EP0931922B1 - Procédé et dispositif d' épuration de gaz d' échappement d'un moteur à combustion interne - Google Patents

Procédé et dispositif d' épuration de gaz d' échappement d'un moteur à combustion interne Download PDF

Info

Publication number
EP0931922B1
EP0931922B1 EP98123165A EP98123165A EP0931922B1 EP 0931922 B1 EP0931922 B1 EP 0931922B1 EP 98123165 A EP98123165 A EP 98123165A EP 98123165 A EP98123165 A EP 98123165A EP 0931922 B1 EP0931922 B1 EP 0931922B1
Authority
EP
European Patent Office
Prior art keywords
catalytic converter
storage catalytic
exhaust
engine
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98123165A
Other languages
German (de)
English (en)
Other versions
EP0931922A3 (fr
EP0931922A2 (fr
Inventor
Walter Boegner
Günter Dr. Karl
Bernd Dr. Krutzsch
Christof Dr. Schön
Dirk Voigtländer
Günter Wenninger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0931922A2 publication Critical patent/EP0931922A2/fr
Publication of EP0931922A3 publication Critical patent/EP0931922A3/fr
Application granted granted Critical
Publication of EP0931922B1 publication Critical patent/EP0931922B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/085Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Definitions

  • the invention relates to a method for cleaning exhaust gases an internal combustion engine with the features of the preamble of claim 1.
  • the invention relates to a Device for cleaning exhaust gases from an internal combustion engine.
  • NO x adsorber systems are particularly suitable for cleaning the combustion engine exhaust gases.
  • Exhaust gas cleaning elements of this type also referred to as NO x adsorber catalysts, store the nitrogen oxides (NO x ) from internal combustion engines under certain conditions, provided they are operated "leanly". Such lean operation occurs when the combustion-air ratio lambda ( ⁇ ) is greater than 1, that is to say when there is over-stoichiometric combustion in which large amounts of oxygen are present in the exhaust gas.
  • NO also referred to as a storage catalyst x -Adsorbersysteme
  • exhaust gas requires high as possible reducing agent content, so that the NO stored in the NO x adsorber catalyst x is released and can be converted to nitrogen N 2.
  • An internal combustion engine produces exhaust gas with a reducing action if there is a "rich" combustion, that is to say a substoichiometric combustion with ⁇ ⁇ 1, in which there is little or no residual oxygen in the exhaust gas.
  • the internal combustion engines equipped with such a NO x storage catalytic converter must accordingly have an engine control which enables a change between lean operation and rich operation of the internal combustion engine.
  • the exhaust gases of the internal combustion engine contain sulfur oxide compounds (SO x ), preferably sulfur dioxide (SO 2 ), which react with the storage material of the NO x storage catalyst during lean operation and thereby sulfates form.
  • SO x sulfur oxide compounds
  • SO 2 sulfur dioxide
  • Such sulfate formation leads to a reduction in the NO x storage capacity of the NO x storage catalytic converter, which is also referred to as "sulfur poisoning" of the NO x storage catalytic converter.
  • the NO x storage catalyst In order to maintain the function of the NO x storage catalyst, it can be freed from attached sulfate from time to time and thereby regenerated. To achieve effective regeneration, it is known to set elevated exhaust gas temperatures of, for example, over 550 ° C. and a rich exhaust gas composition. Depending on the sulfur content of fuel and engine oil as the main sulfur sources, the regeneration of the NO x storage catalytic converter must be carried out in more or less short intervals. These intervals are typically in the range of a few hours of operation.
  • fuels and motor oils with a low sulfur content can be used, on the one hand, and, on the other hand, the sulfur poisoning of the NO x storage catalyst can be avoided, in which a so-called "SO x trap" in the literature SO x storage catalyst is used, which is arranged in the exhaust line before the NO x storage catalyst.
  • the NO x storage capacity of such a SO x trap or SO x storage catalytic converter is limited, so that regeneration or desulfation of the SO x storage catalytic converter must be carried out for continuous operation. Desulfation of this type can be achieved with the aid of an exhaust gas which contains reducing agents (for example CO, H 2 , HC) and has a relatively high temperature. Under these conditions, the previously stored amounts of sulfur are mainly desorbed and released as SO 2 and H 2 S, the SO x storage capacity of the SO x storage catalyst being restored.
  • reducing agents for example CO, H 2 , HC
  • EP 0 625 633 A1 does not contain any information as to how the temperature increase in the exhaust gas required for desulfating the SO x trap can be achieved in a targeted and simple manner.
  • the present invention deals with the problem of designing a method of the type mentioned at the outset such that the exhaust gas composition and exhaust gas temperature required for the desulfation of the SO x storage catalyst can be provided using technically simple measures or devices.
  • this problem is solved by a method solved the features of claim 1.
  • the invention is based on the general idea of using the engine control system to influence the exhaust gas composition in such a way that they have a reducing atmosphere which can release the SO x compounds in the SO x storage catalytic converter.
  • the high exhaust gas temperature also required for this is achieved in a simple manner — with the aid of the proposed supply of secondary air into the exhaust line, after the engine and before the SO x storage catalytic converter.
  • the exhaust gas enriched with reducing agents contains a high chemical energy, which can be converted into thermal energy by supplying oxygen by means of appropriate chemical reactions. The oxygen required for this is provided with the secondary air.
  • a catalytic combustion can take place of a portion of the entrained in the exhaust gas reducing agent with oxygen in the secondary air, liberated in the thermal energy, and is preferably transferred to the surface material of the SO x storage catalyst.
  • the high temperature in the SO x storage catalyst required for the sulfate decomposition can thus be generated by this chemical reaction in the SO x storage catalyst itself and therefore does not require an additional energy source.
  • An atmosphere containing reducing agent is in the exhaust gas provided in a simple manner by the engine control from lean operation to rich operation of the internal combustion engine is converted.
  • a temperature of more than 550 ° C. is preferably set in the SO x storage catalyst.
  • the setting of these preferred values for the combustion-air ratio of the exhaust gas mixed with secondary air and for the temperature prevailing in the SO x storage catalytic converter is achieved by the amount of secondary air supplied by the engine control during the desulfurization and / or the combustion air ratio of the exhaust gases coming from the engine is influenced or varied.
  • the proposed measures make it possible to regulate or control the parameters which are characteristic of the course of the desulfation in a simple manner.
  • the adsorption of sulfur compounds in the NO x storage catalytic converter during the desulfation of the SO x storage catalytic converter can also be prevented by switching the lean mode to the rich mode of the internal combustion engine a regeneration of the NO x storage catalytic converter is first carried out, the engine control monitoring a parameter correlating with the degree of regeneration of the NO x storage catalytic converter and only initiating the supply of secondary air into the exhaust gas line when a predetermined threshold value for this parameter has been reached.
  • the amounts of oxygen and nitrates stored in the SO x storage catalytic converter and in the NO x storage catalytic converter are converted with the aid of the reducing agent emitted by the engine during rich operation.
  • the two catalysts SO x and NO x storage catalyst
  • the two catalysts are thereby brought into a reduced state in which - apart from the sulfates in the SO x storage catalyst - there are approximately no more oxygen-containing atoms or molecules in the catalysts.
  • the actual desulfation of the SO x storage catalytic converter can then take place by supplying secondary air.
  • the sulfur compounds adsorbed and stored during lean operation are desorbed and released from the SO x storage catalyst.
  • the released sulfur compounds can flow through the reduced NO x storage catalyst without the sulfur compounds being adsorbed or stored.
  • Sulfur poisoning or sulfation of the NO x storage catalytic converter can thus be prevented during the desulfation of the upstream SO x storage catalytic converter, and only through the choice of a particularly skillful sequence of the control processes.
  • An exhaust gas purification device operating according to this method has few moving components, is therefore robust, less prone to failure and inexpensive.
  • an internal combustion engine 1 which can be both a diesel and a petrol engine, Air via an electronically or electrically adjustable Throttle valve 2 supplied.
  • the throttle valve 2 is included an electronic engine control 3 connected via a Computer, a memory with data and corresponding programs disposes.
  • the exhaust gases formed by the engine 1 during combustion occur into an exhaust line 4 of an exhaust gas purification device 5 of the Motors 1 on.
  • the exhaust line 4 is shown in FIG Embodiment already in the outlet area of the exhaust gases from the internal combustion engine 1, a secondary air supply 6 is connected, the one controlled by the engine control 3 Secondary air pump 7 secondary air in the exhaust line 4 for Mixing with the exhaust gases can bring.
  • a ⁇ probe 8 is arranged in the exhaust line, which is connected to the engine control 3.
  • a temperature sensor 10 connected to the engine control 3 is arranged in the exhaust line 4.
  • the temperature sensor 10 measures a temperature that correlates with the temperature prevailing in the SO x storage catalytic converter 9.
  • the exhaust line 4 branches off in its further course, a NO x storage catalytic converter 11 being arranged in a first partial line 4a.
  • a closing element 12 designed as an exhaust gas flap is arranged in this first branch line 4a, which is connected to the engine control 3 and can be adjusted between a passage position and a blocking position by this.
  • a second partial line 4b formed after the branching forms a bypass 13 bypassing the NO x storage catalytic converter 11.
  • this bypass 13 there is also a closing element 14 designed as an exhaust flap, which is also connected to the engine control 3 and between an open position and a blocked position is adjustable.
  • the sub-lines 4a and 4b of the exhaust line 4 are brought together again to form a common exhaust line 4 after the NO x storage catalytic converter 11.
  • the engine control 3 monitors the storage capacity of the SO x storage catalytic converter 9 and determines when regeneration of the SO x storage catalytic converter is required.
  • sensors not shown here, are arranged in the SO x storage catalytic converter 9 or in the exhaust line 4, which sensors, for example, show an increase in the content of sulfur compounds in the exhaust gas or detect another parameter that correlates with the SO x storage capacity.
  • the current storage capacity of the SO x storage catalytic converter 9 is also possible to determine the current storage capacity of the SO x storage catalytic converter 9 on the basis of maps stored in a corresponding storage, in which, for example, the SO x storage capacity is dependent on the operating time of the internal combustion engine 1 and the sulfur content of the Exhaust gases coming from engine 1 are stored.
  • the engine control 3 After the engine control 3 has determined that the SO x storage capacity has dropped to or below a predetermined threshold value, it influences the operating behavior of the internal combustion engine 1 in that it is switched from a lean operation to a rich operation. It can be provided that any change in the engine power, in particular the engine torque, which occurs during the changeover between the two operating modes (lean or rich) is compensated, for example, by a corresponding change in the position of the throttle valve 2, so that the driver makes the change between the operating modes.
  • the secondary air pump 7 is activated with a delay, so that secondary air is blown into the exhaust line 4.
  • Due to the substoichiometric in fat mode Combustion with ⁇ ⁇ 1 are the exhaust gases coming from engine 1 loaded with reducing agent.
  • the exhaust gases are also enriched with oxygen.
  • the engine control 3 measures the current ⁇ value upstream of the SO x storage catalytic converter 9, that is to say the combustion air ratio of the exhaust gases mixed with the secondary air.
  • the engine control 3 influences the exhaust gas composition. According to the invention, several options are proposed for this:
  • the amount of secondary air supplied is controlled by a corresponding control of the secondary air supply, with the combustion-air ratio of the exhaust gases coming from the richly operated engine 1 remaining constant 6 or their secondary air pump 7 varies.
  • the combustion air ratio of the exhaust gases generated by the engine 1 can be varied by the engine control 3, with the amount of secondary air supplied remaining constant, by the engine control 3 engages in the operation of the engine 1.
  • the exhaust gases entering the SO x storage catalytic converter 9 have a high content of reducing agents (for example CO, H 2 , HC).
  • reducing agents for example CO, H 2 , HC
  • these exhaust gases are enriched with oxygen after the secondary air supply 6, so that in the SO x storage catalytic converter 9 catalytic combustion can take place.
  • the chemical energy stored in the reducing agents is converted into thermal energy by oxidation. In this way, the SO x storage catalyst 9 is heated and can reach an optimal temperature for the desulfation.
  • the heating of the SO x storage catalytic converter 9 is monitored.
  • This heating of the SO x storage catalytic converter 9 can be regulated by influencing the combustion air ratio of the exhaust gases supplied to the SO x storage catalytic converter 9.
  • the engine control 3 regulates or sets in the SO x storage catalytic converter 9 with the aid of the temperature sensor 10 an optimum temperature for desulfurization, preferably more than 550 ° C.
  • the temperature sensor 10 enables effective protection against overheating of the SO x storage -Catalyst 9 or the other components of the exhaust gas purification device 5.
  • the exhaust flap 12 is closed and the exhaust flap 14 is opened, so that the exhaust gases only flow through the bypass 13 while bypassing the NO x storage catalytic converter 11.
  • the sulfur compounds released during the desulfation of the SO x storage catalytic converter 9 cannot be transported into the NO x storage catalytic converter 11 by the exhaust gas flow.
  • sulfate formation in the NO x storage catalytic converter 11 and consequently its poisoning or capacity reduction can be effectively prevented.
  • the exhaust flap 15 is switched to pass during the regeneration phase or desulfation of the SO x storage catalytic converter 9.
  • the exhaust line 4 is designed in terms of flow in this area such that when the exhaust gas flap 15 is open, the exhaust gases are only or at least largely flow through the bypass 13 and no sulfur-containing exhaust gases or only negligibly small proportions flow through the NO x storage catalytic converter 11. This is achieved, for example, by increasing the flow resistance in sub-branch 4a, for example by means of a throttle point. 2 is due to its design with only one exhaust flap 15 cheaper and less prone to failure than the embodiment according to FIG. 1.
  • protection of the NO x storage catalytic converter 11 from sulfur poisoning during the desulfation is achieved even without a bypass. This is made possible by the fact that, in such an exhaust gas purification device 5, the engine control 3 performs a regeneration of the NO x storage catalytic converter 11 before the SO x storage catalytic converter 9 is actually desulfated.
  • the engine controller 3 After the engine controller 3 has determined that the SO x storage capacity of the SO x storage catalytic converter 9 has dropped to or below a predetermined threshold value, it causes a change from lean to - as in the embodiments according to FIGS. Operation on rich operation of the internal combustion engine 1, but in this case without activating the secondary air supply 6.
  • the internal combustion engine 1 then generates exhaust gases with a relatively high reducing agent content, which trigger a reduction reaction in the NO x storage catalytic converter 11, in which the nitrogen oxides adsorbed in the NO x storage catalytic converter 11 are reduced and in the form of harmless compounds such as N 2 , CO 2 , H 2 O are released.
  • the regeneration of the NO x storage catalytic converter 11 brings it into a reduced state in which there are no longer any oxygen-containing species in the NO x storage catalytic converter 11.
  • the end of the regeneration process for the NO x storage catalytic converter 11 is determined by the engine control 3.
  • the regeneration process takes place on the basis of parameters stored in characteristic diagrams or with the aid of an additional sensor 16 arranged in the exhaust line 4 after the NO x storage catalytic converter 11.
  • This sensor 16 is connected to the engine control 3 and, according to a preferred embodiment, can be used as a ⁇ probe be trained.
  • the end of the regeneration phase can be detected by the sensor 16, for example, in that the reducing agents contained in the exhaust gas flow through the NO x storage catalytic converter 11 unchanged to an increasing extent.
  • the actual desulfation of the SO x storage catalytic converter 9 begins, in which secondary air is introduced into the exhaust gases coming from the engine 1 with the aid of the secondary air supply 6.
  • the optimal conditions for the desulphation are set or regulated by the engine control 3. It is entirely possible that rich operation with a different ⁇ value is set for the regeneration of the NO x storage catalytic converter 11 than for the desulfation of the SO x storage catalytic converter 9.
  • the sulfur compounds released during the desulfation are fed to the NO x storage catalytic converter 11 by the exhaust gas flow.
  • the sulfur compounds contained in the exhaust gas cannot be adsorbed and stored by its adsorber material, so that the sulfur compounds flow through the NO x storage catalytic converter 11 unchanged.
  • sulfation or sulfur poisoning of the NO x storage catalytic converter 11 can thus be effectively avoided during the desulfating of the upstream SO x storage catalytic converter 9.
  • An exhaust gas purification device 5 corresponding to FIG. 3 has compared to the previously described embodiments 1 and 2 no exhaust flaps, so that the Overall structure of the exhaust gas purification device 5 considerably more robust and less susceptible to faults, therefore easy to maintain and overall is inexpensive.
  • the end of the desulfation of the SO x storage catalytic converter 9 is determined in all the exemplary embodiments shown by the engine control 3, for example on the basis of parameters stored in characteristic maps.
  • a further sensor 17 can be located between the SO x storage catalytic converter 9 and the NO x storage catalytic converter 11 in the exhaust line 4, in particular in the examples according to FIGS. 1 and 2 before the bypass 13 be arranged, which is connected to the engine controller 3.
  • This sensor 17 can, for example, detect a decrease in released sulfur compounds in the exhaust gases or, in another embodiment, can be designed as a ⁇ probe and monitor the combustion air ratio of the exhaust gases after the SO x storage catalytic converter 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (17)

  1. Procédé d'épuration des gaz d'échappement d'un moteur à combustion avec une commande de moteur, qui permet un passage entre un fonctionnement en régime pauvre et un fonctionnement en régime riche du moteur à combustion, et avec un dispositif d'épuration des gaz d'échappement, pour lequel dans le tronçon de gaz d'échappement, en aval du moteur, sont installés l'un après l'autre une sonde lambda, un catalyseur-accumulateur de SOx et un catalyseur-accumulateur de NOx,
    caractérisé par
    les étapes suivantes :
    A
    à l'aide d'une sensorique reliée à la commande moteur (3) on génère un paramètre qui met en corrélation avec la capacité d'accumulation en SOx actuelle du catalyseur-accumulateur de SOx (9),
    B
    lorsque la commande moteur (3) constate qu'il y a diminution de la capacité d'accumulation en SOx, avec descente au-dessous d'une valeur préréglée de paramètres, celle-ci commence à effectuer la désulfatation du catalyseur-accumulateur de SOx, procédé dans lequel elle provoque un passage du fonctionnement en régime pauvre au fonctionnement en régime riche de la part du moteur à combustion,
    C
    à l'aide d'une alimentation en air secondaire pouvant être commandée, on introduit après le moteur (1) et avant la sonde λ (8) de l'air secondaire dans le tronçon de gaz d'échappement (4),
    D
    le rapport d'air de combustion actuel des gaz d'échappement mélangés à l'air secondaire est appréhendé avant la sonde λ (8) et est réglé à une valeur prédéterminée, à l'aide de la commande moteur (3),
    E
    à l'aide d'un capteur de température (10) on génère une valeur de signal corrélant à la température régnant dans le catalyseur-accumulateur de SOx (9), sachant que la température régnant dans le catalyseur-accumulateur de SOx (9) est réglée au moyen de la commande de moteur (3), pour obtenir une valeur de signal prédéterminée,
    F
    lors de l'atteinte d'une valeur de seuil prédéterminée, pour le paramètre corrélant à la capacité d'accumulation en SOx du catalyseur-accumulateur de SOx (9), la commande de moteur (3) fait cesser la désulfatation en provoquant un passage du mode riche au mode pauvre du moteur à combustion (1).
  2. Procédé selon la revendication 1,
    caractérisé en ce que,
    pendant la désulfatation, pour régler les valeurs prédéterminées du mélange d'air de combustion, des gaz d'échappement mélangés à de l'air secondaire et, pour la température régnant dans le catalyseur-accumulateur de SOx (9), la commande moteur (3) fait varier la quantité d'air secondaire fournie et/ou le rapport d'air de combustion des gaz d'échappement venant du moteur (1).
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que,
    dans le tronçon des gaz d'échappement (4), est prévue une dérivation (13) contournant le catalyseur-accumulateur de NOx (11), dérivation qui est activée par la commande moteur (3) pendant le processus de désulfatation.
  4. Procédé selon la revendication 3,
    caractérisé en ce que
    des moyens (12, 14), pour diriger l'écoulement de gaz d'échappement, sont prévus qui, pendant que le processus de désulfatation est activé, font passer les gaz d'échappement par la dérivation (13) et bloquent l'arrivée d'écoulement au catalyseur-accumulateur de NOx (11) et qui, pendant que le processus de désulfatation est désactivé, dirigent les gaz d'échappement par le catalyseur-accumulateur de NOx (11) et bloquent tout passage d'écoulement dans la dérivation (13).
  5. Procédé selon la revendication 4,
    caractérisé en ce qu'
    est prévu, comme moyen pour guider l'écoulement des gaz d'échappement, un élément d'aiguillage qui est disposé dans une bifurcation du tronçon de gaz d'échappement (4), allant dans le catalyseur-accumulateur de NOx (11) et allant vers la dérivation (13).
  6. Procédé selon la revendication 4,
    caractérisé en ce que
    sont prévus comme moyens, pour guider l'écoulement des gaz d'échappement dans l'écoulement d'arrivée au catalyseur-accumulateur de NOx (11), un premier organe de fermeture (12) et, dans la dérivation (13), un deuxième organe de fermeture (14), les organes de fermeture (12, 14) étant branchés de façon alternée en mode passant et bloquant.
  7. Procédé selon la revendication 3,
    caractérisé en ce qu'
    un organe de fermeture (15) est disposé dans la dérivation (13) et l'agencement, constitué de la dérivation (13) et du catalyseur-accumulateur de NOx (11), installé dans le tronçon de gaz d'échappement (4), étant réalisé en plus, du point de vue de la technique d'écoulement, de manière que, lorsque l'organe de fermeture (15) est commuté en mode passant, les gaz d'échappement traversent exclusivement, ou pratiquement uniquement, la dérivation (13).
  8. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que,
    après avoir effectué l'étape B, on effectue une régénération du catalyseur-accumulateur de NOx (11), la commande moteur (3) surveillant un paramètre corrélant au signal de régénération du catalyseur-accumulateur de NOx (11), puis, en cas d'atteinte d'une valeur de seuil prédéterminée de ce paramètre, provoquant l'exécution de l'étape C.
  9. Procédé selon la revendication 8,
    caractérisé en ce que,
    pour détecter le paramètre corrélé au degré de régénération du catalyseur-accumulateur de NOx (11), est prévu un capteur (16), en particulier une sonde λ, qui est disposée dans le tronçon de gaz d'échappement (4), en aval du catalyseur-accumulateur de NOx (11).
  10. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le paramètre, corrélé à la capacité d'accumulation en SOx du catalyseur-accumulateur de SOx (9), est déterminé, par le biais de champs de caractéristiques, en fonction de la durée de fonctionnement du moteur à combustion (1) et de la composition des gaz d'échappement venant du moteur (1).
  11. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que,
    pour détecter le paramètre corrélé à la capacité d'accumulation en SOx du catalyseur-accumulateur de SOx (9), un capteur (17), en particulier une sonde λ, est disposé(e) dans le tronçon de gaz d'échappement (4), entre le catalyseur-accumulateur de SOx (9) et le catalyseur-accumulateur de NOx (11).
  12. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la valeur, prédéterminée pour la désulfatation, du rapport d'air de combustion des gaz d'échappement mélangés à de l'air secondaire, est choisie dans une plage de λ=0,75 à λ=0,99.
  13. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la valeur, prédéterminée pour la désulfatation, de la température régnant dans le catalyseur-accumulateur de SOx (9) correspond une température supérieure à 550°.
  14. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que,
    en cas de passage entre un fonctionnement en mode maigre et un fonctionnement en mode riche du moteur à combustion (1), la commande moteur (3), à l'aide d'un clapet d'étranglement susceptible d'être commandé, modifie l'alimentation en air au moteur à combustion (1), dans le sens de la génération d'un couple moteur constant ou d'une puissance moteur constante.
  15. Dispositif d'épuration des gaz d'échappement d'un moteur à combustion (1) équipé d'une commande moteur (3), permettant un passage entre un fonctionnement en mode pauvre et un fonctionnement en mode riche du moteur à combustion (1), dispositif pour lequel en aval du moteur (1) sont disposés, dans un tronçon de gaz d'échappement (4), l'un après l'autre, une alimentation en air secondaire (6), une sonde λ (8), un catalyseur-accumulateur de SOx (9), un capteur de température (10) et un catalyseur-accumulateur de NOx (11).
  16. Dispositif selon la revendication 15,
    caractérisé en ce qu'
    une dérivation (13) est prévue dans le tronçon de gaz d'échappement (4), pour assurer le contournement du catalyseur-accumulateur de NOx (11).
  17. Dispositif selon la revendication 16,
    caractérisé en ce que,
    dans le tronçon de gaz d'échappement (4), sont prévus, pour guider l'écoulement de gaz d'échappement, des moyens (12, 14), à l'aide desquels l'écoulement de gaz d'échappement est guidé essentiellement soit à travers le catalyseur-accumulateur de NOx (11), soit à travers la dérivation (13).
EP98123165A 1998-01-24 1998-12-04 Procédé et dispositif d' épuration de gaz d' échappement d'un moteur à combustion interne Expired - Lifetime EP0931922B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19802631 1998-01-24
DE19802631A DE19802631C1 (de) 1998-01-24 1998-01-24 Verfahren und Einrichtung zum Reinigen von Abgasen eines Verbrennungsmotors

Publications (3)

Publication Number Publication Date
EP0931922A2 EP0931922A2 (fr) 1999-07-28
EP0931922A3 EP0931922A3 (fr) 2000-04-26
EP0931922B1 true EP0931922B1 (fr) 2001-10-24

Family

ID=7855535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98123165A Expired - Lifetime EP0931922B1 (fr) 1998-01-24 1998-12-04 Procédé et dispositif d' épuration de gaz d' échappement d'un moteur à combustion interne

Country Status (4)

Country Link
US (2) US6119450A (fr)
EP (1) EP0931922B1 (fr)
JP (1) JPH11280456A (fr)
DE (2) DE19802631C1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179050A (zh) * 2014-06-12 2015-12-23 Ge延巴赫两合无限公司 用于运行内燃机的方法

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69703840T3 (de) * 1996-06-10 2010-08-26 Hitachi, Ltd. Abgasreinigungsvorrrichtung für einen verbrennungsmotor und Katalysator zur Reinigung des Abgases des Verbrennungsmotors
EP0915244B1 (fr) * 1997-11-10 2003-08-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Dispositif de purification de gaz d'échappement pour un moteur à combustion interne
DE19802631C1 (de) * 1998-01-24 1999-07-22 Daimler Chrysler Ag Verfahren und Einrichtung zum Reinigen von Abgasen eines Verbrennungsmotors
JP3805098B2 (ja) * 1998-03-26 2006-08-02 株式会社日立製作所 エンジンの排気ガス浄化制御装置
DE19816276C2 (de) * 1998-04-11 2000-05-18 Audi Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP3722187B2 (ja) * 1998-12-24 2005-11-30 トヨタ自動車株式会社 吸着材の故障判定装置
US6348177B1 (en) * 1999-02-10 2002-02-19 Southwest Research Institute Apparatus and method for bypassing sulfur dioxide around an aftertreatment device in an exhaust gas aftertreatment system
DE19910503C1 (de) * 1999-03-10 2000-07-06 Daimler Chrysler Ag Verfahren und Vorrichtung zur periodischen Desulfatisierung eines Stickoxid- oder Schwefeloxid-Speichers mit Fett/Mager-Motorzylinderaufteilung
JP4158268B2 (ja) * 1999-03-17 2008-10-01 日産自動車株式会社 エンジンの排気浄化装置
JP2000265825A (ja) * 1999-03-18 2000-09-26 Nissan Motor Co Ltd エンジンの排気浄化装置
DE19920515C2 (de) * 1999-05-05 2003-03-20 Daimler Chrysler Ag Abgasreinigungsanlage mit Stickoxidadsorber und Desulfatisierungsverfahren hierfür
DE19928561C2 (de) * 1999-06-22 2003-02-06 Bayerische Motoren Werke Ag Verfahren zur Schätzung von Temperaturgrößen im Abgasstrang einer Brennkraftmaschine
DE19928725A1 (de) 1999-06-23 2000-12-28 Daimler Chrysler Ag Verfahren und Vorrichtung zur Desulfatisierung eines Stickoxidadsorbers
DE19935341A1 (de) * 1999-07-28 2001-02-01 Volkswagen Ag Verfahren zur Regelung einer Abgastemperatur einer Magerbrennkraftmaschine während einer Entschwefelung eines Katalysators
DE19936200A1 (de) * 1999-07-31 2001-02-08 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE19939050B4 (de) * 1999-08-18 2013-01-31 Volkswagen Ag Verfahren zur Regelung eines Arbeitsmodus einer Verbrennungskraftmaschine von Kraftfahrzeugen während einer Regeneration eines Speicherkatalysators
DE19939052B4 (de) * 1999-08-18 2013-02-14 Volkswagen Ag Verfahren zum Schalten zwischen zwei Betriebsmodi von wenigstens einem Nebenaggregat in einem Kraftfahrzeug
DE19942270A1 (de) * 1999-09-04 2001-03-15 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE19954177A1 (de) * 1999-11-10 2001-05-23 Bosch Gmbh Robert Verfahren zur Prüfung der Funktionsfähigkeit und/oder zum Abgleichen eines Abgastemperatursensors
DE19960430B4 (de) * 1999-12-15 2005-04-14 Daimlerchrysler Ag Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und Schwefeloxid-Falle und Betriebsverfahren hierfür
DE19961165A1 (de) * 1999-12-17 2001-08-02 Volkswagen Ag Verfahren zur Entschwefelung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators
DE10017203A1 (de) * 2000-04-06 2001-10-11 Audi Ag Verfahren zur Entschwefelung eines im Abgasstrang einer Diesel-Brennkraftmaschine angeordneten Oxidationskatalysators
DE10036390B4 (de) * 2000-07-26 2010-05-12 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE10040010A1 (de) * 2000-08-11 2002-02-21 Bosch Gmbh Robert Verfahren zur Entschwefelung eines Speichermediums
DE10044411A1 (de) * 2000-09-08 2002-03-21 Bayerische Motoren Werke Ag Verfahren zur Steuerung eines Verbrennungsmotors bei einem Regenerationszyklus
DE10049040A1 (de) * 2000-10-04 2002-06-13 Alstom Switzerland Ltd Verfahren zur Regeneration einer Katalysatoranlage und Vorrichtung zur Durchführung des Verfahrens
US20020071976A1 (en) * 2000-11-03 2002-06-13 Edlund David J. Sulfur-absorbent bed and fuel processing assembly incorporating the same
DE10057938A1 (de) * 2000-11-22 2002-05-23 Volkswagen Ag Verfahren und Vorrichtung zur Regeneration eines NOx-Speicherkatalysators
DE10057936A1 (de) * 2000-11-22 2002-05-23 Volkswagen Ag Verfahren und Vorrichtung zur Regeneration eines NOx-Speicherkatalysators
DE10102132B4 (de) * 2001-01-18 2009-12-10 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE10103557B4 (de) * 2001-01-26 2012-02-23 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung einer Katalysatoreinrichtung
JP2003090250A (ja) * 2001-09-18 2003-03-28 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
JP3757856B2 (ja) * 2001-12-07 2006-03-22 トヨタ自動車株式会社 排気ガス浄化装置
EP1356864A1 (fr) * 2002-04-18 2003-10-29 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Revêtements catalytiques exempt de métal du groupe du platine dans des filtre à particules pour gaz d'échappement
JP3858749B2 (ja) * 2002-04-23 2006-12-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3791470B2 (ja) * 2002-07-02 2006-06-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7117667B2 (en) * 2002-07-11 2006-10-10 Fleetguard, Inc. NOx adsorber aftertreatment system for internal combustion engines
US6715280B2 (en) * 2002-07-12 2004-04-06 Ford Global Technologies, Llc Method for low emission vehicle starting with improved fuel economy
JP3925357B2 (ja) * 2002-08-30 2007-06-06 いすゞ自動車株式会社 排気ガス浄化システムの制御方法
DE10244128B4 (de) * 2002-09-23 2006-06-14 Siemens Ag Verfahren zum Aufheizen eines Katalysators
CA2422188A1 (fr) * 2002-10-02 2004-04-02 Westport Research Inc. Regeneration par derivation d'absorbeurs de nox
US6779339B1 (en) 2003-05-02 2004-08-24 The United States Of America As Represented By The Environmental Protection Agency Method for NOx adsorber desulfation in a multi-path exhaust system
FR2859498B1 (fr) * 2003-09-09 2007-02-23 Peugeot Citroen Automobiles Sa Pain catalytique pour ligne d'echappement d'un moteur, ligne d'echappement le comprenant, et procede de depollution des gaz d'echappement l'utilisant
DE10349876A1 (de) 2003-10-25 2005-05-25 Daimlerchrysler Ag Brennkraftmaschine mit Abgasreinigungsanlage und Verfahren zur Reinigung des Abgases einer Brennkraftmaschine
US7018442B2 (en) * 2003-11-25 2006-03-28 Caterpillar Inc. Method and apparatus for regenerating NOx adsorbers
US7284368B2 (en) * 2003-12-02 2007-10-23 Ford Global Technologies Llc Computer device to control operation during catalyst desulfurization to preserve catalytic function
US7263433B2 (en) 2003-12-02 2007-08-28 Ford Global Technologies, Llc Computer device to calculate emission control device functionality
US7291576B2 (en) * 2003-12-30 2007-11-06 Ford Global Technologies, Llc SOx trap for diesel and lean-burn gasoline automotive applications
JP4290037B2 (ja) * 2004-03-02 2009-07-01 日産ディーゼル工業株式会社 エンジンの排気浄化装置
SE0400904D0 (sv) * 2004-04-02 2004-04-02 Volvo Technology Corp Apparatus and method for removing sulphur from a hydrocarbon fuel
JP3969423B2 (ja) * 2005-01-06 2007-09-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4100412B2 (ja) * 2005-04-12 2008-06-11 トヨタ自動車株式会社 圧縮着火式内燃機関の排気浄化装置
US7389638B2 (en) * 2005-07-12 2008-06-24 Exxonmobil Research And Engineering Company Sulfur oxide/nitrogen oxide trap system and method for the protection of nitrogen oxide storage reduction catalyst from sulfur poisoning
DE102005033395B4 (de) * 2005-07-16 2007-06-06 Umicore Ag & Co. Kg Verfahren zur Regeneration von Stickoxid-Speicherkatalysatoren
FR2891864B1 (fr) * 2006-11-15 2009-09-18 Peugeot Citroen Automobiles Sa Ligne d'echappement pour moteur a combustion interne, du type comportant un pain catalytique renfermant un piege a nox, et utilisation dudit pain.
JP4665914B2 (ja) * 2007-02-23 2011-04-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4325723B2 (ja) * 2008-01-30 2009-09-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102009045376A1 (de) * 2009-10-06 2011-04-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
WO2013098973A1 (fr) * 2011-12-27 2013-07-04 トヨタ自動車株式会社 Dispositif de commande de l'échappement pour moteur à combustion interne
KR101406419B1 (ko) * 2012-08-22 2014-06-13 현대자동차주식회사 Doc 재생주기 결정방법
US8617495B1 (en) * 2012-11-08 2013-12-31 GM Global Technology Operations LLC Exhaust gas aftertreatment desulfurization control
DE102015211169A1 (de) * 2015-06-17 2016-12-22 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Abgasnachbehandlungssystems, Abgasnachbehandlungssystem und Brennkraftmaschine mit einem Abgasnachbehandlungssystem
CN109113839B (zh) * 2018-09-11 2020-12-08 中船动力有限公司 船用柴油机尾气后处理的旁通装置及使用方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518235A (ja) 1991-07-12 1993-01-26 Japan Electron Control Syst Co Ltd 内燃機関の二次空気制御装置
JP2605553B2 (ja) * 1992-08-04 1997-04-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2845055B2 (ja) * 1992-10-13 1999-01-13 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP0625633B1 (fr) * 1992-12-03 2000-03-15 Toyota Jidosha Kabushiki Kaisha Epurateur de gaz d'echappement pour moteurs a combustion interne
EP0636770B1 (fr) * 1993-01-19 1999-09-08 Toyota Jidosha Kabushiki Kaisha Dispositif de nettoyage de gaz d'echappement pour moteur a combustion interne
EP0621400B1 (fr) * 1993-04-23 1999-03-31 Daimler-Benz Aktiengesellschaft Moteur à combustion interne à injection et à compression d'air avec un dispositif pout traiter les gaz d'échappement à fin de réduire les oxides azoté
DE4404617C2 (de) * 1994-02-14 1998-11-05 Daimler Benz Ag Vorrichtung zur selektiven katalysierten NO¶x¶-Reduktion in sauerstoffhaltigen Abgasen von Brennkraftmaschinen
JP3574203B2 (ja) * 1994-04-12 2004-10-06 トヨタ自動車株式会社 内燃機関の排気浄化方法
US5657625A (en) * 1994-06-17 1997-08-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Apparatus and method for internal combustion engine control
JP2976824B2 (ja) 1994-10-04 1999-11-10 三菱自動車工業株式会社 内燃エンジンの排気浄化触媒装置
JP3456058B2 (ja) * 1995-02-10 2003-10-14 株式会社デンソー 触媒の劣化検出装置及び排気浄化装置の異常検出装置
JP3656298B2 (ja) 1995-09-11 2005-06-08 トヨタ自動車株式会社 内燃機関の排気浄化方法
DE19543219C1 (de) * 1995-11-20 1996-12-05 Daimler Benz Ag Verfahren zum Betreiben eines Dieselmotors
US5921076A (en) * 1996-01-09 1999-07-13 Daimler-Benz Ag Process and apparatus for reducing nitrogen oxides in engine emissions
GB9612970D0 (en) * 1996-06-20 1996-08-21 Johnson Matthey Plc Combatting air pollution
DE19730403C1 (de) * 1997-07-16 1998-10-22 Daimler Benz Ag Mehrzylindrige, luftverdichtende Einspritzbrennkraftmaschine
DE19747222C1 (de) * 1997-10-25 1999-03-04 Daimler Benz Ag Verbrennungsmotoranlage mit Stickoxid-Speicherkatalysator und Betriebsverfahren hierfür
DE19747671C1 (de) * 1997-10-29 1999-07-08 Daimler Chrysler Ag Verfahren zum Betrieb eines mehrzylindrigen Verbrennungsmotors
DE19753718C1 (de) * 1997-12-04 1999-07-08 Daimler Chrysler Ag Verfahren zum Betreiben eines Dieselmotors
DE19802631C1 (de) * 1998-01-24 1999-07-22 Daimler Chrysler Ag Verfahren und Einrichtung zum Reinigen von Abgasen eines Verbrennungsmotors
DE19820828B4 (de) * 1998-05-09 2004-06-24 Daimlerchrysler Ag Stickoxidemissionsmindernde Abgasreinigungsanlage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179050A (zh) * 2014-06-12 2015-12-23 Ge延巴赫两合无限公司 用于运行内燃机的方法

Also Published As

Publication number Publication date
EP0931922A3 (fr) 2000-04-26
JPH11280456A (ja) 1999-10-12
DE19802631C1 (de) 1999-07-22
US6318073B1 (en) 2001-11-20
EP0931922A2 (fr) 1999-07-28
US6119450A (en) 2000-09-19
DE59805965D1 (de) 2002-11-21

Similar Documents

Publication Publication Date Title
EP0931922B1 (fr) Procédé et dispositif d' épuration de gaz d' échappement d'un moteur à combustion interne
DE69205389T2 (de) Einrichtung zur Minderung von Stickoxiden in Rauchgasen aus Brennkraftmaschinen.
EP0987408B1 (fr) Procédé de fonctionnement d'un moteur à combustion interne avec composants de purification de gaz d'échappement accumulant de soufre et un moteur à combustion interne fonctionnant avec ce procédé
EP1154130B1 (fr) Procédé pour la séparation d'oxydes d'azote et de particules de suie d'un gaz d'échappement pauvre de moteur à combustion
DE19882303B4 (de) Vorrichtung, Verfahren und System zur Konzentration und Verringerung adsorbierbarer Schadstoffe
DE19960430B4 (de) Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und Schwefeloxid-Falle und Betriebsverfahren hierfür
WO1999022129A1 (fr) Mode de fonctionnement d'une machine a combustion interne a piston avec injection directe de carburant et traitement ulterieur des gaz d'echappement
DE112006001296B4 (de) Auspufflinie für Brennkraftmotoren
EP1050675B1 (fr) Dispositif d'épuration des gaz d'échappement comprenant un piège à oxydes de carbone et procédé de desulfatation correspondant
EP1086741B1 (fr) Procédé pour commander la régénération d'un filtre à particules et la désulfuration d'un catalyseur d'accumulation des oxydes d'azote
DE102017205170B4 (de) Abgassystem für einen Verbrennungsmotor sowie Verfahren zum Betrieb eines Abgassystems
DE19511548A1 (de) Verfahren und Vorrichtung zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
DE19922960C2 (de) Abgasreinigungsanlage mit interner Ammoniakerzeugung zur Stickoxidreduktion
WO1999033548A1 (fr) REGENERATION D'UN CATALYSEUR A ACCUMULATEUR DE NOx DANS UN MOTEUR A COMBUSTION INTERNE
DE102015219114B4 (de) Verfahren zur Abgasnachbehandlung einer Brennkraftmaschine
EP0754841B1 (fr) Procédé et dispositif de purification des gaz d'échappement de véhicules à moteur
DE4434835A1 (de) Abgasanlage
DE19933029A1 (de) Verfahren und Vorrichtung zur Desulfatisierung eines NOx-Speicherkatalysators
DE102020103897B4 (de) Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors und Abgasnachbehandlungssystem
DE4418117C1 (de) Ottomotor mit Katalysator
DE19939988A1 (de) Verfahren zum Betreiben eines Dieselmotors
WO2000008311A1 (fr) Procede et dispositif de desulfatation d'un systeme catalyseur
DE102016201597B4 (de) Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
DE102015221028B4 (de) Verfahren zum Betrieb einer Abgasnachbehandlungsvorrichtung eines Kraftfahrzeugs
DE102018200452B4 (de) Entschwefelung einzelner Stickoxidspeicherkatalysatoren in einem dualen Stickoxidspeicherkatalysator-System

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 02D 41/02 A, 7F 01N 3/08 B, 7F 01N 3/22 B

17P Request for examination filed

Effective date: 20000318

17Q First examination report despatched

Effective date: 20000915

AKX Designation fees paid

Free format text: DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020123

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REF Corresponds to:

Ref document number: 59805965

Country of ref document: DE

Date of ref document: 20021121

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081212

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081216

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081227

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091204