture |
US8091528B2 (en) | 2010-12-06 | 2012-01-10 | Mcalister Technologies, Llc | Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture |
WO2012112615A1 (en) | 2011-02-14 | 2012-08-23 | Mcalister Technologies, Llc | Torque multiplier engines |
CN103890343B (zh) | 2011-08-12 | 2015-07-15 | 麦卡利斯特技术有限责任公司 | 用于改进的发动机冷却及能量产生的系统和方法 |
WO2013025626A1 (en) | 2011-08-12 | 2013-02-21 | Mcalister Technologies, Llc | Acoustically actuated flow valve assembly including a plurality of reed valves |
US8851047B2 (en) * | 2012-08-13 | 2014-10-07 | Mcallister Technologies, Llc | Injector-igniters with variable gap electrode |
US20140090622A1 (en) * | 2012-09-28 | 2014-04-03 | Harold Cranmer Seelig | Internal combustion engine |
US9200561B2 (en) | 2012-11-12 | 2015-12-01 | Mcalister Technologies, Llc | Chemical fuel conditioning and activation |
US8800527B2 (en) | 2012-11-19 | 2014-08-12 | Mcalister Technologies, Llc | Method and apparatus for providing adaptive swirl injection and ignition |
US9021781B2 (en) | 2013-01-04 | 2015-05-05 | General Electric Company | Fuel injector having an ignitor for igniting a combustor of a gas turbine |
US10941746B2 (en) * | 2013-03-15 | 2021-03-09 | Alfred Anthony Black | I.C.E., igniter adapted for optional placement of an integral fuel injector in direct fuel injection mode |
US9562500B2 (en) | 2013-03-15 | 2017-02-07 | Mcalister Technologies, Llc | Injector-igniter with fuel characterization |
US8820293B1 (en) | 2013-03-15 | 2014-09-02 | Mcalister Technologies, Llc | Injector-igniter with thermochemical regeneration |
GB201521184D0 (en) * | 2015-12-01 | 2016-01-13 | Delphi Internat Operations Luxembourg S À R L | Gaseous fuel injectors |
KR101930077B1 (ko) * | 2016-11-28 | 2018-12-17 | 한국기계연구원 | 플라즈마 이용 연료 분무 연소기 및 이를 이용한 가스 가열 장치 |
US10690107B1 (en) | 2019-02-18 | 2020-06-23 | Caterpillar Inc. | Composite spark and liquid pilot igniter for dual fuel engine |
US11156148B1 (en) | 2021-02-24 | 2021-10-26 | Aramco Services Company | Active prechamber for use in an internal combustion engine |
US11359590B1 (en) | 2021-05-26 | 2022-06-14 | Caterpillar Inc. | Igniter for dual fuel engine having liquid fuel outlet checks and spark ignition source |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1310970A (en) * | 1919-07-22 | stsottd | ||
FR640927A (fr) * | 1927-04-28 | 1928-07-24 | Procédé et dispositif pour l'utilisation de combustibles liquides lourds dans les moteurs et leur application à la transformation des moteurs à essence | |
US2795214A (en) * | 1955-05-20 | 1957-06-11 | Ii Thurston W Shook | Combined fuel injection and ignition system for internal combustion engines |
DE1178644B (de) | 1961-03-17 | 1964-09-24 | Bosch Gmbh Robert | Mit Einspritzduese vereinigte Zuendkerze fuer Brennkraftmaschinen, insbesondere Gasturbinen |
US3173409A (en) * | 1961-10-23 | 1965-03-16 | Glenn B Warren | Internal combustion engine operating on stratified combustion principle and combined fuel injection and igniting device for use therewith |
US4095580A (en) * | 1976-10-22 | 1978-06-20 | The United States Of America As Represented By The United States Department Of Energy | Pulse-actuated fuel-injection spark plug |
US4736718A (en) * | 1987-03-19 | 1988-04-12 | Linder Henry C | Combustion control system for internal combustion engines |
DE4140962A1 (de) | 1991-12-12 | 1993-01-21 | Bosch Gmbh Robert | Verfahren und vorrichtung zur einblasung eines brennstoff-luft-gemisches |
JPH0719142A (ja) | 1993-06-30 | 1995-01-20 | Ngk Spark Plug Co Ltd | 燃料噴射弁付き点火プラグ |
US5497744A (en) * | 1993-11-29 | 1996-03-12 | Toyota Jidosha Kabushiki Kaisha | Fuel injector with an integrated spark plug for a direct injection type engine |
-
1998
- 1998-06-27 DE DE19828849A patent/DE19828849A1/de not_active Withdrawn
-
1999
- 1999-04-01 EP EP99924738A patent/EP1032762B1/de not_active Expired - Lifetime
- 1999-04-01 JP JP2000557074A patent/JP2002519571A/ja not_active Withdrawn
- 1999-04-01 US US09/486,402 patent/US6536405B1/en not_active Expired - Fee Related
- 1999-04-01 EP EP04000412A patent/EP1431571B1/de not_active Expired - Lifetime
- 1999-04-01 DE DE59913266T patent/DE59913266D1/de not_active Expired - Fee Related
- 1999-04-01 KR KR1020007000881A patent/KR20010022302A/ko not_active Application Discontinuation
- 1999-04-01 DE DE59909032T patent/DE59909032D1/de not_active Expired - Fee Related
- 1999-04-01 WO PCT/DE1999/000984 patent/WO2000000738A1/de not_active Application Discontinuation
-
2003
- 2003-01-29 US US10/355,604 patent/US6748918B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20010022302A (ko) | 2001-03-15 |
DE19828849A1 (de) | 1999-12-30 |
WO2000000738A1 (de) | 2000-01-06 |
DE59909032D1 (de) | 2004-05-06 |
JP2002519571A (ja) | 2002-07-02 |
US6748918B2 (en) | 2004-06-15 |
EP1431571A3 (de) | 2004-08-04 |
DE59913266D1 (de) | 2006-05-18 |
EP1431571A2 (de) | 2004-06-23 |
US6536405B1 (en) | 2003-03-25 |
US20030111042A1 (en) | 2003-06-19 |
EP1431571B1 (de) | 2006-03-29 |
EP1032762A1 (de) | 2000-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1032762B1 (de) | Brennstoffeinspritzventil mit integrierter zündkerze | |
EP1032761B1 (de) | Brennstoffeinspritzventil mit integrierter zündkerze | |
EP1751422B1 (de) | Brennstoffeinspritzventil mit integrierter zündvorrichtung | |
DE3731211C2 (de) | ||
DE10159910A1 (de) | Brennstoffeinspritzventil-Zündkerze-Kombination | |
DE10159909A1 (de) | Brennstoffeinspritzventil-Zündkerze-Kombination | |
DE19744739A1 (de) | Brennstoffeinspritzventil | |
WO1991019090A1 (de) | Elektromagnetisch betätigbares brennstoffeinspritzventil | |
DE19722720A1 (de) | Kraftstoffinjektor mit vereinfachter Bauteilform und vereinfachtem Zusammenbau | |
DE10118164B4 (de) | Brennstoffeinspritzventil | |
DE69404909T2 (de) | Zündkerze mit Kraftstoffeinspritzventil | |
EP0659235B1 (de) | Elektromagnetisch betätigbares brennstoffeinspritzventil | |
DE10049033A1 (de) | Brennstoffeinspritzventil | |
EP1030968A1 (de) | Brennstoffeinspritzventil | |
DE10050055A1 (de) | Brennstoffeinspritzventil | |
EP0188746A2 (de) | Einrichtung zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine | |
EP1066468A1 (de) | Brennstoffeinspritzventil | |
DE4422733A1 (de) | Zündkerze für Brenkraftmaschinen | |
EP1628370B1 (de) | Elektrische Verbindungsvorrichtung | |
DE4018317C1 (de) | ||
DE19925984A1 (de) | Brennstoffeinspritzventil und Verfahren zu dessen Herstellung | |
DE10052486A1 (de) | Brennstoffeinspritzventil | |
DE19726382A1 (de) | Brennstoffeinspritzventil | |
DE3731231A1 (de) | Einrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine | |
EP1197652A2 (de) | Brennstoffeinspritzventil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000706 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20030210 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59909032 Country of ref document: DE Date of ref document: 20040506 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040709 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050321 Year of fee payment: 7 |
|
26N | No opposition filed |
Effective date: 20050104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060401 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060420 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080626 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090428 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100401 |