EP1032761B1 - Brennstoffeinspritzventil mit integrierter zündkerze - Google Patents

Brennstoffeinspritzventil mit integrierter zündkerze Download PDF

Info

Publication number
EP1032761B1
EP1032761B1 EP99922069A EP99922069A EP1032761B1 EP 1032761 B1 EP1032761 B1 EP 1032761B1 EP 99922069 A EP99922069 A EP 99922069A EP 99922069 A EP99922069 A EP 99922069A EP 1032761 B1 EP1032761 B1 EP 1032761B1
Authority
EP
European Patent Office
Prior art keywords
valve
spark plug
fuel injection
insulating
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99922069A
Other languages
English (en)
French (fr)
Other versions
EP1032761A1 (de
Inventor
Walter Benedikt
Franz Rieger
Rainer Norgauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1032761A1 publication Critical patent/EP1032761A1/de
Application granted granted Critical
Publication of EP1032761B1 publication Critical patent/EP1032761B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/06Fuel-injectors combined or associated with other devices the devices being sparking plugs

Definitions

  • the invention relates to a fuel injector with an integrated spark plug according to the preamble of claim 1.
  • DE-OS 196 38 025 a fuel injector with an integrated Spark plug for injecting fuel directly into the combustion chamber of a Internal combustion engine and for igniting the fuel injected into the combustion chamber known.
  • this known fuel injection valve with an integrated spark plug acts an externally opening valve closing body with a valve body for training of a sealing seat together.
  • the valve closing body is in one piece with a valve needle formed which extends inside the sleeve-shaped valve body.
  • the valve needle is guided on the one hand by the valve closing body and on the other hand by a guide ring provided on the inlet side.
  • the valve body is can be supplied with high voltage electrical power via a high voltage cable and has an ignition electrode at its spray end.
  • valve body is radially surrounded by a ceramic insulation body, which in turn by one metallic housing body is surrounded, which has a further ignition electrode.
  • the Valve needle and the valve closing body integrally formed with the valve needle is activated by an armature in cooperation with a magnetic coil Opening direction actuated.
  • the anchor acts on an insulating one via a plunger Intermediate piece that bears against the guide ring of the valve needle.
  • valve needle is not a high voltage insulating element having.
  • the isolation is therefore carried out by the intermediate piece described, the only is non-positively, but not positively connected to the valve needle.
  • This Construction is therefore only suitable for fuel injectors that open from the outside. There only an opening force via the intermediate piece, but not a closing force via the Valve needle can be transferred to the valve closing body, a Valve closing spring integrated in the valve body to generate the closing force become. This leads to a relatively complex design and thus at relatively high manufacturing and assembly costs.
  • Another fuel injector with integrated spark plug is from the EP 0 661 446 A1 is known. With this fuel injector with integrated Spark plug is also not provided with an insulation element in the valve needle. Much more The high voltage is supplied via the valve needle, which is Insulating body extending in the feed direction is insulated radially on the outside. at this unfavorable design configuration is a total of four insulation bodies required, which leads to high manufacturing and assembly costs.
  • the fuel injector according to the invention with an integrated spark plug the characterizing features of claim 1 has the advantage that In the valve needle, an insulating section that is insulating in the axial direction is integrated. which separates two metallic guide sections.
  • the leadership of the Magnetic needle takes place through the metallic guide sections, the z. B. from hardened steel can be executed, and therefore can be precisely manufactured and their Surfaces have only a low coefficient of friction.
  • a first one Guide section is arranged on the spray side and can with the Valve closing body can be formed in one piece.
  • the second metallic guide section is with respect to the insulation portion disposed between the guide portions arranged on the inlet side and is guided in the insulation body.
  • the Guide sections with the insulation section not only non-positively but also positively connected so that both in the opening direction and in In the closing direction, a power transmission via the valve needle is possible.
  • the integration a return spring inside the valve body is therefore not necessary. It results themselves a structurally simple design, which with low manufacturing and Assembly effort can be produced.
  • the insulation body can be used as a molded ceramic part low manufacturing costs can be produced. Since the isolation section only the Isolation, but not the leadership of the valve needle, are to the Manufacturing accuracy and the abrasion resistance of the insulation section are not particularly to make high demands.
  • connection between the guide sections and the Isolation section is preferably carried out via connecting pins, which in corresponding Engage recesses.
  • the connection can by friction flow, gluing or Partly done by shrinking.
  • the insulation body preferably has a lateral recess through which a high-voltage cable is guided through to and with the valve body is electrically connected. It is advantageous to use a to shed electrically insulating potting compound, as this is a particularly good one Protection of the z. B. formed by welding or soldering joint of High-voltage cable with the valve body results. Can be particularly advantageous in the Potting compound an electrical erosion resistance or a high voltage resistant Insulation film for improved insulation of the solder joint or weld with be poured.
  • Fig. 1 is a fuel injector with an integrated spark plug for direct Injecting fuel into a combustion chamber of a mixture-compressed, spark-ignition internal combustion engine and for igniting the in the combustion chamber injected fuel according to an embodiment of the invention shown.
  • the fuel injector generally provided with the reference number 1 Integrated spark plug has a first housing body 2, which is by means of a thread 3 can be screwed into a receiving bore of a cylinder head, not shown, and a second housing body 4 and a third housing body 5. That through the housing body 3, 4, 5 formed metallic housing surrounds an insulation body 6, which in turn has a valve body 7 and at least partially a swirl insert 14 and one located inside the swirl insert 14 via the inlet end 8 of the Valve body 7 extending valve needle 9 at least partially radially on the outside surrounds.
  • the valve needle 9 is a conical one on the injection side Valve closing body 10 connected together with an inside conical Surface on the spray-side end 11 of the valve body 7 forms a sealing seat.
  • valve needle 9 and the valve closing body 10 formed in one piece.
  • the valve closing body 10 When lifting the valve closing body 10 from the Valve seat surface of the valve body 7 gives the valve closing body 10 in the Valve body 7 formed outlet opening 12 so that a through the line 13th indicated, conical spray is sprayed.
  • Swirl groove 14a For better comprehensive Distribution of the fuel is at least one in the illustrated embodiment Swirl groove 14a provided in the swirl insert 14.
  • First ignition electrodes 15 are provided on the first housing body 2 the second ignition electrodes 16 provided for the valve body 7 for generating a Spark together.
  • the Ignition electrodes 15, 16 are formed as partially parallel finger electrodes.
  • a first ignition electrode 15 and a second one are alternately located Ignition electrode 16 in a predetermined electrode distance.
  • the first Ignition electrodes 15 carry ground potential, while the second electrodes 16 also a high voltage potential can be applied.
  • the lengths of the ignition electrodes 15 and 16 are the jet angle and the jet shape of the fuel jet 13 adapt.
  • the ignition electrodes 15, 16 can either be in the fuel jet 13 immerse, or the fuel jet 13 can at a short distance to the Ignition electrodes 15, 16 are passed without the ignition electrodes 15, 16 of be wetted with the fuel. Immersion of the ignition electrodes is also conceivable 15, 16 in gaps from through the outlet opening 12 or more spray openings generated single beams.
  • the valve body 7 is preferably made of two parts for receiving the swirl insert 14 a first partial body 7a and a second partial body 7b formed on a Weld 17 are welded together.
  • the valve needle 9 is divided into a first metallic, spray-side guide section 9a, a second metallic, inlet-side Guide section 9b and a ceramic sleeve-shaped in the exemplary embodiment Isolation section 9c.
  • the first guide section 9a is concentric with the Valve body 7 mounted swirl insert 14 out.
  • a second guide of the valve needle 9 takes place in the insulation body 6 by means of the second guide section 9b the outer surface 19 of the second guide section 9b acts with a bore 20 in the insulation body 6 together.
  • the guide sections 9a serving for guidance and 9b are designed as metallic components and can be used for the guidance required manufacturing accuracy can be produced. Because of the low The surface roughness of the metallic components is only slight Friction coefficient on the guides.
  • the insulation section 9c can be as Spray ceramic part can be produced. Because the insulation section 9c is not the guide the valve needle 9 is used to the dimensional accuracy and surface roughness only to make low demands. A revision of the spray ceramic part is therefore not mandatory.
  • the guide sections 9a and 9b with the insulation section 9c not only non-positively but also positively connected.
  • the guide sections 9a and 9b each have a pin 21 or 22, each in a hole 23 formed as a recess of the Isolation section 9c is introduced.
  • the connection between the Pins 21 and 22 of the guide portions 9a and 9b by friction, by Gluing or partially made by shrinking.
  • shrinking it is advantageous if the reverse of that shown Embodiment of the guide portion 9b has a recess into which a pin of the insulation section 9c is insertable.
  • the metallic guide section 9b can then be heated before shrinking, and the pin of the insulation section 9c can be inserted into the recess when the guide section is heated become.
  • the guide section 9b cools, it contracts, so that there is a firm connection with the insulation portion 9c.
  • the insulation section 9c is preferably sleeve-shaped.
  • the second guide section 9b is connected to an anchor 24 which is connected to a Solenoid coil 25 for electromagnetic actuation of valve closing body 10 interacts.
  • a connecting cable 26 is used to energize the magnetic coil 25
  • the coil 25 is received by a coil carrier 27.
  • a sleeve-shaped Core 28 at least partially penetrates solenoid 25 and is from armature 24 by a gap in the closed position of the Fuel injector spaced.
  • the magnetic flux circuit is created by the ferromagnetic components 29 and 30 closed.
  • the fuel flows over you Fuel inlet connector 31, which has a thread 32 with a not shown
  • Fuel distributor is connectable in the fuel injector with integrated Spark plug 1.
  • the fuel first flows through a fuel filter 33 and flows then in a longitudinal bore 34 of the core 28.
  • adjusting sleeve 36 which in the longitudinal bore 34 of Core 28 is screwed.
  • the adjusting sleeve 36 is used to adjust the bias a return spring 37 which acts on the armature 24 in the closing direction.
  • a locking sleeve 38 serves to secure the setting of the adjustment sleeve 36.
  • the fuel continues to flow through a longitudinal bore 39 in the second Guide section 9b of the valve needle 9 and enters an axial recess 40 in a cavity 41 of the insulating body 6.
  • the fuel flows from there into one Longitudinal bore 42 of the valve body 7, in which the valve needle 9 extends, and finally reaches the previously described swirl groove 14a in the swirl insert 14.
  • the first lead connected to the housing body 2 Ignition electrodes 15 ground potential, while the second, with the valve body 7 connected ignition electrodes 16 with a high voltage potential for generating Ignition sparks can be applied.
  • A is used to supply the high voltage High-voltage cable 50, which has a side, pocket-like recess 51 in the Insulation body 6 is introduced.
  • the stripped end 52 of the high voltage cable 50 is soldered at a soldering or welding point 53 to a contact clip 54 or welded.
  • the contact clip 54 clasps the valve body 7 and provides one safe electrically conductive contact between the stripped end 52 of the High voltage cable 50 and the valve body 7 ago.
  • the insulation body 6 has a radial bore 55, via which a soldering or welding tool leads to the soldering or welding point 53 can be.
  • the pocket-like recess 51 with an electrically insulating potting compound 56 poured out.
  • an integrated in the high-voltage cable 50 Burn-up resistor 57 can also be cast into the sealing compound 56.
  • to improved insulation of the solder or weld 53 can be a high voltage resistant Inserted film 58 in the pocket-like recess 51 of the insulation body 6 and with the potting compound 56 can also be potted.
  • potting compound 56 is such.
  • the insulation body 6 and the valve body 7 can be connected to a thread 60 be screwed together. Furthermore, the insulation body 6 with the Housing body 2 to be screwed together on a further thread 61.
  • the threads 60 and 61 are preferably secured with a suitable adhesive, which in the embodiment according to the invention is not, however, directly with the fuel in Contact is there.
  • the insulating body 6 can also be inexpensive as a molded ceramic part getting produced.
  • the valve body 7 and the insulation body 6 can with a Assembly mandrel screwed and glued to misalignment in the guide of the Compensate valve needle 9.
  • the spatially close arrangement of the erosion resistor 57 to the ignition electrodes 15, 16 reduces the erosion at the ignition electrodes 15, 16 and allows despite one increased electrical capacity between the ignition electrodes 15, 16 a metallic Full coating of the fuel injector with integrated spark plug 1 through the metallic housing body 2, 4 and 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil mit integrierter Zündkerze nach der Gattung des Anspruchs 1.
Es ist bereits aus der DE-OS 196 38 025 ein Brennstoffeinspritzventil mit integrierter Zündkerze zum direkten Einspritzen von Brennstoff in den Brennraum einer Brennkraftmaschine und zum Zünden des in den Brennraum eingespritzten Brennstoffs bekannt. Bei diesem bekannten Brennstoffeinspritzventil mit integrierter Zündkerze wirkt ein außen öffnender Ventilschließkörper mit einem Ventilkörper zur Ausbildung eines Dichtsitzes zusammen. Der Ventilschließkörper ist einteilig mit einer Ventilnadel ausgebildet, die sich im Inneren des hülsenförmigen Ventilkörpers erstreckt. Die Führung der Ventilnadel erfolgt einerseits durch den Ventilschließkörper und andererseits durch einen zulaufseitig vorgesehenen Führungsring. Der Ventilkörper ist über ein Hochspannungskabel mit einer elektrischen Hochspannung beaufschlagbar und weist an seinem abspritzseitigen Ende eine Zündelektrode auf. Der Ventilkörper ist radial von einem keramischen Isolationskörper umgeben, der seinerseits von einem metallischen Gehäusekörper umgeben ist, der eine weitere Zündelektrode aufweist. Die Ventilnadel und der mit der Ventilnadel einstückig ausgebildete Ventilschließkörper wird durch einen mit einer Magnetspule zusammenwirkenden Anker in Öffnungsrichtung betätigt. Der Anker wirkt über einen Stößel auf ein isolierendes Zwischenstück, das an dem Führungsring der Ventilnadel anliegt.
Nachteilig ist bei dieser bekannten Bauweise eines Brennstoffeinspritzventils mit integrierter Zündkerze, daß die Ventilnadel kein hochspannungsisolierendes Element aufweist. Die Isolation erfolgt daher durch das beschriebene Zwischenstück, das nur kraftschlüssig, nicht jedoch formschlüssig mit der Ventilnadel verbunden ist. Diese Konstruktion ist daher nur für außen öffnende Brennstoffeinspritzventile geeignet. Da über das Zwischenstück nur eine Öffnungskraft, nicht jedoch eine Schließkraft über die Ventilnadel auf den Ventilschließkörper übertragen werden kann, muß eine Ventilschließfeder in dem Ventilkörper zur Erzeugung der Schließkraft integriert werden. Dies führt zu einer relativ aufwendigen konstruktiven Ausgestaltung und somit zu relativ hohen Fertigungs- und Montagekosten.
Ein weiteres Brennstoffeinspritzventil mit integrierter Zündkerze ist aus der EP 0 661 446 A1 bekannt. Bei diesem Brennstoffeinspritzventil mit integrierter Zündkerze ist ebenfalls kein Isolationselement in der Ventilnadel vorgesehen. Vielmehr erfolgt die Zuführung der Hochspannung über die Ventilnadel, die durch aufwendige, sich in Zulaufrichtung erstreckende Isolationskörper radial außenseitig isoliert ist. Bei dieser ungünstigen konstruktiven Ausgestaltung sind insgesamt vier Isolationskörper erforderlich, was zu einem hohen Fertigungs- und Montageaufwand führt.
Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit einer integrierten Zündkerze mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß in der Ventilnadel ein in axialer Richtung isolierender Isolationsabschnitt integriert ist, der zwei metallische Führungsabschnitte voneinander trennt. Die Führung der Magnetnadel erfolgt dabei durch die metallischen Führungsabschnitte, die z. B. aus gehärtetem Stahl ausgeführt sein können, und deshalb präzise fertigbar sind und deren Oberflächen einen nur geringen Reibungskoeffizienten aufweisen. Ein erster Führungsabschnitt ist dabei abspritzseitig angeordnet und kann mit dem Ventilschließkörper einteilig ausgebildet sein. Der zweite metallische Führungsabschnitt ist bezüglich des zwischen den Führungsabschnitten angeordneten Isolationsabschnitts zulaufseitig angeordnet und wird in dem Isolationskörper geführt. Dabei sind die Führungsabschnitte mit dem Isolationsabschnitt nicht nur kraftschlüssig sondern auch formschlüssig verbunden, so daß sowohl in Öffnungsrichtung als auch in Schließrichtung eine Kraftübertragung über die Ventilnadel möglich ist. Die Integration einer Rückstellfeder innerhalb des Ventilkörpers ist daher nicht erforderlich. Es ergibt sich eine konstruktiv einfache Ausgestaltung, die mit geringem Fertigungs- und Montageaufwand herstellbar ist. Der Isolationskörper kann als Spritzkeramikteil mit geringem Fertigungsaufwand hergestellt werden. Da der Isolationsabschnitt nur die Isolation, nicht jedoch die Führung der Ventilnadel übernimmt, sind an die Fertigungsgenauigkeit und die Abriebfestigkeit des Isolationsabschnitts keine besonders hohen Anforderungen zu stellen.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Brennstoffeinspritzventiles mit integrierter Zündkerze möglich.
Es ist vorteilhaft, den Isolationsabschnitt der Ventilnadel als keramischen Hülsenkörper auszubilden, da sich aufgrund der Materialersparnis bei Ausbildung des Isolationsabschnitts als Hülsenkörper ein besonders geringes Gewicht und somit eine geringe Schaltzeit ergibt. Die Verbindung zwischen den Führungsabschnitten und dem Isolationsabschnitt erfolgt vorzugsweise über Verbindungsstifte, die in entsprechende Ausnehmungen eingreifen. Die Verbindung kann durch Reibfluß, Verkleben oder zum Teil auch durch Aufschrumpfen erfolgen.
Der Isolationskörper weist vorzugsweise eine seitliche Aussparung auf, durch welche hindurch ein Hochspannungskabel zu dem Ventilkörper geführt ist und mit diesem elektrisch leitend verbunden ist. Dabei ist es vorteilhaft, die Aussparung durch eine elektrisch isolierende Vergußmasse zu vergießen, da sich dadurch ein besonders guter Schutz der z. B. durch Verschweißen oder Verlöten gebildeten Verbindungsstelle des Hochspannungskabels mit dem Ventilkörper ergibt. Besonders vorteilhaft kann in die Vergußmasse ein elektrischer Abbrandwiderstand oder eine hochspannungsfeste Isolationsfolie zur verbesserten Isolation der Lötstelle bzw. Schweißstelle mit eingegossen werden.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Die einzige Figur der Zeichnung zeigt einen Schnitt durch ein erfindungsgemäßes Brennstoffeinspritzventil mit integrierter Zündkerze.
Beschreibung des Ausführungsbeispiels
In Fig. 1 ist ein Brennstoffeinspritzventil mit integrierter Zündkerze zum direkten Einspritzen von Brennstoff in einen Brennraum einer gemischverdichteten, fremdgezündeten Brennkraftmaschine und zum Zünden des in den Brennraum eingespritzten Brennstoffs entsprechend einem Ausführungsbeispiel der Erfindung dargestellt.
Das allgemein mit dem Bezugszeichen 1 versehene Brennstoffeinspritzventil mit integrierter Zündkerze weist einen ersten Gehäusekörper 2, der mittels eines Gewindes 3 in eine Aufnahmebohrung eines nicht dargestellten Zylinderkopfes einschraubbar ist, sowie einen zweiten Gehäusekörper 4 und einen dritten Gehäusekörper 5 auf. Das durch die Gehäusekörper 3, 4, 5 gebildete metallische Gehäuse umgibt einen Isolationskörper 6, der seinerseits einen Ventilkörper 7 und zumindest teilweise einen Dralleinsatz 14 und eine sich im Inneren des Dralleinsatzes 14 über das zulaufseitige Ende 8 des Ventilkörpers 7 hinaus erstreckende Ventilnadel 9 zumindest teilweise radial außenseitig umgibt. Mit der Ventilnadel 9 ist ein abspritzseitig konisch ausgebildeter Ventilschließkörper 10 verbunden, der zusammen mit einer innenseitigen konischen Fläche an dem abspritzseitigen Ende 11 des Ventilkörpers 7 einen Dichtsitz bildet. Im dargestellten Ausführungsbeispiel sind die Ventilnadel 9 und der Ventilschließkörper 10 einteilig ausgebildet. Beim Abheben des Ventilschließkörpers 10 von der Ventilsitzfläche des Ventilkörpers 7 gibt der Ventilschließkörper 10 eine in dem Ventilkörper 7 ausgebildete Austrittsöffnung 12 frei, so daß ein durch die Linie 13 angedeuteter, kegelförmiger Abspritzstrahl abgespritzt wird. Zur besseren umfänglichen Verteilung des Brennstoffs ist im dargestellten Ausführungsbeispiel wenigstens eine Drallnut 14a im Dralleinsatz 14 vorgesehen.
An dem ersten Gehäusekörper 2 sind erste Zündelektroden 15 vorgesehen, die mit an dem Ventilkörper 7 vorgesehenen zweiten Zündelektroden 16 zur Erzeugung eines Zündfunkens zusammenwirken. Im dargestellten Ausführungsbeispiel sind die Zündelektroden 15, 16 als teilweise parallel verlaufende Fingerelektroden ausgebildet.
Dabei stehen sich abwechselnd jeweils eine erste Zündelektrode 15 und eine zweite Zündelektrode 16 in einem vorgegebenen Elektrodenabstand gegenüber. Die ersten Zündelektroden 15 führen dabei Massepotential, während die zweiten Elektroden 16 mit einem Hochspannungspotential beaufschlagbar sind. Die Längen der Zündelektroden 15 und 16 sind dabei dem Strahlwinkel und der Strahlform des Brennstoffstrahls 13 anzupassen. Dabei können die Zündelektroden 15, 16 entweder in den Brennstoffstrahl 13 eintauchen, oder der Brennstoffstrahl 13 kann in geringem Abstand an den Zündelektroden 15, 16 vorbeigeführt werden, ohne daß die Zündelektroden 15, 16 von dem Brennstoff benetzt werden. Denkbar ist auch ein Eintauchen der Zündelektroden 15, 16 in Lücken von durch die Austrittsöffnung 12 oder mehrere Abspritzöffnungen erzeugte Einzelstrahlen.
Der Ventilkörper 7 ist zur Aufnahme des Dralleinsatzes 14 vorzugsweise zweiteilig aus einem ersten Teilkörper 7a und einem zweiten Teilkörper 7b ausgebildet, die an einer Schweißstelle 17 zusammengeschweißt sind.
Erfindungsgemäß gliedert sich die Ventilnadel 9 in einen ersten metallischen, abspritzseitigen Führungsabschnitt 9a, einen zweiten metallischen, zulaufseitigen Führungsabschnitt 9b und einen im Ausführungsbeispiel hülsenförmigen, keramischen Isolationsabschnitt 9c. Der erste Führungsabschnitt 9a ist in dem konzentrisch zum Ventilkörper 7 montierten Dralleinsatz 14 geführt. Eine zweite Führung der Ventilnadel 9 erfolgt mittels des zweiten Führungsabschnitts 9b in dem Isolationskörper 6. Dazu wirkt die Mantelfläche 19 des zweiten Führungsabschnitts 9b mit einer Bohrung 20 in dem Isolationskörper 6 zusammen. Die der Führung dienenden Führungsabschnitte 9a und 9b sind als metallische Bauteile ausgebildet und können mit der für die Führung erforderlichen Fertigungsgenauigkeit hergestellt werden. Aufgrund der geringen Oberflächenrauhigkeit der metallischen Bauteile ergibt sich ein nur geringer Reibungskoeffizient an den Führungen. Der Isolationsabschnitt 9c hingegen kann als Spritzkeramikteil hergestellt werden. Da der Isolationsabschnitt 9c nicht der Führung der Ventilnadel 9 dient, sind an die Maßgenauigkeit und die Oberflächenrauhigkeit nur geringe Anforderungen zu stellen. Eine Überarbeitung des Spritzkeramikteils ist daher nicht erforderlich.
Erfindungsgemäß sind die Führungsabschnitte 9a und 9b mit dem Isolationsabschnitt 9c nicht nur kraftschlüssig sondern auch formschlüssig verbunden. Bei dem dargestellten Ausführungsbeispiel weisen die Führungsabschnitte 9a und 9b jeweils einen Stift 21 bzw. 22 auf, der jeweils in eine als Bohrung 23 ausgebildete Ausnehmung des Isolationsabschnitts 9c eingeführt ist. Vorzugsweise ist die Verbindung zwischen den Stiften 21 und 22 der Führungsabschnitte 9a und 9b durch einen Reibschluß, durch Verkleben oder teilweise auch durch Aufschrumpfen hergestellt. Für eine Verbindung durch Aufschrumpfen ist es vorteilhaft, wenn umgekehrt zu dem dargestellten Ausführungsbeispiel der Führungsabschnitt 9b eine Ausnehmung aufweist, in welche ein Stift des Isolationsabschnitts 9c einführbar ist. Der metallische Führungsabschnitt 9b kann vor dem Aufschrumpfen dann erhitzt werden, und der Stift des Isolationsabschnitts 9c kann in die Ausnehmung im erhitzten Zustand des Führungsabschnittes eingeführt werden. Beim Abkühlen des Führungsabschnittes 9b zieht sich dieser zusammen, so daß sich eine feste Verbindung mit dem Isolationsabschnitt 9c ergibt.
Der Isolationsabschnitt 9c ist vorzugsweise hülsenförmig ausgebildet. Durch das gegenüber einem Vollkörper eingesparte Material ergibt sich eine Gewichtseinsparung, die zu kürzeren Schaltzeiten des Brennstoffeinspritzventils 1 führt.
Der zweite Führungsabschnitt 9b ist mit einem Anker 24 verbunden, der mit einer Magnetspule 25 zur elektromagnetischen Betätigung des Ventilschließkörpers 10 zusammenwirkt. Zur Bestromung der Magnetspule 25 dient ein Anschlußkabel 26. Die Aufnahme der Magnetspule 25 übernimmt ein Spulenträger 27. Ein hülsenförmiger Kern 28 durchdringt die Magnetspule 25 zumindest teilweise und ist von dem Anker 24 durch einen aus der Figur nicht erkennbaren Spalt in der geschlossenen Stellung des Brennstoffeinspritzventils beabstandet. Der magnetische Flußkreis wird durch die ferromagnetischen Bauteile 29 und 30 geschlossen. Der Brennstoff strömt über einen Brennstoffeinlaßstutzen 31, der über ein Gewinde 32 mit einem nicht dargestellten Brennstoffverteiler verbindbar ist, in das Brennstoffeinspritzventil mit integrierter Zündkerze 1. Der Brennstoff durchströmt zunächst ein Brennstoffilter 33 und strömt dann in eine Längsbohrung 34 des Kerns 28. In der Längsbohrung 34 ist eine mit einer Hohlbohrung 35 versehene Einstellhülse 36 vorgesehen, die in die Längsbohrung 34 des Kerns 28 einschraubbar ist. Die Einstellhülse 36 dient zur Einstellung der Vorspannung einer Rückstellfeder 37, die den Anker 24 in Schließrichtung beaufschlagt. Zur Sicherung der Einstellung der Einstellhülse 36 dient eine Konterhülse 38.
Der Brennstoff strömt weiter durch eine Längsbohrung 39 in dem zweiten Führungsabschnitt 9b der Ventilnadel 9 und tritt an einer axialen Aussparung 40 in einen Hohlraum 41 des Isolationskörpers 6 ein. Der Brennstoff strömt von dort in eine Längsbohrung 42 des Ventilkörpers 7, in der sich auch die Ventilnadel 9 erstreckt, und erreicht schließlich die bereits beschriebene Drallnut 14a im Dralleinsatz 14.
Wie bereits beschrieben, führen die ersten, mit dem Gehäusekörper 2 verbundenen Zündelektroden 15 Massepotential, während die zweiten, mit dem Ventilkörper 7 verbundene Zündelektroden 16 mit einem Hochspannungspotential zur Erzeugung von Zündfunken beaufschlagbar sind. Zur Zuführung der Hochspannung dient ein Hochspannungskabel 50, das über eine seitliche, taschenartige Ausnehmung 51 in den Isolationskörper 6 eingeführt ist. Das abisolierte Ende 52 des Hochspannungskabels 50 ist an einer Löt- oder Schweißstelle 53 mit einer Kontaktklammer 54 verlötet oder verschweißt. Die Kontaktklammer 54 umklammert den Ventilkörper 7 und stellt einen sicheren elektrisch leitenden Kontakt zwischen dem abisolierten Ende 52 des Hochspannungskabels 50 und dem Ventilkörper 7 her. Zur besseren Zugänglichkeit der Löt- oder Schweißstelle 53 weist der Isolationskörper 6 eine radiale Bohrung 55 auf, über welche ein Löt- oder Schweißwerkzeug zu der Löt- oder Schweißstelle 53 geführt werden kann. Nach dem Herstellen der Löt- oder Schweißverbindung wird die taschenartige Ausnehmung 51 mit einer elektrisch isolierenden Vergußmasse 56 ausgegossen. Dabei kann ein in dem Hochspannungskabel 50 integrierter Abbrandwiderstand 57 in die Vergußmasse 56 mit eingegossen werden. Zur verbesserten Isolation der Löt- oder Schweißstelle 53 kann eine hochspannungsfeste Folie 58 in die taschenartige Ausnehmung 51 des Isolationskörpers 6 eingelegt und mit der Vergußmasse 56 ebenfalls vergossen werden. Als Vergußmasse 56 eignet sich z. B. Silikon.
Der Isolationskörper 6 und der Ventilkörper 7 können an einem Gewinde 60 miteinander verschraubt sein. Ferner kann der Isolationskörper 6 mit dem Gehäusekörper 2 an einem weiteren Gewinde 61 miteinander verschraubt sein. Vorzugsweise werden die Gewinde 60 und 61 mit einem geeigneten Klebstoff gesichert, der bei der erfindungsgemäßen Ausgestaltung jedoch nicht direkt mit dem Brennstoff in Kontakt steht. Auch der Isolationskörper 6 kann als Spritzkeramikteil kostengünstig hergestellt werden. Der Ventilkörper 7 und der Isolationskörper 6 können mit einem Montagedorn verschraubt und verklebt werden, um Fluchtfehler in der Führung der Ventilnadel 9 auszugleichen.
Die räumlich nahe Anordnung des Abbrandwiderstands 57 zu den Zündelektroden 15, 16 reduziert den Abbrand an den Zündelektroden 15, 16 und erlaubt trotz einer erhöhten elektrischen Kapazität zwischen den Zündelektroden 15, 16 eine metallische Vollummantelung des Brennstoffeinspritzventils mit integrierter Zündkerze 1 durch die metallischen Gehäusekörper 2, 4 und 5.

Claims (9)

  1. Brennstoffeinspritzventil mit integrierter Zündkerze (1) zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine und zum Zünden des in den Brennraum eingespritzten Brennstoffs mit
    einem Ventilkörper (7), der zusammen mit einem mittels einer Ventilnadel (9) betätigbaren Ventilschließkörper (10) einen Dichtsitz bildet,
    einem den Ventilkörper (7) und zumindest teilweise die Ventilnadel (9) radial umgebenden Isolationskörper (6), und
    einem den Isolationskörper (6) zumindest teilweise radial umgebenden Gehäusekörper (2), wobei an dem Ventilkörper (7) und/oder dem Gehäusekörper (2) zumindest eine Zündelektrode (15, 16) vorgesehen ist,
    dadurch gekennzeichnet, daß die Ventilnadel (9) einen in dem Ventilkörper (7) geführten ersten metallischen Führungsabschnitt (9a), einen in dem Isolationskörper (6) geführten zweiten metallischen Führungsabschnitt (9b) und einen zwischen den Führungsabschnitten (9a, 9b) angeordneten Isolationsabschnitt aufweist, wobei die Führungsabschnitte (9a, 9b) formschlüssig mit dem Isolationsabschnitt (9c) verbunden sind.
  2. Brennstoffeinspritzventil mit integrierter Zündkerze nach Anspruch 1,
    dadurch gekennzeichnet, daß der Isolationsabschnitt (9c) der Ventilnadel (9) durch einen keramischen Hülsenkörper gebildet ist.
  3. Brennstoffeinspritzventil mit integrierter Zündkerze nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß der erste und der zweite metallische Führungsabschnitt (9a, 9b) jeweils einen Verbindungsstift (21, 22) aufweisen, der in eine Ausnehmung (23) des Isolationsabschnitts (9c) eingeführt ist.
  4. Brennstoffeinspritzventil mit integrierter Zündkerze nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß der zweite metallische Führungsabschnitt (9b) jeweils eine Ausnehmung aufweist, in welchen ein Verbindungsstift des Isolationsabschnitts (9c) eingeführt ist.
  5. Brennstoffeinspritzventil mit integrierter Zündkerze nach einem der Ansprüche 2 bis 4,
    dadurch gekennzeichnet, daß die Verbindung zwischen den metallischen Führungsabschnitten (9a, 9b) und dem Isolationsabschnitt (9c) durch Reibschluß und/oder Verkleben und/oder Aufschrumpfen gebildet ist.
  6. Brennstoffeinspritzventil mit integrierter Zündkerze nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, daß der Isolationskörper (6) eine seitliche Aussparung (51) aufweist, durch welche hindurch ein Hochspannungskabel (50) zu dem Ventilkörper (7) geführt ist und mit diesem elektrisch leitend verbunden ist, wobei die Aussparung (51) mit einer elektrisch isolierenden Vergußmasse (56) vergossen ist.
  7. Brennstoffeinspritzventil mit integrierter Zündkerze nach Anspruch 6,
    dadurch gekennzeichnet, daß in dem Hochspannungskabel (50) ein elektrischer Abbrandwiderstand (57) integriert ist, der in die Vergußmasse (56) eingegossen ist.
  8. Brennstoffeinspritzventil mit integrierter Zündkerze nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, daß das Hochspannungskabel (50) mit dem Ventilkörper (7) oder mit einer den Ventilkörper (7) umklammernden Kontaktklammer (54) durch Löten oder Verschweißen verbunden ist und die Lötstelle bzw. die Schweißstelle (53) durch eine hochspannungsfeste Isolationsfolie (58) abgedeckt ist, die in die Vergußmasse (56) eingegossen ist.
  9. Brennstoffeinspritzventil mit integrierter Zündkerze nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, daß der Ventilkörper (7) aus zwei Ventilteilkörpern (7a, 7b) zusammengesetzt ist, die insbesondere durch Verschweißen miteinander verbunden sind.
EP99922069A 1998-06-27 1999-03-24 Brennstoffeinspritzventil mit integrierter zündkerze Expired - Lifetime EP1032761B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19828848 1998-06-27
DE19828848A DE19828848A1 (de) 1998-06-27 1998-06-27 Brennstoffeinspritzventil mit integrierter Zündkerze
PCT/DE1999/000861 WO2000000737A1 (de) 1998-06-27 1999-03-24 Brennstoffeinspritzventil mit integrierter zündkerze

Publications (2)

Publication Number Publication Date
EP1032761A1 EP1032761A1 (de) 2000-09-06
EP1032761B1 true EP1032761B1 (de) 2004-09-29

Family

ID=7872310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99922069A Expired - Lifetime EP1032761B1 (de) 1998-06-27 1999-03-24 Brennstoffeinspritzventil mit integrierter zündkerze

Country Status (6)

Country Link
US (1) US6340015B1 (de)
EP (1) EP1032761B1 (de)
JP (1) JP2002519570A (de)
KR (1) KR20010022255A (de)
DE (2) DE19828848A1 (de)
WO (1) WO2000000737A1 (de)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289869B1 (en) * 1997-09-12 2001-09-18 George D. Elliott Electromagnetic fuel ram-injector and improved ignitor
CN100595425C (zh) * 2000-06-08 2010-03-24 奈特公司 燃烧增强系统和方法
DE10214167A1 (de) * 2002-03-28 2003-10-09 Bosch Gmbh Robert Brennstoffeinspritzventil-Zündkerze-Kombination
DE50310407D1 (de) 2003-01-17 2008-10-09 Ford Global Tech Llc Kraftstoffinjektor und Zündeinrichtung für eine Brennkraftmaschine
JP4082347B2 (ja) * 2003-12-18 2008-04-30 トヨタ自動車株式会社 プラズマインジェクター及び排ガス浄化システム
US7174717B2 (en) * 2003-12-24 2007-02-13 Pratt & Whitney Canada Corp. Helical channel fuel distributor and method
US8082735B2 (en) * 2005-04-06 2011-12-27 Massachusetts Institute Of Technology Optimized fuel management system for direct injection ethanol enhancement of gasoline engines
US20080060627A1 (en) 2004-11-18 2008-03-13 Massachusetts Institute Of Technology Optimized fuel management system for direct injection ethanol enhancement of gasoline engines
US8353269B2 (en) * 2004-11-18 2013-01-15 Massachusetts Institute Of Technology Spark ignition engine that uses intake port injection of alcohol to extend knock limits
US7314033B2 (en) 2004-11-18 2008-01-01 Massachusetts Institute Of Technology Fuel management system for variable ethanol octane enhancement of gasoline engines
US7640913B2 (en) * 2006-03-08 2010-01-05 Ethanol Boosting Systems, Llc Single nozzle injection of gasoline and anti-knock fuel
US7726265B2 (en) * 2006-03-10 2010-06-01 Ethanol Boosting Systems, Llc Fuel tank system for direct ethanol injection octane boosted gasoline engine
WO2008014265A2 (en) * 2006-07-24 2008-01-31 Ethanol Boosting Systems, Llc Single nozzle direct injection system for rapidly variable gasoline/anti-knock agent mixtures
US20090145977A1 (en) 2007-12-05 2009-06-11 Jan Ihle Injection molded nozzle and injector comprising the injection molded nozzle
US9034210B2 (en) * 2007-12-05 2015-05-19 Epcos Ag Feedstock and method for preparing the feedstock
US20090148802A1 (en) * 2007-12-05 2009-06-11 Jan Ihle Process for heating a fluid and an injection molded molding
US7973639B2 (en) * 2007-12-05 2011-07-05 Epcos Ag PTC-resistor
US20090146042A1 (en) * 2007-12-05 2009-06-11 Jan Ihle Mold comprising a ptc-ceramic
US20090148657A1 (en) * 2007-12-05 2009-06-11 Jan Ihle Injection Molded PTC-Ceramics
WO2011025512A1 (en) * 2009-08-27 2011-03-03 Mcallister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8733331B2 (en) 2008-01-07 2014-05-27 Mcalister Technologies, Llc Adaptive control system for fuel injectors and igniters
US8387599B2 (en) * 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US7628137B1 (en) * 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8365700B2 (en) * 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
US8561598B2 (en) * 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
US8413634B2 (en) * 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US8225768B2 (en) * 2008-01-07 2012-07-24 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8522758B2 (en) 2008-09-12 2013-09-03 Ethanol Boosting Systems, Llc Minimizing alcohol use in high efficiency alcohol boosted gasoline engines
US8069836B2 (en) * 2009-03-11 2011-12-06 Point-Man Aeronautics, Llc Fuel injection stream parallel opposed multiple electrode spark gap for fuel injector
CA2772044C (en) 2009-08-27 2013-04-16 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
CA2771996C (en) * 2009-08-27 2016-04-26 Mcalister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
CN102712540B (zh) * 2009-08-27 2014-12-17 麦卡利斯特技术有限责任公司 陶瓷绝缘体及其使用和制造方法
CN102859176B (zh) 2009-12-07 2016-01-20 麦卡利斯特技术有限责任公司 适于大型发动机应用的集成式燃料喷射器点火器以及使用和制造的相关方法
WO2011100701A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Fuel injector assemblies having acoustical force modifiers and associated methods of use and manufacture
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
CN102844540A (zh) 2010-02-13 2012-12-26 麦卡利斯特技术有限责任公司 用于自适应地冷却发动机中的燃烧室的方法和系统
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
US8820275B2 (en) 2011-02-14 2014-09-02 Mcalister Technologies, Llc Torque multiplier engines
KR101230530B1 (ko) * 2011-04-05 2013-02-06 한국기계연구원 인젝터 결합형 다점 스파크플러그를 갖는 직접분사식 내연기관
CN103890343B (zh) 2011-08-12 2015-07-15 麦卡利斯特技术有限责任公司 用于改进的发动机冷却及能量产生的系统和方法
WO2013025626A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
US9169814B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Systems, methods, and devices with enhanced lorentz thrust
US9169821B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
US8752524B2 (en) 2012-11-02 2014-06-17 Mcalister Technologies, Llc Fuel injection systems with enhanced thrust
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US9194337B2 (en) 2013-03-14 2015-11-24 Advanced Green Innovations, LLC High pressure direct injected gaseous fuel system and retrofit kit incorporating the same
US10941746B2 (en) * 2013-03-15 2021-03-09 Alfred Anthony Black I.C.E., igniter adapted for optional placement of an integral fuel injector in direct fuel injection mode
US8757129B1 (en) 2013-07-24 2014-06-24 Thrival Tech, LLC Multi-fuel plasma injector
GB201521184D0 (en) * 2015-12-01 2016-01-13 Delphi Internat Operations Luxembourg S À R L Gaseous fuel injectors
DE102020108665A1 (de) 2020-03-30 2021-09-30 Liebherr-Components Deggendorf Gmbh Düsennadel für einen Kraftstoffinjektor und Injektorgehäuse für eine Düsennadel

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2255203A (en) * 1940-02-28 1941-09-09 Wright Aeronautical Corp Fuel injection spark plug
US2403440A (en) * 1944-09-23 1946-07-09 George L Calig Internal-combustion engine
US3058453A (en) * 1960-02-15 1962-10-16 Walker Mfg Co Fuel injector-igniter
US3060912A (en) * 1960-02-15 1962-10-30 Walker Mfg Co Fuel injector-igniter
US3060913A (en) * 1960-02-15 1962-10-30 Walker Mfg Co Fuel injector-igniter
US3081758A (en) * 1960-05-02 1963-03-19 Walker Mfg Co Pressure actuated fuel injector
DE1526326C3 (de) * 1964-02-10 1974-06-06 Hermann 7742 St. Georgen Papst Einspritz- und Zündvorrichtung für Brennkraftmaschinen
US3795214A (en) * 1973-03-23 1974-03-05 T Sweeney Apparatus for providing a sailboat with an auxiliary stern mast and sail
US3926169A (en) * 1974-06-21 1975-12-16 Fuel Injection Dev Corp Combined fuel vapor injector and igniter system for internal combustion engines
US4736718A (en) * 1987-03-19 1988-04-12 Linder Henry C Combustion control system for internal combustion engines
DE3731211A1 (de) * 1987-09-17 1989-03-30 Bosch Gmbh Robert Kraftstoffeinspritzventil
JP3158620B2 (ja) * 1992-02-26 2001-04-23 いすゞ自動車株式会社 燃料噴射ノズル
JPH05240126A (ja) 1992-02-26 1993-09-17 Isuzu Motors Ltd 燃料噴射ノズル
GB9210115D0 (en) * 1992-05-11 1992-06-24 United Fuels Ltd Improvements in or relating to internal combustion engines
US5409165A (en) * 1993-03-19 1995-04-25 Cummins Engine Company, Inc. Wear resistant fuel injector plunger assembly
JPH0719142A (ja) * 1993-06-30 1995-01-20 Ngk Spark Plug Co Ltd 燃料噴射弁付き点火プラグ
DE69410582T2 (de) 1993-11-29 1998-11-26 Toyota Motor Co Ltd Kraftstoffeinspritzeinrichtung mit integrierter Zündkerze für Motor mit direkter Einspritzung
US5607106A (en) 1994-08-10 1997-03-04 Cummins Engine Company Low inertia, wear-resistant valve for engine fuel injection systems
US5715788A (en) * 1996-07-29 1998-02-10 Cummins Engine Company, Inc. Integrated fuel injector and ignitor assembly
DE19638025A1 (de) * 1996-09-18 1998-03-19 Bosch Gmbh Robert Brennstoffeinspritzventil mit integrierter Zündkerze

Also Published As

Publication number Publication date
DE19828848A1 (de) 1999-12-30
EP1032761A1 (de) 2000-09-06
DE59910651D1 (de) 2004-11-04
WO2000000737A1 (de) 2000-01-06
US6340015B1 (en) 2002-01-22
KR20010022255A (ko) 2001-03-15
JP2002519570A (ja) 2002-07-02

Similar Documents

Publication Publication Date Title
EP1032761B1 (de) Brennstoffeinspritzventil mit integrierter zündkerze
EP1032762B1 (de) Brennstoffeinspritzventil mit integrierter zündkerze
EP0861371B1 (de) Brennstoffeinspritzventil mit integrierter zündkerze
EP1030967B1 (de) Brennstoffeinspritzventil
EP0862689B1 (de) Brennstoffverteiler
DE3507441A1 (de) Elektromagnetisch betaetigbares kraftstoffeinspritzventil und verfahren zu seiner herstellung
EP1062422B1 (de) Verfahren zur montage einer ventilbaugruppe eines brennstoffeinspritzventils
DE3705848C2 (de) Hydraulischer Kreislauf einer Kraftstoffeinspritzanlage
EP1030968B1 (de) Brennstoffeinspritzventil
DE3839692A1 (de) Anregungsspule fuer ein elektromagnetisches dosier- und zerstaeubungsventil fuer treibstoff an einer brennkraftmaschine
EP0659235B1 (de) Elektromagnetisch betätigbares brennstoffeinspritzventil
DE3840339A1 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
EP1563519B1 (de) Elektrische kontaktierung dünner lackdrähte von sekundärwicklungen von zündspulen
DE10050055A1 (de) Brennstoffeinspritzventil
EP1066468B1 (de) Brennstoffeinspritzventil
DE19853102A1 (de) Brennstoffeinspritzventil
EP1628370B1 (de) Elektrische Verbindungsvorrichtung
DE102004058643B4 (de) Kraftstoffinjektor für eine Brennkraftmaschine
DE102004063293B4 (de) Kraftstoffinjektor für eine Brennkraftmaschine
DE19925984A1 (de) Brennstoffeinspritzventil und Verfahren zu dessen Herstellung
DE10052486A1 (de) Brennstoffeinspritzventil
WO2006058901A1 (de) Kraftstoffinjektor für eine brennkraftmaschine
EP1628371A1 (de) Elektrische Verbindungsvorrichtung
DE3731231A1 (de) Einrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102004058019A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20030211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59910651

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040929

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060322

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080526

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090326

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100324