EP0970978B1 - Zur Beschichtung optischer Fasern geeignete strahlungshärtbare flüssige Harzzusammensetzung und mit dieser beschichtete optische Faser - Google Patents

Zur Beschichtung optischer Fasern geeignete strahlungshärtbare flüssige Harzzusammensetzung und mit dieser beschichtete optische Faser Download PDF

Info

Publication number
EP0970978B1
EP0970978B1 EP99305409A EP99305409A EP0970978B1 EP 0970978 B1 EP0970978 B1 EP 0970978B1 EP 99305409 A EP99305409 A EP 99305409A EP 99305409 A EP99305409 A EP 99305409A EP 0970978 B1 EP0970978 B1 EP 0970978B1
Authority
EP
European Patent Office
Prior art keywords
radiation
resin composition
liquid resin
curable liquid
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99305409A
Other languages
English (en)
French (fr)
Other versions
EP0970978A1 (de
Inventor
Akira Silicone-Elec. Materials Res. Ctr Yamamoto
Shouhei Advanced Funct Materials Res Ctr Kozakai
Satoshi Silicone-Elect Materials Res Ctr Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of EP0970978A1 publication Critical patent/EP0970978A1/de
Application granted granted Critical
Publication of EP0970978B1 publication Critical patent/EP0970978B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides

Definitions

  • This invention relates to radiation-curable liquid resin compositions formulated with a view to a low viscosity and curability to a product having a low Young's modulus.
  • Such compositions may be for example suitable as a primary coating or buffer layer on optical fibers.
  • the invention also relates to an optical fiber covered with a cured product of the composition.
  • Optical fibers for data communication include a variety of fibers such as quartz glass, multi-component glass and plastic fibers.
  • quartz glass optical fibers are vastly used in a wide range of application. Since the quartz glass optical fibers, however, are very thin and susceptible to changes by external factors, quartz glass fibers as melt spun are generally provided with a primary coating and then with a secondary coating for protecting the primary coating.
  • the primary coating is formed by applying a liquid curable resin of the type giving a soft cured product, followed by curing.
  • the secondary coating is formed by applying a liquid curable resin of the type giving a hard cured product, followed by curing.
  • Properties required for the primary coating material include a low Young's modulus and low temperature dependency thereof for preventing microbending losses by external stresses or temperature changes, durability in terms of heat resistance and water resistance, low water absorption, low hydrogen generation, a high refractive index, and a fast-curing ability and low viscosity for allowing the drawing speed of optical fibers to be increased for improved productivity.
  • UV-curable compositions based on urethane acrylate were proposed in the past.
  • JP-B 1-19694 and Japanese Patent Nos. 2,522,663 and 2,547,021 disclose liquid UV-curable compositions comprising a urethane acrylate oligomer, a reactive monomer, and a polymerization initiator.
  • compositions fail to meet some of the above requirements, that is, a low Young's modulus and good low-temperature properties (minimized temperature dependency of Young's modulus), low water absorption, and low viscosity, because they are based on urethane acrylate oligomers of urethane bond-bearing polyethers or polyesters.
  • JP-B 4-29619 corresponding to USP 4,496,210 and JP-A 61-21121 disclose liquid UV-curable compositions using a silicone urethane acrylate containing an organic polysiloxane. Urethane bonds are contained likewise. Because of the structural factors of urethane bonds (specifically, rigidity of the structure and the hydrogen bond in the urethane bond), these compositions are not satisfactory to some of the above requirements, that is, a low Young's modulus and a low viscosity.
  • compositions cure to coating films of high hardness and durability said to be useful eg. for PCBs, ICs, thermoplastic substrates and glass sleeves, also optical fibre hard coatings.
  • JP-A-61/246277 describes rapid-curing adhesives based on a polymer of an acrylic monomer such as methacryloxypropylbis(trimethoxy)methylsilane, an acrylic-containing siloxane such as a polydimethylsiloxane, and a polymerisation catalyst such as t-BuO 2 Bz.
  • an acrylic monomer such as methacryloxypropylbis(trimethoxy)methylsilane
  • an acrylic-containing siloxane such as a polydimethylsiloxane
  • a polymerisation catalyst such as t-BuO 2 Bz.
  • the aim here is to provide new and useful low-viscosity radiation-curable liquid resin compositions which cure into a product having a low Young's modulus, experiencing a small change in Young's modulus at low temperature.
  • Other aspects are the preparation of such compositions, their use for coating eg. on optical fibres, and optical fibres coated therewith.
  • the invention addresses a radiation-curable liquid resin composition
  • a radiation-curable liquid resin composition comprising a (meth)acryl group-bearing oligomer or polymer as a main component.
  • the inventor has found that certain organopolysiloxanes having a (meth)acryl group at each end of the molecular chain, containing at least 15 mol% of aromatic hydrocarbon groups based on the entire organic groups attached to silicon atoms, and when free of a urethane bond within the molecule, are fully compatible with a reactive monomer and when used as the main component, the resulting radiation-curable liquid resin composition has a low viscosity and cures into a product having a low Young's modulus and a high refractive index.
  • a monomer based on an organosiloxane skeleton and having an ethylenically unsaturated group is used as the reactive monomer, and the cured product experiences a low change of Young's modulus at low temperatures.
  • the invention provides in one aspect a radiation-curable liquid resin composition as set out in claim 1.
  • the first component of the radiation-curable liquid resin composition according to the invention is an organopolysiloxane which has a (meth)acryl group at either end of its molecular chain, contains at least 15 mol% of aromatic hydrocarbon groups based on the entire organic substituents attached to silicon atoms, and is free of a urethane bond within the molecule; especially a linear diorganopolysiloxane containing at least 15 mol% of aromatic hydrocarbon groups based on the entire organic substituents (that is, substituted or unsubstituted monovalent hydrocarbon groups) attached to silicon atoms, excluding the (meth)acryl group-bearing organic groups attached to the silicon atoms at both ends of the molecular chain.
  • (meth)acryl group means acryl group and/or methacryl group.
  • This organopolysiloxane is the base polymer of the liquid resin composition according to the invention and is basically a linear diorganopolysiloxane whose backbone consists of recurring diorganosiloxane units. It is represented by the following general formula (1).
  • R 1 is a hydrogen atom or a methyl group
  • R 2 which may be the same or different, is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 contains at least 15 mol% of aromatic hydrocarbon groups
  • m is an integer of 1 to 5
  • n is an integer of 150 to 1,200, preferably to 1,000.
  • R 1 is a hydrogen atom or a methyl group, although the hydrogen atom is preferred when the curing rate of the composition upon exposure to radiation is taken into account.
  • R 2 represents substituted or unsubstituted monovalent hydrocarbon groups having 1 to 10 carbon atoms, preferably substituted or unsubstituted monovalent hydrocarbon group having no aliphatic unsaturated bonds, for example, straight, branched or cyclic alkyl groups of 1 to 10 carbon atoms, especially 1 to 6 carbon atoms, aryl groups of 6 to 10 carbon atoms, and aralkyl groups of 7 to 10 carbon atoms.
  • R 2 are alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, cyclohexyl, octyl, nonyl and decyl; aryl groups such as phenyl, tolyl, xylyl, and ethylphenyl; aralkyl groups such as benzyl, ⁇ -phenylethyl, and ⁇ -methyl- ⁇ -phenylethyl; and substituted ones of these groups wherein some of the hydrogen atoms are replaced by halogen atoms (e.g., F, Cl and Br), typically halo-substituted alkyl groups such as chloromethyl, bromoethyl, and 3,3,3-trifluoropropyl.
  • halogen atoms e.g., F, Cl and Br
  • Methyl and phenyl groups are preferable from the commercial aspect.
  • aromatic hydrocarbon groups are contained in an amount of at least 15 mol%, typically 15 to 50 mol%, especially 15 to 30 mol%, based on the R 2 groups.
  • Exemplary aromatic hydrocarbon groups are aryl groups such as phenyl, tolyl, xylyl, and ethylphenyl, and aralkyl groups such as benzyl, ⁇ -diphenylethyl, and ⁇ -methyl- ⁇ -phenylethyl, with the aryl groups such as phenyl being preferred.
  • Letter m is an integer of 1 to 5, especially 1 to 3.
  • the organopolysiloxane (A) has a degree of polymerization (n) as specified above. With n too low the cured product sometimes has a less good Young's modulus, and a lower elongation. With n above 1,200 the viscosity may rise and the organopolysiloxane tends to be less compatible with monomer (B), which is not suitable. Most preferably, the degree of polymerization (n) is in the range of 150 to 500.
  • the organopolysiloxanes (A) can be synthesized e.g. by well-known acid equilibration reaction. More particularly, they are synthesized through acid equilibration reaction between a hexaorganodisiloxane having a (meth)acryl group with various cyclic polysiloxanes. Of these disiloxanes, bis(acryloxymethyl)-tetramethyldisiloxane is preferable for ease of synthesis.
  • cyclic polysiloxanes octamethylcyclotetrasiloxane, hexamethylcyclotrisiloxane, 1,1-diphenyl-3,3,5,5-tetramethylcyclotrisiloxane, and 1-phenyl-1,2,2,3,3-pentamethylcyclotrisiloxane are used for ease of acid equilibration reaction.
  • Component (B) of the inventive composition is a compound having at least one ethylenically unsaturated group in a molecule.
  • Component (B) has a function that it allows the composition to crosslink or cure by reacting with the (meth)acryl group-bearing organopolysiloxane of component (A), and thus is a component which is often referred to a reactive monomer or reactive diluent. It comprises compound of formula (2) as described further below.
  • Other compounds may be used in combination.
  • Illustrative are N-vinyl compounds and compounds of the structure wherein (meth)acrylic acid is attached to compounds having an amino or hydroxyl group by amidation reaction or esterification reaction.
  • the following monofunctional, difunctional and polyfunctional compounds can be used.
  • N-vinyl compounds are N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, and N-vinylformamide.
  • Exemplary compounds of the structure wherein (meth)acrylic acid is attached to compounds having an amino or hydroxyl group by amidation reaction or esterification reaction are methoxyethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, nonylphenoxyethyl (meth)acrylate, nonylphenoxypolyethylene glycol (meth)acrylate, nonylphenoxypolypropylene glycol (meth)acrylate, 3-chloro-2-hydroxypropyl (meth)acrylate, phenoxyethyl (meth)acrylate, phenoxypolypropylene glycol (meth)acrylate, butoxypolyethylene glycol (meth)acrylate, alkyl (meth)acrylates, cyclohexyl (meth)acrylate, tetra
  • an acrylate compound containing a straight or branched organosiloxane skeleton that is, organic silicon compound
  • R 1 is a hydrogen atom or a methyl group
  • a is equal to 0 or 1.
  • R 1 is a hydrogen atom or a methyl group
  • the hydrogen atom is preferred when the curing rate of the composition upon exposure to radiation is taken into account.
  • Exemplary difunctional compounds are di(meth)acrylate of 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3-hydroxypropionate, ethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, glycol di(meth)acrylate, neopentyl glycerin di(meth)acrylate, di(meth)acrylate of ethylene oxide adduct of bisphenol A, di(meth)acrylate of propylene oxide adduct of bisphenol A, 2,2'-di(hydroxyethoxyphenyl)propane di(meth)acrylate, tricyclodecane dimethylol di(meth)acryl
  • Exemplary polyfunctional compounds are trimethylolpropane tri(meth)acrylate, trimethylolpropane trioxyethyl(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tris(acryloxymethyl) isocyanurate, tris(acryloxyethyl) isocyanurate, tris(acryloxypropyl) isocyanurate, triallyl trimellitic acid, and triallyl isocyanurate.
  • the monofunctional compounds are preferred since the composition of the invention is especially suited as the low Young's modulus primary coating on optical fibers.
  • the amount of the compound having at least one ethylenically unsaturated group in a molecule (B) blended is determined in accordance with the types of (meth)acryl group-bearing organopolysiloxane (A) and compound (B), the desired viscosity of the resin composition, and the desired physical properties of a cured product thereof. For example, a choice may be made in the range of about 5 to 200 parts, preferably about 10 to 150 parts, more preferably about 20 to 100 parts by weight per 100 parts by weight of (meth)acryl group-bearing organopolysiloxane (A).
  • photopolymerization initiators may be used.
  • Examples include 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, phenylacetophenone diethyl ketal, alkoxyacetophenones, benzyl methyl ketal, benzophenone and benzophenone derivatives such as 3,3-dimethyl-4-methoxybenzophenone, 4,4-dimethoxybenzophenone, and 4,4-diaminobenzophenone, alkyl benzoylbenzoates, bis(4-dialkylaminophenyl)ketones, benzyl and benzyl derivatives such as benzyl methyl ketal, benzoyl and benzoin derivatives such as benzoin butyl methyl ketal, benzoin isopropyl ether, 2-hydroxy-2-methylpropiophenone, thioxanthone derivatives such as 2,4-dieth
  • the phosphine oxide derivatives are preferred for fast curing.
  • the initiators may be used alone or in admixture of two or more.
  • the amount of the initiator used is usually 0.01 to 15 parts, preferably 0.1 to 10 parts by weight per 100 parts by weight of components (A) and (B) combined.
  • additives for example, stabilizers such as antioxidants and UV absorbers, organic solvents, plasticizers, surfactants, silane coupling agents, titanium coupling agent, coloring pigments, and organic or inorganic particles may be used if desired and insofar as the function of the composition is suitable.
  • the resin composition of the invention is prepared by blending the above-described components and agitating and mixing them.
  • the composition is preferably adjusted to a viscosity of 500 to 10,000 centipoise at 25°C from the working standpoint for adapting itself to usual manufacturing conditions of optical fiber cores and especially 500 to 4,000 centipoise at 25°C for adapting itself to high-speed manufacturing conditions.
  • the liquid resin composition of the invention cures upon exposure to radiation, typically UV.
  • the thus cured coating should desirably have a Young's modulus of up to 0.98 N/mm 2 [0.1 kgf/mm 2 ] in order to protect cores from microbending by external forces and temperature changes.
  • the type of radiation with which the inventive composition is curable includes IR, visible rays, and UV as well as ionizing radiation such as x-rays, electron beams, ⁇ -rays, ⁇ -rays and ⁇ -rays.
  • the radiation-curable liquid resin composition of the invention is not only useful as optical fiber coatings, but also finds many other applications, for example, as mold release coatings, water-repellent coatings, protective coatings, various types of ink and paint.
  • the radiation-curable liquid resin composition of the invention is especially useful as a primary coating on optical fibers. It is directly applied to optical glass fibers to form a primary coating, over which a secondary coating having a high Young's modulus is applied.
  • the secondary coating is typically a urethane acrylate composition which is a UV-curable resin composition.
  • the composition of the invention is also applicable as a buffer or filler for water-proof fiber cables and submarine cable optical fiber units.
  • a reactor was charged with 100 parts of 1,3-bis(acryloxymethyl)-tetramethyldisiloxane, 1,960 parts of octamethylcyclotetrasiloxane, and 4,582 parts of 1,1-diphenyl-3,3,5,5-tetramethylcyclotrisiloxane.
  • 7 parts of trifluoromethanesulfonic acid was added and equilibration reaction effected for 24 hours.
  • the reaction mixture was neutralized with sodium bicarbonate, treated with activated carbon, and filtered. Volatiles were distilled off at 150°C and 5 mmHg, yielding acryl group-bearing organopolysiloxane (A) as shown below. It had a viscosity of 6,610 centipoise at 25°C and a refractive index of 1.4835.
  • An acryl group-bearing organopolysiloxane (B) as shown below was synthesized as in Synthesis Example 1, but using 100 parts of 1,3-bis(acryloxymethyl)-tetramethyldisiloxane, 3,430 parts of octamethylcyclotetrasiloxane, 2,291 parts of 1,1-diphenyl-3,3,5,5-tetramethylcyclotrisiloxane, and 6 parts of trifluoromethanesulfonic acid. It had a viscosity of 2,150 centipoise at 25°C and a refractive index of 1.4448.
  • organosiloxane compound (C) (a compound having an organosiloxane skeleton and containing an ethylenically unsaturated group)
  • a reactor was charged with 652 parts of water, 327 parts of isopropyl alcohol and 47 parts of 36% hydrochloric acid and cooled below 5°C. To this mixture, a mixture of 218 parts of acryloxypropylmethyldimethoxysilane and 434 parts of trimethylchlorosilane was added dropwise while maintaining the reaction solution below 15°C. After the completion of addition, the reaction solution was stirred for 2 hours. The upper layer was separated off. The solution was then washed with water, neutralized, dried over anhydrous sodium sulfate, filtered, and distilled, yielding an organosiloxane compound (C) shown below as a colorless, clear liquid. It had a refractive index of 1.4185.
  • Radiation-curable resin compositions of Examples 1-5 and Comparative Examples 1-6 were prepared by mixing an acryl group-bearing organopolysiloxane, an ethylenically unsaturated group-bearing compound and a photopolymerization initiator as shown in Table 1. The compositions were examined for physical properties by the following tests.
  • Each resin composition was applied onto a glass plate to a build-up of a thickness of 200 ⁇ m.
  • UV radiation having a wavelength of 350 nm was irradiated to the coating in a dose of 500 mJ/cm 2 , obtaining a cured film.
  • a 2.5% tensile modulus was measured under conditions: a gage mark distance of 25 mm and a pulling rate of 1 mm/min.
  • the cured films of Comparative Examples 5 and 6 were white, opaque and delaminated and their physical properties were unmeasurable ("UM" in Table 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Claims (16)

  1. Strahlungshärtbare Flüssigharzzusammensetzung, umfassend:
    (A) Organopolysiloxan mit einer (Meth)acrylgruppe an jedem Ende seiner Molekülkette und frei von Urethangruppierungen im Molekül der Formel (1):
    Figure 00210001
    worin R1 ein Wasserstoffatom oder eine Methylgruppe ist, R2 eine substituierte oder unsubstituierte einwertige Kohlenwasserstoffgruppe mit 1 bis 10 Kohlenstoffatomen ist, zumindest 15 Mol-% der Gruppen R2 aromatische Kohlenwasserstoffgruppen sind, m = 1 bis 5 ist und n = 150 bis 1.200 ist;
    (B) eine organische Siliciumverbindung mit zumindest einer ethylenisch ungesättigten Gruppe pro Molekül, welche eine Verbindung der Formel (2) umfasst:
    Figure 00210002
    worin R1 ein Wasserstoffatom oder eine Methylgruppe ist und a = 0 oder 1 ist; und
    (C) einen Photopolymerisationskatalysator.
  2. Strahlungshärtbare Flüssigharzzusammensetzung nach Anspruch 1, worin R1 in Formel (1) Wasserstoff ist.
  3. Strahlungshärtbare Flüssigharzzusammensetzung nach Anspruch 1 oder 2, worin in Formel (1) die Gruppen R2 aus unverzweigten, verzweigten oder zyklischen C1-10-Alkylgruppen, C6-10-Arylgruppen und C7-10-Aralkylgruppen ausgewählt sind.
  4. Strahlungshärtbare Flüssigharzzusammensetzung nach Anspruch 3, worin die Gruppen R2 Methyl- und Phenylgruppen sind.
  5. Strahlungshärtbare Flüssigharzzusammensetzung nach einem der vorangegangenen Ansprüche, worin 15 bis 30 Mol-% der R2-Gruppen aromatische Gruppen sind.
  6. Strahlungshärtbare Flüssigharzzusammensetzung nach einem der vorangegangenen Ansprüche, worin in Formel (1) der Polymerisationsgrad n 150 bis 500 beträgt.
  7. Strahlungshärtbare Flüssigharzzusammensetzung nach einem der vorangegangenen Ansprüche, worin in Formel (2) R1 ein Wasserstoffatom ist.
  8. Strahlungshärtbare Flüssigharzzusammensetzung nach einem der vorangegangenen Ansprüche, die 5 bis 200 Gewichtsteile einer organischen Siliciumverbindung (B) pro 100 Gewichtsteilen Organopolysiloxan (A) enthält.
  9. Strahlungshärtbare Flüssigharzzusammensetzung nach einem der vorangegangenen Ansprüche, die eine Viskosität bei 25 °C von 500 bis 4.000 Centipoise aufweist.
  10. Verfahren zur Herstellung einer strahlungshärtbaren Flüssigharzzusammensetzung, umfassend das Vermischen der Komponenten (A), (B) und (C) nach einem der Ansprüche 1 bis 9.
  11. Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 9 zum Beschichten.
  12. Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 9 zum Beschichten einer optischen Faser.
  13. Verwendung nach Anspruch 12, umfassend das Ausbilden einer primären Beschichtung mit der Zusammensetzung direkt auf der optischen Faser, über welcher dann eine sekundäre Beschichtung mit einem höheren Youngschen Elastizitätsmodul aufgetragen und gehärtet wird.
  14. Verwendung nach Anspruch 13, worin die sekundäre Beschichtung aus einer UV-härtenden Urethanacrylatharzzusammensetzung besteht.
  15. Optische Faser mit einer Beschichtung aus einer gehärteten Zusammensetzung nach einem der Ansprüche 1 bis 9, die gemäß einem der Ansprüche 12 bis 14 ausgebildet wurde.
  16. Verwendung nach Anspruch 12, 13 oder 14 oder resultierende optische Faser nach Anspruch 15, worin der Youngsche Elastizitätsmodul der Beschichtung aus der Zusammensetzung nicht mehr als 0,98 N/mm2 [0,1 kp/mm2] beträgt.
EP99305409A 1998-07-08 1999-07-07 Zur Beschichtung optischer Fasern geeignete strahlungshärtbare flüssige Harzzusammensetzung und mit dieser beschichtete optische Faser Expired - Lifetime EP0970978B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20865698 1998-07-08
JP20865698A JP3419314B2 (ja) 1998-07-08 1998-07-08 液状放射線硬化型樹脂組成物及び光ファイバ

Publications (2)

Publication Number Publication Date
EP0970978A1 EP0970978A1 (de) 2000-01-12
EP0970978B1 true EP0970978B1 (de) 2004-09-22

Family

ID=16559874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99305409A Expired - Lifetime EP0970978B1 (de) 1998-07-08 1999-07-07 Zur Beschichtung optischer Fasern geeignete strahlungshärtbare flüssige Harzzusammensetzung und mit dieser beschichtete optische Faser

Country Status (4)

Country Link
US (1) US6198867B1 (de)
EP (1) EP0970978B1 (de)
JP (1) JP3419314B2 (de)
DE (1) DE69920337T2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134473B2 (ja) * 2011-07-19 2017-05-24 株式会社ブリヂストン 光硬化性樹脂組成物、並びに、それを用いた水周り部材及び機能性パネル
JP5860622B2 (ja) * 2011-07-19 2016-02-16 株式会社ブリヂストン 光硬化性樹脂組成物、並びに、それを用いた水周り部材及び機能性パネル
JP5989417B2 (ja) * 2012-06-20 2016-09-07 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
JP6213509B2 (ja) * 2015-03-24 2017-10-18 住友電気工業株式会社 光ファイバ用紫外線硬化型樹脂の検査方法および光ファイバの製造方法
JP6570870B2 (ja) * 2015-05-01 2019-09-04 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた物品
JPWO2022190693A1 (de) * 2021-03-11 2022-09-15
JPWO2022196124A1 (de) * 2021-03-18 2022-09-22
CN114539911B (zh) * 2022-03-02 2023-04-07 华中科技大学无锡研究院 具有高交联密度的高透紫外光纤内涂层涂料及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496210A (en) * 1982-07-19 1985-01-29 Desoto, Inc. Low temperature-flexible radiation-curable unsaturated polysiloxane coated fiber optic
US4743474A (en) * 1983-08-05 1988-05-10 Dow Corning Corporation Coating process and moisture-curable organopolysiloxane compositions therefor
DE3402317A1 (de) * 1984-01-24 1985-07-25 Wacker-Chemie GmbH, 8000 München Organopolysiloxane, verfahren zu ihrer herstellung und verwendung dieser organopolysiloxane
JPS6121121A (ja) 1984-07-10 1986-01-29 Yokohama Rubber Co Ltd:The 光硬化型樹脂組成物
JPS61246277A (ja) * 1985-03-14 1986-11-01 ゼネラル・エレクトリツク・カンパニイ 新規シリコ−ン接着剤、その製造法及び使用法
USRE33737E (en) * 1985-11-12 1991-11-05 Shin-Etsu Chemical Co., Ltd. Optical fiber coated with an organopolysiloxane curable actinic rays
JPS62119141A (ja) * 1985-11-19 1987-05-30 Shin Etsu Chem Co Ltd 放射線硬化性光フアイバ−用被覆剤
DE3777808D1 (de) * 1987-02-06 1992-04-30 Goldschmidt Ag Th Polysiloxane mit ueber sic-gruppen gebundenen (meth)acrylsaeureestergruppen und deren verwendung als strahlenhaertbare beschichtungsmittel fuer flaechige traeger.
JPH0629382B2 (ja) 1987-04-07 1994-04-20 信越化学工業株式会社 紫外線硬化性ハードコーティング剤
NL1033590C2 (nl) 2007-03-26 2008-09-29 Maasland Nv Onbemand voertuig voor het afgeven van voer aan een dier.

Also Published As

Publication number Publication date
EP0970978A1 (de) 2000-01-12
JP3419314B2 (ja) 2003-06-23
JP2000026559A (ja) 2000-01-25
DE69920337D1 (de) 2004-10-28
DE69920337T2 (de) 2005-09-29
US6198867B1 (en) 2001-03-06

Similar Documents

Publication Publication Date Title
US4558082A (en) Acrylated polymers
KR19990046317A (ko) 오르가노실록산폴리올의신규한(메트)아크릴산어스테르,이들의제조방법및방사선경화성코팅물질로서이들의용도
JP2000007717A (ja) 紫外線硬化型樹脂組成物
KR100387536B1 (ko) 광학 접착제 수지 조성물 및 광학 접착제 수지의 제조방법
EP0970978B1 (de) Zur Beschichtung optischer Fasern geeignete strahlungshärtbare flüssige Harzzusammensetzung und mit dieser beschichtete optische Faser
US4663185A (en) Novel acrylated polymers
US4929051A (en) Optical glass fiber with a primary coating of organo-polysiloxanes containing acrylic acid ester groups
EP0437247A2 (de) UV-härtbare Zusammensetzung die ein Siloxanharz und einen organischen Merkaptan enthällt
JP4288453B2 (ja) メチルフェニルポリシロキサンジオール及びその製造方法、並びに液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物及び光ファイバ
US4697877A (en) Surface-coated optical fiber
JP2001131243A (ja) 液状放射線硬化型樹脂組成物、光ファイバ用被覆材及び光ファイバ
CN108977071B (zh) 一种互穿网络聚合物结构的光纤外层涂料及其制备方法
WO2011152488A1 (ja) 光ファイバ心線
JP2000344844A (ja) 液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物及び光ファイバ
JP2000231044A (ja) 光ファイバテープ心線
JP2004182860A (ja) 液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物、及び光ファイバ
JP2002128845A (ja) 液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物及び光ファイバ
JP3657037B2 (ja) 活性エネルギー線硬化性樹脂組成物
JP4869548B2 (ja) 光ファイバー被覆用樹脂組成物及びこれを用いた光ファイバー素線及び光ファイバーユニット
JP3738809B2 (ja) 液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物及び光ファイバ
KR100387535B1 (ko) 콜로이달 실리카 충전재를 포함하는 광학 접착제 수지조성물 및 이의 제조방법
JP3985129B2 (ja) 電子線硬化型光ファイバ用被覆材及びその硬化方法
JP4618479B2 (ja) 光ファイバー被覆用樹脂組成物及びそれを用いた光ファイバーユニット
JP2000319384A (ja) 放射線硬化型組成物並びに光ファイバー用被覆材及び光ファイバー
JP3493836B2 (ja) 紫外線硬化型光ファイバ用テープ化材組成物及び光ファイバ用テープ化材

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000522

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20020612

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SHIN-ETSU CHEMICAL CO., LTD.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69920337

Country of ref document: DE

Date of ref document: 20041028

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050707

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060331