EP1032762A1 - Brennstoffeinspritzventil mit integrierter zündkerze - Google Patents

Brennstoffeinspritzventil mit integrierter zündkerze

Info

Publication number
EP1032762A1
EP1032762A1 EP99924738A EP99924738A EP1032762A1 EP 1032762 A1 EP1032762 A1 EP 1032762A1 EP 99924738 A EP99924738 A EP 99924738A EP 99924738 A EP99924738 A EP 99924738A EP 1032762 A1 EP1032762 A1 EP 1032762A1
Authority
EP
European Patent Office
Prior art keywords
valve body
valve
face
spark plug
ignition electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99924738A
Other languages
English (en)
French (fr)
Other versions
EP1032762B1 (de
Inventor
Franz Rieger
Gernot Wuerfel
Stefan Kampmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP04000412A priority Critical patent/EP1431571B1/de
Publication of EP1032762A1 publication Critical patent/EP1032762A1/de
Application granted granted Critical
Publication of EP1032762B1 publication Critical patent/EP1032762B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/06Fuel-injectors combined or associated with other devices the devices being sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • F02M61/163Means being injection-valves with helically or spirally shaped grooves

Definitions

  • the invention relates to a fuel injector with an integrated spark plug according to the preamble of the main claim.
  • the fuel injector with an integrated spark plug is used to inject fuel directly into the combustion chamber of an internal combustion engine and to ignite the fuel injected into the combustion chamber.
  • the compact integration of a fuel injector with a spark plug saves installation space on the cylinder head of the internal combustion engine.
  • the known fuel injection valve with an integrated spark plug has a valve body which, together with a valve closing body which can be actuated by means of a valve needle, forms a sealing seat, to which an injection opening opening on an end face of the valve body facing the combustion chamber is connected.
  • the valve body is insulated with high voltage resistance by a ceramic insulation body from a housing body that can be screwed into the cylinder head of the pulp engine.
  • a ground electrode is located on the housing body in order to form a counter potential to the valve body to which high voltage is applied. When a sufficient high voltage is applied to the valve body, a sparkover occurs between the valve body and the ground electrode connected to the housing body.
  • the fuel injector according to the invention with an integrated spark plug with the characterizing features of the main claim has the advantage that the position of the sparkover with respect to the position of the spray opening is reproducible and clearly defined. This ensures reliable ignition of the sprayed fuel jet.
  • the position of the flashover and thus the ignition point can be placed in the area of the sprayed fuel jet with the least cyclical jet fluctuations. The point in time at which the fuel jet ignites therefore exhibits extremely small fluctuations from one injection cycle to the next.
  • By positioning the flashover or the ignition point in the vicinity of the spray opening sooting and coking of the spray opening are counteracted and thus a change in the jet geometry caused thereby is counteracted.
  • the edge for determining the position of the sparkover can be provided either on the end face of the valve body or on the ignition electrodes.
  • the edge can be formed on the end face of the valve body by an elevation or depression. It is advantageous if the valve body has an embossed flank area on the elevation in order to direct the air flow specifically to the ignition point.
  • One or more pin-like ignition electrodes can be attached to the housing body in such a way that they are inclined at a predetermined angle of inclination in the direction of the end face of the valve body.
  • An edge of the ignition electrodes forms the point with the smallest distance from the end face of the valve body and thus defines the ignition point. If the edge defining the ignition point is formed on the end face of the valve body, a simple ignition electrode can also be used wire spanning the end face of the valve body are used, which represents a particularly inexpensive embodiment.
  • the ignition electrode can be designed in a ring shape and have an opening for the fuel jet sprayed off from the spray opening.
  • the edge defining the ignition point is formed at the opening of the ring-shaped ignition electrode.
  • the opening of the ring-shaped ignition electrode widens conically in the spray direction of the fuel jet, the opening angle of the ignition electrode being advantageously adapted to the opening angle of the fuel jet.
  • a design of the support for the ignition electrode with radially distributed rod-shaped projections and radially arranged pins guided radially to the projections ensures a sufficient radial flow of the combustion air and supports the reliable ignition of the fuel jet.
  • FIG. 1 shows a section through a fuel injection valve according to the invention with an integrated spark plug in accordance with a first exemplary embodiment
  • FIG. 2 is an enlarged view of the end region of the injection side of the fuel injector shown in FIG. 1 with an integrated spark plug,
  • FIG. 3 shows a section through the spray-side end region of a fuel injection valve according to the invention with an integrated spark plug in accordance with a second exemplary embodiment
  • FIG. 4 shows a section through the spray-side end region of a fuel injector according to the invention with an integrated spark plug in accordance with a third exemplary embodiment
  • 5 shows a section through the spray-side end region of a fuel injection valve according to the invention with an integrated spark plug in accordance with a fourth exemplary embodiment
  • 6 shows a section through the spray-side end region of a fuel injection valve according to the invention with an integrated spark plug in accordance with a fifth exemplary embodiment
  • FIG. 7 shows a section through the end region of the injection side of a fuel injection valve according to the invention with an integrated spark plug in accordance with a sixth exemplary embodiment.
  • FIG. 1 shows a fuel injection valve with an integrated spark plug for the direct injection of fuel into a combustion chamber of a mixed-compression, spark-ignition internal combustion engine and for igniting the fuel injected into the combustion chamber in accordance with an exemplary embodiment of the invention.
  • the fuel injector which is generally provided with the reference symbol 1, has an integrated spark plug and has a first housing body 2, which can be screwed into a receiving bore of a cylinder head (not shown in FIG. 1) by means of a thread 3, and a second housing body 4 and a third housing body 5.
  • the metallic housing formed by the housing bodies 3, 4, 5 surrounds an insulation body 6, which in turn comprises a valve body 7, a swirl insert 14 and a valve needle 9, which extends inside the swirl insert 14 beyond the inlet-side end 8 of the valve body 7, at least partially radially on the outside surrounds.
  • valve-closure member 10 Connected to the valve needle 9 is a valve-closure member 10 which is conical on the injection side and which, together with an inside conical valve seat surface, forms a sealing seat on the injection-side end 11 of the valve body 7.
  • the valve needle 9 and the valve closing body 10 are formed in one piece.
  • the valve closing body 10 When the valve closing body 10 is lifted off the valve seat surface of the valve body 7, the valve closing body 10 opens an outlet opening 12 formed in the valve body 7, so that a conical fuel jet 13 is sprayed off.
  • a swirl groove 14a is provided in the swirl insert 14 in the exemplary embodiment shown, and a plurality of swirl grooves 14a can also be provided.
  • First ignition electrodes 70a are provided on the first housing body 2 for generating an ignition spark.
  • the ignition electrodes 70a carry ground potential, while the valve body 7 can be acted upon by a high voltage potential.
  • the lengths of the ignition electrodes 70a are the beam angle and the beam shape of the Adjust fuel jet 13.
  • the ignition electrodes 70a can either be immersed in the fuel jet 13, or the fuel jet 13 can be guided a short distance past the ignition electrodes 70a without the ignition electrodes 70a being wetted by the fuel. It is also conceivable for the ignition electrodes 70a to be immersed in gaps in individual jets generated by the outlet opening 12 or a plurality of spray openings.
  • the valve body 7 is preferably formed in two parts from a first partial body 7a and a second partial body 7b, which are welded together at a welding point 17.
  • the valve needle 9 is divided into a first metallic, spray-side guide section 9a, a second metallic, inlet-side guide section 9b and, in the exemplary embodiment, sleeve-shaped, ceramic insulation section 9c.
  • the first guide section 9a is guided in the swirl insert 14.
  • the guide takes place through the cylindrical outer surface 18 of the valve closing body 10, which is formed in one piece with the first guide section 9a.
  • a second guide of the valve needle 9 takes place in the insulation body 6 by means of the second guide section 9b.
  • the outer surface 19 of the second guide section 9b acts with a boring 20 together in the insulation body 6.
  • the guide sections 9a and 9b serving as guides are designed as metallic components and can be manufactured with the manufacturing accuracy required for the guide.
  • the insulation section 9c can be manufactured as a ceramic part. Since the insulation section 9c does not serve to guide the valve needle 9, only small requirements are to be made regarding the dimensional accuracy and the surface roughness. A revision of the ceramic part is therefore not necessary.
  • the guide sections 9a and 9b are connected to the insulation section 9c not only in a force-locking manner but also in a form-fitting manner.
  • the guide sections 9a and 9b each have a pin 21 and 22, respectively, which is guided into a recess in the insulation section 9c designed as a bore 23.
  • the connection between the pins 21 and 22 of the guide sections 9a and 9b is preferably made by a frictional connection, by gluing or shrinking on.
  • the insulation section 9c is preferably sleeve-shaped. The material saved compared to a solid body results in a weight saving, which leads to shorter switching times of the fuel injection valve 1.
  • the second guide section 9b is connected to an armature 24, which cooperates with a magnet coil 25 for the electromagnetic actuation of the valve closing body 10.
  • a connection abel 26 is used to energize the solenoid 25 .
  • the reception of the solenoid 25 is carried out by a coil carrier 27.
  • a sleeve-shaped core 28 penetrates the solenoid 25 at least partially and is removed from the armature 24 by a gap, not shown in the figure, in the closed position of the Fuel injector 1 spaced.
  • the magnetic flux circuit is closed by the ferromagnetic components 29 and 30.
  • the fuel flows through a fuel inlet nozzle 31, which can be connected via a thread 32 to a fuel distributor (not shown), into the fuel injector with integrated spark plug 1.
  • the fuel first flows through a fuel filter 33 and then flows into a longitudinal bore 34 of the core 28.
  • an adjusting sleeve 36 provided with a hollow bore 35, which can be screwed into the longitudinal bore 34 of the core 28.
  • the adjusting sleeve 36 is used to adjust the bias of a return spring 37 which acts on the armature 24 in the closing direction.
  • a locking sleeve 38 serves to secure the setting of the adjustment sleeve 36.
  • the fuel continues to flow through a longitudinal bore 39 in the second guide section 9b of the valve needle 9 and enters an cavity 40 of the insulating body 6 at an axial recess 40. From there, the fuel flows into a longitudinal bore 42 of the valve body 7, in which the valve needle 9 also extends, and finally reaches the swirl groove 14a already described on the outer circumference of the swirl insert 14.
  • the ignition electrodes 70a connected to the housing body 2 have a ground potential, while the valve body 7 can be acted upon with a high voltage potential for generating ignition sparks.
  • a high-voltage cable 50 which is inserted into the insulation body 6 via a lateral, pocket-like recess 51, is used to supply the high voltage.
  • the stripped end 52 of the high-voltage cable 50 is soldered or welded to a contact clamp 54 at a soldering or welding point 53.
  • the contact clip 54 clasps the valve body 7 and establishes a reliable electrically conductive contact between the stripped end 52 of the high-voltage cable 50 and the valve body 7.
  • the insulation body 6 has a radial Bohmng 55, via which a soldering or Welding tool can be guided to the soldering or welding point 53.
  • the pocket-like recess 51 is poured out with an electrically insulating casting compound 56.
  • an erosion resistor 57 integrated in the high-voltage cable 50 can also be cast into the casting compound 56.
  • a high-voltage-resistant film 58 can be inserted into the pocket-like recess 51 of the insulating body 6 and also cast with the sealing compound 56.
  • potting compound 56 is suitable for. B. silicone.
  • the insulation body 6 and the valve body 7 can be screwed together on a thread 60.
  • the insulation body 6 can also be screwed together with the housing body 2 on a further thread 61.
  • the threads 60 and 61 are preferably secured with a suitable adhesive.
  • the insulation body 6 can be manufactured inexpensively as a molded ceramic part.
  • the valve body 7 and the insulation body 6 can be screwed and glued with a mounting mandrel in order to compensate for misalignments in the guide of the valve needle 9.
  • the spatially close arrangement of the erosion resistor 57 to the ignition electrodes 70a reduces the erosion at the ignition electrodes 7a and, in spite of an increased electrical capacity, allows the fuel injector with an integrated spark plug 1 to be completely metal-coated by the metallic housing bodies 2, 4 and 5.
  • FIG. 2 shows an enlarged illustration of the end region on the spray-side side of the first exemplary embodiment of the fuel injector with integrated spark plug 1 shown in FIG. 2, the fuel injection valve with integrated spark plug 1 is screwed into a cylinder head 71 of an internal combustion engine, so that the ignition electrodes 70a into a combustion chamber 72 of the slurry juicer ra • ⁇ ge * n.
  • cylindrical ignition electrodes 70a serve a plurality of projections 78 of the housing body 2.
  • the projections 78 of the housing body 2 are circumferentially offset from one another on the housing body 2, relatively large gaps being formed between the individual projections 78 in order to allow an unimpeded inflow of the combustion air to allow the opening of the outlet opening 12 on the end face 73 of the valve body 7 facing the combustion chamber 72.
  • On each of the projections 78 of the housing body 2 serving for holding an ignition electrode 70a is arranged in each case and on the associated projection 78 z. B. attached by welding or screwing.
  • the ignition electrodes 70a are each inclined relative to the plane of the end face 73 of the valve body 7 by a predetermined inclination angle ⁇ in the direction of the end face 73 of the valve body 7.
  • the end face 73 of the valve body 7 is opposite an edge 74 of the pin-shaped ignition electrodes 70a.
  • the position of the edges 74 defines the location of the smallest distance between the ignition electrodes 70a and the end face 73 of the valve body 7 and thus defines the ignition point. Due to the edge-shaped design, there is an increased electric field strength at this point, which causes the plasma discharge of the ignition spark.
  • the 74 determined ignition point is therefore reproducible from injection cycle to injection cycle.
  • the most favorable position of the ignition point can be optimized by tests and lies in the area of the so-called jet root of the fuel jet 13 sprayed from the outlet opening 12.
  • the position of the edges 74 can be adjusted to the opening angle ⁇ of the Outlet opening 12 already sprayed fuel jet 13 to be adjusted.
  • the distance of the edges 74 of the ignition electrodes 70a from the end face 73 of the valve body 7 can be bent by bending a kink
  • FIG. 3 shows a section through the spray-side end region of a fuel injection valve with integrated spark plug 1 in accordance with a second exemplary embodiment of the invention. Elements already described are provided with the same reference numerals.
  • the difference from the exemplary embodiment described with reference to FIGS. 1 and 2 consists essentially in the fact that the edge for fixing the position of the sparkover and thus the ignition point is not formed on the ignition electrode 70 but on the end face 73 of the valve body 7.
  • the end face 73 of the valve body 7 has an elevation 80 with a peripheral edge 81.
  • At the edge 81 when the valve body 7 is acted upon by a high voltage, an increased electric field strength arises which triggers the plasma discharge of the ignition spark.
  • the position of the ignition point with respect to the position of the outlet opening 12 can be precisely determined by suitable dimensioning of the diameter of the elevation 80.
  • the ignition electrode 70b carrying the ground potential can be formed by a simple wire which is clamped between a first projection 78a of the housing body 2 and a second projection 78b of the housing body 2 and can be fixed by welds 82.
  • the wire-shaped ignition electrode 70b results in a configuration with a particularly small one Manufacturing effort.
  • a depression can also be provided on the end face 73 of the valve body 7, at the boundary of which an edge is likewise formed for the selective increase of the electric field strength.
  • FIG. 4 shows a section through the end region on the injection side of a third exemplary embodiment of a fuel injection valve with an integrated spark plug 1.
  • elements that have already been described are provided with corresponding reference numerals.
  • the ignition electrode 70c is ring-shaped and has an opening 90 for the fuel jet 13 sprayed off from the outlet opening 12.
  • the opening 90 of the annular ignition electrode 70c is preferably formed with a conical inner surface and widens in the spray direction 91 of the fuel jet 13.
  • the opening angle ⁇ 'of the opening 90 of the annular ignition electrode 70c is preferably adapted to the opening angle ⁇ of the fuel jet 13.
  • the opening angle ⁇ 'of the opening 90 preferably coincides with the opening angle ⁇ of the fuel jet 13.
  • the opening 90 has an acute-angled edge 92 which, in this exemplary embodiment, defines the ignition point.
  • the annular ignition electrode 70c is fastened to the projections 78 of the housing body 2 via connecting pins 93.
  • the projections 78 are distributed radially circumferentially on the housing body 2. For example, 3 or 4 such projections 78 are provided.
  • a connecting pin 93 is assigned to each projection 78.
  • the projections 78 and the connecting pins 93 are relatively narrow, so that relatively large gaps remain between the projections 78 and the connecting pins 93, through which the combustion air can flow unhindered to the mouth of the outlet opening 12 and to the ignition point defined by the peripheral edge 92 .
  • An unimpeded inflow of the combustion air is essential for a safe ignition of the fuel jet 13 and a low soot and coking at the mouth of the outlet opening 12.
  • Fig. 5 shows a section through the injection-side end of a fuel injector with inte rie ⁇ er spark plug 1 according to a fourth embodiment. Elements that have already been described are also provided with the same reference numerals here. The difference from the exemplary embodiment already described with reference to FIG. 4 essentially consists in the fact that the ring-shaped ignition electrode 70c has a chamfered section 96, to which the connecting pins 93 connect in an alignment line. This will make edges at the transition between pins 93 and the ring-shaped ignition electrode 70c are avoided, so that no increased field strength occurs at these points, which could lead to a parasitic ignition point.
  • FIG. 6 shows a section through the spray-side end of a fuel injector with integrated spark plug 1 in accordance with a fifth exemplary embodiment.
  • the embodiment shown in FIG. 6 represents a combination of the embodiments shown in FIGS. 3 and 4.
  • a ring electrode 70c is provided, the opening 90 of which has an edge 92 at the end opposite the end face 73 of the valve body 7.
  • the end face 73 of the valve body 7 has an elevation 80 with a peripheral edge 81.
  • the circumferential edge 81 of the elevation 80 is in the vicinity of the circumferential edge 92 of the annular ignition electrode 70c.
  • the ignition point is located between the two circumferential edges 92 and 81, since there the valve body 7 and the ignition electrode 70c are on the one hand the smallest distance from one another and on the other hand a particularly high electric field strength occurs at this point due to the edges 81 and 92.
  • FIG. 7 shows a section through the end region on the injection side of a fuel injection valve with integrated spark plug 1 in accordance with a sixth exemplary embodiment of the invention.
  • elements already described are provided with the same reference numerals.
  • the embodiment shown in FIG. 7 largely corresponds to the embodiment already described with reference to FIG. 6, with the difference that the flank region 97 of the elevation 80 of the end face 73 of the valve body 7 is rounded off in a concave manner.
  • the combustion air flowing in from the side is guided to the fuel jet 13 and to the ignition point defined by the peripheral edges 81 and 92. This results in a particularly good inlet geometry for the combustion air, so that reliable ignition of the fuel jet 13 and low-pollution combustion are ensured.
  • a sooting and coking of the outlet opening 12 is counteracted.
  • the shape and design of the ignition electrodes 70a-70c of the exemplary embodiments described above avoids accidental glow ignition. Furthermore, the ignition electrodes 70a to 70c designed according to the invention have increased mechanical stability and a longer service life. Due to the geometry of the ignition electrodes 70a to 70c and the valve body 7, a constant fuel-air mixture with La bda between 0.6 and 1.0 is achieved at the ignition point. The ignition point is in the range of the smallest cyclical fluctuations of the Fuel jet. Any impurities deposited on the end face 73 of the valve body 7 are burned off by the ignition sparks in accordance with a self-cleaning effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Spark Plugs (AREA)

Abstract

Ein Brennstoffeinspritzventil mit integrierter Zündkerze (1) zum direkten Einspritzen von Brennstoff in einen Brennraum (72) einer Brennkraftmaschine und zum Zünden des in den Brennraum (72) eingespritzten Brennstoffs weist einen Ventilkörper (7) auf, der zusammen mit einem Ventilschliesskörper (10) einen Dichtsitz bildet. An den Dichtsitz schliesst sich eine Abspritzöffnung (12) an, die an einer dem Brennraum (72) zugewandten Stirnfläche (73) des Ventilkörpers (7) ausmündet. Ferner ist ein von dem Ventilkörper (7) isolierter Gehäusekörper (2) und eine mit dem Gehäusekörper (2) verbundene Zündelektrode (70a) vorgesehen. Dabei wird ein Funkenüberschlag zwischen dem Ventilkörper (7) und der Zündelektrode (70a) erzeugt. Die Zündelektrode (70a) und der Ventilkörper (7) sind so geformt, dass der Funkenüberschlag zwischen der dem Brennraum (72) zugewandten Stirnfläche (73) des Ventilkörpers (7) und der Zündelektrode (70a) erfolgt. Die Zündelektrode (70a) weist in der Nähe der Abspritzöffnung (12) eine Kante (74) auf, um die Position des Funkenüberschlags an der Stirnfläche (73) des Ventilkörpers (7) bezüglich der Position der Abspritzöffnung (12) reproduzierbar festzulegen.

Description

Brennstoffeinspritzventil mit integrierter Zündkerze
Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil mit integrierter Zündkerze nach der Gattung des Hauptanspruchs.
Es ist bereits aus der EP 0 661 446 AI ein Brennstoffeinspritzventil mit integrierter Zündkerze nach der Gattung des Hauptanspruchs bekannt. Das Brennstoffeinspritzventil mit integrierter Zündkerze dient zum direkten Einspritzen von Brennstoff in den Brermraum einer Brennkrafanaschine und zum Zünden des in den Brennraum eingespritzten Brennstoffs. Durch die kompakte Integration eines Brennstoffeinspritzventils mit einer Zündkerze kann Eϊnbauraum am Zylinderkopf der Brennkraftmaschine eingespart werden. Das bekannte Brennstoffeinspritzventil mit integrierter Zündkerze weist einen Ventilkörper auf, der zusammen mit einem mittels einer Ventilnadel betätigbaren Ventilschließkörper einen Dichtsitz bildet, an welchen sich eine an einer dem Brennraum zugewandten Stirnfläche des Ventilkörpers ausmündende Abspritzöfrming anschließt. Der Ventilkörper ist durch einen keramischen Isolationskörper von einem in den Zylinderkopf der Breiiiikraftmaschine einschraubbaren Gehäusekörper hochspannungsfest isoliert. An dem Gehäusekörper befindet sich eine Masseelektrode, um ein Gegenpotential zu dem mit Hochspannung beaufschlagten Ventilkörper zu bilden. Bei Beaufschlagung des Ventilkörpers mit einer ausreichenden Hochspannung erfolgt ein Funkenüberschlag zwischen dem Ventilkörper und der mit dem Gehäusekörper verbundenen Masseelektrode.
Bei dem bekannten Brennstoffeinspritzventil mit integrierter Zündkerze ist jedoch nachteilig, daß die Position des Funkenüberschlags bezüglich des von der Abspritzöffnung abgespritzten Brennstoffstrahls nicht definiert ist, da der Funkenüberschlag an einer nahezu beliebigen Stelle im seitlichen Bereich eines Vorsprungs des Ventilkörpers erfolgen kann. Eine sichere Zündung der sogenannten Strahlwurzel des von der Abspritzöffnung abgespritzten Brennstoffstrahls ist bei dieser bekannten Bauweise nicht mit der notwendigen Sicherheit möglich. Eine sichere und zeitlich exakt definierte Entflammung des Brennstoffstrahls ist jedoch für eine Schadstoffreduzierung unbedingt erforderlich. Ferner kann an der Austrittsöffnung des Brennstoffstrahls eine stetig fortschreitende Verrußung oder Verkokung auftreten, die die abgespritzte Strahlform beeinflußt.
Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit integrierter Zündkerze mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß die Position des Funkenüberschlags bezüglich der Position der Abspritzöffnung reproduzierbar und eindeutig festgelegt ist. Somit ist eine sichere Entflammung des abgespritzten Brennstoffstrahls gewährleistet. Die Position des Funkenüberschlags und somit die Zündstelle kann in den Bereich des abgespritzten Brennstoffstrahls mit den geringsten zyklischen Strahlschwankungen gelegt werden. Der Zeitpunkt der Entflammung des Brennstoffstrahls weist daher äußerst geringe Schwankungen von Einspritzzyklus zu Einspritzzyklus auf. Durch die Positionierung des Funkenüberschlags bzw. der Zündstelle in der Nähe der Abspritzöffnung wird einer Verrußung und Verkokung der Abspritzöffnung entgegengewirkt und somit einer dadurch bedingten Veränderung der Strahlgeometrie entgegengewirkt.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbessemngen des im Hauptanspmch angegebenen Brennstoff einspritzventils mit integrierter Zündkerze möglich.
Die Kante zur Festlegung der Position des Funkenüberschlags kann entweder an der Stirnfläche des Ventilkörpers oder an den Zündelektroden vorgesehen sein. Die Kante kann an der Stirnfläche des Ventilkörpers durch eine Erhöhung oder Vertiefung gebildet sein. Dabei ist es vorteilhaft, wenn der Ventilkörper an der Erhöhung einen abgemndeten Flankenbereich aufweist, um die Luftströmung gezielt auf die Zündstelle zu richten. An dem Gehäusekörper können eine oder mehrere stiftartige Zündelektroden derart befestigt sein, daß sie unter einem vorgegebenen Neigungswinkel in Richtung auf die Stirnfläche des Ventilkörpers geneigt sind. Eine Kante der Zündelektroden bildet dabei die Stelle mit dem geringsten Abstand zu der Stirnfläche des Ventilkörpers und legt somit die Zündstelle fest. Wenn die die Zündstelle festlegende Kante an der Stirnfläche des Ventilkörpers ausgebildet ist, kann als Zundelektrode auch ein einfacher die Stirnfläche des Ventilkörpers überspannender Draht Verwendung finden, was eine besonders kostengünstige Ausgestaltang darstellt.
Besonders vorteilhaft kann die Zündelektrode ringförmig ausgestaltet sein und eine Öffnung für den von der Abspritzöffnung abgespritzten Brennstoffstrahl aufweisen. Die die Zündstelle festlegende Kante ist dabei an der Öffnung der ringförmigen Zündelektrode ausgebildet. Um den Brennstoffstrahl nicht zu behindern, ist es vorteilhaft, wenn die Öffnung der ringförmigen Zündelektrode sich in der Abspritzrichtung des Brennstoffstrahls konisch erweitert, wobei der Öffnungswinkel der Zündelektrode in vorteilhafter Weise an den Öffnungswinkel des Brennstoffstrahls angepaßt ist. Eine Ausbildung der Haltemng für die Zundelektrode mit radial verteilt angeordneten stabförmigen Vorsprüngen und radial zu den Vorsprüngen geführten radial angeordneten Stiften gewährleistet eine ausreichende radiale Anströmung der Verbrennungsluft und unterstützt die sichere Entflammung des Brennstoffstrahls.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 einen Schnitt durch ein erfindungsgemäßes Brennstoffeinspritzventil mit integrierter Zündkerze entsprechend einem ersten Ausführungsbeispiel,
Fig. 2 eine vergrößerte Darstellung des abspritzseitigen Endbereichs des in Fig. 1 dargestellten Brennstoffeinspritzventils mit integrierter Zündkerze,
Fig. 3 einen Schnitt durch den abspritzseitigen Endbereich eines erfindungsgemäßen Brennstoffeinspritzventils mit integrierter Zündkerze entsprechend einem zweiten Ausführungsbeispiel,
Fig. 4 einen Schnitt durch den abspritzseitigen Endbereich eines erfindungsgemäßen Brennstoffeinspritzventil s mit integrierter Zündkerze entsprechend einem dritten Ausführungsbeispiel,
Fig. 5 einen Schnitt durch den abspritzseitigen Endbereich eines erfindungsgemäßen Brennstoffeinspritzventils mit integrierter Zündkerze entsprechend einem vierten Ausführungsbeispiel, Fig. 6 einen Schnitt durch den abspritzseitigen Endbereich eines erfindungsgemäßen Brennstoffeinspritzventils mit integrierter Zündkerze entsprechend einem fünften Ausführungsbeispiel, und
Fig. 7 einen Schnitt durch den abspritzseitigen Endbereich eines erfmdungsgemäßen Brennstoffeinspritzventils mit integrierter Zündkerze entsprechend einem sechsten Ausfuhrungsbeispiel.
Beschreibung der Ausführungsbeispiele
In Fig. 1 ist ein Brennstoffeinspritzventil mit integrierter Zündkerze zum direkten Einspritzen von Brennstoff in einen Brennraum einer gemischverdichteten, fremdgezündeten Brennkraftmaschine und zum Zünden des in den Brennraum eingespritzten Brennstoffs entsprechend einem Ausfuhrungsbeispiel der Erfindung dargestellt.
Das allgemein mit dem Bezugszeichen 1 versehene Brennstoffeinspritzventil mit integrierter Zündkerze weist einen ersten Gehäusekörper 2, der mittels eines Gewindes 3 in eine Aufnahmebohrung eines in Fig. 1 nicht dargestellten Zylinderkopfes einschraubbar ist, sowie einen zweiten Gehäusekörper 4 und einen dritten Gehäusekörper 5 auf. Das durch die Gehäusekörper 3, 4, 5 gebildete metallische Gehäuse umgibt einen Isolationskörper 6, der seinerseits einen Ventilkörper 7, einen Dralleinsatz 14 und eine sich im Inneren des Dralleinsatzes 14 über das zulaufseitige Ende 8 des Ventilkörpers 7 hinaus erstreckende Ventilnadel 9 zumindest teilweise radial außenseitig umgibt. Mit der Ventilnadel 9 ist ein abspritzseitig konisch ausgebildeter Ventilschließkörper 10 verbunden, der zusammen mit einer innenseitigen konischen Ventilsitzfläche an dem abspritzseitigen Ende 11 des Ventilkörpers 7 einen Dichtsitz bildet. Im dargestellten Ausfuhrungsbeispiel sind die Ventilnadel 9 und der Ventilschließkörper 10 einteilig ausgebildet. Beim Abheben des Ventilschließkörpers 10 von der Ventilsitzfläche des Ventilkörpers 7 gibt der Ventilschließkörper 10 eine in dem Ventilkörper 7 ausgebildete Austrittsöffnung 12 frei, so daß ein kegelförmiger Brennstoffstrahl 13 abgespritzt wird. Zur besseren umfänglichen Verteilung des Brennstoffs ist im dargestellten Ausführungsbeispiel im Dralleinsatz 14 eine Drallnut 14a vorgesehen, wobei auch mehrere Drallnuten 14a vorgesehen sein können.
An dem ersten Gehäusekörper 2 sind erste Zündelektroden 70a zur Erzeugung eines Zündfunkens vorgesehen. Die Zündelektroden 70a führen dabei Massepotential, während der Ventilkörper 7 mit einem Hochspannungspotential beaufschlagbar ist. Die Längen der Zündelektroden 70a sind dabei dem Strahlwinkel und der Strahlform des Brennstoff Strahls 13 anzupassen. Dabei können die Zündelektroden 70a entweder in den Brennstoff strahl 13 eintauchen, oder der Brennstoffstrahl 13 kann in geringem Abstand an den Zündelektroden 70a vorbeigeführt werden, ohne daß die Zündelektroden 70a von dem Brennstoff benetzt werden. Denkbar ist auch ein Eintauchen der Zündelektroden 70a in Lücken von durch die Austrittsöffnung 12 oder mehrere Abspritzöffnungen erzeugte Einzelstrahlen.
Der Ventilkörper 7 ist vorzugsweise zweiteilig aus einem ersten Teilkörper 7a und einem zweiten Teilkörper 7b ausgebildet, die an einer Schweißstelle 17 zusammengeschweißt sind.
Die Ventilnadel 9 gliedert sich im Ausführungsbeispiel in einen ersten metallischen, abspritzseitigen Führungsab schnitt 9a, einen zweiten metallischen, zulaufseitigen Führungsabschnitt 9b und einen im Ausfühmngsbeispiel hülsenförmigen, keramischen Isolationsabschnitt 9c. Der erste Fühmngsabschnitt 9a ist in dem Dralleinsatz 14 geführt. Im Ausfühmngsbeispiel erfolgt die Führung durch die zylinderförmige Mantelfläche 18 des einteilig mit dem ersten Fühmngsabschnitt 9a ausgebildeten Ventilschließkörpers 10. Eine zweite Fühmng der Ventilnadel 9 erfolgt mittels des zweiten Fühmngsabschnitts 9b in dem Isolationskörper 6. Dazu wirkt die Mantelfläche 19 des zweiten Führungsabschnitts 9b mit einer Bohmng 20 in dem Isolationskörper 6 zusammen. Die der Fühmng dienenden Führungsabschnitte 9a und 9b sind als metallische Bauteile ausgebildet und können mit der für die Fühmng erforderlichen Fertigungsgenauigkeit hergestellt werden. Aufgmnd der geringen Oberflächenrauhigkeit der metallischen Bauteile ergibt sich ein nur geringer Reibungskoeffizient an den Führungen. Der Isolationsabschnitt 9c hingegen kann als Keramikteil hergestellt werden. Da der Isolationsabschnitt 9c nicht der Fühmng der Ventilnadel 9 dient, sind an die Maßgenauigkeit und die Oberflächenrauhigkeit nur geringe Anforderungen zu stellen. Eine Überarbeitung des Keramikteils ist daher nicht erforderlich.
Die Führungsabschnitte 9a und 9b sind mit dem Isolationsabschnitt 9c nicht nur kraftschlüssig sondern auch formschlüssig verbunden. Bei dem dargestellten Ausführungsbeispiel weisen die Fühmngsabschnitte 9a und 9b jeweils einen Stift 21 bzw. 22 auf, der jeweils in eine als Bohmng 23 ausgebildete Ausnehmung des Isolationsabschnitts 9c emgefuhrt ist. Vorzugsweise ist die Verbindung zwischen den Stiften 21 und 22 der Führungsabschnitte 9a und 9b durch einen Reibschluß, durch Verkleben oder Aufschrumpfen hergestellt. Der Isolationsabschnitt 9c ist vorzugsweise hülsenförmig ausgebildet. Durch das gegenüber einem Vollkörper eingesparte Material ergibt sich eine Gewichtseinsparung, die zu kürzeren Schaltzeiten des Brennstoff einspritzventils 1 führt.
Der zweite Fühmngsabschnitt 9b ist mit einem Anker 24 verbunden, der mit einer Magnetspule 25 zur elektromagnetischen Betätigung des Ventilschließkörpers 10 zusammenwirkt. Zur Bestromung der Magnetspule 25 dient ein Anschluß abel 26. Die Aufnahme der Magnetspule 25 übernimmt ein Spulenträger 27. Ein hülsenförmiger Kern 28 durchdringt die Magnetspule 25 zumindest teilweise und ist von dem Anker 24 durch einen aus der Figur nicht erkennbaren Spalt in der geschlossenen Stellung des Brennstoffeinspritzventils 1 beabstandet. Der magnetische Flußkreis wird durch die ferromagnetischen Bauteile 29 und 30 geschlossen. Der Brennstoff strömt über einen Brennstoffeinlaß stutzen 31, der über ein Gewinde 32 mit einem nicht dargestellten Brennstoffverteiler verbindbar ist, in das Brennstoffeinspritzventil mit integrierter Zündkerze 1. Der Brennstoff durchströmt zunächst ein Brennstoffilter 33 und strömt dann in eine Längsbohrung 34 des Kerns 28. In der Längsbohrung 34 ist eine mit einer Hohlbohrung 35 versehene Einstellhülse 36 vorgesehen, die in die Längsbohrung 34 des Kerns 28 einschraubbar ist. Die Einstellhülse 36 dient zur Einstellung der Vorspannung einer Rückstellfeder 37, die den Anker 24 in Schließrichtung beaufschlagt. Zur Sicherung der Einstellung der Einstellhülse 36 dient eine Konterhülse 38.
Der Brennstoff strömt weiter durch eine Längsbohrung 39 in dem zweiten Fühmngsabschnitt 9b der Ventilnadel 9 und tritt an einer axialen Aussparung 40 in einen Hohlraum 41 des Isolationskörpers 6 ein. Der Brennstoff strömt von dort in eine Längsbohrung 42 des Ventilkörpers 7, in der sich auch die Ventilnadel 9 erstreckt, und erreicht schließlich die bereits beschriebene Drallnut 14a am äußeren Umfang des Dralleinsatzes 14.
Wie bereits beschrieben, führen die mit dem Gehäusekörper 2 verbundenen Zündelektroden 70a Massepotential, während der Ventilkörper 7 mit einem Hochspannungspotential zur Erzeugung von Zündfunken beaufschlagbar sind. Zur Zufuhrung der Hochspannung dient ein Hochspannungskabel 50, das über eine seitliche, taschenartige Ausnehmung 51 in den Isolationskörper 6 eingeführt ist. Das abisolierte Ende 52 des Hochspannungskabels 50 ist an einer Löt- oder Schweißstelle 53 mit einer Kontaktklammer 54 verlötet oder verschweißt. Die Kontaktklammer 54 umklammert den Ventilkorper 7 und stellt einen sicheren elektrisch leitenden Kontakt zwischen dem abisolierten Ende 52 des Hochspannungskabels 50 und dem Ventilkörper 7 her. Zur besseren Zugänglichkeit der Löt- oder Schweißstelle 53 weist der Isolationskörper 6 eine radiale Bohmng 55 auf, über welche ein Löt- oder Schweißwerkzeug zu der Löt- oder Schweißstelle 53 geführt werden kann. Nach dem Herstellen der Löt- oder Schweißverbindung wird die taschenartige Ausnehmung 51 mit einer elektrisch isolierenden Vergußmasse 56 ausgegossen. Dabei kann ein in dem Hochspannungskabel 50 integrierter Abbrandwiderstand 57 in die Vergußmasse 56 mit eingegossen werden. Zur verbesserten Isolation der Löt- oder Schweißstelle 53 kann eine hochspannungsfeste Folie 58 in die taschenartige Ausnehrnung 51 des Isolationskörpers 6 eingelegt und mit der Vergußmasse 56 ebenfalls vergossen werden. Als Vergußmasse 56 eignet sich z. B. Silikon.
Der Isolationskörper 6 und der Ventilkorper 7 können an einem Gewinde 60 miteinander verschraubt sein. Femer kann der Isolationskörper 6 mit dem Gehäusekörper 2 an einem weiteren Gewinde 61 miteinander verschraubt sein. Vorzugsweise werden die Gewinde 60 und 61 mit einem geeigneten Klebstoff gesichert. Der Isolationskörper 6 kann als Spritzkeramikteil kostengünstig hergestellt werden. Der Ventilkörper 7 und der Isolationskörper 6 können mit einem Montagedorn verschraubt und verklebt werden, um Fluchtfehler in der Fühmng der Ventilnadel 9 auszugleichen.
Die räumlich nahe Anordnung des Abbrandwiderstands 57 zu den Zündelektroden 70a reduziert den Abbrand an den Zündelektroden 7a und erlaubt trotz einer erhöhten elektrischen Kapazität eine metallische Vollummantelung des Brennstoffeinspritzventils mit integrierter Zündkerze 1 durch die metallischen Gehäusekörper 2, 4 und 5.
Fig. 2 zeigt eine vergrößerte Darstellung des abspritzseitigen Endbereichs des in Fig. 1 dargestellten ersten Ausfuhrungsbeispiels des Brennstoffeinspritzventils mit integrierter Zündkerze 1. Neben dem Ventilschließkörper 10 und der als Zylinderbohrung ausgebildeten Austrittsöffnung 12 sind die Zündelektroden 70a in dieser Darstellung besonders gut zu erkennen. Das Brennstoffeinspritzventil mit integrierter Zündkerze 1 ist in der Darstellung der Fig. 2 in einen Zylinderkopf 71 einer Brennkraftmaschine eingeschraubt, so daß die Zündelektroden 70a in einen Brennraum 72 der Brei lσaftmaschine ra Όge*n.
Zur Befestigung der in dem Ausfühmngsbeispiel der Fig. 1 und 2 stiftartig, z. B. zylinderförmig ausgebildeten Zündelektroden 70a dienen mehrere Vorsprünge 78 des Gehäusekörpers 2. Die Vorsprünge 78 des Gehäusekörpers 2 sind dabei an dem Gehäusekörper 2 umfängüch versetzt zueinander angeordnet, wobei zwischen den einzelnen Vorsprüngen 78 relativ große Zwischenräume gebildet sind, um einen ungehinderten Zustrom der Verbrennungsluft zu der Ausmündung der Austrittsöffnung 12 an der dem Brennraum 72 zugewandten Stirnfläche 73 des Ventilkörpers 7 zu ermöglichen. An jedem der Haltemng dienenden Vorsprung 78 des Gehäusekörpers 2 ist jeweils eine Zündelektrode 70a angeordnet und an dem zugeordneten Vorsprang 78 z. B. durch Verschweißen oder Verschrauben befestigt. Die Zündelektroden 70a sind jeweils gegenüber der Ebene der Stirnfläche 73 des Ventilkörpers 7 um einen vorgegebenen Neigungswinkel α in Richtung auf die Stirnfläche 73 des Ventilkörpers 7 geneigt. Dabei liegt der Stirnfläche 73 des Ventilkörpers 7 jeweils eine Kante 74 der stiftförmigen Zündelektroden 70a gegenüber. Die Position der Kanten 74 definiert dabei die Stelle des geringsten Abstandes zwischen den Zündelektroden 70a und der Stirnfläche 73 des Ventilkörpers 7 und legt somit die Zündstelle fest. Aufgrund der kantenförmigen Ausbildung ergibt sich an dieser Stelle eine erhöhte elektrische Feldstärke, die die Plasmaentladung des Zündfunkens hervorruft. Die durch die Kanten
74 festgelegte Zündstelle ist daher von Einspritzzyklus zu Einspritzzyklus reproduzierbar. Die günstigste Position der Zündstelle kann durch Versuche optimiert werden und liegt im Bereich der sogenannten Strahlwurzel des von der Austrittsöffnung 12 abgespritzten Brennstoffstrahls 13. Durch Verändemng der Länge und des Neigungswinkels α der Zündelektroden 70a kann die Position der Kanten 74 an den Öffnungswinkel ß des von der Austrittsöffnung 12 bereits abgespritzten Brennstoff Strahls 13 angepaßt werden. Der Abstand der Kanten 74 der Zündelektroden 70a von der Stirnfläche 73 des Ventilkörpers 7 kann durch Verbiegen einer Knickstelle
75 der Vorsprünge 78 fertigungstechnisch exakt eingestellt werden.
Fig. 3 zeigt einen Schnitt durch den abspritzseitigen Endbereich eines Brennstoffeinspritzventils mit integrierter Zündkerze 1 entsprechend einem zweiten Ausfühmngsbeispiel der Erfindung. Bereits beschriebene Elemente sind mit übereinstimmenden Bezugszeichen versehen.
Der Unterschied zu dem anhand der Fig. 1 und 2 beschriebenen Ausfühmngsbeispiel besteht im wesentlichen darin, daß die Kante zur Festlegung der Position des Funkenüberschlags und somit der Zündstelle nicht an der Zündelektrode 70, sondern an der Stirnfläche 73 des Ventilkörpers 7 ausgebildet ist. Dabei weist die Stirnfläche 73 des Ventilkörpers 7 eine Erhöhung 80 mit einer umlaufenden Kante 81 auf. An der Kante 81 entsteht bei Beaufschlagung des Ventilkörpers 7 mit einer Hochspannung eine erhöhte elektrische Feldstärke, die die Plasmaentladung des Zündfunkens auslöst. Die Position der Zündstelle kann in bezug auf die Position der Austrittsöffnung 12 durch geeignete Dimensionierung des Durchmessers der Erhöhung 80 exakt festgelegt werden. Die das Massepotential führende Zündelektrode 70b kann bei diesem Ausfühmngsbeispiel durch einen einfachen Draht gebildet werden, der zwischen einem ersten Vorspmng 78a des Gehäusekörpers 2 und einem zweiten Vorsprung 78b des Gehäusekörpers 2 verspannt ist und durch Schweißnähte 82 fixiert sein kann. Durch die drahtförmige Zündelektrode 70b ergibt sich eine Ausgestaltung mit besonders geringem Fertigungsaufwand. Anstatt einer Erhöhung 80 kann an der Stirnfläche 73 des Ventilkörpers 7 auch eine Vertiefung vorgesehen sein, an deren Begrenzung ebenfalls eine Kante zur punktuellen Erhöhung der elektrischen Feldstärke ausgebildet ist.
Fig. 4 zeigt einen Schnitt durch den abspritzseitigen Endbereich eines dritten Ausführungsbeispiels eines Brennstoffeinspritzventils mit integrierter, Zündkerze 1. Auch hier sind bereits beschriebene Elemente mit überemstimmenden Bezugszeichen versehen.
Im Unterschied zu den bereits beschriebenen Ausführungsbeispielen ist bei dem in Fig. 4 dargestellten Ausfühmngsbeispiel die Zündelektrode 70c ringförmig ausgebildet und weist eine Öffnung 90 für den von der Austrittsöffnung 12 abgespritzten Brennstoffstrahl 13 auf. Die Öffnung 90 der ringförmigen Zündelektrode 70c ist vorzugsweise mit einer konischen Innenfläche ausgebildet und erweitert sich in der Abspritzrichtung 91 des Brennstoffstrahls 13. Der Öffnungswinkel ß' der Öffnung 90 der ringförmigen Zündelektrode 70c ist vorzugsweise an den Öffnungswinkel ß des Brennstoffstrahls 13 angepaßt. Vorzugsweise stimmt der Öffnungswinkel ß' der Öffnung 90 mit dem Öffnungswinkel ß des Brennstoff Strahls 13 über ein. An dem inneren, der Stirnfläche 73 des Ventilkörpers 7 gegenüberliegenden Ende weist die Öffnung 90 eine spitzwinklige Kante 92 auf, die bei diesem Ausführungsbeispiel die Zündstelle festlegt. Die ringförmige Zündelektrode 70c ist über Verbindungsstifte 93 an den Vorsprüngen 78 des Gehäusekörpers 2 befestigt. Die Vorsprünge 78 sind radial umfänglich an dem Gehäusekörper 2 verteilt. Beispielsweise sind 3 oder 4 derartige Vorsprünge 78 vorgesehen. Jedem Vorsprung 78 ist ein Verbindungsstift 93 zugeordnet. Die Vorsprünge 78 und die Verbindungsstifte 93 sind relativ schmal ausgeführt, so daß zwischen den Vorsprüngen 78 und den Verbindungsstiften 93 relativ große Lücken verbleiben, durch welche die Verbrennungsluft ungehindert zu der Ausmündung der Austrittsöffnung 12 und zu der durch die umlaufende Kante 92 festgelegten Zündstelle strömen kann. Ein ungehinderter Zustrom der Verbrennungsluft ist für eine sichere Entflammung des Brennstoffstrahls 13 und eine geringe Verrußung und Verkokung an der Ausmündung der Austrittsöffnung 12 wesentlich.
Fig. 5 zeigt einen Schnitt durch das abspritzseitige Ende eines Brennstoffeinspritzventils mit inte rieπer Zündkerze 1 entsprechend einem vierten Ausführungsbeispiel. Bereits beschriebene Elemente sind auch hier mit übereinstimmenden Bezugszeichen versehen. Der Unterschied zu dem bereits anhand von Fig. 4 beschriebenen Ausführung sbeispiel besteht im wesentlichen darin, daß die ringförmige Zündelektrode 70c einen abschrägten Abschnitt 96 aufweist, an welchen sich die Verbindungsstifte 93 in einer Fluchtlinie anschließen. Dadurch werden Kanten am Übergang zwischen den Stiften 93 und der ringförmigen Zündelektrode 70c vermieden, so daß an diesen Stellen keine erhöhte Feldstärke auftritt, die zu einer parasitären Zündstelle führen könnten.
Fig. 6 zeigt einen Schnitt durch das abspritzseitige Ende eines Brennstoffeinspritzventils mit integrierter Zündkerze 1 entsprechend einem fünften Ausfühmngsbeispiel. Auch hier sind bereits beschriebene Elemente mit übere stimmenden Bezugszeichen versehen. Das in Fig. 6 dargestellte Ausfühmngsbeispiel stellt eine Kombination der in den Fig. 3 und 4 dargestellten Ausführungsbeispiele dar. Dabei ist eine Ringelektrode 70c vorgesehen, deren Öffnung 90 an dem der Stirnfläche 73 des Ventilkörpers 7 gegenüberliegenden Ende eine Kante 92 aufweist. Die Stirnfläche 73 des Ventilkörpers 7 weist eine Erhöhung 80 mit einer umlaufenden Kante 81 auf. Die umlaufende Kante 81 der Erhöhung 80 befindet sich in der Nähe der umlaufenden Kante 92 der ringförmigen Zündelektrode 70c. Die Zündstelle befindet sich zwischen den beiden umlaufenden Kanten 92 und 81, da dort der Ventilkörper 7 und die Zündelektrode 70c einerseits den geringsten Abstand voneinander haben und andererseits an dieser Stelle aufgrund der Kanten 81 und 92 eine besonders hohe elektrische Feldstärke auftritt.
Fig. 7 zeigt einen Schnitt durch den abspritzseitigen Endbereich eines Brennstoffeinspritzventils mit integrierter Zündkerze 1 entsprechend einem sechsten Ausfühmngsbeispiel der Erfindung. Auch hier sind bereits beschriebene Elemente mit übereinstimmenden Bezugszeichen versehen. Das in Fig. 7 dargestellte Ausführungsbeispiel entspricht weitgehend dem bereits anhand von Fig. 6 beschriebenen Ausführungsbeispiel mit dem Unterschied, daß der Flankenbereich 97 der Erhöhung 80 der Stirnfläche 73 des Ventilkörpers 7 konkav abgerundet ist. Dadurch wird die seitlich anströmende Verbrennungsluft zu dem Brennstoffstrahl 13 und der durch die umlaufenden Kanten 81 und 92 festgelegten Zündstelle hingeführt. Es ergibt sich daher eine besonders gute Einlaufgeometrie für die Verbrennungsluft, so daß eine sichere Entflammung des Brennstoffstrahls 13 und eine schadstoffarme Verbrennung gewährleistet sind. Einer Verrußung und Verkokung der Ausrnündung der Austrittsöffnung 12 wird entgegengewirkt.
Verglichen mit bekannten langen und dünnen Fingerelektroden wird durch die Form und Gestaltung der Zündelektroden 70a - 70c der vorstehend beschriebenen Ausfühmngsbeispiele eine unbeabsichtigte Glühentzündung venτiieden. Ferner weisen die erfindungsgemäß gestalteten Zündelektroden 70a bis 70c eine erhöhte mechanische Stabilität und eine verlängerte Lebensdauer auf. Durch die Geometrie der Zündelektroden 70a bis 70c und des Ventilkörpers 7 wird an der Zundstelle ein gleichbleibendes Brennstoff -Luftgemisch mit La bda zwischen 0,6 und 1.0 en-eicht. Die Zündstelle liegt im Bereich der geringsten zyklischen Schwankungen des Brennstoff Strahls. Durch die Zündfunken werden sich eventuell an der Stirnfläche 73 des Ventilkörpers 7 ablagernde Veranreinigungen entsprechend einem Selbstreinigungseffekt abgebrannt.

Claims

Ansprüche
1. Brennstoffeinspritzventil mit integrierter Zündkerze (1) zum direkten Einspritzen von Brennstoff in einen Brennraum (72) einer Brennkraftmaschine und zum Zünden des in den Brennraum (72) eingespritzten Brennstoffs mit einem Ventilkorper (7), der zusammen mit einem Ventilschließkörper (10) einen Dichtsitz bildet, an welchen sich zumindest eine an einer dem Brennraum (72) zugewandten Stirnfläche (73) des Ventilkörpers (7) ausmündende Austrittsöffnung (12) anschließt, und einem von dem Ventilkörper (7) isolierten Gehäusekörper (2), wobei an dem Gehäusekörper (2) zumindest eine Zündelektrode (70a; 70b; 70c) vorgesehen ist, um einen Funkenüberschlag zwischen dem Ventilkörper (7) und der Zündelektrode (70a; 70b; 70c) zu erzeugen, dadurch gekennzeichnet, daß die Zündelektrode (70a; 70b; 70c) und der Ventilkörper (7) so geformt sind, daß der Funkenuberschlag zwischen der dem Brennraum (72) zugewandten Stirnfläche (73) des Ventilkörpers (7) und der Zündelektrode (70a; 70b; 70c) erfolgt, und daß die dem Brennraum (72) zugewandte Stirnfläche (73) des Ventilkörpers (7) und/oder die Zündelektrode (70a; 70b; 70c) in der Nähe der Austrittsöffnung (12) eine Kante (74, 81. 92) aufweist, um die Position des Funkenüberschlags an der Stirnfläche (73) des Ventilkörpers (7) bezüglich der Position der Austrittsöffnung (12) reproduzierbar festzulegen.
2. Brennstoffeinspritzventil mit integrierter Zündkerze nach Ansprach 1, dadurch gekennzeichnet, daß die Stirnfläche (73) des Ventilkörpers (7) in einem vorgegebenen Abstand zu der Austrittsöffnung (12) eine Erhöhung (80) oder Vertiefung mit einer die Erhöhung (80) bzw. Vertiefung begrenzenden Kante (81) aufweist.
3. Brennstoffeinspritzventil mit integrierter Zündkerze nach Ansprach 2, dadurch gekennzeichnet, daß die Stirnfläche (73) des Ventilkörpers (7) eine Erhöhung (80) mit einem abgemndeten Flankenbereich (97) aufweist.
4. Brennstoffeinspritzventil mit integrierter Zündkerze nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß an dem Gehäusekörper (2) eine die Stirnfläche (73) des Ventilkörpers (7) überragende Halterang (78) vorgesehen ist, an welcher eine oder mehrere stiftförmige Zündelektroden (70a) derart befestigt sind, daß sie unter einem vorgegebenen Neigungswinkel (α) in Richtung auf die Stirnfläche (73) des Ventilkörpers (7) geneigt smd, wobei der Stirnfläche (73) des Ventilkörpers (7) jeweils eine Kante (74) der Zündelektroden (70a) gegenüberliegt.
5. Brennstoffeinspritzventil mit integrierter Zündkerze nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß an dem Gehäusekörper (2) zumindest zwei die Stirnfläche (73) des Ventilkörpers (7) überragende Halterungen (78a, 78b) vorgesehen sind, zwischen welchen sich zumindest eine drahtförmige Zündelektrode (70b) erstreckt.
6. Brennstoffeinspritzventil mit integrierter Zündkerze nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß an dem Gehäusekörper (2) eine die Stirnfläche (73) des Ventilkörpers (7) überragende Haltemng (78) vorgesehen ist, an welcher eine ringförmige Zündelektrode (70c) befestigt ist, die eine Öffnung (90) für einen von der Austrittsöffnung (12) abgespritzten Brennstoffstrahl (13) aufweist, wobei an der Öffnung (90) eine der Stirnfläche (73) des Ventilkörpers (7) gegenüberliegende Kante (92) ausgebildet ist.
7. Brennstoffeinspritzventil mit integrierter Zündkerze nach Anspruch 6, dadurch gekennzeichnet, daß sich die Öffnung (90) der ringförmigen Zündelektrode (70c) in einer Abspritzrichtung (91) des Brennstoffstrahls (13) konisch erweitert.
8. Brennstoffeinspritzventil mit integrierter Zündkerze nach Ansprach 7, dadurch gekennzeichnet, daß ein Öffnungswinkel (ß') der sich konisch erweiternden Öffnung (90) der ringförmigen Zündelektrode (70c) an einen Offtiungswinkel (ß) des Brennstoffstrahls (13) angepaßt ist.
9. Brennstoffeinspritzventil mit integrierter Zündkerze nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Haltemng durch radial verteilt angeordnete stabförmige Vorsprünge (78) des Gehäusekörpers (2) gebildet ist und die Befestigung der ringförmigen Zündelektrode (70c) an den die Haltemng bildenden Vorsprüngen (78) über im wesentlichen radial verlaufende Stifte (93) erfolgt.
EP99924738A 1998-06-27 1999-04-01 Brennstoffeinspritzventil mit integrierter zündkerze Expired - Lifetime EP1032762B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04000412A EP1431571B1 (de) 1998-06-27 1999-04-01 Brennstoffeinspritzventil mit integrierter Zündkerze

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19828849 1998-06-27
DE19828849A DE19828849A1 (de) 1998-06-27 1998-06-27 Brennstoffeinspritzventil mit integrierter Zündkerze
PCT/DE1999/000984 WO2000000738A1 (de) 1998-06-27 1999-04-01 Brennstoffeinspritzventil mit integrierter zündkerze

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP04000412A Division-Into EP1431571B1 (de) 1998-06-27 1999-04-01 Brennstoffeinspritzventil mit integrierter Zündkerze
EP04000412A Division EP1431571B1 (de) 1998-06-27 1999-04-01 Brennstoffeinspritzventil mit integrierter Zündkerze

Publications (2)

Publication Number Publication Date
EP1032762A1 true EP1032762A1 (de) 2000-09-06
EP1032762B1 EP1032762B1 (de) 2004-03-31

Family

ID=7872311

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99924738A Expired - Lifetime EP1032762B1 (de) 1998-06-27 1999-04-01 Brennstoffeinspritzventil mit integrierter zündkerze
EP04000412A Expired - Lifetime EP1431571B1 (de) 1998-06-27 1999-04-01 Brennstoffeinspritzventil mit integrierter Zündkerze

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04000412A Expired - Lifetime EP1431571B1 (de) 1998-06-27 1999-04-01 Brennstoffeinspritzventil mit integrierter Zündkerze

Country Status (6)

Country Link
US (2) US6536405B1 (de)
EP (2) EP1032762B1 (de)
JP (1) JP2002519571A (de)
KR (1) KR20010022302A (de)
DE (3) DE19828849A1 (de)
WO (1) WO2000000738A1 (de)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE325949T1 (de) * 1999-10-18 2006-06-15 Orbital Eng Pty Brennstoffdirekteinspritzung in einer brennkraftmaschine
AUPQ588500A0 (en) 2000-02-28 2000-03-23 Orbital Engine Company (Australia) Proprietary Limited Combined fuel injection and ignition means
AU2001268256A1 (en) * 2000-06-08 2002-01-02 Knite, Inc. Combustion enhancement system and method
DE10038293A1 (de) 2000-08-05 2002-02-14 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10150167B4 (de) * 2001-10-11 2016-01-07 Volkswagen Ag Verbrennungskraftmaschine mit verbesserter Hochfrequenzzündung
DE10214167A1 (de) 2002-03-28 2003-10-09 Bosch Gmbh Robert Brennstoffeinspritzventil-Zündkerze-Kombination
JP4082347B2 (ja) * 2003-12-18 2008-04-30 トヨタ自動車株式会社 プラズマインジェクター及び排ガス浄化システム
DE102004024535A1 (de) * 2004-05-18 2005-12-15 Robert Bosch Gmbh Brennstoffeinspritzventil mit integrierter Zündvorrichtung
FR2870569B1 (fr) * 2004-05-19 2006-07-21 Renault Sas Dispositif injecteur de carburant pour moteur a combustion interne a allumage commande
US6955154B1 (en) * 2004-08-26 2005-10-18 Denis Douglas Fuel injector spark plug
US8082735B2 (en) * 2005-04-06 2011-12-27 Massachusetts Institute Of Technology Optimized fuel management system for direct injection ethanol enhancement of gasoline engines
US8353269B2 (en) * 2004-11-18 2013-01-15 Massachusetts Institute Of Technology Spark ignition engine that uses intake port injection of alcohol to extend knock limits
US7314033B2 (en) * 2004-11-18 2008-01-01 Massachusetts Institute Of Technology Fuel management system for variable ethanol octane enhancement of gasoline engines
US20080060627A1 (en) 2004-11-18 2008-03-13 Massachusetts Institute Of Technology Optimized fuel management system for direct injection ethanol enhancement of gasoline engines
WO2008050192A2 (en) * 2006-03-08 2008-05-02 Ethanol Boosting Systems, Llc Single nozzle injection of gasoline and anti-knock fuel
WO2007106416A2 (en) * 2006-03-10 2007-09-20 Ethanol Boosting Systems, Llc. Fuel tank system for direct ethanol injection octane boosted gasoline engine
US7739985B2 (en) * 2006-03-23 2010-06-22 Lonox Engine Company, Inc. Internal combustion water injection engine
DE102006029210A1 (de) * 2006-06-26 2007-12-27 Ford Global Technologies, LLC, Dearborn Einspritzdüse zur Einspritzung von Kraftstoff in einen Zylinder einer direkteinspritzenden fremdgezündeten Brennkraftmaschine
US7650873B2 (en) 2006-07-05 2010-01-26 Advanced Propulsion Technologies, Inc. Spark ignition and fuel injector system for an internal combustion engine
WO2008014265A2 (en) * 2006-07-24 2008-01-31 Ethanol Boosting Systems, Llc Single nozzle direct injection system for rapidly variable gasoline/anti-knock agent mixtures
JP4818873B2 (ja) * 2006-10-25 2011-11-16 東洋電装株式会社 点火プラグ一体型多機能点火装置
JP4414457B2 (ja) * 2007-12-19 2010-02-10 日本特殊陶業株式会社 スパークプラグ
US8561598B2 (en) * 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
US8413634B2 (en) 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US8365700B2 (en) * 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
US7628137B1 (en) 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
US8387599B2 (en) * 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US8635985B2 (en) 2008-01-07 2014-01-28 Mcalister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8522758B2 (en) 2008-09-12 2013-09-03 Ethanol Boosting Systems, Llc Minimizing alcohol use in high efficiency alcohol boosted gasoline engines
US8069836B2 (en) * 2009-03-11 2011-12-06 Point-Man Aeronautics, Llc Fuel injection stream parallel opposed multiple electrode spark gap for fuel injector
CA2772044C (en) 2009-08-27 2013-04-16 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
CN102713242B (zh) * 2009-08-27 2016-01-20 麦卡利斯特技术有限责任公司 带有导电电缆组件的一体的燃料喷射器点火装置
SG181518A1 (en) * 2009-12-07 2012-07-30 Mcalister Technologies Llc Adaptive control system for fuel injectors and igniters
KR101153801B1 (ko) * 2009-12-31 2012-06-13 에이치케이엠엔에스(주) 방사형 연료관이 구비된 플라즈마 버너장치
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
EP2534347B1 (de) 2010-02-13 2016-05-04 McAlister, Roy Edward Verfahren und systeme zur adaptiven kühlung von verbrennungskammern in motoren
KR101245398B1 (ko) 2010-02-13 2013-03-19 맥알리스터 테크놀로지즈 엘엘씨 음파 변경기를 갖는 연료 분사기 조립체 및 관련 사용 및 제조 방법
DE102010024567B4 (de) * 2010-06-22 2012-05-31 Continental Automotive Gmbh Zündvorrichtung für einen Verbrennungsmotor und Zylinderkopfdichtung mit einer darin eingebetteten Elektrode einer Zündvorrichtung
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
WO2012112615A1 (en) 2011-02-14 2012-08-23 Mcalister Technologies, Llc Torque multiplier engines
CN103890343B (zh) 2011-08-12 2015-07-15 麦卡利斯特技术有限责任公司 用于改进的发动机冷却及能量产生的系统和方法
WO2013025626A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
US8851047B2 (en) * 2012-08-13 2014-10-07 Mcallister Technologies, Llc Injector-igniters with variable gap electrode
US20140090622A1 (en) * 2012-09-28 2014-04-03 Harold Cranmer Seelig Internal combustion engine
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US8800527B2 (en) 2012-11-19 2014-08-12 Mcalister Technologies, Llc Method and apparatus for providing adaptive swirl injection and ignition
US9021781B2 (en) 2013-01-04 2015-05-05 General Electric Company Fuel injector having an ignitor for igniting a combustor of a gas turbine
US10941746B2 (en) * 2013-03-15 2021-03-09 Alfred Anthony Black I.C.E., igniter adapted for optional placement of an integral fuel injector in direct fuel injection mode
US9562500B2 (en) 2013-03-15 2017-02-07 Mcalister Technologies, Llc Injector-igniter with fuel characterization
US8820293B1 (en) 2013-03-15 2014-09-02 Mcalister Technologies, Llc Injector-igniter with thermochemical regeneration
GB201521184D0 (en) * 2015-12-01 2016-01-13 Delphi Internat Operations Luxembourg S À R L Gaseous fuel injectors
KR101930077B1 (ko) * 2016-11-28 2018-12-17 한국기계연구원 플라즈마 이용 연료 분무 연소기 및 이를 이용한 가스 가열 장치
US10690107B1 (en) 2019-02-18 2020-06-23 Caterpillar Inc. Composite spark and liquid pilot igniter for dual fuel engine
US11156148B1 (en) 2021-02-24 2021-10-26 Aramco Services Company Active prechamber for use in an internal combustion engine
US11359590B1 (en) 2021-05-26 2022-06-14 Caterpillar Inc. Igniter for dual fuel engine having liquid fuel outlet checks and spark ignition source

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1310970A (en) * 1919-07-22 stsottd
FR640927A (fr) * 1927-04-28 1928-07-24 Procédé et dispositif pour l'utilisation de combustibles liquides lourds dans les moteurs et leur application à la transformation des moteurs à essence
US2795214A (en) * 1955-05-20 1957-06-11 Ii Thurston W Shook Combined fuel injection and ignition system for internal combustion engines
DE1178644B (de) 1961-03-17 1964-09-24 Bosch Gmbh Robert Mit Einspritzduese vereinigte Zuendkerze fuer Brennkraftmaschinen, insbesondere Gasturbinen
US3173409A (en) * 1961-10-23 1965-03-16 Glenn B Warren Internal combustion engine operating on stratified combustion principle and combined fuel injection and igniting device for use therewith
US4095580A (en) * 1976-10-22 1978-06-20 The United States Of America As Represented By The United States Department Of Energy Pulse-actuated fuel-injection spark plug
US4736718A (en) * 1987-03-19 1988-04-12 Linder Henry C Combustion control system for internal combustion engines
DE4140962A1 (de) 1991-12-12 1993-01-21 Bosch Gmbh Robert Verfahren und vorrichtung zur einblasung eines brennstoff-luft-gemisches
JPH0719142A (ja) 1993-06-30 1995-01-20 Ngk Spark Plug Co Ltd 燃料噴射弁付き点火プラグ
US5497744A (en) * 1993-11-29 1996-03-12 Toyota Jidosha Kabushiki Kaisha Fuel injector with an integrated spark plug for a direct injection type engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0000738A1 *

Also Published As

Publication number Publication date
KR20010022302A (ko) 2001-03-15
EP1032762B1 (de) 2004-03-31
DE19828849A1 (de) 1999-12-30
WO2000000738A1 (de) 2000-01-06
DE59909032D1 (de) 2004-05-06
JP2002519571A (ja) 2002-07-02
US6748918B2 (en) 2004-06-15
EP1431571A3 (de) 2004-08-04
DE59913266D1 (de) 2006-05-18
EP1431571A2 (de) 2004-06-23
US6536405B1 (en) 2003-03-25
US20030111042A1 (en) 2003-06-19
EP1431571B1 (de) 2006-03-29

Similar Documents

Publication Publication Date Title
EP1032762B1 (de) Brennstoffeinspritzventil mit integrierter zündkerze
EP1032761B1 (de) Brennstoffeinspritzventil mit integrierter zündkerze
EP1751422B1 (de) Brennstoffeinspritzventil mit integrierter zündvorrichtung
DE3731211C2 (de)
DE10159910A1 (de) Brennstoffeinspritzventil-Zündkerze-Kombination
DE4415850A1 (de) Ventilnadel für ein elektromagnetisch betätigbares Ventil
DE19744739A1 (de) Brennstoffeinspritzventil
DE19722720A1 (de) Kraftstoffinjektor mit vereinfachter Bauteilform und vereinfachtem Zusammenbau
DE69404909T2 (de) Zündkerze mit Kraftstoffeinspritzventil
EP0659235B1 (de) Elektromagnetisch betätigbares brennstoffeinspritzventil
EP0188746B1 (de) Einrichtung zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine
DE10109411A1 (de) Brennstoffeinspritzventil
EP1066468B1 (de) Brennstoffeinspritzventil
DE10050055A1 (de) Brennstoffeinspritzventil
EP0188744A2 (de) Kraftstoff-Einspritzdüse für Brennkraftmaschinen
DE4422733A1 (de) Zündkerze für Brenkraftmaschinen
DE102006042457A1 (de) Ausgerichtete Zündkerze
EP1628370B1 (de) Elektrische Verbindungsvorrichtung
DE4018317C1 (de)
DE19925984A1 (de) Brennstoffeinspritzventil und Verfahren zu dessen Herstellung
DE3615636A1 (de) Einrichtung zum einspritzen von kraftstoff in einen brennraum einer brennkraftmaschine
EP1076770A2 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE3731231A1 (de) Einrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE10050054A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20030210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59909032

Country of ref document: DE

Date of ref document: 20040506

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040709

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050321

Year of fee payment: 7

26N No opposition filed

Effective date: 20050104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060420

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080626

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090428

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401